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Abstract: Real-time and accurate information on fine-grained changes in crop cultivation is of great 

significance for crop growth monitoring, yield prediction and agricultural structure adjustment. Aiming 

at the problems of serious spectral confusion in visible high-resolution unmanned aerial vehicle (UAV) 

images of different phases, interference of large complex background and “salt-and-pepper” noise by 

existing semantic change detection (SCD) algorithms, in order to effectively extract deep image 

features of crops and meet the demand of agricultural practical engineering applications, this paper 

designs and proposes an agricultural geographic scene and parcel-scale constrained SCD framework 

for crops (AGSPNet). AGSPNet framework contains three parts: agricultural geographic scene (AGS) 

division module, parcel edge extraction module and crop SCD module: (1) AGS division module uses 

multi-source open geographic data products to delineate AGS with relatively consistent geographic 

element conditions by analyzing the rule of agricultural territorial differentiation. (2) The parcel edge 

extraction module uses a bi-directional cascade network (BDCN) and a designed edge optimization 

model to obtain comprehensive AGS farm parcels. (3) The SCD module uses a designed 

criss-cross-attention network (CCNet) with pseudo-Siamese structure and change feature 

discrimination module for extracting semantic features and change features of AGS crops, outputting 

accurate pixel-level semantic change maps, and then fusing the parcel extraction results with the 

semantic change maps to finally obtain parcel-scale fine-grained SCD results of crops. Meanwhile, we 

produce and introduce an UAV image SCD dataset (CSCD) dedicated to agricultural monitoring, 

encompassing multiple semantic variation types of crops in complex geographical scene. We conduct 

comparative experiments and accuracy evaluations in two test areas of this dataset, and the results 

show that the crop SCD results of AGSPNet consistently outperform other deep learning SCD models 

in terms of quantity and quality, with the evaluation metrics F1-score, kappa, OA, and mIoU obtaining 

improvements of 0.038, 0.021, 0.011 and 0.062, respectively, on average over the sub-optimal method. 

The method proposed in this paper can clearly detect the fine-grained change information of crop types 

in complex scenes, which can provide scientific and technical support for smart agriculture monitoring 

and management, food policy formulation and food security assurance. 
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1. Introduction 

Crop spatial distribution mapping is an important information base for the study of land cover 

changes, regional crop growth monitoring, yield estimation and planting structure adjustment (Wu et al. 

2023), which is of great significance for the national formulation of agricultural economic development 

planning and improvement of agricultural production management (Cai et al. 2018). To rapidly and 

accurately obtain information on the structure of crop cultivation and ensure the security of food 

production and supply, it is necessary to detect the dynamic distribution changes of crops (Woodcock et 

al. 2020). Traditional agricultural investigation through field collection of crop planting information for 

statistics and aggregation, this method in a large area of the survey work requires extremely expensive 

labor and material resources, and its results have a lag, cannot be real-time monitoring of agricultural 

conditions. Remote sensing technology, with its wide coverage and short detection period, has become 

an important measure for accurate crop change detection (Gerhards et al. 2019). Crop remote sensing 

change detection (CD) aims to identify fine-grained change information of crop cultivation types by 

quantitative or qualitative analysis of remote sensing images (RSIs) of the same geographical area 

acquired at different phases (Liu et al. 2022). 

Traditional pixel-based CD methods mainly use image algebraic calculations or spatial 

transformations to obtain change information of different temporal images (Hussain et al. 2013). 

Although this method is simple and fast, it is mostly focused on lower resolution multispectral images 

and cannot be adapted to high-resolution images with greater image element variability, which can 

produce a large number of pseudo-variable regions and “salt-and-pepper noise”. To overcome the 

above difficulties, machine learning (ML) manual features are applied to CD tasks. For example, 

Zerrouki et al. (Zerrouki et al. 2019) proposed a weighted random forest algorithm to identify land 

cover changes in high-resolution satellite images. However, ML methods require a large set of specific 

manual samples and statistical features, and their shallow model structures are difficult to extract deep 

features, making them less generalizable to other non-specific regions (Peng et al. 2020). Additionally, 

satellite RSIs also have many disadvantages, such as longer revisit cycles, lower spatial resolution, and 

harsh weather conditions such as clouds and fog in agricultural regions (Liu et al. 2021), which can 

adversely affect the data quality and make it difficult to meet the practical application requirements of 

large-scale area fine-grained crop dynamics monitoring. Compared with satellite remote sensing, 

unmanned aerial vehicle (UAV), which has hardware advantages such as high flexibility and low cost, 

can acquire very high-resolution RSIs in real time and is not constrained by geographical environment, 

and has been widely applied to crop yield estimation, growth and disease monitoring, etc (Mesquita et 

al. 2019). However, traditional CD methods focus only on the region of no change and change between 

different temporal RSIs, namely binary change detection (BCD), which greatly limits its application to 

multi-category change detection in crops. In contrast to the BCD task, semantic change detection (SCD) 

not only provides fine-grained change category information, but also obtains “from-to” semantic 

change information from the change map that includes the direction of change, such as “from rapeseed 

to rice”. This more comprehensive and detailed category change information is essential for 

fine-grained monitoring of complex crops (Kalinicheva et al. 2020). 

With the rapid development of artificial intelligence technology and high performance computers, 

end-to-end deep learning (DL) networks, represented by convolutional neural networks (CNN), are 

flourishing (Shafique et al. 2022). DL methods have powerful deep feature extraction capabilities, can 
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easily generate change maps of different temporal images, and have become the mainstream method 

for high-resolution image CD in recent years (Shi et al. 2021). The traditional deep learning SCD 

methods mainly adopt the direct classification (DC) method (Peng et al. 2019) and the 

post-classification comparison (PCC) method (Wu et al. 2017). The DC method first fuses the 

corresponding pixels of different bands of bi-temporal images into a single multi-band image by 

superimposing or differencing them, then assigns a unique semantic change information to each pixel 

of the image and serves as the input of semantic segmentation networks (such as U-Net and 

DeeplabV3+, etc.), finally outputting the semantic change map. This method tends to ignore the 

diversity of surface cover change features on high-resolution images with rich feature details. The PCC 

method classifies the bi-temporal images separately using a semantic segmentation network, and then 

distinguishes the final change regions and directions by comparing the classification maps of the 

bi-temporal images. This method is simple and intuitive, but the instability of the classification map 

accuracy may cause the accumulation of errors in the final SCD results. Furthermore, it is unable to 

exploit the temporal dependence that is significant for the CD task to obtain discriminative bi-temporal 

change features. To solve the above problems, Daudt et al. (Daudt et al. 2019) constructed a multi-task 

learning strategy by integrating a Siamese full convolutional network (FCN) for extracting semantic 

features and a separate FCN for extracting change features. They combined two weighted loss 

functions to enable the Siamese FCN and the separate FCN to perform semantic segmentation and 

BCD, respectively, to generate a categorical map containing change types and a binary change map 

containing change regions, respectively, finally assigning change directions to the change regions and 

obtaining the final semantic change map through post-processing. 

Nevertheless, the current application of SCD methods to high-resolution RSIs for agricultural 

monitoring are still haunted by several problems: (1) confusing spectral visual features (Zhu et al. 

2022a). Due to the difference of imaging conditions in different phases, the changed regions may show 

strong spectral similarity, for example, it is difficult to distinguish between rapeseed and rice grown in 

different phases whether they are changed or not, while the unchanged regions may also produce large 

spectral differences, causing the SCD methods to incorrectly detect the unchanged regions as changed 

regions. (2) “Salt-and-pepper” noise (Yu et al. 2016). The current state-of-the-art deep learning SCD 

methods are still mainly based on semantic segmentation algorithms, which tend to classify each pixel 

of the farmland independently, and thus may generate a large amount of “salt-and-pepper” noise, 

making it difficult to render the complete parcel boundaries. (3) Complex background features with 

unbalanced proportions (Zhu et al. 2022b). Change areas often occur only in a portion of the region, 

while the unchanged background with a disproportionate proportion often shows complex distribution 

characteristics of non-agricultural areas and may have similar characteristics with the change area 

ground features, which can make the SCD method strongly interfered in the detection. To reduce these 

problems, some scholars have considered object-based image segmentation methods to aggregate 

homogeneous features such as spectra, textures and spatial contexts to form image objects bottom-up, 

such as multi-scale segmentation method (Liang et al. 2022). However, these methods are essentially 

only shallow feature aggregation and do not fully utilize the deeper features of the image, and their 

segmented object units often do not match the actual target feature morphology that one needs. 

Thanks to the DL network, it can simulate human vision to extract the high-level features of the 

images and distinctly depict the complete farmland parcel boundaries. For example, Liu et al. (Liu et al. 

2020) employed the Richer Convolutional Features (RCF) edge detection network to extract 

mountainous farmland parcels from high-resolution optical images and time-series synthetic aperture 
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radar (SAR) images, and gained a high accuracy farmland parcel distribution map. Although the DL 

edge extraction algorithm has been considered as the most promising method for depicting agricultural 

parcels (Sun et al. 2022), it still suffers from complex background features over large areas in practical 

agricultural applications. The reason may be that the DL algorithm is only mechanically improving the 

internal structure of the network (such as attention mechanism (Li et al. 2020), inflated convolution 

(Fan et al. 2022) and loss function optimization (Wang et al. 2022), etc.) without considering the 

complex geographic environment and high-intensity spatial heterogeneity existing in the images, and it 

is hard to effectively construct a complete mapping relationship of crops from image space to 

geographic space using a single DL model, and thus cannot match the rule of territorial differentiation 

(Myint et al. 2011). In recent years, geographic scene division has increasingly become an effective 

solution to the problem of large and complex scenes (Xu et al. 2019). For example, Sun et al. (Sun et al. 

2020) proposed a hierarchical perception approach in which they used a road network to divide the 

images into multiple geographic blocks and applied scene constraints to the extracted geographic 

entities, and then performed crop classification by a DL model to obtain better classification results 

while reducing the scene complexity. The above studies show that adopting effective constraints on 

geographic scenes and parcel boundaries can contribute to improving the dynamic distribution results 

of complex multiple crops on deep learning SCD applications. 

To sum up, we propose an agricultural geographic scene constrained parcel-scale semantic change 

detection framework (AGSPNet) for detecting fine-grained semantic change information of crops in 

bi-temporal UAV RSIs. The proposed AGSPNet mainly comprises three modules, namely, the 

agricultural geographic scene division, parcel edge extraction, and crop SCD network, to solve the 

problems of difficult crop change feature extraction for bi-temporal high-resolution RSIs and mismatch 

between farmland detection edges and reality. Therefore, the main contributions of this study are 

summarized as follows. 

(1) We design an agricultural geographic scene division module for the UAV RSIs crop SCD task 

in complex scenarios. This module adopts multi-source open geographic data to geographically analyze 

UAV imagery and distinguish agricultural geographic scene with relatively consistent geographic 

element conditions and terrain features, thus mitigating the influence of complex background features 

of large non-crop areas. 

(2) We extract large-scale complete farm parcels based on a bi-directional cascade network 

(BDCN) and a designed parcel edge optimization model for constraining crop semantic change results, 

thus making the final crop semantic change map to match the real demand. 

(3) We provide a new SCD module for the bi-temporal UAV RSIs crop SCD task. This module 

constructs the cross-cross-attention network (CCNet) as a pseudo-Siamese structure and incorporates 

the change feature discrimination module, which improves the model's ability to extract bi-temporal 

crop change features and maximizes the potential performance of SCD networks for crop mapping. 

(4) We create a new SCD open access dataset, namely CSCD, dedicated to large scale yearly 

agricultural monitoring. This dataset is based on UAV high-resolution RSIs with clearer bi-temporal 

multiple crop change types and “from-to” semantic change annotation information, which can provide 

effective data support to advance the research of new SCD methods. The CSCD dataset is available at 

https://doi.org/10.6084/m9.figshare.22561537.v1. 
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2. Materials and methods 

2.1. Study area 

The study area locates in Yuhu District, Xiangtan City, Hunan Province, China, as shown in Fig. 1 

(a), and mainly contains two experimental areas with a total area of 20.65 km², of which the training 

dataset area is 16 km² and the testing dataset area is 4.65 km². Yuhu District locates in the eastern part 

of Hunan Province, and its northern region is full of hills and mountains with a dense network of water. 

It is a subtropical monsoonal humid climate with abundant heat and rainfall, annual average 

temperature between 15~23℃  and annual precipitation of 1320 mm, its good water and heat 

environment is suitable for growing many kinds of cash crops and food crops, such as rapeseed and 

rice in many seasons. However, the interlocking topographic distribution and complex cropping 

structure of the region also pose great challenges for SCD of crops. 

2.2. Crop semantic change detection dataset 

2.2.1. Dataset description 

To validate the performance of the proposed framework for agricultural monitoring, we produced 

a new yearly bi-temporal UAV high-resolution image crop SCD dataset (CSCD). The images were 

collected on April 15 (T1 phase) and October 2 (T2 phase), 2021, with a 0.2 m spatial resolution, a 

spectrum in the visible band (RGB), and an image size of 21952 × 23520 pixels. To facilitate DL 

network training, we segmented the bi-temporal images into 10290 pairs of 224 × 224 pixel 

non-overlapping image blocks. The CSCD dataset differs from the existing publicly available SCD 

dataset in the following aspects: (1) Different spatial resolution. Most of the existing SCD datasets have 

low spatial resolution, such as Landsat-SCD (Yuan et al. 2022), which cannot meet the data quality 

requirements of new SCD methods. The CSCD dataset acquires 0.2 m high spatial resolution RSIs 

based on UAV, which can make the features present very detailed structural information such as texture, 

geometry and shape, providing the possibility of fine-grained SCD of crops. (2) Different data 

annotation. Most of the existing SCD datasets only have labels for the types of ground change in 

different phases (Yang et al. 2021), while the CSCD dataset not only contains bi-temporal crop 

multi-class change and no-change labels, but also indicates explicit “from-to” semantic change 

information, providing different model validation spaces for both BCD and SCD tasks. (3) Different 

applications. The existing scene-level SCD datasets are rich in change types, but their definitions are 

too broad and often difficult to apply in practical engineering (Peng et al. 2021). The CSCD dataset 

focuses on agricultural investigation and contains six complex crop change types, which ensures the 

diversity of data types while expanding the application scope and depth of the SCD dataset. (4) 

Different time span. The existing SCD datasets have a large time span and are based on a one-year or 

multi-year time scale (Song & Choi 2020), which cannot provide a available data source for 

fine-grained monitoring of crops with a short growth cycle. The CSCD dataset shrinks the time scale to 

within one year and contains bi-temporal RSIs for April and October, which provides support for 

fine-grained monitoring of crop growth and rotation. Therefore, the proposed CSCD dataset well 

complements the existing SCD datasets in terms of spatial resolution, time span, change type and 

application. 

2.2.2. Data preprocessing 

The composite wing UAV (CW-10, Chengdu JOUAV Automation Tech Co., Ltd, Sichuan, China) 
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that acquired the original images of the CSCD dataset has a wingspan of 2.6 m, a payload weight of 2 

kg, an endurance of 90 minutes, a cruising speed of 20 m/s, and a CA-102 full-frame ortho camera. The 

CA-102 full-frame ortho camera has an Exmor R CMOS sensor type, a sensor size of 35.9 × 24.0 mm, 

a resolution of 7952 × 5304, contains approximately 42.4 million effective pixels, a memory capacity 

of 128G, and a lens focal length of 35 mm. The flight height of the UAV was set to 200 m, with a 

heading overlap of 60% and a collateral overlap of 40%, thus acquiring images in the visible band with 

0.2 m spatial resolution. The images preprocessing were done in Pix4D software. First we stitched the 

acquired images of different UAV sorties, then added the ground control points collected on site for 

geometric correction, and generated the UAV orthophotos after setting the coordinate system to 

CGCS2000. 

According to the actual survey needs of the local agricultural sector in Yuhu District, the crop 

types of the CSCD dataset are classified into vegetable, nursery, rapeseed, early-season rice, 

middle-season rice, and late-season rice in this study. The samples of six typical crop types are shown 

in Fig. 2, we show rapeseed at maturity and early-season rice at sowing in April, and middle-season 

rice at harvest and late-season rice at maturity in October. The actual agricultural survey requires 

counting not only the acreage of crops that change during the year, but also the acreage of important 

unchanged crops, such as vegetable, which has a short growth cycle and is planted more frequently, and 

nursery, which grows more slowly. Therefore, we divide the semantic change categories of the CSCD 

dataset into seven categories, each with a unique “from-to” semantic change label, based on the 

phenological periods of crops grown in the same area of different temporal images (Fig. 1 (d)). The 

percentage of area and the number of parcels in the training and testing datasets for different semantic 

change categories are shown in Table 1. 

 

(a) 
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Fig. 1. Study area. (a) Yuhu District locates in Xiangtan City, Hunan Province, China; (b) T1 temporal 

image sample; (c) T2 temporal image sample; (d) semantic change category sample. 

 

Fig. 2. Typical crop types. (a) Vegetable; (b) nursery; (c) early-season rice; (d) rapeseed; (e) 

middle-season rice; (f) late-season rice. 

Table 1. Sample profile of semantic change categories (percentage of area (%) / number of parcels). 

Change Type Training Dataset Testing Dataset Total 

no change 59.4/1 14.5/1 73.9/2 

vegetable to vegetable 1.2/1335 0.4/431 1.6/1766 

nursery to nursery 0.7/187 0.2/78 0.9/265 

early-season rice to middle-season rice 4.2/998 1.8/362 6/1360 

early-season rice to late-season rice 7.8/1613 3.6/804 11.4/2417 

rapeseed to middle-season rice 1.9/414 1.2/226 3.1/640 

rapeseed to late-season rice 2.2/439 0.9/169 3.1/608 

2.3. Methods 

2.3.1. AGSPNet framework overview 

In this study, we propose a framework for SCD of complex crops from UAV high-resolution 

images with agricultural geographic scene and parcel boundary constraints, namely AGSPNet, and the 

overall framework is shown in Fig. 3. AGSPNet is mainly composed of three parts: the first part is the 

agricultural geographic scene division module, which is used for analyzing the rule of agricultural 

territorial differentiation in bi-temporal UAV images and dividing the bi-temporal agricultural 

geographic scene images as the input dataset for other modules. The second part is the DL parcel edge 

extraction module, which is used to further extract and optimize the edges of agricultural parcels from 

agricultural geographic scene images and serve as boundary constraints for the initial crop SCD results. 

The third part is the crop SCD module, which is used for the final crop SCD result prediction and 

post-processing. We will describe the principles of the three modules of the AGSPNet framework in 
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detail in the next few subsections. 

 

Fig. 3. The overall framework of AGSPNet. 

2.3.2. Agricultural geographic scene division 

Rugged topographic features and special hydrothermal environments can produce high-intensity 

spatial heterogeneity, making crop classification and change detection extremely difficult. As Table 1 

shows, the samples of no-change type in the CSCD dataset containing large hilly and mountainous 

areas occupy 73.9% of the whole study area, and too much background of no-change area will make 

the DL model more biased to the calculation of background during training. Meanwhile, it often has 

various complex ground features unrelated to crops, such as mountain, buildings and water body. All 

the above situations can seriously interfere with the feature extraction of crops by the model. Thus, it is 

necessary to address the problem of complex backgrounds in large unchanged areas using effective 

strategies. 

Inspired by the first law of geography (Tobler 1970) and the rule of territorial differentiation, that 

is, the existence of relative consistency of regional characteristics for the same kind of features and 

spatial heterogeneity for different kinds of features, we design a method for dividing agricultural 

geographic scene applicable to complex topographic conditions, as shown in Fig. 5. The main idea is to 

employ multi-source open geographic data products to perform geographic analysis of the study area, 

and then delineate agricultural geographic scene with relatively consistent topographic conditions and 

ground features. The multi-source open geographic data products used include global 10 m resolution 

land use / land cover (LULC) data, ALOS satellite 12.5 m resolution high-precision digital elevation 

model (DEM) data (https://search.asf.alaska.edu/#/) and Open Street Map (OSM) historical vector data 
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(https://download.geofabrik.de/asia/chin a.html#). The global LULC data products include the 2017 

and 2021 Environmental Systems Research Institute (ESRI) LULC products 

(https://www.arcgis.com/apps/instant/ media/index.html?appid=fc92d38533d440078f17678ebc20e8e2) 

and the 2020 European Space Agency (ESA) WorldCover products 

(https://zenodo.org/record/5571936#). Both data products are derived from global 10 m resolution land 

cover classification results from Sentinel-1 and Sentinel-2 satellite imagery, with an accuracy of 85% 

for the ESRI product and 74% for the ESA product, providing a high base accuracy for the delineation 

of agricultural geographic scene. The DEM data contains not only itself but also slope data after slope 

analysis. The OSM data includes line and polygon crowdsourced historical vector data of buildings, 

roads and water bodies. 

The main operation flow of agricultural geographic scene division is shown in Fig. 4. At first, 

considering the regional extent of the bi-temporal UAV images and the local crop cultivation structure, 

we use ESRI and ESA global land cover products under the same extent. To ensure the complete 

distribution of crops to the greatest extent possible, we overlay and extract the land cover related to 

agriculture from the two data products, including trees, crops and scrubs, as a way to obtain 

pre-selected areas for agricultural geographic scene. Then, we overlay the pre-selected areas with DEM 

and slope maps for analysis, and obtain the maximum elevation of 93 m and the maximum slope of 16° 

for crop distribution, and treat the trees and shrubs above these values as non-agricultural areas for 

elimination. Finally, the remaining non-agricultural areas in the pre-selected areas are further removed 

using the building, road and water vector data from the OSM data, and the preserved areas are the 

agricultural geographic scenes. Based on the vector contours of the agricultural geographic scenes, we 

crop the bi-temporal UAV images and sample data as input datasets for subsequent processing in other 

modules. 

 

Fig. 4. The flow chart of agricultural geographic scene division. 

2.3.3. Parcel edge extraction 

There is often a significant semantic-gap (Zhong et al. 2015) between the pixel-level SCD output 
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of existing semantic segmentation methods and real geographic objects. Although object-oriented 

image segmentation methods can alleviate the above situation, they also suffer from the drawback of 

not being able to exploit and express the high-level semantic features of the images to generate objects 

that match the geographic entities interpreted by manual visual interpretation. Besides, the complex 

composition around the farmland parcels, such as paths between farmlands, bare soil and vegetation 

distributed with crops, etc., also poses great difficulties for boundary detection. Thanks to the 

development of DL edge extraction technology, it can achieve accurate detection of all edge pixels of 

RSIs by training parcel samples with semantic annotations, and then convert the raster results into 

polygons through post-processing to obtain complete farmland parcels that conform to the visual 

perceptual morphology. 

This study adopts a bidirectional cascade network (BDCN) (He et al. 2019) to achieve the 

extraction of farmland parcel edges, which can effectively solve the problem of difficult multi-scale 

feature extraction in traditional edge detection networks. BDCN is a lightweight VGG-16-based (Patra 

et al. 2022) network, which consists of multiple incremental detection (ID) blocks. Each ID block is 

composed of divided VGG-16 convolutional layers inserted into scale enhancement module (SEM), 

and different ID blocks use different scales of edge markers for supervised learning. SEM uses inflated 

convolution to enhance the multi-scale feature details in the output of each layer, and finally fuses the 

outputs of all layers. Due to the complex network structure of BDCN, we show three of the ID blocks 

and SEM, as shown in Fig. 5, where r0 denotes the expansion rate factor, K denotes the number of 

inflated convolution layers, P denotes the edge prediction map, s2d denotes propagation from shallow 

to deep layers, and d2s denotes propagation from deep to shallow layers, and the output fusion process 

in the direction of s2d and d2s for each ID block is the bidirectional cascade structure. Specifically, first, 

the images are input to VGG-16 with three fully connected layers and the last pooling layer removed 

for feature extraction, and the remaining 13 convolutional layers of VGG-16 are divided into five ID 

blocks, each followed by access to a 2 × 2 pooling layer to gradually expand the perceptual field of the 

next ID block. Then, the feature maps extracted from each ID block are input to several SEMs and the 

outputs are fused into two 1 × 1 convolutional layers to generate two edge predictions pd2s and ps2d, and 

to calculate the class-balanced cross-entropy loss function for the current ID block. Finally, the edge 

predictions of all ID blocks are fused using a 1 × 1 convolution to obtain the final edge prediction 

results. 

 

Fig. 5. Partial structure of BDCN. 

Since the initial output of BDCN is a relatively coarse pixel-level farmland parcel edge map, we 
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require post-processing to obtain a complete farmland parcel at the object level. In this study, we 

design an edge optimization model to automate batch processing of farm parcel edges using the model 

builder of ArcGIS 10.6, as shown in Fig. 6. The detailed operation process is as follows: (1) we 

reclassify the initial BDCN result raster map into a binary map and perform the expansion operation on 

the edge values; (2) converting raster results to polygons and removing background values and small 

fragmented parcels; (3) simplifying operations on polygon edges to eliminate voids inside polygons 

and polygons with empty geometry; (4) converting a polygon to a center line and performing a 

simplification operation, then extending the line and performing a trimming operation; (5) in the end, 

the trimmed line elements are converted into polygons, which are the complete farmland parcels at the 

object level. We fuse the farm parcel results from bi-temporal UAV images, which are used to constrain 

the boundaries of the initial crop SCD results. 

 

Fig. 6. The flow chart of edge optimization model. 

2.3.4. Semantic change detection 

Due to the differences in imaging conditions (Wang et al. 2021a) (e.g., illumination, viewing angle, 

etc.) in different phases of the UAV, there may be strong spectral similarities or differences between 

crops in different phenological periods, which is particularly serious in high-resolution visible imagery. 

Spectral similarity can make it difficult to distinguish crops that have changed in different temporal 

images, for instance, rapeseed and late-season rice have different semantic features, but they present 

similar spectral features on the images, which are likely to be identified as unchanged. And spectral 

difference can likewise cause crops without semantic change to be mistakenly detected as having 

changed, e.g., vegetables at sowing stage and vegetables at maturity stage. To avoid the above 

problems, we design a criss-cross-attention network (CCNet) (Huang et al. 2019) with pseudo-Siamese 

structure to implement SCD for bi-temporal image crops. The network mainly consists of two CCNets 

that do not share weights and a discriminator FCN, the former is used to extract semantic features of 

crops in different temporal images and the latter is used to extract bi-temporal change features. The 

pseudo-Siamese structure (Li et al. 2022b) allows different branches of CCNet to perform better in crop 

semantic segmentation without the limitation of shared parameters, and also provides help in detecting 

change regions. The detailed structure of the designed SCD framework is described as follows. 

Feature Extractor. The feature extractor of CCNet uses a pre-trained ResNet-101 network (Wang 

et al. 2021b), which can solve the deep network degradation problem that cannot be handled by 

traditional DL networks, and extract complex deep semantic features more effectively. In order to 

output feature maps with the same size as the input image, we remove the global pooling layer and the 

fully connected layer of the network. The ResNet-101 network extracts shallow image features and 

resizes the feature map to half of its original size by using a 7 × 7 convolutional kernel with a step size 

of 2 and a maximum pooling layer, and then employs four residual blocks to extract higher-level 

semantic features. 

Criss-Cross Attention Module (CCAM). As the core mechanism of CCNet, CCAM only 
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calculates the pixels in the same row and column with strong relevance to the current pixel, which 

solves the problem of large consumption of global attention computation, and then performs multiple 

criss-cross attention computations to obtain the global dependency of each pixel by increasing the loop 

parameters, which solves the problem of sparse access to local attention information. To be specific, as 

shown in Fig. 3, after the feature extractor ResNet-101 network acquires the feature map F of the input 

image, it uses one convolution operation to perform a channel downscaling to obtain a new input 

feature X. Then, the feature map X is updated to a new attentional feature map X' using CCAM. The 

specific structure of CCAM is shown in Fig. 7. It first obtains feature maps K, Q and V from the input 

feature map X through three 1 × 1 convolutional layers with unshared weights, then performs Affinity 

operation on K and Q and obtains spatial attention weight coefficients A by softmax calculation, next 

performs Aggregation operation with the transformed feature map V, and finally sums with the input 

feature X to obtain the attention feature X' with aggregated contextual information. However, since 

CCAM only perceives the contextual information on the criss path, it is difficult to obtain dense and 

comprehensive information in a one-time calculation, and thus CCNet adds the cyclic parameter R to 

CCAM to form a second cycle, namely, cyclic criss-cross attention (RCCA). The parameters of RCCA 

are shared, and it takes the feature X' generated for the first time using CCAM as input, and then 

generates a new feature map X'' through the information flow of the whole map, so that it can obtain 

rich contextual information of all pixels and ensure that the computational efficiency is not reduced. 

 

Fig. 7. Criss-Cross Attention Module. 

Semantic segmentation. After obtaining the dense contextual features X'', they are connected to 

the original feature map F and feature fusion is performed after batch normalization and activation 

operations in one convolutional layer. Then, the fused feature maps are mapped into each pixel to 

obtain the final crop prediction segmentation results. 

Change discriminator. To acquire the change feature maps of crops in bi-temporal images, we 

consider BCD as a binary classification task. First, the features extracted from the T1 and T2 temporal 

images are differenced and the absolute values are taken to obtain the feature maps of the same size. 

Then, we use FCN to conduct the final binary segmentation to acquire the change map. 

Post-processing and constraint operations. To obtain the initial semantic change map, we assign 

the T1 and T2 temporal crop segmentation results to each change pixel based on the binary change map 
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for obtaining the semantic change prediction result of “T1 temporal crop to T2 temporal crop”. In the 

no-change region, we also reserve the important no-change crop pixels as an additional semantic 

category. To obtain the final parcel-scale SCD results, we spatially constrain the initial crop SCD 

results with the fused bi-temporal farm parcel results according to the category area maximum rule 

within the parcel, so that each parcel has a unique semantic change category. 

Loss function. In this study, we consider the SCD task as two sub-tasks of semantic segmentation 

and BCD, so we need to design a total loss function to weight the loss functions of the two sub-tasks in 

the image, and the formula is as follows. 

Loss = LossT1 + LossT2 + 2 × LossBCD                        (1) 

Where: the bi-temporal semantic segmentation part LossT1 and LossT2 both use the categorical 

cross-entropy loss function (Li et al. 2022a), and the BCD part LossBCD uses the binary cross-entropy 

loss function (Li et al. 2021). The weight of LossBCD is 2 in calculating the total Loss because the 

no-change region of the bi-temporal images is the same. 

2.4. Experimental details 

2.4.1. Model implementation and training 

Software and hardware environment configuration. This study conduct experiments on a 

computer configured with a 3.6 GHz Inter Core i7-9700K CPU, NVIDIA GeForce GTX 1080 Ti 

graphic card, 32G of RAM, Windows Server 2019 operating system, and PyTorch as the DL 

implementation framework. 

Dataset sample allocation. In this study, we apply the CSCD dataset to farm plot extraction and 

crop SCD experiments, so we require dividing the samples into parcel samples containing only edge 

information and crop samples with multiple types of semantic changes, where the crop samples contain 

not only crop types of T1 and T2 temporal images, but also samples of binary changes and semantic 

changes of crops. We divide the dataset experimental area into two regions A1 and A2, each region 

contains corresponding training, validation and testing sample sets, and the sample allocation ratio is 

6:1:3 in order. 

Model training parameters setting. The DL model used has a training epoch of 20, a batch size 

set to 4, a learning rate of 0.001, a sigmoid function for the activation function of BDCN, a ReLU 

function for the activation function of the modified CCNet, and an optimization algorithm using 

stochastic gradient descent (SGD) with momentum set to 0.9 and weight decay set to 0.0001. 

2.4.2. Evaluation metrics 

In this study, the evaluation of the model includes two aspects: one is to examine the effect of 

different SCD methods on the accuracy of crop SCD results; and the other is the evaluation of module 

applicability as a way to determine the effect of different modules in the AGSPNet framework on the 

accuracy of crop SCD results from high-resolution UAV images. We classify the results of model 

detection into four cases: true positive (TP), false negative (FN), false positive (FP), and true negative 

(TN). TP is the number of pixels correctly detected as positive samples, TN is the number of pixels 

correctly detected as negative samples, FP is the number of pixels that mistakenly detect negative 

samples as positive samples, and FN is the number of pixels that miss detect positive samples as 

negative samples. We calculate the confusion matrix of SCD results with the true value of each pixel 

and use six accuracy evaluation metrics, precision (Pre), recall (Rec), F1-score (F1), overall accuracy 

(OA), kappa coefficient (KC) and mean intersection over union (mIoU), to evaluate the prediction 

performance of different benchmarks for SCD of crops from UAV high-resolution images. These 
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evaluation metrics are able to check the model at various levels (e.g., accuracy, completeness, and 

consistency of results), and their values are proportional to the performance of the model. The specific 

formulas for the different accuracy evaluation metrics are as follows. 

 
Pre = 

TP

TP + FP
 (2) 

 
Rec = 

TP

TP + FN
 (3) 

 
F1 = 2 × 

Pre × Rec

Pre + Rec
 (4) 

 
OA = 

TP + TN

TP + FN + FP + TN
 (5) 

 
R = 

(TP + FN ) × (TP + FP) + (TN + FN) × (TN + FP)

(TP + TN + FP + FN)²
 (6) 

 
KC = 

OA - R

1 - R
 (7) 

 
mIoU = 

TP

FP + FN + TP
 (8) 

Where: R is the process calculation variable of KC. 

3. Experimental results 

3.1. Quantitative comparison of different semantic change detection methods 

To validate the performance of the proposed AGSPNet framework for crop SCD, we embed U-Net, 

PSPNet, DeepLabV3+, Mask R-CNN and HRNet in the SCD module of the framework separately, and 

conduct comparative experiments in test areas A1 and A2 of the CSCD dataset, which have scattered, 

varied and fragmented farmland distribution, surrounded by mountainous vegetation in the surrounding 

geography, and interspersed with lakes, roads and rural residences, which pose great challenges for 

crop SCD. The detailed and overall quantitative results of SCD of crops from bi-temporal images in A1 

and A2 test areas by different DL methods are shown in Tables 2 and 3, respectively. 

According to Table 2, it can be seen that on detailed crop SCD, due to the agro-geographic scene 

division module and parcel extraction module in the AGSPNet framework, different DL methods show 

stable and high performance results, and the SCD module (AGSPNet) used in this study achieves the 

highest F1 value for each crop semantic change detected. In particular, the agricultural geographic 

scene division module, by removing complex background features, enables the model to maintain the 

detection results of no changed background areas at a high accuracy level, with the highest F1 value 

reaching 0.989. Meanwhile, the parcel extraction module, by fusing pixel-level results into complete 

farm parcels conforming to the visual morphology, enables different SCD methods to achieve high 

accuracy detection results for the four crop semantic change categories as well, with AGSPNet having 

the highest average F1 values in A1 and A2 test areas, which are 0.033 and 0.037 higher than the 

sub-advanced method, respectively. In both test areas, the semantic change categories with the highest 

detection accuracy are concentrated in early-season rice to middle-season rice and early-season rice to 

late-season rice, which may be attributed to the fact that the change samples in these two categories are 

richer so that the models are adequately trained. The categories with the lowest detection accuracy are 
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mainly vegetable and nursery with no change region, which is not only related to their low sample size, 

but also to their difficult to detect parcel boundaries and complex spatial distribution characteristics. 

Nevertheless, the proposed AGSPNet can still maintain a high detection accuracy in the above cases, 

mainly because of the powerful spatial context extraction capability of the criss-attention module. 

Table 2. Quantitative comparison of different semantic change detection methods on each crop. 

Method Change Type 
A1  A2 

Pre Rec F1  Pre Rec F1 

U-Net 

no change 97.7% 97.6% 0.976  99.0% 98.2% 0.986 

vegetable to vegetable 80.1% 81.5% 0.808  79.7% 79.2% 0.794 

nursery to nursery 85.6% 65.1% 0.740  71.7% 87.9% 0.790 

early-season rice to middle-season rice 85.3% 93.6% 0.893  89.2% 97.7% 0.933 

early-season rice to late-season rice 94.3% 93.6% 0.939  93.9% 96.6% 0.952 

rapeseed to middle-season rice 92.6% 85.7% 0.890  95.4% 80.6% 0.874 

rapeseed to late-season rice 82.7% 86.7% 0.847  94.6% 84.7% 0.894 

PSPNet 

no change 97.2% 97.8% 0.975  98.9% 98.3% 0.986 

vegetable to vegetable 82.1% 76.9% 0.794  83.3% 76.8% 0.799 

nursery to nursery 87.8% 45.1% 0.596  64.8% 84.2% 0.732 

early-season rice to middle-season rice 85.9% 91.3% 0.885  91.2% 96.7% 0.939 

early-season rice to late-season rice 93.9% 92.9% 0.934  93.9% 94.9% 0.944 

rapeseed to middle-season rice 91.0% 86.0% 0.884  93.0% 84.9% 0.888 

rapeseed to late-season rice 79.5% 86.0% 0.826  87.9% 85.5% 0.867 

DeeplabV3+ 

no change 96.9% 97.7% 0.973  98.8% 98.5% 0.986 

vegetable to vegetable 84.0% 64.6% 0.730  80.6% 82.1% 0.813 

nursery to nursery 88.3% 61.7% 0.726  77.2% 88.6% 0.825 

early-season rice to middle-season rice 83.1% 81.0% 0.820  93.2% 96.5% 0.948 

early-season rice to late-season rice 88.0% 94.0% 0.909  94.7% 95.0% 0.948 

rapeseed to middle-season rice 93.7% 71.6% 0.812  93.6% 89.6% 0.916 

rapeseed to late-season rice 69.7% 80.7% 0.748  89.9% 87.3% 0.886 

Mask R-CNN 

no change 97.3% 97.6% 0.974  98.9% 98.2% 0.985 

vegetable to vegetable 82.4% 83.8% 0.831  80.1% 86.3% 0.831 

nursery to nursery 86.1% 77.0% 0.813  63.5% 85.5% 0.729 

early-season rice to middle-season rice 92.7% 92.9% 0.928  93.9% 94.9% 0.944 

early-season rice to late-season rice 95.7% 89.1% 0.923  92.7% 96.1% 0.944 

rapeseed to middle-season rice 93.3% 96.3% 0.948  91.8% 89.9% 0.908 

rapeseed to late-season rice 74.6% 90.4% 0.817  90.2% 81.7% 0.857 

HRNet 

no change 97.9% 97.7% 0.978  99.1% 98.3% 0.987 

vegetable to vegetable 80.9% 83.2% 0.820  77.2% 80.2% 0.787 

nursery to nursery 83.4% 72.4% 0.775  76.6% 88.9% 0.823 

early-season rice to middle-season rice 86.4% 90.5% 0.884  92.0% 97.2% 0.945 

early-season rice to late-season rice 94.4% 93.8% 0.941  94.1% 96.3% 0.952 

rapeseed to middle-season rice 90.0% 88.1% 0.890  94.2% 88.3% 0.912 

rapeseed to late-season rice 84.0% 86.4% 0.852  92.8% 86.0% 0.893 
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AGSPNet 

no change 97.4% 98.0% 0.977  99.2% 98.6% 0.989 

vegetable to vegetable 86.3% 80.0% 0.830  85.4% 86.4% 0.859 

nursery to nursery 81.4% 83.0% 0.822  88.4% 92.0% 0.902 

early-season rice to middle-season rice 95.8% 94.9% 0.953  96.3% 97.1% 0.967 

early-season rice to late-season rice 94.4% 93.0% 0.937  95.1% 98.2% 0.966 

rapeseed to middle-season rice 91.7% 91.1% 0.914  95.6% 94.3% 0.949 

rapeseed to late-season rice 94.1% 95.0% 0.945  96.7% 96.4% 0.965 

From Table 3, it is clear that on the overall crop SCD, corresponding to the detailed quantitative 

results, the DL model can assign more loss optimization parameters to multiple crop semantic change 

categories due to the reduced area share of complex backgrounds, while the parcel-scale detection 

results compensate to a greater extent for the deficiencies of the semantic segmentation algorithm, 

resulting in higher evaluation metrics for all the different SCD methods. In particular, the SCD 

accuracy of AGSPNet is still at the highest value, with F1, KC, OA and mIoU in the two test areas 

improving 0.038, 0.021, 0.011 and 0.062, respectively, on average over the sub-advanced algorithm 

HRNet. Whereas, compared with other methods, the detection accuracy of all three classical SSNs, 

U-Net, PSPNet and DeeplabV3+, is relatively low, which may be related to their poor detail 

information extraction ability, making it difficult to obtain localization-accurate and fine-grained edge 

segmentation results. 

Table 3. Quantitative comparison of different semantic change detection methods on overall crop. 

Method 
A1  A2 

Pre Rec F1 KC OA mIOU  Pre Rec F1 KC OA mIOU 

U-Net 88.3% 86.2% 0.872 0.909 0.948 0.778  89.1% 89.3% 0.892 0.934 0.965 0.807 

PSPNet 88.2% 82.3% 0.851 0.900 0.944 0.743  87.6% 88.7% 0.881 0.931 0.964 0.794 

DeeplabV3+ 86.2% 78.7% 0.823 0.869 0.926 0.700  89.7% 91.1% 0.904 0.940 0.968 0.829 

Mask R-CNN 88.9% 89.6% 0.892 0.911 0.950 0.809  87.3% 90.4% 0.888 0.932 0.964 0.804 

HRNet 88.1% 87.5% 0.878 0.911 0.949 0.787  89.4% 90.7% 0.900 0.939 0.968 0.824 

AGSPNet 91.6% 90.7% 0.911 0.931 0.961 0.842  93.8% 94.7% 0.942 0.961 0.979 0.894 

3.2. Visual comparison of different semantic change detection methods 

Fig. 8 and Fig. 9 show the visual comparison results of the different SCD methods for multiple 

crop semantic change categories in the A1 and A2 test areas. It can be obviously noted that the 

visualization results of the crop semantic changes further validate the analysis of the quantitative 

comparisons very well. After removing the complex background features of non-agriculture and fusing 

the parcel-level output results, the crop semantic change results detected by each SCD method obtain a 

parcel boundary shape that approximates the reference data, which ensures that the detected crop 

semantic change regions have a highly complete edge outline. Notably, the proposed AGSPNet is 

overall better than the other methods for crop SCD visualization in different test areas, especially with 

the best accuracy for early-season rice to middle-season rice and early-season rice to late-season rice 

detection, while vegetable and nursery in the no-change area also retain better boundary detail 

information, which explains their higher Pre in Table 2. The results of HRNet, PSPNet and U-Net 

produce more false detections on early-season rice to late-season rice (e.g., (d), (e) and (h) in Fig. 8 and 

Fig. 9), while the results of Mask R-CNN have more missed detections on early-season rice to 
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middle-season rice (e.g., (g) in Fig. 8 and Fig. 9). The visualization of the DeeplabV3+ result 

distribution is the worst, with a large number of false detections of rapeseed to late-season rice and 

missed detections of rapeseed to middle-season rice (e.g., Fig. 8 (f)). 

 

Fig. 8. Results of different semantic change detection methods in A1 test area. (a) T1 Image; (b) T2 

Image; (c) ground truth; (d) U-Net; (e) PSPNet; (f) DeeplabV3+; (g) Mask R-CNN; (h) HRNet; (i) 

AGSPNet. 
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Fig. 9. Results of different semantic change detection methods in A2 test area. (a) T1 Image; (b) T2 

Image; (c) ground truth; (d) U-Net; (e) PSPNet; (f) DeeplabV3+; (g) Mask R-CNN; (h) HRNet; (i) 

AGSPNet. 

4. Discussion 

4.1. Ablation experiments 

4.1.1. Quantitative comparison of different modules 

To further validate the effects of different modules of AGSPNet on crop SCD results, we conduct 

ablation studies in test areas A1 and A2. Table 4 and Table 5 report the detailed and overall quantitative 

comparison results of crop SCD with different module combinations, respectively, where we denote the 

SCD module used in this study as the baseline model BASE, the agrogeographic scene delineation 

module as AGS, the plot edge extraction module as BDCN, and the AGSPNet framework as the 
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combination of all modules (BASE + AGS + BDCN). From Table 4, it is observed that without the 

constraints of AGS and BDCN, the detection accuracy of the BASE model for each crop semantic 

change type in both A1 and A2 test areas decreases markedly, with the average F1 values of 

background, vegetable and nursery in the no-semantic-change area decreasing to 0.97, 0.8 and 0.421, 

respectively, while the main four crop semantic change categories decrease the average F1 value by 

0.075 compared to that of the AGSPNet framework. When only the constraint of agricultural 

geographic scenes is added, the detection results of BASE + AGS in different categories of 

no-semantic-change regions have obvious accuracy improvement, and the F1 value is improved by 

0.13 on average over the BASE results, which indicates that the exclusion of complex non-agricultural 

background features is beneficial to improve the extraction effect of SCD model for no-change regions 

with relatively consistent geographic element conditions. As for the detection of semantic change 

regions of crops, the accuracy of BASE + AGS results has limited improvement, which may be owing 

to the pixel-level results of the semantic segmentation algorithm limiting its complete detection on crop 

boundaries. When only the constraints of parcel boundaries are added, the results of BASE + BDCN 

obtain a substantial improvement in the detection accuracy for both crop types with semantic changes, 

and the F1 value increases by 0.035 on average over the results of BASE. This indicates that fusing the 

SCD results with the parcel-scale results of edge extraction can effectively improve the defects of the 

semantic segmentation algorithm and detect more complete and accurate crop parcels. However, this 

combination of modules still interferes with complex background features, resulting in a small 

improvement in the detection accuracy of no-semantic-change regions. When all modules are 

combined together, the model achieves higher accuracy gains than the above module combinations for 

the vast majority of change types, with F1 values for regions with no-semantic-change averaging 0.154 

higher than those of BASE + BDCN, and F1 values for crop semantic change categories averaging 

0.046 higher than those of BASE + AGS. This indicates that the AGSPNet framework is able to 

aggregate the advantages of AGS and BDCN modules, and the detected SCD results are less affected 

by the changeless complex background and “salt-and-pepper” noise. 

Table 4. Quantitative comparison of different modules on each crop. 

Baseline Change Type 
A1   A2 

Pre Rec F1   Pre Rec F1 

BASE 

no change 96.7% 97.3% 0.970   98.7% 95.3% 0.970  

vegetable to vegetable 75.5% 80.3% 0.778   83.9% 79.7% 0.817  

nursery to nursery 56.4% 59.3% 0.578   15.8% 80.5% 0.264  

early-season rice to middle-season rice 93.1% 92.0% 0.925   94.2% 93.7% 0.939  

early-season rice to late-season rice 87.2% 86.7% 0.869   92.8% 91.4% 0.921  

rapeseed to middle-season rice 76.8% 82.0% 0.793   83.6% 86.8% 0.852  

rapeseed to late-season rice 90.2% 81.9% 0.858    83.0% 87.8% 0.853  

BASE + AGS 

no change 97.4% 98.3% 0.978   99.0% 98.5% 0.987  

vegetable to vegetable 87.2% 81.8% 0.844   86.0% 78.8% 0.822  

nursery to nursery 76.7% 71.1% 0.738   67.7% 88.2% 0.766  

early-season rice to middle-season rice 94.8% 93.1% 0.939   94.8% 96.0% 0.954  

early-season rice to late-season rice 89.0% 86.5% 0.877   92.5% 94.1% 0.933  

rapeseed to middle-season rice 82.2% 85.6% 0.839   91.2% 88.3% 0.897  

rapeseed to late-season rice 89.4% 88.3% 0.888    88.6% 88.6% 0.886  
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BASE + BDCN 

no change 96.9% 97.2% 0.970   98.9% 96.3% 0.976  

vegetable to vegetable 81.4% 80.0% 0.807   80.7% 83.0% 0.818  

nursery to nursery 65.5% 61.4% 0.634   22.5% 81.0% 0.352  

early-season rice to middle-season rice 92.4% 94.0% 0.932   94.8% 96.7% 0.957  

early-season rice to late-season rice 87.4% 90.4% 0.889   93.8% 95.9% 0.948  

rapeseed to middle-season rice 84.2% 79.1% 0.816   93.1% 88.9% 0.910  

rapeseed to late-season rice 91.1% 85.9% 0.884    92.7% 91.8% 0.922  

BASE + AGS + 

BDCN 

no change 97.4% 98.0% 0.977   99.2% 98.6% 0.989  

vegetable to vegetable 86.3% 80.0% 0.830   85.4% 86.4% 0.859  

nursery to nursery 81.4% 83.0% 0.822   88.4% 92.0% 0.902  

early-season rice to middle-season rice 95.8% 94.9% 0.953   96.3% 97.1% 0.967  

early-season rice to late-season rice 94.4% 93.0% 0.937   95.1% 98.2% 0.966  

rapeseed to middle-season rice 91.7% 91.1% 0.914   95.6% 94.3% 0.949  

rapeseed to late-season rice 94.1% 95.0% 0.945    96.7% 96.4% 0.965  

From Table 5, it can be found that AGPSNet, which incorporates all modules, achieves the best 

accuracy for crop SCD results in both A1 and A2 test areas as a whole, with the largest improvement in 

the evaluation metric mIoU, which is 0.072 higher than the sub-advanced baseline on average, 

indicating that the structure we designed optimizes the detection results of the SCD model to the 

maximum extent possible. Moreover, the accuracy of BASE + AGS detection in the module 

combination is overall better than that of BASE + BDCN, where the average accuracy of six evaluation 

metrics is 0.025 higher, which indicates that the sample disproportionation problem caused by large 

unvarying areas may seriously inhibit the improvement of SCD model accuracy. 

Table 5. Quantitative comparison of different modules accuracy on overall crop. 

Baseline 
A1  A2 

Pre Rec F1 KC OA mIoU  Pre Rec F1 KC OA mIoU 

BASE 82.3% 82.8% 0.825 0.882 0.934 0.718  78.9% 87.9% 0.832 0.885 0.938 0.716 

BASE + AGS 88.1% 86.4% 0.872 0.909 0.949 0.78  88.5% 90.4% 0.894 0.937 0.967 0.813 

BASE + BDCN 85.6% 84.0% 0.848 0.894 0.941 0.748  82.4% 90.5% 0.863 0.919 0.957 0.767 

BASE + AGS + BDCN 91.6% 90.7% 0.911 0.931 0.961 0.842  93.8% 94.7% 0.942 0.961 0.979 0.894 

4.1.2. Visual comparison of different modules 

Fig. 10 and Fig. 11 report the crop SCD visualization results for different module combinations in 

test areas A1 and A2, respectively. It can be evidently observed that the module combination of BASE 

+ AGS + BDCN achieves the best visualization results for crop SCD in both test areas, detecting 

semantic change regions and no-change regions of crops accurately and comprehensively (e.g., the 

second row of Fig. 10 (g)), while being able to finely depict the gaps between crop parcels (e.g., the 

first and fourth rows of Fig. 11 (g)). The results of BASE + AGS improve the incorrect detection of 

complex mountain vegetation as nursery by BASE (as shown in the second row of Fig. 11), and the 

crop areas where semantic changes occur are also detected more accurately than by BASE. Although 

generating less “salt-and-pepper” noise than BASE, this combination of modules still struggles to 

ensure the internal integrity and edge accuracy of crop parcels. The results of BASE + BDCN can 

obtain comprehensive and complete crop parcels, but it also has more crop semantic change type 
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detection mistakes affected by irrelevant background features, such as the large misdetection of 

early-season rice to late-season rice in the first row of Fig. 10 (f), the omission of Rapeseed to 

late-season rice in the fourth row, and the misdetection of nursery in the second row of Fig. 11 (f). 

 

Fig. 10. Results of semantic change detection for different modules in A1 test area. (a) T1 Image; (b) 

T2 Image; (c) ground truth; (d) BASE; (e) BASE + AGS; (f) BASE + BDCN; (g) BASE + AGS + 

BDCN. 

 

Fig. 11. Results of semantic change detection for different modules in A2 test area. (a) T1 Image; (b) 

T2 Image; (c) ground truth; (d) BASE; (e) BASE + AGS; (f) BASE + BDCN; (g) BASE + AGS + 



22 
 

BDCN. 

4.2. Uncertainty analysis 

Compared to existing work, our framework has several advantages. (1) It considers the problem of 

geospatial heterogeneity, reduces the interference of changeless background regions in crop SCD 

through the division of agricultural geographic scenes, and improves the detection of details of 

different semantic change types in crops. (2) It ensures the completeness of the farmland detection area 

by outputting parcel-scale crop semantic change results, and improves the problem of parcel 

fragmentation and severe “salt-and-pepper” noise caused by semantic segmentation algorithms. (3) It 

uses the pseudo-Siamese structure of CCNet and change feature discrimination module, which 

effectively reduces the spectral confusion detection and enhances the extraction capability of the model 

for important temporal features and spatial context information. In the experimental comparison of the 

proposed CSCD dataset, our framework demonstrates superior crop SCD performance over other 

advanced DL methods. 

However, owing to the embeddable multi-task combination framework, the crop SCD results of 

AGSPNet may be affected by structural uncertainties within the different modules in the following 

aspects. 

(1) The quality of public source geographic data affects the final delineation of agricultural 

geographic scene. If the data is of low quality, it may lead to the erroneous exclusion of areas with 

target objects in the process of geographic analysis, such as land cover products with low regional 

accuracy. Thus, the selection of multi-source geographic data products requires detailed validation and 

comparison to ensure that the data meet the quality demand for high accuracy. 

(2) The parcel edge extraction results affect the accuracy of crop SCD results. If the extracted 

parcel edges are inaccurate, the incorrect semantic change categories may be output at the parcel scale, 

resulting in error accumulation. Therefore, the most suitable DL edge extraction model is required to be 

selected according to the actual application scenarios. 

(3) Uncoordinated sample proportions affect the training effect of SCD models. In this study, due 

to the small sample area ratio of vegetable and nursery (Table 1), it is often difficult to accurately mine 

their features during network training, making the final SCD results much less accurate than other crop 

semantic change categories (Table 2). This problem can be improved in the future by investigating 

few-shot learning or data augmentation methods. 

5. Conclusion 

In this paper, we propose a crop SCD framework (AGSPNet) based on UAV bi-temporal 

high-resolution RSIs with agricultural geographic scene and parcel-scale constraints, and create a new 

open-source multi-class crop SCD dataset CSCD. The AGSPNet framework first gradually divides the 

agricultural geographic scenes with relatively consistent topographic features in UAV images based on 

the rule of agricultural territorial differentiation, so as to facilitate the depth feature extraction of 

complex crops by the DL model. Then, we introduce the edge detection network BDCN and design the 

parcel edge optimization model for extracting the complete parcels of crops in the agricultural 

geographic scenes. Finally, we fuse the pseudo-Siamese structure of CCNet with the change feature 

discrimination module, and output the obtained pixel-level SCD results with optimized parcel edges as 

spatial constraints to output parcel-scale crop semantic change results, thus alleviating the problems of 

inaccurate crop localization, incomplete targets and unclear edges of traditional SCD algorithms. 
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Meanwhile, the produced CSCD dataset focuses on yearly fine-grained agricultural monitoring, which 

largely complements the application scope and depth of the existing SCD dataset. We validate the 

effectiveness of AGSPNet on the CSCD dataset, and the results show that the AGSPNet crop semantic 

change results obtain the best performance in both quantitative metrics assessment and visual 

comparison compared to other SCD methods. The proposed framework can cope with a variety of 

practical and complex scenarios agricultural applications, detect more comprehensive and accurate 

crop fine-grained change areas, and provide technical reference for the development of smart 

agriculture and precision agriculture. 
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