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Abstract
DCE-MRI has proven to be a highly sensitive imaging modality in diagnosing breast cancers.
However, analyzing the DCE-MRI is time-consuming and prone to errors due to the large volume
of data. Mathematical models to quantify contrast perfusion, such as the Black Box methods and
Pharmacokinetic analysis, are inaccurate, sensitive to noise and depend on a large number of
external factors such as imaging parameters, patient physiology, arterial input function, fitting
algorithms etc., leading to inaccurate diagnosis. In this paper, we have developed a novel
Statistical Learning Algorithm for Tumor Segmentation (SLATS) based on Hidden Markov
Models to auto-segment regions of angiogenesis, corresponding to tumor. The SLATS algorithm
has been trained to identify voxels belonging to the tumor class using the time-intensity curve,
first and second derivatives of the intensity curves (“velocity” and “acceleration” respectively) and
a composite vector consisting of a concatenation of the intensity, velocity and acceleration vectors.
The results of SLATS trained for the four vectors has been shown for 22 Invasive Ductal
Carcinoma (IDC) and 19 Ductal Carcinoma In Situ (DCIS) cases. The SLATS trained for the
velocity tuple shows the best performance in delineating the tumors when compared with the
segmentation performed by an expert radiologist and the output of a commercially available
software, CADstream.

Keywords
Computer-aided diagnosis; Hidden Markov Models; DCE-MRI; Invasive Ductal Carcinoma;
Ductal Carcinoma In Situ; Statistical Learning Algorithm

1 Introduction
Nearly 200,000 new cases of invasive breast cancer were expected to be detected in the US
in 2011 (http://www.breastcancer.org/). Early diagnosis and treatment of breast cancer has
proven to be beneficial in improving the survival rate. Conventional diagnostic tools involve
palpation and imaging techniques such as mammography. Of late, DCE-MRI has proven to
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be a highly sensitive technique in the diagnosis of breast cancer and staging of therapy [1].
To create a DCE-MRI data set, vascular contrast (generally Gd-DPTA) is injected
intravenously, and a time series of volumetric images is made of the breast. Tumors have a
greater density of blood vessels resulting in rapid wash-in of the contrast. However, due to
the leaky nature of the blood vessels, the contrast tends to wash out of the tumor.
Comparatively, the surrounding breast parenchyma has normal supply of blood resulting in a
slower increase in contrast. As a result, voxels within a tumor in DCE-MRI show a rapid
increase in signal intensity and a subsequent decrease over time, while voxels within the
healthy parenchyma show a gradual increase in signal intensity.

Several investigators have developed mathematical techniques to represent the
pharmacokinetics and derive quantitative information on the signal intensity changes as the
contrast medium flows into and out of each voxel. These methods can be broadly divided
into two groups : Black Box Methods and Tissue-Contrast Modeling [2].

Due to inherent differences in the shape of the intensity curves corresponding to tumor and
healthy voxels, black box methods quantify the type of signal intensity change in terms of
metrics such as maximal enhancement [3], initial rate of enhancement [4], time to peak [5],
signal enhancement ratio [6], and washout slope [7]. Several commercial systems such as
CADstream have also utilized the black-box methods to evaluate the tumor maps. However,
these metrics utilize only a small portion of the curve to estimate the extent of angiogenesis.
In addition, these metrics are highly dependent on external factors such as imaging
parameters, timing of contrast injection and image acquisition, imaging noise, patient
physiology and type of tumor. In addition, Ductal Carcinoma In Situ, a precursor to
malignant cancer of the breast is low enhancing. Therefore, metrics such as maximum slope
are not suitable for distinguishing regions of cancer from healthy tissue.

Pharmacokinetic models mathematically describe the underlying diffusion process of
contrast from the blood vessels to the extracellular space making some key assumptions.
Examples include the standard and extended Tofts model [8], two compartment model,
shutter speed model [9] and Brix model [10]. A recent paper [11] mathematically elucidated
the shortcoming of the Tofts and extended Tofts model by demonstrating the narrow range
of applicability of the model to highly perfused or weakly vascularized tissue, both of which
are not necessarily applicable to breast carcinomas. Luypaert et al. [12] found that for the
two compartment model, the errors in estimating the pharmacokinetic models are extremely
sensitive to the sampling time and increased rapidly with increased sampling time. This
leads to unreasonable requirements on the sampling time. In addition, to allow for a 20%
error in the estimation of the parameters, the limits imposed on the Contrast to Noise Ratio
is well beyond the capability of modern day scanners. Litjens et al. [13] have shown that the
Brix model performance is suboptimal over all sampling rates and does not adequately
model the diffusion process. The accuracy of the pharmacokinetic models also greatly
depend on the fitting algorithms, which are highly sensitive to imaging artifacts such as
inhomogeneities, noise and limited temporal resolution. These fitting algorithms may not
converge at all, or converge to a different local minima [14].

Several papers have also utilized clustering algorithms such as fuzzy c-means [15], artificial
neural networks [16], PCA/ICA based methods [17] etc. to differentiate regions of tumor
from healthy parenchyma. However, most clustering methods still rely on scalar heuristic
parameters obtained from the intensity curves, thereby suffering from the same problems of
the black-box methods. Noise and imaging inhomogeneities affect the accuracy of such
clustering methods.
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Hidden Markov Models (HMMs) have proven to be a useful tool in identifying and
predicting patterns in noisy data. Some applications which use HMMs include speech
recognition [18], detecting protein homologies [19], gesture recognition [20], predicting
electricity prices [21], modeling cardiac arrhythmia [22], etc. A variation of the HMM has
been used in [23] to segment prostate cancer from multispectral MR prostate datasets. Gong
and Brady [24] utilized the Hidden Markov Random Measure Field to simultaneously
register and segment breast carcinomas from DCE-MRI. However, in their framework they
have integrated the texture information and a Markov Random Field model along with a
pharmacokinetic model to segment the tumors. This framework would be sensitive to the
same problems as the pharmacokinetic models. In a recent paper, probabilistic models based
on HMMs have shown great promise in segmenting and estimating breast density from
breast tomosynthesis images [25].

We have developed a novel Statistical Learning Algorithm for Tumor Segmentation
(SLATS) based on the discrete form of the HMM. SLATS automatically segments regions
of angiogenesis corresponding to tumor from healthy parenchyma without requiring the user
to specify a training set for the HMMs. An initial version of this paper was presented at the
IEEE International Conference on Biomedical Imaging (ISBI), 2012 [26]. In this paper, we
have further trained the HMMs using the derivatives of the time-intensity curves and
compared the results of SLATS for the different trajectories. The classification of the pixels
into healthy and tumor classes is done in the frequency domain on short time intervals (using
Short Time Fourier Transform), effectively suppressing frequencies outside the time
window, making it less sensitive to noise and biases, thereby overcoming a major problem
associated with the black-box method. Also, the entire data contained in the time-intensity
curve is utilized in contrast to conventional methods of reducing the information to a single
scalar metric. Since the method is independent of any underlying physiological model, it can
be widely utilized to segment structures from 4D dynamic images and also avoids the
limitations imposed by the pharmacokinetic models.

The paper has been organized as follows: Section II contains the description of SLATS,
Sections III describes the methods used to load the DCE-MRI and perform the analysis,
Section IV contains the results of the algorithm for 22 IDC and 19 DCIS cases along with
results for DCE-MRI with greater time points and robustness analysis and finally, Section V
has some concluding remarks.

2 Tumor Segmentation Algorithm
Key techniques used in SLATS include the Fast Fourier transform (FFT), Short-time Fourier
Transform (STFT), the fuzzy c-means clustering (FCM) algorithm and the HMM. The flow
chart of the algorithm is shown in Figure 1. Our algorithm is based on modeling the
transition of each voxel in time and classifying the voxels into healthy and tumor classes.
First, a region of interest (ROI) is delineated by a human operator on the dynamic image
data. While the results of the processing are not particularly sensitive to the choice of ROI, a
smaller ROI permits faster computation, which is particularly important for image guided
surgery applications. The time-intensity profile of each voxel in the ROI is provided to the
FFT algorithm, and the frequency components of the time-intensity profiles are computed.
The voxels are approximately clustered based on the magnitude of the FFT into “tissue
type” classes using the FCM clustering algorithm. A small sample of points from the two
classes of voxels are then provided to train two discrete HMMs corresponding to healthy
(normal parenchyma) (λ1) and tumor (λ2) classes. For the remaining pixels, the probability
of observing the discrete sequence is computed from HMM λ1 and HMM λ2. A similarity
ratio χ is then evaluated to determine the similarity to the healthy or tumor class. The ratio
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χ is then converted to a color scale and overlaid with the original images to determine the
position of the tumor. We now go over each component of the pipeline in more depth.

2.1 Preparing data
The time-intensity profile of all the voxels within a mask is first logged. Since there are
limited number of time points, the curves are interpolated to obtain greater samples within
the given 5 data points. In this paper, we have trained the HMMs to learn four different
trajectories corresponding to the time-intensity curves, derivative (“velocity”) and second
derivative (“acceleration”) of the time-intensity curves and a composite tuple consisting of
the concatenation of the position, velocity and acceleration tuples. At each voxel i, the

interpolated intensity tuple can be written as , where the superscript
represents the time index. Each of the intensity, velocity and acceleration tuples at a voxel is
an n-tuple, while the composite tuple is a 3n-tuple.

Next, we create a prior for input to the HMMs. The discrete Fourier transform (DFT) for all
the time-intensity curves are computed. Based on the magnitude of the DFTs, the voxels are
approximately clustered into two classes, corresponding to the tumor and healthy class,
using the FCM algorithm [27]. These are then input to the HMMs to further refine the
classification of the voxels into tumor and healthy class. In order to train and predict using
HMMs, we estimate the STFT features of the voxels within the ROI.

2.2 Short-time Fourier Transform (STFT)
Although the Fourier transform preserves the information in the signals and can be
computed efficiently, they lack the temporal localization of the frequencies. Therefore, we
use the STFT in short time periods and obtain a feature tuple corresponding to each time
window [28]. Since the STFT is computed by multiplying the time-intensity curves with a
small time window, the contribution of the signals outside this time window is effectively
suppressed, thereby acting as a band pass filter. The STFT is computed as,

(1)

where γ(τ–t’) is the sampling window of the trajectory. The Fourier transform in each
sampling window is computed by the FFT algorithm. Information loss is minimized by
overlapping the STFT windows. In each sampling window, the STFT consists of the
magnitude of N discrete frequency contributions. Multiplication of the signal by the
relatively short window effectively suppresses the signal outside the analysis time point,
thereby acting as a bandpass filter. Considering that the STFT has been computed in p time
intervals, the dimension of the STFT feature tuple is N×p.

2.3 Vector Quantization
Since the HMM structure considered in this paper is discrete, we convert the N tuple STFT
vector in each time interval into a single discrete observation symbol using the k-means
clustering algorithm [29]. The k-means algorithm partitions the p N-tuples at different time
intervals into L = 8 sets so as to minimize the within-cluster sum of squares. The discrete
observation symbol of each tuple is the index of the codebook tuple closest to the given N
tuple vector, i.e., the cluster in which the vector belongs.

2.4 Hidden Markov Model (HMM)
Our HMM analysis is based on the approach and notation of Rabiner [30]. The parameters
of the HMM model are defined as follows:

Jayender et al. Page 4

Comput Med Imaging Graph. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



• The HMM is assumed to have N (= 2) states. These states correspond to the two
possible classes the voxel can belong to. The transition probability between state i
to j is given by

(2)

• Each state also has M (= 8) possible observation symbols Ot. M was chosen such
that the HMM model could capture the variation in the time-intensity curves
observed for different pixels while avoiding a computationally intensive model.
The probability of observing a particular symbol Ot in state j is

(3)

• Also a state prior πi is defined, which is initial probability of beginning in Si

In short the HMM can be represented as λ = (A, B, π). The model λ is trained according to
the time-intensity curves or its derivatives obtained from a sample of points from each class.

2.5 HMM Training
Having generated the discrete observation symbols, the observation sequence is provided to
the HMM network to obtain the updated model . For training the HMMs corresponding to
the two classes, we use a sample of 20 points from each of the two classes of the soft priors
generated from the FCM algorithm in Step A. The typical enhancement pattern for breast
tissue comprises of three types of curves - Type I, II and III, as shown in Figure 2. It has
been shown that voxels demonstrating a Type III curve are highly correlated to malignant
tissue while Type I curves correspond to benign tissue [31]. The HMM corresponding to the
tumor class is trained using voxels which demonstrate a Type III curve. The curves are

chosen such that the initial enhancement  is greater than 0.5 while the

washout  is greater than 0, where  is the uninterpolated signal intensity of voxel i

at the kth time point. The HMMs are trained using the interpolated time-intensity curves ,

derivative  and second derivative  of the time-intensity curves and a composite tuple

consisting of the three tuples .

The parameters of the models are estimated by maximizing the auxiliary function

(4)

This optimization problem is solved iteratively by the Baum-Welch method [30]. Two
HMMs are trained corresponding to the “Healthy” (λ1) and “Tumor” (λ2) class.

2.6 HMM Prediction
Once the HMMs have been trained, the next step is to estimate the likelihood of each HMM
observing a given sequence. The observation sequence consists of the STFT tuples
generated from the intensity, velocity, acceleration or composite vectors of the voxels within
the ROI. The probability of predicting the observation sequence given the HMM model is
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computed inductively using the forward-backward algorithm [32] by summing the following
joint probability over all possible state sequences:

(5)

The reader is referred to [30] for greater details.

2.7 Similarity Ratio
A similarity ratio χj is computed to evaluate if a particular point j belongs to the tumor or
healthy class and is converted to a scalar color map. The hypothesis is that a voxel belonging
to the tumor class will be have a higher probability of being observed by the HMM trained
for tumor voxel (λ2) than the healthy HMM (λ1). The measure is defined as

(6)

The similarity index χj is converted to a scalar image, representing the tumor map, and
overlaid with the DCE-MRI.

3 Methods
In these retrospective studies, patient records were analyzed for cases in which biopsy
confirmed breast cancer was detected. These included 22 breast examinations of women
diagnosed with IDC and 19 examinations of women diagnosed with DCIS. The protocol was
approved by the Brigham and Women’s Hospital Institutional Review Board and compliant
with Health Insurance Portability and Accountability Act (HIPAA). Five different MR
scanners were used for imaging of the patients using either a 1.5-T or a 3-T closed magnet
(Signa or HDX, GE Healthcare and Trio, Siemens Medical Solutions, Erlangen, Germany)
and a dedicated breast-surface coil (InVivo 7-Channel Breast Biopsy Array, Invivo
Research). Scheduling availability determined which magnet would be used. Scanning
protocols included pre- and post- VIBRANT (Volume Imaging Breast Assessment) or VIBE
(Volumetric Interpolated Breath hold Examination) fat saturated sequences in either the
sagittal or axial planes. The dynamic contrast sequences were obtained at 90s, 180s, 270s
and 360s following intravenous contrast administration. Patients received 0.2ml/kg of
gadolinium (Magnevist, Bayer HealthCare) contrast infused at 2ml/s. The tumors diagnosed
in the images were biopsy confirmed to have either IDC or DCIS.

The 4D DCE-MRI data set was loaded in 3D Slicer, an open-source image processing and
navigation software (www.slicer.org). A region of interest was delineated on the DCE-MRI.
The time-intensity curve for each voxel was logged and provided to the SLATS algorithm
along with the computed velocity, acceleration and composite tuples. The resultant tumor
maps were converted to DICOM images and imported into 3D Slicer and overlaid with the
DCE-MRI. The workflow of a typical case is shown in Figure 3.

For each breast examination, an expert radiologist delineated the primary node of the tumor
by overlaying the pre-contrast and first post-contrast image. The location of the tumor
described in the biopsy reports was also made available to the radiologist. A visual
inspection of brightly enhanced portions of the DCE-MRI was utilized for delineating the
tumor boundaries. Although numerous tumor foci may be present, the radiologist only
delineated the masses in the vicinity of the biopsy proven malignant tumor. In addition, for
each breast exam the output of a commercial software, CADstream (Merge Healthcare Inc.)
was obtained and registered to the DCE-MRI in 3D Slicer. The tumor map generated by
CADstream was outlined. The performance of the algorithm was assessed with the
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following measurables: Accuracy, Sensitivity and Dice Similarity Coefficient (DSC). Any
overlap between the two tumor masks is considered as a true positive finding while no
overlap between the two tumor masks is considered as a false positive or negative finding.
The accuracy and sensitivity of detecting a tumor focus by the algorithm was calculated,
considering the radiologists segmentation and the CADstream output as the reference
validation independently. In addition, the amount of overlap of the tumor map generated by
the SLATS and the radiologist’s delineation and CADstream output was measured in terms
of the DSC. A perfect overlap results in a DSC of 1 while no overlap results in DSC of 0.

4 Results
4.1 Algorithm results

Figure 4 shows the pre-contrast (a) and the four post contrast (b-e) T1-weighted images. A
biopsy proven IDC is shown by a red arrow. A visual inspection of the images suggests an
increase in the intensity of voxels corresponding to the tumor mass while the surrounding
healthy parenchyma shows negligible increase in the signal intensity. Due to angiogenesis,
tumors have large number of vessels supplying blood and other nutrients. As a result of the
enhanced blood flow, the contrast rapidly washes into the tumor, thereby increasing the
intensity of voxels corresponding to the tumor at the first time point. However, the tumor
blood vessels are malformed and leaky, thereby resulting in washout of contrast. This can be
seen over the next three time points, as shown in Figure 4(b)-(e). On the other hand, the
surrounding healthy parenchyma has a lower density of blood vessels, resulting in minimal
increase in signal intensity of the healthy parenchyma in the DCE-MRI. The time-intensity
curve of a voxel within the tumor and healthy parenchyma is shown in Figure 5(a). The first
and second derivatives of the time-intensity curves (hereafter denoted as the “velocity” and
“acceleration” trajectories) are computed by the first and second order difference equations
and are shown in Figure 5(b) and (c) respectively.

As detailed in Section 1, the time-intensity (“intensity”), velocity, acceleration and
composite tuples are input to the HMMs to train the network to predict the occurrence of the
discrete observation sequence at each voxel. The first step of the algorithm is to estimate the
patient-specific priors, which are then utilized to refine the segmentation using the HMM.
The magnitude of the Fourier transform of the observation tuples are input to the FCM
algorithm, which approximately clusters the observation tuples from all the voxels into two
classes corresponding to the healthy and tumor class. Figure 6 shows the patient specific
priors generated from the intensity, velocity, acceleration and composite tuples. It can be
seen in Figure 6 that the FCM algorithm detected the primary mass, which is clearly seen on
the DCE-MRI, along with a smaller secondary mass that is di cult to identify using just the
pre-contrast and post-contrast images. Having generated the priors, a small sample of points
belonging to the tumor and healthy classes are provided to the two HMMs to train the
HMMs corresponding to the healthy and tumor class. Thereafter, the observation tuples
from all voxels under the mask are then provided to the two HMMs to evaluate the
similarity metric for generating the final tumor mask. The output from the SLATS algorithm
is shown in Figure 7. The tumor masks generated by the FCM algorithm is further refined by
the HMM. The result of the four cases was compared with the radiologist’s segmentation
and CADstream output and quantified in terms of the accuracy and sensitivity of detecting
the tumors and DSC for the amount of overlap. For 112×70 voxels ROI, the computation
time for the FCM step was 6.76 seconds while the computation time for training the HMM
and estimating the similarity ratio was 8.54 seconds. For a smaller ROI with size 56×32
voxels, the computation time for the FCM and HMM steps were 0.15 and 3.90 seconds
respectively. The simulations were performed on a Dell Precision Workstation (Intel Xeon
Quad-core, 32 GB RAM, Fedora 12, MATLAB 7.7.0).
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4.2 Result for Invasive Ductal Carcinoma (IDC) cases
The algorithm was first tested for patients diagnosed with IDC that typically enhance faster
than any other type of breast carcinoma. The result of SLATS for four patient cases is shown
in Figure 8. The output of SLATS for the position tuple is shown in Figure 8(a), velocity
tuple in Figure 8(b), acceleration tuple in Figure 8(c) and composite tuple in Figure 8(d).
The tumor maps correspond closely with the CADstream output, shown in Figure 8(e) and
the manual segmentations, shown in Figure 8(f). However, due to the inherent noise in the
imaging modality, the tumor map generated using the acceleration tuple demonstrated
numerous spurious tumor masses, as seen in the third case in Figure 8(c). For the 22 IDC
cases analyzed in this paper, the results are summarized in Table I. The sensitivity of
detecting the tumors for the four observation tuples is consistently higher than 92% with the
composite observation tuple showing the highest sensitivity. The HMM trained with the
composite tuple identified all the tumors delineated by the radiologist. In a few cases, the
algorithm detected additional tumor masses as shown in Figure 9. The accuracy
demonstrated by the four observation tuples is similar and ranges between 85.1% for the
intensity tuple and 92.6% for the composite tuple.

In the absence of targeted biopsy results, the only way to characterize the additional mass
for evaluating the accuracy of the algorithm is by observing the type of signal enhancement
(see Figure 2). In order to quantify the accuracy of the tumor map, the enhancement curve
for Regions of Interest (ROIs) chosen within the different tumor masks is shown in Figure 9.
It can be seen that curves corresponding to ROI(a) and ROI(b) show a Type III curve,
characterized by a rapid enhancement greater than 100% at the first time point and a
subsequent washout, which is typical of a malignant tumor. ROI(c) which lies within the
tumor map generated by all observation tuples except the acceleration tumor mask also
shows a borderline Type III/Type II curve which could correspond to malignant tumor.
However, enhancement curves corresponding to ROIs (d) and (e), which are within the
tumor maps generated by the position and composite tuples but outside the velocity tumor
map, correspond to a Type I persistent curve. The Type I curve is less likely to correspond to
malignant tissue. This suggests that the tumor mask generated by the velocity tuple is more
likely to be the most accurate in delineating the regions of angiogenesis. The secondary
mass detected by the SLATS algorithm trained for the velocity tuple was also missed by the
radiologist.

The accuracy of the tumor maps was also validated by evaluating the DSC, which measures
the amount of overlap between SLATS detected tumor and manually outlined tumor.
Considering the radiologist’s segmentation as the gold standard, the DSC for the tumor map
generated by the SLATS corresponding to the velocity tuple is higher than the DSC of the
tumor maps generated from other observation tuples.

The result of the SLATS algorithm was also compared with the output of CADstream. The
results are summarized in Table II. In 9% (2/22 cases) of the IDC cases, the commercial
tumor map failed to detect a biopsy proven tumor due to slow enhancement of the primary
mass. In these cases, the SLATS algorithm successfully detected the tumor mass with an
average DSC of 0.71, 0.60, 0.39 and 0.69 respectively corresponding to the intensity,
velocity, acceleration and composite tuples, demonstrating that the SLATS performs better
than the commercially available software. In the remaining 20 cases, considering the
CADstream output as the gold standard validation, the accuracy and sensitivity of detecting
the tumor masses are similar for the four observation tuples, ranging in the 90% to 100%
range. The tumor masks generated by the HMMs trained for the velocity and acceleration
tuples demonstrated maximum overlap with the CADstream output with a DSC of 0.71 and
0.72 respectively.
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4.3 Result for Ductal Carcinoma In Situ (DCIS) cases
Figure 10 shows the pre-contrast and four post-contrast images of a breast tumor confirmed
to be DCIS. As with the IDCs, DCIS shows significant enhancement of contrast at the first
time point and a subsequent decrease in contrast over the next three time points. An ROI is
selected on the DCE-MRI and all the time-intensity tuples along with the computed velocity,
acceleration and composite tuples are provided to the SLATS to generate the tumor mask.
The result of the SLATS for the four observation tuples is shown in Figure 11.

The SLATS was implemented on 19 incisional or excisional biopsy proven DCIS cases. The
result for four cases is shown in Figure 12. As with the IDC cases, the result of SLATS was
compared with the radiologist’s segmentation and the output of CADstream. The result of
the SLATS algorithm compared with the manual segmentation is shown in Table III. The
overall accuracy of detecting DCIS is lower compared to the result for the IDC cases,
perhaps because DCIS is low enhancing tumor and can be difficult for the radiologist to
detect using a visual inspection of the pre- and first post-contrast DCE-MRI. In order to
evaluate the accuracy of the tumor maps generated from SLATS, we follow the same
procedure as performed above for the IDC case shown in Figure 9. We evaluate the time-
intensity curves of ROIs chosen within each tumor mask (see Figure 13). As seen in Figure
13 (left), ROI1 corresponds to the primary mass which is detected by the radiologist,
CADstream and SLATS (indicated by a blue arrow), ROI2 to a mass detected by
CADstream and SLATS (indicated by a red arrow) and ROI3 to a mass detected only by
SLATS (indicated by a green arrow). The enhancement curves for ROI1 and ROI2 show a
typical Type III curve with an initial enhancement greater that 100%, thereby suggesting
that the two masses correspond to malignant tumors. ROI3 also shows a Type III curve.
However, the initial enhancement is significantly lower than the two other masses but is
greater than the 50% threshold. This type of low enhancement is typical of DCIS and
therefore, the mass detected by the SLATS algorithm is more likely to correspond to a true
positive.

The accuracy of the SLATS algorithm trained using the velocity tuple is the highest among
the four observation tuples and has 100% sensitivity in detecting the DCIS tumors. The
amount of overlap with the radiologists segmentation was also measured in terms of DSC
and is shown in Table III for the four observation tuples. The tumor mask generated by the
velocity tuple shows maximum overlap with the radiologist’s segmentation with a DSC of
0.69.

The result of the SLATS algorithm for DCIS cases was also compared with the CADstream
output. Since DCIS is a weakly enhancing tumor, CADstream did not detect significant
contrast enhancement corresponding to the tumor in 26.3% (5/19) of the cases. In these
cases, the SLATS algorithm detected DCIS with a DSC of 0.56, 0.66, 0.55 and 0.52
respectively for the four observation tuples when compared to the manual segmentations. In
the remaining 14 cases, considering the CADstream output as the gold standard, the results
of the SLATS algorithm are summarized in Table IV. The velocity tumor mask shows an
accuracy of 90%, a sensitivity of 100% and a DSC of 0.58 in segmenting tumors which have
been identified by CADstream.

4.4 Result for DCE-MRI with greater time points
In the previous subsections, the SLATS algorithm has been tested for DCE-MRI with four
time points excluding the pre-contrast image. In this section, we will show that the SLATS
algorithm can be applied to DCE-MRI with any number of time points. The algorithm has
been tested on 10 datasets obtained from the Cancer Imaging Archive, an initiative funded
by the National Cancer Institute (https://cancerimagingarchive.net/). The women were
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imaged prone in a 1.5T Achieva MRI scanner from Philips Medical Systems. The pulse
parameters were as follows: matrix size = 560×560; slice thickness = 4mm; flip angle = 12°.
The DCE-MRI has 8 time points. The SLATS algorithm has been implemented on these
datasets with no modifications. To evaluate the output of the algorithm, a radiologist
manually segmented the tumor mass from the pre- and fourth post-contrast images with
limited information obtained from the case study report.

The result of the SLATS algorithm compared to the manual segmentation mask is shown in
Table V. The SLATS demonstrates 100% sensitivity in detecting biopsy proven tumors. The
SLATS tumor mask corresponding to the acceleration tuple detected additional tumor
masses, therefore resulting in an accuracy of 91.6%. The SLATS trained for other
observation tuples detected the tumor masses with a 100% accuracy. The amount of overlap
with the radiologist’s segmentation is also significant with a DSC over 0.73. The results
show that the SLATS algorithm can be applied to DCE-MRI with higher number of time
points. In this preliminary result, it also appears that the SLATS performs better for DCE-
MRI with greater time points.

4.5 Result for robustness analysis
In order to test the stability of the algorithm, the DCE-MRI and the associated tumor map Tt
was translated by an arbitrary amount, which in this case was (−20, 37, 16) mm in the Right-
Anterior-Superior coordinate frame. The ROI was chosen again and the time-intensity
profiles were logged and provided to the SLATS algorithm trained for the intensity tuple
based on which the tumor map T was obtained. The DSC computed between Tt and T was
0.99, thereby showing a robust stability to translational disturbances. In addition, random
noise was also added to the DCE-MRI to evaluate the noise disturbance rejection capability.
The DSC between the tumor map generated from the noisy DCE-MRI and original map was
0.995, showing excellent noise rejection capability. To test the reproducibility of the
algorithm, we have further tested the SLATS algorithm for a single case for 10 trials with
varying initial conditions. The mean DSC between the tumor map generated from the 10
trials and the original tumor map was computed to be 0.99934, showing excellent
reproducibility of the results.

5 Conclusion
In this paper, we have described an algorithm based on HMMs to segment regions of
angiogenesis corresponding to the tumor. The SLATS has been trained using STFT feature
vectors obtained from the intensity, velocity, acceleration and composite tuples. The SLATS
trained for the velocity tuple shows the best performance in terms of the accuracy and
sensitivity of detecting tumors identified by the radiologist and CADstream. The tumor map
generated from SLATS using the velocity tuple also shows maximum overlap with the
radiologist’s segmentation and CADstream output in terms of the DSC. In 9% of IDC cases
and 26.3% of DCIS cases, CADstream failed to detect biopsy proven tumors. In these cases,
the SLATS algorithm successfully delineated the tumor, thereby showing better
performance than the commercially available software. The algorithm has also been tested
for DCE-MRI with 8 time points. The results show the applicability of the algorithm for
DCE-MRI with a higher number of time points. The algorithm is also robust to noise and
translational disturbances. However, deformation of the breast during imaging needs to be
addressed using non-linear deformable registration algorithms. Further validation of the
algorithm using biopsy samples obtained under image-guidance is currently underway.
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Figure 1.
Flowchart of SLATS
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Figure 2.
Types of signal enhancement in DCE-MRI
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Figure 3.
Workflow of the SLATS. (a) DCE-MRI loaded into 3D Slicer (b) ROI delineated (c) Time-
intensity curves obtained from all voxels under ROI and provided to SLATS (d) Tumor map
is generated
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Figure 4.
DCE-MRI of a patient with IDC. (a) Pre-contrast baseline image (b)-(e) Four post-contrast
images (f) T2-weighted image
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Figure 5.
(a) Time intensity curves (b) Derivative of the time intensity curve (“velocity”) (c) Second
derivative of the time intensity curve (“acceleration”)

Jayender et al. Page 17

Comput Med Imaging Graph. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Output of the FCM algorithm for (a) Intensity (b) Velocity (c) Acceleration (d) Composite
tuples
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Figure 7.
Result of the SLATS algorithm for (a) Intensity (b) Velocity (c) Acceleration (d) Composite
tuples
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Figure 8.
Results of the SLATS algorithm for four cases, each row is a case. (a) Position (b) Velocity
(c) Acceleration (d) Composite tuples (e) CADstream output (f) Magnified view of the
smoothened tumor outlines defined by velocity SLATS map (green), Radiologist (red) and
CADstream output (blue).
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Figure 9.
(left) Tumor map outlines generated by the position (red), velocity (green), acceleration
(yellow) and composite (blue) tuples (right) Time-intensity curves of the ROIs
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Figure 10.
DCE-MRI of a patient with DCIS. (a) Pre-contrast baseline image (b)-(e) Four post-contrast
images (f) Subtracted image (First post-contrast image minus baseline image)
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Figure 11.
Result of SLATS for (a) position (b) velocity (c) acceleration (d) composite tuples

Jayender et al. Page 23

Comput Med Imaging Graph. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 12.
Results of the SLATS algorithm for four DCIS cases, each column is a case. (Top) SLATS
output generated from velocity tuple (bottom) Outlines of the velocity SLATS tumor map
(green), radiologist’s segmentation (red) and CADstream output (blue)
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Figure 13.
(left) Tumor map outlines generated by the SLATS velocity tumor map (green), radiologist
(red) and CADstream output (blue) (right) Time-intensity curves of the ROIs

Jayender et al. Page 25

Comput Med Imaging Graph. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Jayender et al. Page 26

TABLE I

RESULTS OF THE SLATS COMPARED TO RADIOLOGIST’S DELINEATION FOR IDC CASES

Intensity Velocity Acceleration Composite

Accuracy
Sensitivity

DSC

85.1%
92%
0.63

88.9%
96%
0.75

88.4%
92%
0.71

92.6%
100%
0.72
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TABLE II

RESULTS OF THE SLATS COMPARED TO CADSTREAM OUTPUT FOR IDC CASES

Intensity Velocity Acceleration Composite

Accuracy
Sensitivity

DSC

96%
100%
0.59

92.3%
100%
0.71

92%
95.8%
0.72

88.8%
100%
0.68
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TABLE III

RESULTS OF THE SLATS COMPARED TO RADIOLOGIST’S DELINEATION FOR DCIS CASES

Intensity Velocity Acceleration Composite

Accuracy
Sensitivity

DSC

67.6%
100%
0.58

79.3%
100%
0.69

68.7%
95.6%
0.56

62.1%
100%
0.60
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TABLE IV

RESULTS OF THE SLATS COMPARED TO CADSTREAM OUTPUT FOR DCIS CASES

Intensity Velocity Acceleration Composite

Accuracy
Sensitivity

DSC

76%
100%
0.44

90.4%
100%
0.58

75%
94.7%
0.58

70.3%
100%
0.49
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Table V

RESULTS OF THE SLATS COMPARED TO RADIOLOGIST’S DELINEATION FOR DCE-MRI WITH GREATER TIME POINTS

Intensity Velocity Acceleration Composite

Accuracy
Sensitivity

DSC

100%
100%
0.80

100%
100%
0.78

91.6%
100%
0.73

100%
100%
0.83
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