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Abstract

Product-driven control may enable manufacturing companies to meet business de-
mands more quickly and effectively. But a key point in making this concept ac-
ceptable by industry is to provide benchmarking environments in order to compare
and analyze their efficiency on emulated large-scale industry-led case studies with
regard to current technologies and approaches. In this paper, a benchmarking proto-
col is defined, in order to provide R&D practitioners with benchmarking services in
a product-driven implementation project. A component-based generic architecture
is proposed to support this protocol, enabling to model and compare various con-
trol architectures. This benchmarking protocol is applied to an automotive-industry
case study in order to evaluate the impact of making the products interact with the
local decision centers. Finally the experiments show that product-driven control can
perform as good as traditional centralized control, and that its robustness depends
mainly of the local decision-making processes.

Key words: Intelligent Manufacturing Systems, product-driven control,
benchmarking, simulation, HMS, MAS

1 Introduction

There is a large consensus in the IMS community between holonic control, pro-
duction management and virtual enterprises (Babiceanu and Chen, 2006) that
the combination of agent and infotronics technologies may permit meeting flex-
ibility and adaptability issues as required by the increasing customization of
goods and services. Indeed, on one hand, agent technology brings forward new
fundamental insights on decentralized coordination and auto-organization, en-
abling new manufacturing decision-making policies and on-the-fly reconfigu-
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ration capabilities (“plug-and-produce”). On the other hand, infotronic tech-
nologies address mainly the issue of synchronization between physical objects
and their informational representation, which was acknowledged to be one of
the major issues in production and inventory management (Plossl, 1985).

This holonic-modeling paradigm, mainly developed by the Holonic Manufac-
turing Systems community (Valckenaers, 2001) can be applied into product-
driven control. Product-driven control is a way to exchange the hierarchical
integrated vision of plant-wide control for a more interoperable/intelligent one
(Morel et al., 2007), by dealing with products whose information content is
permanently bound to their material content and which are able to influence
decisions made about them (Mcfarlane et al., 2003). This approach is appli-
cable at the supply chain level to improve products information management,
with applications of the system in tracking and logistics control (Kärkkäinen
et al., 2003).

Research interest in product-driven control is currently growing, as numerous
research projects appear. For instance the European project PABADIS’PROMISE 1 ,
involving researchers and software vendors, aims at building a product-centered
manufacturing execution system, by developing a new kinds of devices capable
of embedding an agent representing a product, and ERP modules and process
controllers capable of interacting with these product agents.

Improvements in observation of products, thanks to identification technolo-
gies (such as RFID, bar codes, etc...) are therefore driving major changes in
the way control architectures are organized. One of the key organizational
issues is business to manufacturing (B2M) interaction; holonic products inte-
grating information from both the business and manufacturing point of view
are able to solve interoperability issues (Baina and Morel, 2006). They may
also make possible to have seamlessly coexisting mature centralized decision
systems, such as MRP2 (Vollmann et al., 1997) with newer distributed control
approaches. Figure 1 summarizes this novel organization centered on active
products.

Nevertheless, as noted in recent work by Marik and Lazansky (2007), there is
still a long way to go to make these heterarchical architectures efficient in real
industrial environments. Among many issues to be solved, embedded devices,
as well as agent technologies, are not yet sufficiently reliable and powerful to
handle the scalability problems so that decision-making can be fully shared.

Another issue is then to identify the correct balance between centralized and
distributed control capabilities of decision-making agents, so that the process
can be digitally interactive in both directions, from the operators down to

1 Plant Automation Based on Distributed Systems Product Oriented Manufactur-
ing Systems for Re-Configurable Enterprises (http://www.pabadis-promise.org)
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Fig. 1. B2M interaction centered on holonic products (Morel et al., 2007)

the products and back. A modeling and testing environment for analyzing
and comparing alternative decision-making scenarios with traditional ones is
required. The experimental feedback on design decisions provided by such a
benchmarking environment would permit the firm grounding of product-driven
architectures, and could discover new issues.

Therefore, this paper proposes an architecture based on generic components,
which can be used to build emulation-based benchmarking models. This en-
vironment enables researchers or practitioners to easily build industry-scale
executable models of factories in order to test control systems, and to model
and execute various organizational schemes of the decision-making system.

After stating in Section 2 the requirements for a benchmarking environment in
the context of product-driven control, we will define the proposed components-
based architecture; Section 3 deals with building an emulation model of an
industrial shop-floor system. This modeling and testing environment is then
applied in Section 4 to an industrial case study where a manufacturing line of
an automotive industry subsidiary is considered. In Section 5 we address the
interpretation of the experimental results; the Conclusions section presents
some perspectives into ongoing works at CRAN for industrial transfer in the
area of product-driven logistics for the natural-fiber industry.
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2 Problem statement

An empirical approach seems the most feasible way to evaluate new control
architectures. By empirical, we mean that generic properties of the control
architecture are logically induced from concrete applications of the control
system to many particular cases. Theoretical approaches, such as evaluation
of computational complexity (Monotori and Csáji, 2007) may generate useful
results, but cannot cope with the complexity of distributed systems. Indeed,
the behavior of distributed systems is often based on the emergence of global
properties from local behavior and interactions. But mathematically formal-
izing emergence is not easy (Corning, 2002), and modeling the system as a
whole may results in models more complex than the theory can actually solve.
So, by using an analytical approach, researchers might have to simplify reality,
or to choose only simple situations.

We distinguish three ways for conducting such concrete performance mea-
surements: namely analytical methods such as queuing theory, Monte Carlo
methods such as simulation or emulation, and physical experimentation such
as lab platforms or industrial pilot implementations.

In the context of product-driven control, analytical methods are impractical
because the mathematical models corresponding to a realistic case are often
too complex to be solved. Physical experimentation has the disadvantage of
technical- and cost-related limitations (Valckenaers et al., 1997). Simulation
seems the only recourse for modeling and analyzing performances in large-scale
industrial cases.

Comparison between antagonistic control modes such as market-based and
hierarchical control (Cavalieri et al., 2000) or planning-based and reactive
control (Brennan, 2000) have been carried out using specifically developed
test beds, but more generic evaluation tools are needed, enabling us to store,
share and compare test cases.

The development and definition of such generic evaluation tools has drawn
a great deal of interest. An online benchmarking utility has been defined by
IMS-NoE special interest group 4 (Cavalieri et al., 2003, and Valckenaers et
al., 2006), and this enables collection and sharing of a wide range of indus-
trial test cases. Until such a generic service—one is under development at KU
Leuven—is available, simulation-based benchmarking of complex manufactur-
ing systems remains the way to establish proof of the efficiency of plant-wide-
control organizational strategies before their deployment for practical purposes
(Monch, 2007).

In fact, there is consensus on the architecture of benchmarking environments
putting the emphasis on modularity between the control system CS and the
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shop-floor system SF. With these notations, an experimental run consists in
verifying the assertion (Fusaoka et al., 1983) SF ∧ CS ⊃ G, where G is the
required performance level. The real shop-floor system may be replaced by a
model, an emulated shop floor. Likewise, a model of the control system can
be used instead of the real one. Therefore, four experimental situations can
be defined, using either models or real systems (Pfeiffer et al., 2003).

Nevertheless, modeling issues remain. For instance, it can be difficult to distin-
guish between the shop floor and control systems. The borderline between the
two systems depends of the level of the control functions being tested. Another
issue is to build the emulation model itself, as currently available simulation
software does not offer emulation-capable modeling components. A third issue
is to be able to develop easily used product-driven control systems, in order
to compare various architectures or to validate decision-making policies.

This paper aims at solving these modeling issues by defining a modeling and
testing component-based framework. Moreover, we propose two experimental
steps, to enable iterative development of the product-driven execution system.

In the first step, a model of the control system is applied to the emulated shop-
floor system (SFm ∧CSm ⊃ G). Under the hypothesis that product-embedded
data are available to decision centers, this approach can be used to define what
kind of data should be embedded into products and how decision algorithms
should use them. The second step uses the real distributed control system (e.g.
a multi-agent system) that controls the emulated process (SFm ∧ CS ⊃ G).
This testing approach enables us to consider software-related issues such as
how products and decision-making centers should interact to exchange data.

This paper focuses on the first experimental step. An industrial case study
dealing with a product-driven decision scheme is presented. Previous works
on this case have discussed the respective performances of centralized and
distributed control (Pannequin and Thomas, 2004). Both decision modes are
combined using products: the centrally made predictive schedule is used to
initialize product data, whereas distributed decisions are based on both prod-
uct data and local events. The evaluation environment supports measurement
of the operational performances of this decision architecture with regard to
business and process disturbances and to a classical centralized approach.

3 Generic object-oriented components for emulation modeling

The proposed evaluation environment consists of an emulation-modeling frame-
work, a prototype implementing this framework and an experimental protocol.
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3.1 Modeling principle

The principle of an emulation-based experiment is to accept that proving
(SFm ∧ CS ⊃ G) logically implies that (SF ∧ CS ⊃ G), i.e. that a successful
run of a control system on an emulated shop floor means that an application
of this control system on the real system will also be successful.

Nevertheless, a model being an abstraction of reality, this implication can be
questioned. For instance, it is a usual practice not to represent routing issues
in simulation models: entities representing products are transparently moved
to their programmed destinations. Such simulation models are simpler, but do
not allow studying routing decisions.

Therefore, an emulation model must not only represent reality correctly, but
also comprise all the important aspects of reality. The importance of an ele-
ment is determined by its impact on the success of the experiment. In sum-
mary, an emulation model must include what might cause a negative experi-

mental result.

Several key properties of the benchmarking environment can be deduced by ap-
plying this principle to product-driven control issues. Thus, as product-driven
systems might provide a natural solution to synchronization issues between
physical and informational flows, the benchmarking environment must by de-
fault separate the different kinds of flows (matter, data, events). Likewise, the
emulation model must be neutral with respect to production execution func-
tions: on one hand, every action physically possible can be executed (including
routing); on the other hand, no action should be executed without an explicit
request from the control system. Finally, as the product may have an active
role in production execution, the modeling components must have sufficient
resolution to treat each product individually.

3.2 Systemics-based modeling components

Our methodology for building an emulation model is based on a systemic vision
of the shop-floor system. As we focus on products, we aim at representing their
physical evolution. According to systemics, these evolutions can be modeled
as shape, space and time transformations (Feliot, 1997).

The first step of the modeling methodology is a shop-floor analysis, in order
to determine every physically possible product life cycle. A state-transition
approach is used: states correspond to stable product positions and shapes,
whereas transitions model physically possible spatial and morphological trans-
formations.
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In the second step, we aim at modeling actuation on products. Transitions be-
tween product states are implemented by shop-floor equipment. Therefore, we
introduce two modeling constructs,shape and space transformations. These
constructs must take into account physical constraints such as resource cy-
cle and setup time, capacity limits, etc. Moreover, a third construct, time

transformation, is defined, dedicated to modeling products waiting between
transformations (Figure 2).

Product

productID : String

type : String

Space

spaceName : String

Shape

shapeName : String

0..*

1..*
Routing history

transformationDate : Date

0..*

1..*

Morphological history

transformationDate : Date

Product Observer

isProductPresent() : boolean

observedProductType() : String

observedProductID() : String

equipmentName : String

observe

0..* 0..*

Actuator

operate() :

setup(p : Programme) :

getState() : Etats Equipement

equipementName : String

currentProgram : Programme

act on

0..*0..*

SpaceActuator

source : Space

destination : Space

ShapeActuator

source : Shape

destination : Shape

SpaceObserver

observed : Space

MorphologicalObserver

observed : Shape

delay : Number

Fig. 2. UML class diagram: emulated products are characterized by their position
(space attribute) and morphology (shape attribute).

Each shape and space actuation bloc offers an interface, which enables an
external system to interactively control them. Control messages enable us to
request the transformation to be set up or to begin operating. Conversely, re-
port messages permit knowing the current state of the resource. Each shape or
space actuation bloc is configured with a set of programs (Figure 3). Each pro-
gram represents an operation that can be done by this actuator; it is modeled
as a delay and a change in the product shape or space attribute. A probabil-
ity distribution function may be used to specify this delay, as well as setup
times and availability parameters (i.e. mean time to repair, mean time before
failure).

Using these three kinds of modeling constructs, we were able to describe the
shop-floor structure in a generic way.

Finally, the emulation model would not be complete without a way to observe
products, so the third step of the methodology is concerned with product
sensing. These modeling constructs include physical laws such as limits of
scope and sensing accuracy. Three different accuracy levels have been defined:
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Program

programID : int

cycleTime : Prob. Distribution

Actuator

operate() :

setup(p : Program) :

getState() : EquipmentState

equipementName : String

currentProgram : Program

run

1..*

Availlability

MTTR : Prob. Distribution

MTBF : Prob. Distribution

Setup

setupTime : Prob. Distribution

initial 0..*

final 0..*

ParameterSet

1..*
0..*

<<enumeration>>

EquipmentState

idle

busy

failed

setup

Fig. 3. UML class diagram: actuators parameters. Possible actions are represented
as programs. Equipment availability and sequence-dependant setup can be modeled.

identification of an individual product (an RFID transponder is a concrete
example of such sensing equipment), identification of the product type, or
plain detection of a product presence.

By representing the physics of products, actuation and observation capabili-
ties, we have modeled the lower half of a cybernetic loop that can be interfaced
with a control system by exchanging request and report messages (Figure 4).

In conclusion, these modeling constructs enable us to build an emulation model
from the point of view of logistics. They aim at modeling the physical laws
constraining product actuation, transformations and sensing, while offering
interfaces to actuators and sensors.

3.3 Implementation of a prototype

A prototype supporting the emulation methodology has been developed using
Arena Professional. Each modeling construct is implemented as a template
simulation module. Moreover, interaction capabilities were developed into an
external library (DLL).

Interaction with emulation modules can be done either from a Visual Basic
program embedded in an Arena model, using direct API calls, or from an
external system, sending XML-encoded messages across a TCP socket.

On one hand, the API emulation enables embedding a simplified control sys-
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Actuator

operate() : void

setup(p : Program) : void

getState() : EquipmentState

equipementName : String

currentProgram : Program

Product

productID : String

type : String

act on

0..*

0..*

Space Observer

observed : Space

observe0..*

0..*

Actuation Request Msg

equipmentName : String

date : Date

receive

0..*

Product State Msg

productID : String

observerName

date : Date

send

0..*

Actuator State Msg

equipmentName : String

date : Date

state : EquipmentState

send
0..*

Observation Request Msg

observerName : String

receive

0..*

Fig. 4. UML class diagram: the three main component types are structured to form
the lower half of a cybernetic loop.

tem directly into the simulation software. The control system must be imple-
mented as a set of control functions and must be able to interact with external
tools such as a database, or enterprise information system. From the point of
view of the control designer, this mode enables quick and easy definition and
testing of control algorithms. From a technical point of view, it allows con-
ducting discrete-event experiments easily, because both control and emulated
systems share the same event scheduler. Progressing time by scheduling dis-
crete events makes it possible to run many experiments, and/or to experiment
over a large time-span.

On the other hand, a remote control system can be connected to the emu-
lation model by exchanging control requests and responses over the network.
This interaction mode allows more in-depth analysis of the proposed con-
trol architecture, as the actual control software is used. Therefore, it enables
performance evaluation of a particular implementation of the aforementioned
control algorithms. Nevertheless, from a technical point of view, it is hard to
use discrete events ahead of time because the control system cannot easily get
access to the emulated system event-scheduler. While solutions have been pro-
posed to solve this problem, such as hybrid discrete-event/real time emulation
(Saint Germain et al., 2003) or synchronization based on HLA, it remains hard
to solve. A workaround solution consists in using only the real-time mode, but
this proves impractical if experimenting over a large time-span.
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3.4 Validation

Validation of this prototype was done first using unitary testing by model-
ing simple cases to ensure that the emulation modules were correctly coded.
These cases had known behavior that has been compared to emulation models
behavior in order to ensure correct implementation of the emulation modules.

Then, the modeling methodology has been tested against several industrial
case studies to validate its applicability. The first case is a furniture manufac-
turer, characterized by high product variety, a reference-specific bill of oper-
ation, and strictly FIFO work-in-process queues. The modeling components
have proved able to represent all the major aspects of this case. Compared
with older model of the same shop floor, this model enabled finer control of
product flows, such as precise control of product routing. In a way, modeling
was easier with the emulation component, as the modeling process was focused
only on the physical properties of the shop-floor equipment, without having
to take into account control issues (often very hard to include in classical
simulation models (van der Zee, 2006)).

Nevertheless, this application has also put the emphasis on some of the limi-
tations of our prototype, such as the inability to automatically set the param-
eters for the emulation modules, or the need for an improved error handling
mechanism.

To conclude this section, we can state that the proposed modeling method-
ology helps designing emulation models of complex large-scale industrial sys-
tems, even if the implemented prototype may require further developments.
These emulation models may be used to conduct product-driven control ex-
periments. The next section presents such an experiment.

4 Application to an industrial case study

4.1 Case presentation and parameters

The case of an automotive-industry subcontractor was studied. The assembly
site can produce up to 10,000 products a day, with product references in the
hundreds. The factory is actually divided into several production cells, each
including every production step to make a finished product from raw material,
and is dedicated to a particular client. One of these cells has been modeled.

As shown figure 5 the production process is divided into two stages. A first

10



Final A

Final B

Final C

semi-finished
product

Assembly

upstream line downstream lines

semi-finished 
inventory

Production Cell

raw material finished 
product

Fig. 5. Material flow in a production cell

set of operations on the first line (called SF) results in semi-finished prod-
ucts, which are further assembled on three independent assembly cells (called
FA, FB and FC, or collectively F). We assume that all assembly cells cannot
work simultaneously on the same reference. The production module there-
fore includes, in addition to the four cells, an inventory storing semi-finished
products.

As downstream F lines can consume three kinds of products may simultane-
ously, the major decision problem is to choose whether and when to change the
setup on the upstream line SF. This decision aims at minimizing the number
of setups, while also minimizing work-in-process levels and avoiding starvation
on downstream lines. Moreover, business goals such as due dates must also be
taken into account.

We modeled this shop floor using shape transformations for each of the four
cells. Stores were modeled as time transformations, whereas two space trans-
formations were used to move semi-finished products in or out of the store.
Finally, some product sensors have been added to the model to trace emulated
products.

The emulation modules have been configured according to the cycle times
given in Table 1. Furthermore, the setup time has been configured according
to a normal probability distribution (with a mean of 20 min, and a standard
deviation of 10 min), while transport delays have been fixed to 30 s. These
data correspond to measurements made on the real system and to the goal of
the experiments.

4.2 Decision-making procedures

As stated in the problem statement section, the goal of this experimental
study was to compare product-driven control algorithms with a traditional
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product reference cycle time (SF) cycle time (F)

1 1.34 3.6

2 1.06 3.49

3 1.14 3.7

4 1.14 3.57

5 1.17 3.54

6 1.13 3.75

7 1.22 4.09

8 1.22 3.69

9 1.11 4.03

10 1.23 3.62

11 1.23 3.75

12 1.11 3.96

Table 1
Cycle times used in the emulation model (minutes)

centralized approach, and to compare various product-driven control algo-
rithms. Therefore, a centralized control algorithm and two different product-
driven control algorithms have been defined.

The centralized reference control system schedules jobs according to their criti-
cal ratio, defined as the ratio between the processing time required to complete
it and the time available before its due date. This predictive schedule is then
implemented by decision centers, with jobs being delayed in case of process
disturbances. Jobs are rescheduled when business disturbances happen. This
classical algorithm serves here as a comparison point.

To model product-driven decisions, every product is represented as an object,
its attributes representing product-embedded data. A component is dedicated
to synchronizing products with their physical counterparts and to enable de-
cision centers to access products.

One of the main product attributes is priority. At system initialization, the
central scheduling procedure is run, and product priorities are assigned accord-
ing to the schedule. Other attributes of products are their reference, used to
setup shape transformations, and their state, enabling advancement of prod-
ucts through their bill of operations.

We have programmed two modes of product-driven control. In the simpler
one, local control decisions are based on products priority only : When a cell
is ready to operate, it scans through the products waiting and selects the
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one with the highest priority. This control algorithm is called “product-driven
constrained” because it depends on the centrally made schedule.

In the other one, a more complicated decision algorithm is used, allowing
autonomy with respect to product data. This algorithm tries to mimic the
behavior of an operator, taking into account not only product priorities, but
also other local parameters, such as levels of semi-finished inventory in order to
avoid starvation downstream, or the amount of products of the same reference
that have been done, to minimize setups. This control algorithm is called
“product-driven autonomous”.

4.3 Experimental protocol

The experiment design chosen to conduct the experiments enabled us to con-
sider every important combination of factors methodologically, to measure the
effect of each factor, and finally to study the system sensibility to each factor.

4.3.1 Experimental scenario

After the physical system was analyzed, modeled, and configured with process
cycle and setup times, a production scenario was specified in the form of a set
of production orders (Table 2).

product type quantity to make due date

1 1775 7200

2 192 3600

3 15 3600

4 832 7200

5 448 7200

6 18 7200

7 600 7200

8 192 7200

9 240 7200

10 640 7200

11 128 7200

Table 2
Production scenario
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Factor Modality Comment

Process disturbance 0 no resource failure

(PD) 1 short and frequent failures

2 rare and longer failures

Business disturbance 0 no order modification

(BD) 1 rush order

2 quantity modification

Control mode 0 reference centralised control

(Ctrl) 1 product-driven control with autonomy

2 product-driven control without autonomy

Table 3
Experimental factors and their modalities.

4.3.2 Factors

We can define three generic factor categories:

• The control mode is obviously one of the more important. A reference control
system must be included, to provide reference performance measures.

• Process disturbances pertain to the various disrupting events on physical
operations (for instance, resource failure or product scrapping).

• Business disturbances correspond to variation on demand (including rush
orders as well as variation in quantity or priority of existing orders).

In the current experiment, three modalities have been defined for process dis-
turbances (PD), focusing on resource availabilities. There is either no failure,
or shorts and frequent failures (uptime = expo (600), downtime = norm (45;
6)), or rare and longer failures (uptime = expo (3000), downtime = norm (360,
180)). These availability data have been inspired by maintenance logs of the
real system.

Business disturbances (BD) are rush orders, involving small quantities (25)
with a very short delay (1.5 times the production time), and order modifi-
cations, where the quantity is larger (125), but the delay is longer. The last
factor is the control mode (Ctrl), which can be either centralized, constrained
product-driven or product-driven with autonomy. Table 3 summarizes the var-
ious factors and their modalities.
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4.3.3 Performance indicators

According to the goals of the experiment, we focused mainly on production
performance in order to evaluate the impact of product-driven control on
productivity gains. Several classical performance indicators may be considered:
Overall equipment effectiveness (OEE), lead time (LT), work in process level

(WIP), and tardiness.

In the current experiment, WIP and LT were used. OEE is highly correlated
with LT and is therefore not shown in the graphs.

Moreover, using a specifically developed data-processing tool, each experiment
can be presented as a Gantt chart, enabling a finer analysis of the experimental
results.

4.3.4 Experiment design

To study the effect of the factors on the performance indicators, experiment
design was used. A complete combinatorial design based on a L27 Tagushi
table was used to conduct the experiment.

For every experiment in the design, 15 replications were made, to ensure sta-
tistically correct results. This number of replications was chosen empirically by
considering confidence intervals. This resulted in more than 400 replications
that take about 30 h to complete on a desktop-class computer.

5 Experimental results and discussion

5.1 Validation of control algorithms implementation

The first step before conducting the actual experiment design is to make sure
that the control algorithms have been correctly defined and implemented.
Indeed, a development error may introduce a serious bias in the results.

To achieve this verification, we compare each control algorithm in a nonper-
turbed situation. Gantt charts for each control model are presented in Figure 6
and in Table 4. In these charts, we can see that the constrained product-driven
algorithm mimics the centralized algorithm with high accuracy. Therefore, in a
nonperturbed situation, product priority enables us to find the global schedule
back.

The autonomous product-driven control behaves slightly differently, but yields

15



similar operational performance values.

SF

FA

FB

FC

0 1000 2000 3000 4000 5000 6000 7000

1 1 1 1 1 1 1 36

4 7 10 7 10 5 2

10 5 4 4 9 8 11

1 4 10 1 7 5 1 4 10 1 7 4 1 9 10 1 5 8 1 2 11

(a)

SF

FA

FB

FC

0 1000 2000 3000 4000 5000 6000 7000

1 1 1 1 1 1 36

4 7 10 7 10 5 2

10 5 4 4 9 8 11

1 4 10 1 7 5 1 4 10 1 7 4 1 9 10 1 5 8 1 2 11

(b)

SF

FA

FB

FC

0 1000 2000 3000 4000 5000 6000 7000

1 1 1 1 1 1 1 1 1 1 6

4 4 7 7 4 4 4 4 9 9 8 8 11

10 10 5 5 10 7 7 10 5 2 3

1 4 10 1 410 1 7 5 1 7 5 1 410 1 4 7 1 4 7 1 9 10 1 9 5 1 8 2 1 811

(c)

Fig. 6. Gantt chart representing experimental results for centralized control (a),
product-driven control without autonomy (b), and with autonomy (c). SF, FA, FB
and FC are the name of the manufacturing lines. The abscissa of each graph is time
(in minutes).

5.2 Effects

The following graphs show the effect of each of the factors on performance
indicators (Figure 7). The first three curves are plots for process disturbances,
business disturbance and control mode, respectively; the last two are the effect
of interaction between process disturbance and control and between business
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control modality lead time WIP overall effectiveness

centralised 6985,57 250,78 88,70%

product-driven autonomous 6995,53 260,55 88,59%

product-driven constrained 7185,76 141,29 86,23%

Table 4
Performance indicators values for each control mode in a non-perturbed situation
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Fig. 7. Effect of various factors on work-in-process level and on lead-time

According to the experimental results, product-driven control (with auton-
omy) causes lower WIP levels and a slightly lower lead-time than centralized
control. Conversely, product-driven control without autonomy shows worse
performances than centralized control.

The last two curves show that there is an interaction, but a more precise
analysis would require more investigation. The following graphs enable easier
data analysis. They show on the same graph the effect on WIP (Figure 8) or
on LT (Figure 9) of the interaction between process disturbance (PD-Ctrl)
and control mode and of the interaction between business disturbance and
control mode (BD-Ctrl).

The first graph shows that the effects of disturbing factors dominate the effect
of control mode. Nevertheless, in case of high perturbation (points 2, 5 and 8),
autonomous product-driven control is the best. Likewise, this control mode is
the best for some business disturbances (rush orders).
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The second graph shows that the control mode has a clear impact on WIP
levels. Indeed, autonomous product-driven control proves to be the best for
every disturbance configuration.

5.3 Discussion

These results show that a product-driven control approach enables combining
the good performances of centralized control in nominal situations with the
adaptability and robustness of distributed control.

It is noteworthy that these experiments also demonstrated that local decision-
making and its accuracy are crucial in a product-driven environment. Indeed,
without autonomous decisions, performance is similar to that of centralized
control, when there is no perturbation, but performance tends to plunge
in a highly perturbed environment. In contrast, with autonomous decisions,
product-driven control was slightly less successful in non-perturbed situations,
but showed more robustness.

Another point that should be discussed is the level of “technical intelligence”
of local decision-making algorithms. Indeed, we have used simple decision pro-
cedures that sort products using a simple or more complex function. These
functions were inspired by the behavior of operators in the shop floor. As we
have seen, performance of product-driven control depends highly on the nature
of the local decisions. In a real industrial application, where more advanced
artificial intelligence or real human (intelligent) operators make decisions, a
product-driven control might show better performances. Indeed, a human op-
erator may be able to take into account more operating parameters than our
artificial decision rules do. Moreover, a human might be able to adapt to
changing operational conditions. Finally, by using more intelligent actors, it
would be possible to know if the system operates in normal or degraded con-
dition, and to change the balance between predicted centralized decisions and
opportunistic local decisions accordingly.

6 Conclusions

A modeling methodology based on generic systemics-inspired building blocks
has been presented, as well as a prototype allowing an incremental experi-
mental approach. The modeling approach, based on the separation between
an executable model of the shop floor system and the control system, enabled
us to setup an experimental design where several control systems are com-
pared. Moreover, the modeling constructs introduced enabled to simplify the
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modeling process: by providing an abstract view of the technical equipments
to model, it is possible to focus on the most important point, the logistical
properties of the shop floor. This modeling approach has been validated by its
application on an industrial case-study.

Moreover, interesting properties of product-driven control have been high-
lighted by this application. The first one is the demonstration that the per-
formance of a product-driven decision system can be as high as the one of
a traditional system. Indeed, in a non-perturbed situation, centralized deci-
sions such as a schedule can be translated into products attributes, allowing
to locally reconstructing the centralized decision without notable performance
loss.

The second main finding of the benchmarking case-study is that the robust-
ness of a product-driven system depends mainly on local decision procedures.
Indeed, two different product-driven decision processes have been compared
in various disturbance levels. On the one hand, taking into account only prod-
uct attributes in the local decision process results in poor performance while
facing disturbances. On the other hand, using both product attributes and
local information such as resource state, inventory levels or current operating
conditions enabled to achieve better robustness. Autonomy and “intelligence”
of local decision-making seems therefore to be very important in a product-
driven control approach.

Further experiments are nevertheless required to access the performance of
product-driven control, taking into account software-related issues such as
data exchanges between products, decision centers and physical equipments.

Moreover, the modeling methodology must be further developed and further
tested for validation. Today, two other research works are using it (El Haouzi
et al., 2008) (Klein and Thomas, 2006). The new applications will help extend
our methodology toward more generality and stability. Its implementation
must be continued to improve usability, eventually resulting in the release of
a standalone tool.

Perspectives include using this evaluation environment to model more cases,
to study scientific aspects of product-driven control, and to help in transferring
product-driven control technologies to industrial partners, in the domain of
natural fibers. Two industrial applications are in process: the first one in a
furniture factory, the other in an air conditioning appliances company. For
these transfers, emulation-based evaluation will be backed up by a physical
test bed to take into account more technological problems, such as reliability
of identification technologies or networking issues.
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