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Abstract

Prandial glucose regulation is a major challenge for the artificial pancreas using subcutaneous

insulin (without a feedforward bolus) due to insulin’s slow absorption-peak (50–60 min).

Intraperitoneal insulin, with a fast absorption peak (20–25 min), has been suggested as an

alternative to address these limitations. An artificial pancreas using intraperitoneal insulin was

designed and evaluated on 100 in silico subjects and compared with two designs using

subcutaneous insulin with and without a feedforward bolus, following the three meal (40–70 g-

carbohydrates) evaluation protocol. The design using intraperitoneal insulin resulted in a

significantly lower postprandial blood glucose peak (38 mg/dL) and longer time in the clinically

accepted region (13%) compared to the design using subcutaneous insulin without a feedforward

bolus and comparable results to a subcutaneous feedforward bolus design. This superior regulation

with minimal user interaction may improve the quality of life for people with type 1 diabetes

mellitus.
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1. Introduction

Type 1 diabetes mellitus (T1DM) is a metabolic disorder that is characterized by a lack of

insulin production and secretion from the pancreatic β-cells. Since this insulin deficiency

may cause people with T1DM to experience an elevated blood glucose (BG) concentration

(chronic hyperglycemia, BG > 180 mg/dL) that can result in long-term damage to the eyes,

nerves, and kidneys, people with T1DM are dependent on exogenous insulin to survive and

to avoid diabetes complications. However, conventional exogenous insulin treatment (e.g.,
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multiple daily insulin injections or continuous subcutaneous insulin infusion with an insulin

pump, CSII) is a cumbersome task that requires BG measurements by multiple daily finger

sticks and insulin dosage estimations based on meal intake, body weight, and individual

insulin-to-carbohydrates ratio. Furthermore, the insulin sensitivity of an individual (i.e.,

system gain) changes over time. An overdose of insulin may cause an unsafe drop in BG

concentration (hypoglycemia, BG < 70 mg/dL) that if not attended can result in coma,

seizure, and death. Insulin dosage estimation should be adjusted carefully and often

(Lernmark, 1999; National Center for Chronic Disease Prevention and Health Promotion,

2011; Skyler, 2005; The Diabetes Control and Complications Trial Research Group, 1993).

The role of process system engineering in the biomedical field has been increasing, with one

example being the effort to perform model identifications and develop control algorithms for

medical applications (e.g., blood pressure control, anesthesia, and blood glucose regulation)

(Bequette & Desemone, 2004; Bogle, Allen, & Sumner, 2010; Dua, Kouramas, Dua, &

Pistikopoulos, 2008; Dua & Pistikopoulos, 2005; Gopinath, Bequette, Roy, Kaufman, & Yu,

1995). Specifically, an artificial pancreas (AP) that monitors glucose and delivers insulin

automatically has been a topic of research since the mid 1970s, when the Biostator® became

available in the hospital setting (Albisser et al., 1974; Fogi, Dodd, Jennings, & Clemens,

1978). However, the Biostator® uses intravenous (IV) glucose measurement and IV insulin

delivery, and has not been evaluated for ambulatory usage due to its large size and invasive

method. By contrast, SC continuous glucose monitoring (CGM) and CSII devices are

smaller, less invasive, and already widely used in ambulatory diabetes care. Thus, CGM and

CSII have been used in the development of an AP, and several clinical and in silico

evaluations of the AP have been reported (Amrein et al., 2010; Atlas, Nimri, Miller,

Grunberg, & Phillip, 2010; Breton et al., 2012; Cobelli et al., 2012; Dassau et al., 2010,

2013; Dua & Pistikopoulos, 2005; Harvey et al., 2014; Hovorka et al., 2011; Kovatchev et

al., 2010; Murphy et al., 2011; Parker, Doyle, & Peppas, 1999; Patek et al., 2012; Steil,

Rebrin, Darwin, Hariri, & Saad, 2006; Weinzimer et al., 2008; Zisser et al., 2012). However,

substantial time delays associated with SC insulin delivery (i.e., the slow absorption peak at

50–60 min and long residence time of 6–8 h, Fig. 1) have caused a significant actuation

delay of the closed-loop AP (Kovatchev, Breton, Man, & Cobelli, 2009). Consequently,

postprandial hyperglycemia and late-postprandial hypoglycemia have been major challenges

to a closed-loop AP without a pre-meal bolus (i.e., without manual feedforward action).

During recent decades, there has been growing industrial and academic research interest in

alternative insulin administration that can deliver insulin rapidly and efficiently (see, Owens,

Zinman, & Bolli, 2003; Pitt, Saudek, & Zacur, 1992; Renard, 2008). Among several

delivery methods (e.g., inhaled, transdermal, oral, intradermal, etc.) that have been explored,

intraperitoneal (IP) insulin delivery (i.e., insulin delivery into the abdominal cavity, Fig. 2)

has received significant attention as a potential candidate for a closed-loop AP, due to its

rapid pharmacokinetic characteristics (absorption peak at 20–25 min and residence time of

1–2 h) and high efficacy (Owens et al., 2003; Pitt et al., 1992; Renard, 2008; Steil,

Panteleon, & Rebrin, 2004). Because of the faster absorption characteristics, an AP using IP

insulin delivery has a higher closed-loop bandwidth and thus could result in better glucose

regulation (e.g., faster meal disturbance rejection) compared to systems using SC insulin

delivery.
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In this work, an IP–SC AP that utilizes IP insulin delivery (DiaPort® 2 system from Roche

Diagnostics, Basel, Switzerland) and SC CGM (Dexcom Seven® Plus from Dexcom, San

Diego, U.S.) is presented, and its performance and robustness is compared with two AP

designs using a conventional SC insulin delivery: SC–SC design (i.e., SC delivery and SC

CGM) and the SCMFB–SC design (i.e., SC–SC with manual feedforward bolus). As shown

in Fig. 3, the IP–SC AP is a closed-loop design that consists of rapid acting IP insulin

delivery (input/actuator), SC CGM (output/sensor), and the zone Model Predictive Control

(zone-MPC) algorithm. Meal disturbance information (e.g., size and timing of a meal) is not

measured or announced to the control algorithm (Table 1). Thus, the control algorithm

calculates a proper dosage of insulin delivery solely based on the previous input/output

history and the IP insulin delivery model that is described in the Section 3. The SC–SC AP

is a closed-loop design that consists of conventional SC insulin delivery, SC CGM, and the

zone-MPC algorithm with a transfer function model of SC insulin delivery that is described

in the work by van Heusden, Dassau, Zisser, Seborg, and Doyle (2012). Meal disturbance

information is also not measured or announced to the controller in this configuration. The

SCMFB–SC design consists of SC–SC design and a manual feedforward pre-meal bolus that

is measured and announced by a user to the controller. Therefore, the controller adjusts its

predictions and, consequently, control actions based on the pre-meal bolus amount.

Note that the IV insulin route of the UVA/Padova metabolic simulator is used as an

engineering approximation for the IP insulin route in this study (Kovatchev et al., 2009),

since the characteristics of the IV and the IP insulin deliveries are similar (Botz, Leibel,

Zingg, Gander, & Albisser, 1976; Renard, 2008). The fast absorption and fast clearance of

IV insulin compared to SC insulin is demonstrated using the UVA/Padova simulator

(Kovatchev et al., 2009) in Fig. 1.

2. Methods

A 27 h clinical protocol was used to conduct in silico evaluation of the performance and

robustness of the IP–SC design and compare it with the SC–SC and the SCMFB–SC designs.

The protocol consisted of three large unannounced meals to test disturbance rejection and a

nocturnal period (24:00–8:00) to evaluate the safety of the control algorithm (e.g., no over-

delivery to cause hypoglycemia while a subject is a sleep) over the period. The details of the

protocol are given in the following two Sections 2.1 and 2.2. Additionally, a brief

description of the zone-MPC algorithm that is utilized to calculate and deliver the optimal

dosage of insulin via an insulin pump is given in Section 2.3.

2.1. In silico protocol

The closed-loop protocol started 2 h after a subject’s admission; dinner (70 g carbohydrate,

g CHO), breakfast (40 g CHO), and lunch (70 g CHO) were administered at 19:00, 8:00, and

13:00, respectively (Fig. 4). In the SCMFB–SC configuration, the meal size was announced

to the control algorithm at the same time as the meal, and a manual SC pre-meal bolus was

calculated and administered based on the individual’s insulin-to-carbohydrate ratio.
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2.2. Robustness evaluation of artificial pancreas using intraperitoneal insulin delivery

For a biomedical application, the safety of the user is the first priority. Thus, any instability

of the system must be avoided even with existing uncertainties in the system (e.g.,

inaccurate gain calculation, inter-subject variability, and circadian changes in individual

insulin sensitivity). Additionally, injections of insulin into the body cannot be reversed (i.e.,

no negative input is allowed). Therefore, the controller must be robust against uncertainties

to avoid over-delivery of insulin that may lead to an unsafe drop in BG (The Diabetes

Control and Complications Trial Research Group, 1993).

The robustness of the design to 50% uncertainty in the gain was performed using the clinical

protocol presented in the previous section. The value, 50%, was chosen because Boden,

Chen, and Urbain, (1996) suggests that the insulin sensitivity of people with T1DM can

change up to 50% during a day (i.e., lowest in the morning and highest in the evening).

Additionally, a cohort of 100 in silico subjects from the UVA/Padova metabolic simulator

was used to challenge the control design. The metabolic parameters of the cohort were

widely spread over the parameter space to cover the significant inter-subject variability

observed in medical data. The metabolic simulator has been accepted by the FDA as a pre-

clinical evaluation method to ensure the safety of the controller to be tested in clinical trials

(Kovatchev et al., 2009). Thus, the 50% uncertainty in the model gain combining with the

100 in silico subjects represents sufficient variability to the controller to allow robust

evaluation of the design in the pre-clinical stage. Further clinical evaluation is needed to

evaluate the overall robustness of the system.

2.3. Zone model predictive control

Zone-MPC is a type of model predictive control algorithm that calculates the optimal future

inputs to maintain the predicted output within a desired zone rather than a single set-point.

Using a zone as a control objective has several benefits. First, the controller is able to cope

with sensor noise and maintain stability in the existence of model/plant mismatch better than

the controller with a single set-point. However, this relaxation of the control objective may

result in delayed disturbance rejection (Wang, 2002). Furthermore, in the medical context, a

zone is a more suitable choice than a set-point because normoglycemia itself is defined as a

zone rather than a single value (Grosman, Dassau, Zisser, Jovanovič, & Doyle, 2010;

Kovatchev, Gonder-Frederick, Cox, & Clarke, 2004; Skyler, 2005). Grosman and

colleagues’ work demonstrated that the zone-MPC reduces control action variability

compared to set-point MPC, and this ability of zone-MPC to attenuate pump activity in the

presence of noisy CGM would result in a safer glucose regulation and minimal power

drainage of the pump (2010).

The cost function represents the core of the zone-MPC algorithm. As given in Eq. (1), the

algorithm defines the upper and lower boundaries as soft constraints that can be violated

with a corresponding cost, and it calculates the optimal future input that minimizes the cost

function, Jzone:
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(1)

where , u(k + j∣k), yub, ylb, P, M, and e are the predicted output, the predicted input,

the upper boundary (140 mg/dL in this evaluation), the lower boundary (80 mg/dL in this

evaluation), the prediction horizon, the control horizon, and the error, respectively. The error

is defined to penalize the predicted output only when the values are outside of the zone.

Therefore, when BG is within the tight range (80–140 mg/dL), the controller attenuates the

high frequency sensor noise and maintains stable pump action compared to the controller

with a fixed set-point (Grosman et al., 2010). In this study, the sample rate was 5 min, and

the values of P and M were 8 (40 min) and 5 (25 min) time steps, respectively. The Q to R

ratios used in this work were 1 to 100 and 1 to 15 for the IP–SC design and SC–SC design,

respectively. The values of the P, the M, and the Q to R ratio were optimized to allow fast

disturbance rejection (unannounced meal) without invoking postprandial late hypoglycemia.

The Health Monitoring System (HMS) developed by Harvey and colleagues (Dassau,

Jovanovič, Doyle, & Zisser, 2009; Harvey et al., 2012) was used in parallel with the zone-

MPC algorithm to provide a safety system to the control layer in case that insulin

modulation, control action, was insufficient in preventing hypoglycemia. The HMS

automatically sends warning messages to a predetermined contact list (e.g., user, physicians,

or family of the user) to take an action (consumption of 16 g CHO) when an imminent

hypoglycemia is predicted.

3. Model development

For the zone-MPC algorithm to calculate the optimal dosage of insulin to regulate BG, a

model that captures the dynamics between IP insulin delivery and the BG response is

needed. To develop the model, a framework suggested by van Heusden and colleagues for

the development of the control relevant a priori model for SC insulin delivery was utilized

(van Heusden et al., 2012). As the first step in developing a model that captures the

necessary dynamics, a third-order model (output error structure, with step size of 5 min) was

identified for each of the ten in silico subjects from the UVA/Padova metabolic simulator

(Kovatchev et al., 2009) by performing an impulse test of 1 [U] insulin bolus at steady state.

Fig. 5 presents the response of the ten in silico subjects. A third-order discrete transfer

function model (Eq. (2)) for each subject was identified from the impulse test by the least-

squares method using the fminunc() function in MATLAB (MathWorks, Natick, MA, USA)

(Ljung, 1999).

(2)

K, p1, p2, p3 are the gain (the values of the ten subjects are between 3 × 10−2 and 3 × 10−1,

when the units for the input and output are U/h and mg/dL, respectively), the first pole, the

second pole, and the third pole of the model, respectively. The coefficient of determination,
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R2, values of the models were between 0.72 and 0.84, and the locations of the poles of the

identified models are given in Table 2. A higher-order model did not achieve a significantly

better value for the coefficient of determination.

Since the systems do not have a resonant frequency (or a resonant peak), a model that

captures the dynamics around the estimated closed-loop bandwidth is sufficient for the

robustness of the controller (van Heusden et al., 2012). The poles of the models in Table 2

strongly suggest that a dominant structure is the third order model with one slower pole (i.e.,

the value between 0.97 and 0.99) and two faster poles (i.e., the value between 0.68 and

0.76). Based on this observation, a control relevant model, Mr, for IP insulin delivery is

proposed as follows:

(3)

Km = 2.5 × 10−1, when the units for the input and output are U/h and mg/dL, respectively.

The robustness of the control algorithm, based on the proposed model, was analyzed. As the

first step, the closed-loop bandwidth of a set-point MPC using the proposed model was

estimated by measuring the rise time of a set-point change for each subject. The inverse

relationship between the rise time and the closed-loop bandwidth was utilized in the

estimation as suggested by Astrom and Murray (Astrom & Murray, 2008; Maciejowski,

1989). The estimated closed-loop bandwidths of each of the ten runs (i.e., the controller and

the ten subjects) are listed in Table 3. At the region of the estimated closed-loop bandwidth

in the bode diagram (the gray shaded region between 1.2 × 10−2 rad/min and 8.0 × 10−2

rad/min in Fig. 6), the phase angle of the proposed control relevant model is lower than that

of the ten identified individual models, and the gain of the proposed model is overestimated.

Thus, the controller based on the proposed model may be more robust than the one based on

the individual models (Maciejowski, 1989; van Heusden et al., 2012). The frequency

analysis also shows that the estimated closed-loop bandwidth of the IP–SC design (between

1.2 × 10−2 rad/min and 8.0 × 10−2 rad/min, or the rise time between 25 min and 160 min) is

considerably larger than that of the SC–SC design (between 6.0 × 10−3 rad/min and 3.6 10−3

rad/min, or the rise time between 330 min and 550 min) (van Heusden et al., 2012). Hence,

the IP–SC design with the larger closed-loop bandwidth may reject a disturbance and

achieve a control objective significantly faster than the SC–SC design. Subsequently, the

IP–SC design would provide better glucose regulation with faster disturbance rejection and

less overshoot.

In order to account for inter-subject variability, the gain of the model is personalized by

using a correction factor (Davidson, Hebblewhite, Steed, & Bode, 2009). The personalized

model, Mi, is given below:

(4)
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where Fs, Ki, and c are the safety factor (1.5 for this study), the individual gain based on the

2400 rule (Walsh, 2009), and the conversion factor c (6.25 × 10−3 for the input and output

are U/h and mg/dL), respectively. Ki is defined by the following equation:

(5)

If the individual gain Ki were to be under- or overestimated, the safety factor Fs could be

adjusted to compensate for the mismatch (van Heusden et al., 2012). This individualized

model is incorporated into the zone-MPC algorithm in this study.

4. Results

The performance evaluation of the IP–SC AP and comparison with SC–SC AP and SCMFB–

SC AP are presented in Section 4.1. The average population summary of 100 in silico

subjects and a control action comparison of a representative individual case are shown

below. The robustness evaluation of the IP–SC AP that represents the worst case of 50%

uncertainty in the model gain that are results of erroneous TDI calculation and intra-subject

insulin sensitivity variation is presented in Section 4.2.

4.1. In silico evaluation of the IP–SC design

The average BG profiles during the in silico evaluation (Fig. 7) illustrate that the average

postprandial BG peak was lower by 38 mg/dL in the IP–SC case than the SC–SC case. Also,

after the meal, the IP–SC design brought average BG back into the clinically accepted

region (70–180 mg/dL) significantly faster by 1.5–2 h than the SC–SC design (Fig. 7 and

Table 4, the p-value < 0.01 for the paired t-test). The average percentages of time in Table 4,

taverage, were calculated as the following equation:

(6)

where tindividual and n are the individual’s percentage of time in a desired zone during a

period and the number of subjects, 100. Furthermore, control variability grid analysis

(CVGA, Fig. 8) was also done to compare the quality of the closed-loop control. The CVGA

is a widely accepted performance index that reflects the quality of the closed-loop glucose

regulation on a cohort of subjects by emphasizing the extreme values (i.e., minimum and

maximum). The CVGA classifies the control quality into nine categories, which are

represented as nine rectangular zones on the plane as follows: A zone (accurate control),

three B zones (benign deviations from accurate control), two C zones (over-corrections of

hyper-/hypoglycemia), two D zones (failure to deal with hyper-/hypoglycemia), and one E

zone (erroneous control). The points closer to the origin (i.e., the A zone) represent the most

effective control (Magni et al., 2008). The analysis demonstrated that the IP–SC design

resulted in better BG regulation (17% in the A zone, 83% in the B zone) than the SC–SC

design (4% in the A zone, 86% in the B zone, and 4% in the C, and 6% in the D zone).

Additionally, a quantitative way to project the different performances of the three designs is
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the use of the BG risk indices, the High Blood Glucose Index (HBGI) and the Low Blood

Glucose Index (LBGI). These indices demonstrate the relative risk of either low or high BG,

and yield a value between 0 and 100 (a higher number corresponds to a higher risk). This

method is described in Kovatchev and colleagues’ work, and a brief description of the

calculation is given below (Kovatchev, Cox, Gonder-Frederick, & Clarke, 1997; Kovatchev

et al., 1998).

First, the BG measurement readings were transformed into a symmetric scale using the

following equation:

(7)

The BG risk function, R, was defined as:

(8)

The low BG risk, LR, was then determined by the following equation:

(9)

and the high BG risk, HR, was calculated by the following equation:

(10)

Since there were multiple BG readings, the LBGI and HBGI were calculated as the average

of the multiple LR and HR values, respectively (Kovatchev et al., 1997, 1998). The BG risk

indices calculation (Table 5) showed that the IP–SC design is a superior glucose regulation

scheme compared to the SC–SC design (HBGI were 2.74 and 1.53 in SC–SC and IP–SC

cases, respectively).

When compared against the SCMFB–SC design that includes manual meal boluses, the IP–

SC design achieved comparable BG regulation without user interaction (i.e., no manual

feedforward control action). Total time spent in the clinically accepted region (Table 4) was

not significantly different (i.e., 1% difference) in the SCMFB–SC case and the IP–SC case,

and the two BG standard deviation envelopes (Fig. 7) had considerable overlaps between

each other. The postprandial BG peak was 22 mg/dL lower in the SCMFB–SC case than the

IP–SC case (Fig. 7), and the HBGI of the SCMFB–SC case, 1.10, was slightly lower than the

value of the IP–SC case, 1.53 (Table 5). However, the lower BG peak and smaller HBGI

were achieved by using the perfect information (i.e., accurate estimation of the meal size and

individual insulin-to-carbohydrate ratio) and user interaction. In real-world situation, the

meal size and individual insulin-to-carbohydrate ratio always contain uncertainty, and the

uncertainty may cause problem for the SCMFB–SC design (e.g., hypoglycemia from insulin

overdose). Furthermore, CVGA (Fig. 8) demonstrated that the IP–SC design resulted in

equivalent BG regulation (100% in the A + B zone, 0% in the C zone, and 0% in the D

zone) compared to the SCMFB–SC design (97% in the A + B zone, 1% in C zone, and 2% in

D zone).
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To illustrate the differences between the control actions of three controller configurations,

the individual controller action profiles along with the CGM traces of all cases are presented

in Fig. 9. As can be seen, the three designs were able to reject this disturbance but with

significant time differences (i.e., 3 h, 1.4 h, and 1.2 h before the output, BG, came back to

the clinically accepted region for the SC–SC, and IP–SC, and the SCMFB–SC designs,

respectively). As noted, the actuation delay (transport delay of SC insulin) in the SC–SC

design resulted in slow disturbance rejection because an unannounced meal disturbance was

a significant challenge to the control system, due to the fast effect of a meal on glucose

(~15–20 min). On the other hand, the IP–SC design was able to respond to the unannounced

meal disturbance quicker and bring BG back into the clinically accepted region less than 2 h

in each post-prandial period. In addition to this faster disturbance rejection, the IP–SC

design achieved a 20 mg/dL (ranging from 10 to 26 mg/dL) lower mean postprandial peak

compared to the SC–SC design. Furthermore, due to minimal transport delay of IP insulin

(insulin peak at 20–30 min and 50–60 min for IP insulin and SC insulin, respectively), the

IP–SC design was able to take more aggressive action than SC–SC design during the

postprandial periods (i.e., the IP–SC design delivered larger amount of insulin at the

beginning of the period, Fig. 9), and this aggressive action resulted in a faster disturbance

rejection without causing an overshoot (i.e., hypoglycemia).

Comparing the SCMFB–SC design and the IP–SC design, the SCMFB–SC design resulted in

4% longer time in the target region and 21 mg/dL (ranging from 8 to 32 mg/dL) lower mean

postprandial peak. However, the SCMFB–SC design used noticeably more insulin than the

IP–SC design to achieve a similar effect. During the post-prandial periods, mean insulin

usage were 152% above the basal (ranging from 101% to 183%) and 85% above the basal

(ranging from 60% to 105%) in the SCMFB–SC (including the pre-meal bolus) and the IP–

SC cases, respectively. The SCMFB–SC design utilized more insulin, and, furthermore, the

design required the accurate insulin-to-carbohydrate ratio of the individual.

4.2. Robustness evaluation of IP–SC design

The results of the robustness evaluation (Tables 6 and 7) showed that the controller could

safely operate even with various uncertainties. The average time in the clinically accepted

region (Table 6) decreased only by 5% and 9% in the 50% under- and overestimated model

gain cases, respectively, compared to the nominal case, and this showed that the controller’s

performance would not be significantly deteriorated by the uncertainty from the insulin

sensitivity’s circadian change or TDI miscalculation. Furthermore, no instability of the

system (e.g., divergence or oscillation of BG) was observed during the evaluation using the

100 in silico subjects, and this indicated that the controller can perform properly even with

existence of a large inter-subject variability. Most importantly, no severe hypoglycemia (BG

< 50 mg/dL, Table 7) was observed. A few subjects experienced mild hypoglycemia (50

mg/dL < BG < 70 mg/dL), but the average duration of the mild hypoglycemia was short for

all cases (i.e., approximately 35 min). Additionally, the number of hypoglycemia treatments

given by the HMS for all three cases were not significantly different from one to another

(i.e., the difference in the total number of the treatments was less than 5), and this showed

that 50% uncertainty in the gain would not result in unsafe over-delivery of insulin. None of

the subjects experienced multiple hypoglycemic episodes during the evaluation, except for a
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single isolated event. Also, the average low BG index of the subjects who experienced

hypoglycemia was low: 0.42, 0.35, and 0.31 in the underestimated, the nominal, and the

overestimated model gain cases, respectively, all of which fall well below the low-

hypoglycemia-risk threshold of 2.5 (Kovatchev et al., 1998).

5. Discussion

Subcutaneous insulin delivery has been the basis of insulin therapy for people with T1DM

since 1922. Although the SC delivery is minimally invasive and user-friendly, it exhibits

inherent slow absorption characteristics as well as the risk of insulin depot in the SC space

(i.e., insulin remains in the SC region instead of diffusing into the blood vessels)

(Schaepelynck et al., 2011). In the development of a closed-loop AP, the insulin depot effect

and slow absorption characteristics limits the controller’s ability to achieve normoglycemia

and introduces hypoglycemia risk.

Hence, the fast-absorbing IP route that delivers insulin into the abdominal cavity may

provide a breakthrough method in an AP development. Since IP insulin is absorbed by the

capillary bed in the region (portal venous system), there is a significantly less transport delay

or insulin depot effect (Pitt et al., 1992; Schaepelynck et al., 2011). The closed-loop AP

using the IP route with the advantages mentioned above may result in better meal

disturbance rejection without presenting a hypoglycemia risk, as shown in Section 4 (i.e., the

IP–SC design resulted in 20% longer time in the clinically accepted region than the SC–SC

design without inducing extra hypoglycemia events). Even though the IP insulin delivery

has its own minimal risks associated with the surgical procedure, it may be a promising

strategy for insulin treatments and the AP development. Additionally, due to the fast

absorption characteristics, regular human insulin can be used in the insulin therapy instead

of insulin analogs (i.e., modified form of insulin that has a faster absorption characteristic),

and this may reduce the financial burden of the insulin treatments for the people with T1DM

in the long run.

As shown in Section 4, a meal announcement to the controller (i.e., manual feedforward SC

bolus in the SCMFB–SC design) can significantly improve the performance of the controller

at meal time (i.e., 21% increase of time in the clinically accepted region compared to the

SC–SC design), but the bolus estimation brings possible human errors into the system. In

real-world situations, inaccurate calculation of the bolus size or missing meal bolus injection

happen frequently, and the erroneous meal announcement when using the AP may result in

an unsafe BG decline or prolonged high BG period after a meal. Thus, the IP–SC design that

required no user-interaction, yet achieved comparable BG regulation as shown in Section 4

(i.e., 1% difference of time in the clinically accepted region), would be considered as a

superior BG treatment option to the SCMFB–SC design. However, an experienced user who

wants an additional degree of control may prefer SCMFB–SC design.

Even though the possible benefit of pre-meal IP bolus was conceivable, IP–SC design with

manual feedforward IP bolus was not considered in this work because of the possibility of

the safety hazard from an inaccurate bolus calculation mentioned above. Additionally,

because of the rapid absorption rate of IP insulin, the risk of overestimated IP bolus or
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delayed meal intake would be even bigger than the risk of SC case. This safety risk would

nullify the possible benefit of pre-meal IP bolus. Furthermore, the time window for

providing the standard hypoglycemia treatment (e.g., glucose tablet or fruit juice) to reverse

the overdose might be too short.

6. Conclusions

The in silico evaluation showed that the IP–SC design achieved superior glucose regulation

over the SC–SC design. The IP–SC design rejected the meal disturbances significantly faster

than the SC–SC design without additional overshoot (late postprandial hypoglycemia).

During the postprandial periods, the IP–SC design brought the output back into the desired

zone faster by 1.5–2 h and achieved a 38 mg/dL lower peak on average compared to the SC–

SC design. The evaluation also showed that the IP–SC design without user interactions

achieved similar BG regulation compared to the SCMFB–SC design that requires manual

meal bolus injections. Hence, the fast action and rapid clearance of IP insulin reduced the

burden of the user to maintain BG within the clinically accepted region by eliminating the

actuation delay of the closed-loop system. Furthermore, the robustness evaluation suggested

that the IP–SC design could operate safely with 50% uncertainty in the model gain.

Enhanced glycemic control with the IP–SC design could reduce the effect of meal

disturbance (hyperglycemia and hypoglycemia) and improve the quality of life of people

with the disorder.
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Abbreviations

T1DM type 1 diabetes mellitus

BG blood glucose

CSII continuous subcutaneous insulin infusion

AP artificial pancreas

IP intraperitoneal

IV intravenous

SC subcutaneous

CGM continuous glucose monitor

MPC model predictive control

PK pharmacokinetics

PD pharmacodynamics

CHO carbohydrate

HBGI high blood glucose index
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LBGI low blood glucose index

CVGA control variability grid analysis
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Fig. 1.
Comparison between subcutaneous and intravenous absorption rates of a subject from the

UVA/Padova metabolic simulator (Kovatchev et al., 2009) following a delivery of one

insulin unit.
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Fig. 2.
Schematic depiction of DiaPort® 2 system. (Left panel) An Accu-Chek® insulin pump that

contains and delivers insulin via the DiaPort® 2 injection site on the abdomen region. The

injection site consists of a plastic cannula, a metal port, and a plastic tube. (Right panel)

Animated description of insulin delivery to the intraperitoneal cavity. Insulin from the pump

flows through the tube and disperse into the abdominal cavity (courtesy of Roche

Corporation).
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Fig. 3.
Block diagrams of the three artificial pancreas configurations: (A) closed-loop system using

the subcutaneous route (i.e., SC–SC design), (B) SC–SC design with manual feedforward

bolus (i.e., SCMFB–SC design), and (C) closed-loop system using the intraperitoneal route

(i.e., IP–SC design).
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Fig. 4.
Descriptive time line of the in silico protocol that was adopted from the clinical protocol.
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Fig. 5.
Blood glucose deviation of the ten in silico subjects after an injection of 1 U insulin through

the intravenous port of the UVA/Padova FDA-accepted metabolic simulator (Kovatchev et

al., 2009).
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Fig. 6.
Bode diagram of the ten identified models of the in silico subjects (thin gray lines) and the

proposed control relevant model (black bold line). The gray shaded region represents the

frequency band around the estimated closed-loop bandwidth.
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Fig. 7.
Summary of the three controller configurations for one hundred in silico subjects, Left

panels: Average blood glucose ± STDEV in the SC–SC design (A, black dashed line and

shaded region), the SCMFB–SC design (B, orange dashed-dot line and shaded region), and

the IP–SC design (C, blue solid line and shaded region) cases. Also, the meal sizes (brown

bars) are indicated, Right panels: Average insulin delivered via an insulin pump ± STDEV

in the SC–SC design (A), the SCMFB–SC design (B), and the IP–SC design (C) cases.

Manual insulin bolus sizes (red bars) are on the right y-axis. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of the

article.)
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Fig. 8.
Evaluation of three controller configurations’ efficacy using control variability grid analysis.

The SC–SC design (white circles, A zone 4%, B zone 86%, C zone 4%, D zone 6%, and E

zone 0%), the SCMFB–SC design (gray triangles, A zone 42%, B zone 55%, C zone 1%, D

zone 2%, and E zone 0%), and the IP–SC design (black × marks, A zone 17%, B zone 83%,

C zone 0%, D zone 0%, and E zone 0%) cases are presented. Also, the average and standard

deviation of the 100 subjects from SC–SC design (red circle and white ellipse), SCMFB–SC

design (red triangle and light blue ellipse), and IP–SC design (red × mark and black ellipse)

are presented. The X and Y coordinates represent the minimum and maximum blood glucose

concentration of a subject with 95% confidence level during the protocol, respectively. (For

interpretation of the references to color in this figure legend, the reader is referred to the web

version of the article.)
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Fig. 9.
Representative example of control actions from three different configurations Top panel:

Continuous glucose monitor traces of the SC–SC design (black dashed), the SCMFB–SC

design (orange dashed-dot), and the IP–SC design (blue solid) cases. Also, the meal sizes

(black bars) are indicated, Bottom panel: Insulin delivered via an insulin pump in the SC–SC

design (black dashed), the SCMFB–SC design (orange dashed-dot), and the IP–SC design

(blue solid). Also, the sizes of SC manual boluses are indicated (red bars) on the right y-axis.

(For interpretation of the references to color in this figure legend, the reader is referred to the

web version of the article.)
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Table 1

Summary of artificial pancreas designs.

Meal measurement and
announcement (an
anticipatory action to the meal
by the user and
controller’s awareness of the
action)

Insulin delivery route Glucose measurement route

Closed-loop AP based on IP insulin delivery
 and SC CGM design (IP–SC)

No IP SC

Closed-loop AP based on SC insulin delivery
 and SC CGM design (SC–SC)

No SC SC

AP with manual feedforward SC bolus and SC
 CGM (SCMFB–SC)

Yes SC SC
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Table 2

Locations of the poles of the identified models for the ten subjects.

Subject p 1 p 2 p 3

1 0.9870 0.7640 + 0.1721i 0.7640 − 0.1721i

2 0.9794 0.7839 0.5179

3 0.9863 0.7336 + 0.0512i 0.7336 − 0.0512i

4 0.9812 0.7218 + 0.2039i 0.7218 − 0.2039i

5 0.9840 0.7852 0.4233

6 0.9867 0.6823 + 0.0366i 0.6823 − 0.0366i

7 0.9824 0.7037 + 0.2097i 0.7037 − 0.2097i

8 0.9819 0.7328 + 0.1455i 0.7328 − 0.1455i

9 0.9813 0.7310 + 0.0205i 0.7310 − 0.0205i

10 0.9812 0.7440 + 0.0566i 0.7440 − 0.0566i
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Lee et al. Page 26

Table 3

Estimated closed-loop bandwidth and rise time of the ten systems (e.g., the combination of the controller and

the subject 1 is called system 1).

System
Estimated closed-loop

bandwidth
[rad/min]

Rise time
[min]

1 1.7 × 10−2 120

2 1.4 × 10−2 140

3 2.0 × 10−2 100

4 4.9 × 10−2 41

5 1.7 × 10−2 120

6 2.7 × 10−2 74

7 8.0 × 10−2 25

8 1.4 × 10−2 140

9 1.2 × 10−2 160

10 1.2 × 10−2 160
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Table 4

Percent of time in the clinically accepted region (70–180 mg/dL) and the tight glucose range (80–140 mg/dL).

Total (27 h) 4 h postprandial Overnight (24:00–8:00)

70–180 mg/dL

 SC–SC design 83%a 67%a 96%

 SCMFB–SC design 97% 88% 99%

 IP–SC design 96%a 87%a 99%

80–140 mg/dL

 SC–SC design 58%a 25%a 87%a

 SCMFB–SC design 79%b 45%b 94%

 IP–SC design 69%a,b 32%a,b 94%a

a
p-value < 0.01 for the paired t-test comparing the SC–SC design and the IP–SC design.

b
p-value < 0.01 for the paired t-test comparing the SCMFB–SC design and the IP–SC design.
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Table 5

Average blood glucose risk indices of 100 in silico subjects.

Low Blood Glucose Index High Blood Glucose Index

SC–SC design 0.20 2.74a

SCMFB–SC design 0.20 1.10b

IP–SC design 0.14 1.53a,b

a
p-value < 0.01 for the paired t-test comparing the SC–SC design and the IP–SC design.

b
p-value < 0.01 for the paired t-test comparing the SCMFB–SC design and the IP–SC design.
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Table 6

Percent of time in the clinically accepted region (70–180 mg/dL) and the tight glucose range (80–140 mg/dL).

Zone-MPC for the IP–SC design was used in this evaluation.

Total (27 h) 4 h postprandial Overnight
(24:00–8:00)

70–180 mg/dL

 50% Underestimated
  model gain

91% 89% 99%

 Nominal model gain 96% 87% 99%

 50% Overestimated
  model gain

87% 83% 99%

80–140 mg/dL

 50% Underestimated
  model gain

67% 36% 95%

 Nominal model gain 69% 32% 94%

 50% Overestimated
  model gain

63% 27% 94%
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Table 7

Number of individuals who experienced hypoglycemia (BG < 70 mg/dL) and severe hypoglycemia (BG < 50

mg/dL). Zone-MPC for the IP–SC design was used in this evaluation.

Number of individuals who
experienced mild hypoglycemia

(50 mg/dL < BG < 70 mg/dL)

Average low blood glucose
index

for the people who experienced
hypoglycemia

Number of individuals who
experienced severe

hypoglycemia
(BG < 50 mg/dL)

50% Underestimated model
gain 4 0.42 0

Nominal model gain 3 0.35 0

50% Overestimated model gain 3 0.31 0
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