
Endeavouring to Be in the Good Books. Awarding
DTN Network Use for Acknowledging the Reception of

Bundles

Adrián Sánchez-Carmonaa,∗, Sergi Roblesa, Carlos Borregoa

aDepartment of Information and Communications Engineering (dEIC),
Universitat Autònoma de Barcelona,

08193 Bellaterra, Spain

Abstract

This paper describes an incentive scheme for promoting the cooperation,
and, therefore, avoiding selfish behaviours, in Delay Tolerant Networks (DTN)
by rewarding participant nodes with cryptographic keys that will be required
for sending bundles. DTN are normally sparse, and there are few opportunistic
contacts, so forwarding of other’s bundles can be left out. Moreover, it is diffi-
cult to determine the responsible nodes in case of bundle loss. The mechanism
proposed in this paper contributes to both problems at the same time. On one
hand, cryptographic receipts are generated using time-limited Identity Based
Cryptography (IBC) keys to keep track of bundle transmissions. On the other
hand, these receipts are used to reward altruistic behaviour by providing newer
IBC keys. Finally, these nodes need these IBC keys to send their own bundles.
When all nodes behave in a cooperative way, this incentive scheme works as a
virtuous circle and achieves a Nash equilibrium, improving very much the net-
work performance in terms of latency. The scheme is not difficult to implement,
and it can use an already existing IBC infrastructure used for other purposes in
a DTN.

Keywords: Incentive Schemes, Delay Tolerant Networks, Nash Equilibrium,
Non-repudiation, Receipt exchange, Cooperation

1. Introduction

Delay Tolerant Networks (DTN) [1] are networks with low connectivity rates
and high and variable delays. They support two main networking operations:
1) to route own traffic, to transmit a message from its origin to any intermediate
node; and 2) to forward other’s traffic, to receive a message, store and carry

∗Corresponding author
Email addresses: adria.sanchez@deic.uab.cat (Adrián Sánchez-Carmona),

Sergi.Robles@uab.cat (Sergi Robles), Carlos.Borrego@uab.cat (Carlos Borrego)

November 4, 2015

0001292
Cuadro de texto
This is the author's versión of a work that was accepted for publication in Computer networks (Ed. Elsevier). Chan- ges resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work sin- ce it was submitted for publication. A definitive version was subsequently published in Sánchez Carmona, A. et al. “Endeavouring to be in the good books : awarding DTN network use for acknowledging the reception of bundless” in Computer networks, vol. 83 (June 2015), p. 149-166.
The final versión is avalable at DOI 10.1016/j. commet.2015.03.007

[2] it for some time to transmit it when it is possible to its destination or to
another intermediate node.

In these networks, all nodes are usually interested in routing and use their
resources for their own benefit. On the other hand, all nodes demand that others
forward their messages, but no one has a special interest in forwarding because
it consumes energy and fills buffer space without any direct benefit. Therefore,
it is necessary a mechanism to keep track of their behaviour: to know if they
are forwarding, if they are refusing to forward or if they are losing or dropping
messages. This knowledge about the performed actions of nodes must be used
to encourage them to be cooperative and behave for the benefit of the network.

To solve this situation, we created an incentive scheme where nodes are
required to forward if they want to route. The incentive scheme is based on
a receipt exchange protocol. The receipt exchange protocol makes use of the
principles of non-repudiation protocols to provides a way to discover which nodes
are suspect of non-cooperative behaviour. The exchanged receipts are used by
an incentive scheme that requires nodes to forward if they want to route, and
punishes non-cooperative behaviours.

In the presented scheme, nodes need cryptographic keys, not only to forward
messages and perform the receipt exchange protocol but also to route their
own messages, because running out of keys means becoming isolated. When
the incentive scheme detects suspicious nodes, it punishes them by delivering
them lesser amounts of keys or even forcing these nodes to wait a while without
keys. Therefore, Identity Based Cryptography (IBC) [3] keys act as an enforcing
mechanism, because nodes are forced to forward messages to obtain keys, and
they want the keys to route their messages.

Our main contributions can be summarized as follows.

• A receipt exchange protocol designed to overcome the limitations that the
non-repudiations protocols present when applied in DTNs. The crypto-
graphic receipts are generated by the incentive scheme using IBC keys
that are used to track the actions of the nodes.

• An asynchronous incentive scheme for DTN that uses the policy “guilty
until proven innocent” to punish and reward the cooperative nodes. This
scheme uses the receipts generated by the receipt exchange protocol and
rewards nodes by delivering IBC keys to the nodes.

In this article, we proof that, on the presented incentive scheme, node be-
haviours form a Nash equilibrium when all participants behave in a fully coop-
erative way. Besides, the simulations show that, even if nodes have low demand
of keys and try to be as uncooperative as they can afford, our system improves
the performance of the network in terms of latency.

The remainder of this paper is organized as follows: Section 2 presents the
related work, in the field of incentive schemas and in the field of non-repudiation
protocols and signature exchanges. Section 3 presents a receipt exchange pro-
tocol designed to overcome the limitations of non-repudiation protocols when
applied to DTNs. Section 4 explains the incentive schema, its asynchronous

2

operation and how we relate the amount of keys given to the nodes with their
balances. Section 5 analyses the choices to be made by the network’s partici-
pants and demonstrates that all nodes cooperating and being honest form a Nash
equilibrium. Section 6 details the performance evaluation. Section 7 details the
simulations and presents the obtained results. Finally, Section 8 concludes the
article and provides some future lines of research.

2. Related Work

In this section, we will present the state-of-the-art of incentive schemes. As
our proposal relies not just on the incentive scheme but also on the receipt
exchange protocol to build the chain of custody of every message, we will sum-
marize how other incentive schemes keep track of the actions performed by the
nodes to reward them. Finally, we will briefly summarize some non-repudiation
protocols, a field that we used to develop the receipt exchange protocol presented
in Section 3.

2.1. Incentive schemes

Incentive schemes have been an active research field; Mobile Ad Hoc Net-
works (MANET) [4] and DTN are usually the kinds of networks where this
research is focused.

There are proposals that are heavily related to the concrete application they
were designed to solve: dissemination of advertisements, special offers, discount
coupons, and so on over a MANET. In [5], a central authority approves and
marks each advertisement to track it, nodes that obtain the advertisements
deliver receipts to the relaying node, and relaying nodes use these receipts to
claim a reward for their work, but the central authority only rewards relaying
nodes when the advertisement is used by an end user. Coupons [6] is based
on the simple idea of adding the name of each relaying node to the transferred
coupon, when the coupon is finally used a central authority rewards all nodes
that had relayed it. SMART [7], is based on the same principles, but it is
adapted for general purpose messages in DTN.

The incentive schema called Pi [8] includes the policy of payment-rewarding
inside each message, giving to the relaying nodes the opportunity to choose, at
every message, if the reward will be enough to compensate the usage of resources.
As in almost all schemes, a central authority does the credit clearance after the
message arrives at its final destination.

Other proposals, such as Nuglets [9], are based on the idea of a counter
of virtual currency that every node maintains and updates when they send
messages, subtracting the cost of sending a message or relaying other’s messages,
adding a payment for relaying. Obviously, nodes are motivated to cheat and
alter the content of the virtual currency counter, therefore these proposals are
supported by a trusted and tamper resistant hardware module that provides
security to the incentive schema.

3

In [10, 11] the performance of the network is improved by forcing nodes to
exchange messages one by one in a Barter manner, this way nodes are incen-
tivized to accept and carry messages they are not interested in but they could
exchange later by more interesting ones. In this proposal, nodes are restricted
to exchange sets of messages of the same size, and no measures are taken against
cheating, so in each transaction one party can deliver one message less than the
other without being punished. Selfish nodes could benefit from this weakness
to obtain all messages they are interested in without forwarding any other one,
performing transactions where they receive one message and do not deliver one.

Several works present incentive schemes that, from a game theory perspective
[12, 13, 14], grant that nodes should behave honestly and provide services to
others because it is in its own interest. These kind of schemes, like Sprite [15], a
scheme designed for Ad Hoc Networks, base their operation on the rationality of
nodes. In Sprite, relaying nodes obtain a receipt of a message together with the
message, and deliver the receipt to a central authority. The central authority
re-builds the chain of custody of a message to charge the sender and reward the
relay nodes when the message arrives at its final destination.

RAPID [16, 17] is a DTN’s incentive schema strongly related to a routing
algorithm. This proposal, and many others, such as [18, 19, 20, 21] are based
on the Tit-for-tat principles: nodes reciprocate good or bad behaviour on part
of the peer, they low service to a neighbour when they detect that a neighbour
is misbehaving.

This research topic has been studied even from an economic point of view. In
[22], the fear of an audit that proves that a node has been misbehaving becomes
the only incentive for nodes to behave honestly. A similar approach is used in
iTrust [23], where the audit is substituted by a probabilistic inspection that
reduces a 90% the effort that the Trusted Authority has to do. Other works
[24, 25] are focused on the global aspects of the network’s economy like taxes,
inflation, deflation, “feast and famine” cycles, effects of isolation, etc. . . and
usually do not care about how to track the actions performed by each node.

There are proposals that do not try to incentivize selfish nodes to act in an
unselfish way, but try to mitigate the impact of such behaviours in the network.
For example, in [26], authors try to mitigate routing misbehaviors in DTN using
random nodes of the network as witnesses of each transaction to detect nodes
that do not relay messages. Then, the results of these observations are used to
re-send messages across another path, or to decrease the reputation of selfish
nodes.

2.2. Tracking the actions of the nodes

All incentive schemas need to track the actions done by the nodes of the
network. It is needed to distribute rewards to nodes with fairness. The most
used mechanism is called layered coin.

The layered coin consists of two or more layers, the first, which is also named
the base layer, is generated by the source of the message and is sometimes used to
indicate payment policies, the class-of-service requirements, or other remunera-

4

tion conditions. During the subsequent message relaying process, each interme-
diate node will generate a new layer based on the previous layers by appending a
non-forgeable digital signature. This new layer is also called the endorsed layer,
which implies that the forwarding node agrees to provide forwarding service.

Using endorsed layers, it is easy to track the propagation path and determine
each intermediate node by checking the signature of each endorsed layer, but the
layered coin is only complete when a message arrives at its final destination, and
intermediate nodes do not have any proof of their cooperation by forwarding a
message. The usage of the layered coin always leads to a synchronous schema
where relaying nodes are all rewarded at the same time, after the message has
arrived at its final destination.

Another mechanism to track the actions of the nodes is the watchdog. In
[27], each node monitors the next node in the path of a message to check if the
message is relayed or not. This solution is related to the characteristics of Ad
Hoc Networks and is not applicable in Delay Tolerant Networks.

2.3. Non-repudiation protocols

Our approach is to provide the nodes with a mechanism to obtain a receipt
in exchange for its cooperation. The receipt must be changed with the message
in a fair way to avoid cheating. A situation where a node obtains a receipt
but does not relay the message is as undesirable as a situation where a node
relays the message but does not obtain the receipt. This leads us to consider
non-repudiation protocols [28].

Non-repudiation protocols provide ways to exchange messages with receipts
in a fair way. The majority of the proposals are based on a Trusted Third Party
(TTP) that acts as a moderator or intermediary of each transaction, to ensure
the protocol is performed correctly by all participants (online TTP) or to repair
damages when one participant cheats to obtain an advantage over the other
(offline TTP). Proposals that use a TTP, either online or offline, are not viable
due to lack of end-to-end connectivity in DTNs.

Non-repudiation protocols without TTP are based on the idea of splitting
the message into n parts and send the parts one by one, receiving an acknowl-
edgement for each one [29]. A variation of this idea can be found in [30], where
the message is cyphered and sent at the beginning of the transmission and the
key needed to decrypt it is sent by parts. These kinds of protocols are called
probabilistic because the receiver can, with a probability of 1/n, guess what
part is the last one and there is no need to send the last acknowledgement in
order to obtain the whole message. These probabilistic protocols are not viable
due to the extremely variable (and usually unpredictable) size of connectivity
windows in DTNs.

Unfortunately, to our knowledge, there are not non-repudiation protocols
that could be used in Delay Tolerant Networks.

5

3. Receipt exchange

The core of this proposal is divided into two different and complementary
parts, a receipt exchange protocol presented in this section, and an incentive
scheme presented and discussed in Sections 4 and 5.

In this section, we explain the two fundamental inputs we have considered
during the design of the receipt exchange protocol. Then, we present the no-
tation used during this section, and we provide an extensive description of all
the algorithms and steps involved. After this, we explain the evidences created
during the execution of the protocol, and we discuss some security aspects of
the usage of IBC.

3.1. Receipt exchange protocol’s design

The receipt exchange system we propose is based on combining the Fair
Exchange Signature Scheme (FESS) [31] with IBC, a cryptographic scheme
where the identity of nodes is used to build their public keys. On one hand,
we chose this signature scheme because it needs to exchange a low number
of messages; it does not requires the involvement of a third party during the
transaction; and because when the algorithm finishes, the two signatures arouse
and become effective simultaneously. On the other hand, we chose IBC because
this cryptographic scheme avoids key management issues in DTN scenarios [32].

However, we have not only combined FESS with IBC. Firstly, and most im-
portant, we have transformed a protocol where two nodes sign a document they
know beforehand into a protocol where two nodes forward a message and gen-
erate evidences about the transaction done. We have achieved this by changing
the goal of the protocol and using the last step of the protocol to send the mes-
sage, instead of a random keystone. Besides, we have introduced the concept
of a voucher as a description of a transaction; and we have modified the struc-
ture of the FESS receipts, adding the needed fields to make it store unequivocal
information about the transaction they are related. We have made sure that
nodes can not reuse past receipts or parts of them on future transactions of
the same message. Note that this is something not considered in FESS, where
reusing parts of a past receipt to sign the same document again is not a prob-
lem. Finally, we have benefited from hash functions properties to optimize the
protocol and reduce the amount of space needed by nodes to store the receipts.

3.2. Definitions

Firstly, we present the notation of the elements and the definitions of the
concepts used in the receipt exchange protocol. Table 1 contains the notation
used to refer to each element and a brief description of its meaning.

A voucher v = 〈sender, receiver, whosigns, type〉 of a transaction contains
four fields: sender is the identity of the sender; receiver is the identity of the
receiver; whosigns indicates who is the issuer of the voucher; and type is a
flag used to indicate the type of the transaction (origin, relay or delivery).
From now on, we use transaction to refer indistinctly to the next three cases:
a message m sent by its origin to any non-final destination node (type: origin);

6

Notation Description

ski Private key of user i
pki Public key of user i
SKi Private IBC key of user i
PKi Public IBC key of user i
m Message
v Voucher of a transaction
σ Receipt of a transaction

H(m) Hash function applied on message m
IDm Unique identifier of message m
Ek(m) Cypher of m using key k
Dk(m) Decrypt of m using key k
Sk(m) Signature of m using key k
Vk(m, s) Verification of signature s associated

to message m with key k

Table 1: Elements used in our receipt exchange protocol.

a message m sent from a node that is not its origin to a node that is not the
destination (type: relay); and a message m delivered to its final destination from
any node (type: delivery).

It is important to differentiate between a voucher and a receipt. A voucher
is the description of a transaction between two nodes while a receipt contains a
voucher and a signature that binds it to the issuer and to the message.

3.3. Algorithms

The receipt exchange protocol that we present in this paper uses of the
following algorithms: Algorithm 1, that generates the public key of each par-
ticipant; Algorithm 2, that generates the exchanged receipts; Algorithm 3, that
validates the exchanged receipts; and Algorithm 4, that validates a receipt when
executed a posteriori by a third node.

Algorithm 1 SystemSetup

Input: ∅
Output: ∅

1: Choose p and q, big prime numbers so that q | p− 1.
2: Choose g with order q so that g ∈ Z∗p.
3: for i in 〈All participants〉 do
4: Generate the pair of keys (ski, pki) so that pki = g−ski mod p, where ski

is the private key and pki is the public key.
5: end for

7

Algorithm 2 FSign

Input: v: Voucher of the transaction.
pkA: Issuer’s public key.
skA: Issuer’s private key.
SKA: Issuer’s private IBC key.
PKB : Receiver’s public IBC key.
k: H(H(m || IDm)).

Output: σ = 〈a, v, k, s〉: Receipt of the transaction.
1: Choose w so that w ∈ Z∗p.
2: Calculate a = 〈EPKB

(pkA), SSKA
(H(pkA))〉.

3: Calculate r = gw mod p.
4: Calculate e = H(a, v, k, r) where H is a one way hash function.
5: Calculate c = w + skAe mod q.
6: return σ = 〈a, v, k, s〉 where s = 〈r, e, c〉.

Algorithm 3 SVerify

Input: σ = 〈a, v, k, s〉: Received receipt, where s = 〈r, e, c〉
and a = 〈EPKB

(pkA), SSKA
(H(pkA))〉.

SKB : Receiver’s private IBC key.
Output: true or false

1: Decrypt pkA = DSKB
(EPKB

(pkA)).
2: Calculate rs = gcpkeA mod p.
3: if e == H(a, v, k, rs) AND VPKA

(H(pkA), SSKA
(H(pkA))) then

4: return true
5: else
6: return false
7: end if

Algorithm 4 KVerify

Input: σ = 〈a, v, k, s〉: Received receipt.
〈m || IDm〉: the message and its identifier.

Output: true or false
1: if SV erify(σ) == true AND k == H(H(m || IDm)) then
2: return true
3: else
4: return false
5: end if

3.4. Steps of the exchange

Let A be a node that wants to send a message m to node B and wants to
generate and exchange the receipts related to this transaction. Figure 1 shows
the schema of the protocol, which we explain in detail in the next paragraphs:

8

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 1

Node A Node B

Figure 1: Schema of the receipts exchange protocol. Node A, that initiates the
transaction sends the receipt σA to B. B receives it, checks if it is correct and sends
the receipt σB to A. When A receives it and checks its correctness, sends the message,
that provides validity to the two receipts.

Step 1. At the deployment phase, before the firsts messages are sent, values
p, q and g must be generated by the Public Key Generator (PKG) of the network
and delivered to all system nodes. Every node needs, also, its pair of keys
〈ski, pki〉, as can be seen in Algorithm 1.

Step 2. Every time node A starts a transmission of message m to node B,
the sender begins creating a voucher vA = 〈PKA, PKB , A, type〉. Note that IBC
public keys PKi are used to identify nodes. Then, the sender uses Algorithm 2
to generate the receipt σA = 〈aA, vA, k, sA〉 and sends it to B.

Step 3. Node B receives σA from A. B checks that the voucher vA is correct
and verifies σA using Algorithm 3. If the voucher is valid and the algorithm
returns true, B can proceed to Step 4; otherwise, the transmission is aborted.

Step 4. Node B accepts the receipt σA issued by A. If B accepts the trans-
action, then it creates a voucher vB = 〈PKA, PKB , B, type〉, uses Algorithm 2
to generate the receipt σB = 〈aB , vB , k, sB〉 and sends it to A.

Step 5. When A receives σB , it verifies it using Algorithm 3. A also checks
the voucher vB . If the algorithm returns true and the voucher is correct, it can
proceed to Step 6; otherwise, the transmission is aborted.

9

Step 6. When both nodes have exchanged and verified the receipts, A sends
〈m, IDm〉 to B. This last transmission allows B to obtain the message and its
identifier 〈m || IDm〉. Node B verifies that H(H(m || IDm)) = k to accept
and end the transaction. The keystone links together each participant with
the message itself and the receipt issued on the previous steps. The keystone
also provides both nodes unequivocal evidence that they have been in contact
because of the transfer of m.

3.5. Created evidences

From the moment the exchange has been completed, B has the receipt σA
and H(m || IDm), that acts as the keystone. σA and H(m || IDm) together form
a piece of origin non-repudiation evidence that compromises A as the sender of
the message m, so B can prove it has received m from A revealing σA and
H(m || IDm) to a third party that executes Algorithm 4 and returns true. This
way the protocol provides non-repudiation of origin.

Moreover, A has the receipt σB and the keystone H(m || IDm). σB and
H(m || IDm) together form a piece of evidence that A and B have been in con-
tact due to the transfer ofm. Node A can prove it revealing σB andH(m || IDm)
to a third party that executes Algorithm 4 and returns true, but cannot prove
by itself that the transaction of m has ended correctly.

Notice that, when one of the nodes involved in a two-party transaction acts
dishonestly by not forwarding the message, neither of the two evidences are
sufficient to prove, unequivocally, which node is guilty and which node is inno-
cent. However, when we reconstruct the chain of custody of this message using
receipts from some other two-party transactions, we can identify the two nodes
that are suspicious of having lost the message. Then, our incentive scheme pun-
ishes both nodes, even when one of them is probably innocent. Later, when we
look at the big picture, by reconstructing the chains of custody of lots of mes-
sages, we can tell apart the innocent nodes from the guilty ones. The incentive
scheme is designed to, in the long run, identify and punish guilty nodes that do
not forward messages. We provide discussion about the asymmetric nature of
this receipt exchange in Section 4.

3.6. IBC keys obtention: security aspects

The presented proposal has to face all IBC inherent issues related with the
obtention of new keys, due to the usage of Identity Based Cryptography. They
are out of the scope of this article, so, for the sake of simplicity, we will briefly
describe the ones that are related with our incentive scheme and point the
suggested method to fight them.

Nodes not always may ask the PKG for new keys before their keys have
expired, if this has happened, they do not have a valid secret key that could
be used to demonstrate that they are whom they claim to be. To avoid an
impersonation attack where a node claims himself to be another, usually with
a higher score, when asking for keys at the PKG, the PKG and each node may
share a secret and update it, using the Diffie-Hellmann protocol, each time they
obtain new keys.

10

When a new node arrives to the network and wants to become part of it,
the node can ask the PKG for a new identity in order to become part of the
network. To avoid that a node with a low score could benefit from this and
reset it to a higher amount by changing their identity, new identities should be
created setting their score equal to the lowest of the network.

If a node loses the secret that proves their identity and their keys expire, it
will maintain their identity and do not lose their score only if the network can
provide an alternative mechanism that demonstrate the identity of the node;
otherwise, it will be treated as a new node.

4. Incentive Scheme

In this section, we explain how to convert the pieces of evidence generated
during the receipt exchange phase into proofs of behaviour that could be used
by the Incentive Manager. We also discuss the role played by the Incentive
Manager, how it rewards and punishes nodes due to their behaviour, delivering
a higher or lesser amount of keys, and the policies of the asynchronous incentive
scheme.

4.1. Definitions

In order to make the incentive scheme easier to understand, we define a proof
of behaviour as a set of receipts and keystones used to prove the behaviour of
a node towards one concrete message. We also define deliverable proof as any
proof that can be delivered to the manager of the incentive scheme.

Notation Description Definition

A
B−→ C

Proof of forwarding. Proves that B σA + σC +H(m || IDm)
has forwarded message m between (type(vA) = relay,
A and C. type(vC) = relay)

{A B−→ C

Proof of forwarding from the origin. σA + σC +H(m || IDm)
Proves that B has forwarded message (type(vA) = origin,
m between its origin A and C. type(vC) = relay)

A
B−→ C}

Proof of forwarding to the destination.
σA + σC +H(m || IDm)

Proves that B has forwarded message
(type(vA) = relay,

m between A and its final
type(vC) = delivery)

destination C.

A −→ B}
Proof of delivery. Proves that B,

σA +H(m || IDm)
the destination of a message m,

(type(vA) = delivery)
has received it from A.

Table 2: Notation of deliverable proofs. Proofs are formed by the pieces of evidence
created during the receipt exchange protocol when sending, forwarding, or delivering
a message. We use type(vA) to denote the value of the field type of the voucher vA
inside the receipt σA.

11

Table 2 contains the notation used to refer to each deliverable proof, a brief
description of its meaning and the items that compose it, using the notation
explained in the previous section.

4.2. Guilty until proven innocent

The receipt exchange protocol we propose is specifically designed to oper-
ate in DTNs, it does not need any third party during the transaction, and the
number of messages exchanged is minimal. This protocol allows us to obtain
non-repudiation proof of origin and reception when all steps are completed.
However, when the last message of the protocol is not sent by the sender, dis-
carded by the receiver, or lost during transmission, there is no way of knowing
exactly what happened with that transaction. Here, we face the classic Two
Generals’ Problem1: to be sure that the last acknowledgement has been sent
and received, another acknowledgement needs to be sent, but that new last
acknowledgement has the same issue, and so on.

To deal with this, our incentive scheme uses the policy “guilty until proven
innocent”, meaning that the two nodes involved with the loss of a message will
be marked as suspicious nodes and punished until it is demonstrated that they
behaved honestly. From the moment their innocence is proven, punishment is
removed, and they are rewarded for their behaviour.

4.3. System parameters

Conceptually, the incentive scheme is very simple. Nodes are rewarded or
punished with Cooperation Points (CP) depending on their actions. We define
Level of Cooperation (LC) as the amount of CP that a node has obtained with its
behaviour and from now on we will use this terminus or its acronym indistinctly.
The amount of CP that it is added to or subtracted from the LC of the nodes
is defined by the next three parameters: α, β and ε, which have the following
meaning:

• α: The punishment applied to nodes that are suspicious of not forwarding
a message, α must satisfy2 α > 0.

• β: The reward given to nodes when it is proven that they have forwarded
a message. The value of β must satisfy β > 0.

• ε: The reward given to a node for each proof delivered to the manager.
The value of ε must satisfy ε > 13

20α+ 4
5β.

1Suppose there is a valley surrounded by two hills. General A1 is on one. General A2

is on the second hill. The enemy, B, is in the valley. If either A1’s or A2’s army attacks
B independently they would lose, but together they would win. The problem for A1 is to
communicate a coordinated attack time to A2 and be sure that A2 received the message. A2

also needs to know the acknowledgment got through to avoid attacking alone and lose the
battle.

2Restrictions for the values of α, β and ε have been chosen in order to satisfy the Nash
equilibrium. See Section 5 for more details.

12

It is important to note that, when it is proved that a node had forwarded a
message, it is not considered suspicious anymore, so it is rewarded with α + β
CP (remove the punishment and add the reward).

Sender Forwarder Forwarder DestinationForwarder

Figure 2: Illustration of the reward and punishment scheme. The arrows depict the
relays of the message. The first node, the sender of the message, is not rewarded nor
punished. The second node is rewarded with +β CP because it is a confirmed relay.
The third and the fourth nodes are the two last nodes of the chain of custody, so they
are suspected of having lost the message; therefore, they are punished with −α CP.

Figure 2 illustrates the basic idea of the incentive scheme, and how the
suspicious nodes are punished while other nodes are rewarded if it is proven
that they have forwarded a message.

4.4. Reward and punishment

The chain of custody of every message is indexed by its message identifier
IDm, and it is updated automatically using the proofs of forwarding or the
proofs of delivery by applying the following rules:

• Punish with −α CP those nodes that have become suspected of not com-
plying as a result of the last update. Suspicious nodes are the last nodes
and the second-to-last nodes of each chain of custody.

• Reward with +α CP those nodes that were suspicious before the update
but not after it.

• Reward with +β CP those nodes that have become a confirmed relay with
the last update. A confirmed relay is a node that is, at least, the third
last node of a chain of custody, or any node in the chain of custody of a
message that has been delivered. There are two exceptions that do not
obtain this reward:

– The sender, the node that has created the message.

– Any node that has appeared at least once before in the chain of
custody. This way we avoid that nodes can obtain high amounts
of CP by colluding with other nodes to forward a message between
them an arbitrary amount of times.

• Finally, reward the node that has delivered the proof with +ε CP if the
chain of custody has changed thanks to it.

Note that uncooperative nodes that do not accept messages to forward them,
do not obtain CP, and that nodes that drop messages are punished with −β for
every lost message. This punishment is proportional to the damage done to the

13

overall performance of the network by each one of these two behaviours. Figure
3 shows an example of updating a chain of custody and rewarding nodes when
a new proof is used. We provide lots of examples in Section 5.

A C D

State of the fragments before delivering the proof:

After delivering the proof :

EB

A C D EB

Figure 3: Example of updating a chain of custody. On the upper chain of custody,
nodes B and C are suspected of having lost the message, so they are punished with

−α CP. Then, node D delivers C
D−→ E, D gains the reward +ε CP for delivering a

valuable proof, and B and C are now confirmed relays (they are previous steps of the
confirmed relay D). Therefore, B and C are rewarded with +α + β CP to remove
the punishment and reward their behaviour. Note that a proof delivered by D that
involves C and E has affected too the Level of Cooperation of node B.

4.5. Incentive Manager and the Enforcing Mechanism

IBC-based DTNs are based on the assumption that nodes will, eventually,
connect with the Private Key Generator to obtain a set of private IBC keys.
Besides, as seen in [33], some DTN routing protocols base their operation on
some infrastructure assistance, either via mobile data mules or through the
deployment of stationary nodes.

Our proposal benefits from this assumption and uses an offline third-party
called Incentive Manager (IM), which must be located on the same node that
acts as the PKG3. The IM receives the proofs of all transactions, tracks the
chain of custody of every message and rewards or punishes nodes due to their
behaviour. This way, nodes use the trip to upload proofs and to obtain new
IBC keys.

IBC systems usually use keys with a small duration. Depending on the needs
of the nodes, the PKG may deliver them sets of a high number of their next
keys instead of delivering them only the next one. This way nodes do not need
to contact the PKG during a while and can continue routing their messages
without running out of keys. Therefore, nodes prefer to obtain more keys when
they contact the PKG because this way they obtain more independence and
they can operate for more time without asking the PKG again for more keys.

3In networks where an alternative communication channel exists, two or more Incentive
Managers and/or PKGs can coexist, using this channel to connect between them in order to
share the state of the chain of custody of all messages.

14

Figure 4

As an enforcing mechanism for our incentive system, we relate the amount
of IBC keys given to a node to its Level of Cooperation, as briefly depicted in
Figure 4. We calculate K, defined as the number of keys of a fixed duration
given by the IM to a node in the basis of the LC of the demanding node related
to the LC of all other nodes.

We define maxLC as the higher LC of the network and minLC as the lower
LC of the network. Then, we normalize the Level of Cooperation of the de-
manding node inside the interval [minLC ,maxLC] and map that value to its
corresponding value inside the interval [minK ,maxK], defined by the minimum
and maximum possible values of K. This way nodes will not be excluded of the
network because they will obtain, at least, minK and the possibility of increase
their LC using these keys. This procedure is formalized in Equation 1.

K = minK +
LC −minLC

maxLC −minLC
(maxK −minK) (1)

Note that every node will approximately have the same opportunities to
forward messages as their neighbours. A node that does not forward because it
has no chance will not obtain any CP, but their neighbours neither, so it will
not be punished when keys are delivered based on their relative LC. But a node
that decides not to forward messages will remain with the same LC, but will
obtain a lesser amount of keys on the basis of their relative LC because their
neighbours will probably be forwarding messages and obtaining CP.

Besides, we use an exponential decay function to gradually decrease Nodes’
Levels of Cooperation over time. This way we avoid selfish bursts, defined
as the behaviour of a node accumulating CP and then using it to behave in
a very uncooperative way without being punished. Decreasing the LC of all
nodes periodically, we allow nodes with a very small (or negative) LC to quickly
recover from their past uncooperative behaviour if they start being cooperative,
because past actions will weigh less than present actions. With that purpose,
we update the LC of every node every t seconds using Equation 2, using the
previous value LC−1 of their Level of cooperation to calculate the new value
LCt, where T is the time constant.

15

LCt = e−t/TLC−1 (2)

Finally, our system includes a mechanism designed to ward off nodes that
conform with receiving K ' minK . When the IM calculates K and it is lesser
than a threshold thrK , then the IM gives no key to the demanding node and
waits an amount of time defined by toutK . When the node demands keys again
after toutK seconds, the IM gives him thrK keys.

4.6. Asynchronous incentive scheme

To the best of our knowledge, this is the only proposal where the incentive
manager works asynchronously and does not need to build the whole chain of
custody before rewarding nodes. Every time a node delivers a proof to the
IM, it updates the state of the chain of custody, and it distributes rewards and
punishments as if the new state will be the last.

This signifies that, despite heavy punishment is applied to a node when other
nodes deliver proofs - because it has become suspicious for not forwarding lots
of messages - it does not matter. This is so because own node’s balance is re-
calculated when it contacts the IM and uploads its proofs, and all punishment
will be removed if it proves that it has forwarded all the messages.

5. Nash Equilibrium

In this section, we start by making some assumptions about the rationality
of the network’s participants their knowledge about other’s behaviours. After-
wards, we discuss the different strategies than can be played by nodes. Finally,
we demonstrate that all nodes behaving honestly, forwarding messages, and
delivering proofs of forwarding and proofs of delivery, form a unique Nash Equi-
librium.

5.1. Previous assumptions

We start assuming that nodes cannot make guesses about other’s Levels of
Cooperation. Besides, we assume all participants of the network to be rational
[34]. As rational nodes never behave in a way that could turn against their
interests, they always want to maximize its utility function. During this section,
we define the utility function of nodes as their Level of Cooperation4.

Moreover, when a node delivers a proof to the IM, it is rewarded or punished
depending on the previous state of the chain of custody. The chain of custody
tracked by the IM is updated every time a node delivers a proof. Therefore, it
depends on the proofs previously delivered by other nodes. This means that a
node can not know a priori the state of the chain of custody. During all the

4In Section 7 we consider a slightly different utility function where nodes try not to maxi-
mize Level of Cooperation, but to obtain at least a set number of keys each time they contact
the PKG.

16

current section, we will assume that nodes cannot make any guesses about the
state of the chain of custody. As a result, we will consider all possible states as
equally likely.

Summarizing, nodes are interested in obtaining a higher Level of Cooperation
and act according to their interest, and no guesses can be made about the state
of the chains of custody.

5.2. Simplified notation

In all tables of this section we used a simplified notation X. . .Y Z to sum-
marize a chain of custody in which X is the first known custodian node, and
Y and Z are the second-to-last and the last nodes. We use ’. . . ’ to represent
a chain of custody where no node matches the nodes involved in the received
proof.

5.3. Game Theory Analysis

In order to analyse the game generated by the presented incentive scheme,
we have split the whole game into a set of subgames. Every subgame takes into
consideration one of the decisions that a participant of the network has to take:
to participate on the network; to accept other’s messages to forward them; to
cheat or be honest when exchanging receipts; to deliver proofs of forwarding to
the IM; and to deliver proofs of delivery to the IM. Therefore, a strategy profile
of one player for the whole game contains his strategy profile for every subgame.

Definition 1. The game generated by the presented incentive scheme is

G =< N, {si}, {πi}, {pi} > .

• N = {N0, N1, . . . , Nn} is the set of the nodes of the network.

• si = {si0, si1, si2, si3, si4} is the strategy set of the player Ni, where every
sij corresponds to the strategy player i has chosen for subgame j, every
strategy set contains two actions, one cooperative and one selfish, that will
be explained in next subsections.

• πi is the payoff of the ith player Ni, and it is measured in CP.

• pi = {pi0, pi1, . . . , pi4} is a mixed strategy for player i, where pij = {picj , 1−
picj} is a mixed strategy for player i for subgame j, and picj denotes the
probability of player i of acting cooperatively in subgame j.

5.3.1. Subgame 0. The dilemma of participating

A node that chooses to not participate (NP) never accepts messages not
addressed to him. Therefore, it will never obtain CP for forwarding or for
delivering proofs of forwarding because it does not generate any. A node that
behaves this way will not increase its Level of Cooperation, so, its benefit will
be 0 CP. On the other hand, a node that decides to participate (P) will obtain a
payoff πi(P) that depends on the outcomes of subgames 1 to 4. Table 3 provides
the payoff matrix for this subgame.

17

Any other node j

P(qjc0) NP(1− qjc0)

node i
P(pic0) πi(P), πj(P) πi(P), 0

NP(1-pic0) 0, πj(P) 0, 0

Table 3: The payoff matrix of subgame 0.

Theorem 1. All nodes choosing to participate (P) with probability pic0 = 1 form
a unique Nash equilibrium for subgame 0 if and only if they behave in a way
that allow them to obtain more than 0 CP.

Proof. Node i obtains πi(P) · qjc0 + πi(P) · (1 − qjc0) = πi(P) when chooses to

participate (P), and 0 · qjc0 + 0 · (1 − qjc0) = 0 when chooses not to participate
(NP).

πi(P) > πi(NP);

πi(P) > 0

Therefore, if πi(P) > 0, then i will always obtain a higher payoff by playing
P. As subgame 0 is symmetric, the same applies to any other node.

Throughout the current section, we will demonstrate that there are profiles
that grant nodes πi > 0 CP no matter what other nodes do.

5.3.2. Subgame 1. The dilemma of forwarding

A node that accepts a message to forward but does not forward (NF) it
will be punished with −α CP when any proof of forwarding that marks i as a
suspicious node is delivered to the IM. On the other hand, a node that decides
to forward (F) a message will be eventually rewarded with +β if the next node
forwards the message too. But it will be punished with −α if the next node
decides to not forward the message because it will be considered by the IM as
a suspicious node.

other node j, playing second

F(qjc1) NF(1− qjc1)
node i F(pic1) β, play again as first player −α, −α

plays first NF(1-pic1) −α, 0 −α, 0

Table 4: The payoff matrix of subgame 1.

This subgame is sequential and asymmetric because the decision of the sec-
ond node does not matter unless the first one chooses to forward (F) the message.
Then, if the second node plays NF, both nodes are punished with −α. But if it
plays F, his payoff is determined by playing the same subgame once again, with

18

the second node playing first and a third node (the next hop) playing second.
Table 4 provides the payoff matrix for this subgame.

Theorem 2. All nodes choosing to forward messages (F) with pic1 = 1 form a
unique Nash equilibrium for subgame 1.

Proof. Node i obtains β · qjc1 − α · (1 − q
j
c1) when chooses to forward (F), and

−α · qjc1 − α · (1 − q
j
c1) = −α when chooses NF. Therefore, his payoff is higher

when it plays F than when it plays NF because both α, β and qjc1 are defined
to be positive.

πi(F) > πi(NF);

β · qjc1 − α · (1− q
j
c1) > −α;

qjc1 · (β + α) > 0

Therefore, for the first player, playing F is a dominant strategy.
By backward induction, the second player will play F, because it is the only

way to obtain a positive payoff, because playing NF will grant him pic1 · −α +
0 · (1− pic1) = −α · pic1, which is negative in any case.

5.3.3. Subgame 2. The dilemma of cheating

When forwarding a message, an honest node (H) finishes the receipt ex-
change protocol by sending the message. On the other hand, a node can try
to cheat (NH) by starting the exchange receipt protocol to obtain a proof of
forwarding but does not sending the last message. This way the transaction
remains unfinished because the receiver has not received the message. A node
that behaves this way could deliver the gathered proofs to obtain ε CP for each
one. An honest (H) node could deliver the gathered proofs to obtain not only
ε CP, but also α CP for no longer being suspicious and β CP for becoming a
confirmed relay. This subgame is a one-player game because only the part that
starts the transmission con cheat the other part.

Last New A’s B’s C’s Y ’s ρ φ
state state reward reward reward reward

. . . A...BC +β +ε− α −α 1/3 1/5
C...XY A...XY +β +ε+ β 0 1/5
X...Y A X...BC +α+ β +ε− α −α +α 1/3 1/5
B...XY A...XY +β +ε 0 1/5
X...AB X...BC +β + α +ε −α 1/3 1/5

Table 5: Possible situations when delivering A
B−→ C. A cheater node B would not

obtain the reward +β CP for forwarding the message, and will always be punished
with −α CP for being suspected of having lost the message.

Table 5 shows all possible states of the chain of custody, how it is updated,
and the reward or punishment given by the IM to each participant when node B

19

delivers a proof of forwarding A
B−→ C. Last two columns correspond to ρ, the

probability of the situation if B is a node that plays NH, and φ, the probability
of the situation if B is a node that plays H. Notice that there are situations
with ρ = 0, these are situations that can only exist if B forwards messages in
an honest way (H). Taking this into account, Table 6 provides the payoff matrix
for this subgame.

other node receiving the message

node i
H(pic2) (ε+ 1

5β −
2
5α), −α

NH(1-pic2) (ε− 2
3α), play as first player

Table 6: The payoff matrix of subgame 1.

Theorem 3. Any node that is honest (H) with pic2 = 1 form a unique Nash
equilibrium for subgame 2.

Proof. Node i obtains ε+ 1
5β −

2
5α when chooses to be honest (H), and ε− 2

3α
when chooses NH. Therefore, his payoff is higher when it plays H than when it
plays NH because both α and β are defined to be positive.

πi(H) > πi(NH);

ε+
1

5
β − 2

5
α > ε− 2

3
α;

β > −4

3
α

Therefore, playing H is a dominant strategy.

5.3.4. Subgame 3. The dilemma of delivering proofs of forwarding

A node can choose to deliver proofs of forwarding (PF) in order to be re-
warded by the IM. Besides, a node can choose to not deliver them (NPF) and
wait until the next node delivers a proof of forwarding that provides him a
reward.

This way, a node that plays NPF avoids punishment −α CP and will even-
tually be rewarded with β CP for forwarding the message, but it never obtains
+ε CP for delivering proofs. On the other hand, a node that plays PF will
be considered suspicious and be punished with −α CP sometimes, but it will
obtain +ε CP every time that delivers a proof.

Table 7 has the same structure as Table 5. The last columns correspond to
µ, the probability of the situation if A is a node that never delivers proofs of
forwarding and λ, the probability of the situation if B is an honest node that
always delivers the proofs. Notice that there is only one situation with µ = 0,
this is a situation that can only exist if A has delivered a proof previously.
Taking this into account, Table 8 provides the payoff matrix for this subgame.

20

Last New A’s B’s C’s Y ’s µ λ
state state gain gain gain gain

. . . A...BC +β +ε− α −α 1/4 1/5
C...XY A...XY +β +ε+ β 1/4 1/5
X...Y A X...BC +α+ β +ε− α −α +α 1/4 1/5
B...XY A...XY +β +ε 1/4 1/5
X...AB X...BC +β + α +ε −α 0 1/5

Table 7: Possible situations when node B delivers a proof of forwarding A
B−→ C to

the IM. Node B will obtain a higher gain than a node A that does not deliver any
proofs and trusts that others will deliver proofs that increase A’s Level of Cooperation.

next node j, playing second

PF(qjc3) NPF(1− qjc3)
node i PF(pic3) (ε+ β

5 −
2
5α),(ε+ β

5 −
2
5α) (ε+ β

5 −
2
5α), (β + α

4)

plays first NPF(1-pic3) (β + α
4), (ε+ β

5 −
2
5α) 0, (β + α

4)

Table 8: The payoff matrix of subgame 3.

Theorem 4. All nodes choosing to deliver proofs of forwarding (PF) to the IM
with pic3 = 1 form a unique Nash equilibrium for subgame 3 if ε > 4

5β + 13
20α.

Proof. The first player obtains (ε + β
5 −

2
5α) · qjc3 + (ε + β

5 −
2
5α) · (1 − qjc3) =

(ε + β
5 −

2
5α) when plays PF, and (β + α

4) · qjc3 when chooses NPF. Therefore,
his payoff is higher when it plays PF than when it plays NPF if and only if

πi(PF) > πi(NPF);

ε+
β

5
− 2

5
α > (β +

α

4
) · qjc3;

ε+ β
5 −

2
5α

β + α
4

> qjc3

Being 0 ≤ qjc3 ≤ 1, if the numerator (ε+ β
5 −

2
5α) is higher than the denominator

(β + α
4), then this equation holds.

ε+
β

5
− 2

5
α > β +

α

4
;

ε >
4

5
β +

13

20
α

This subgame is asymmetric, so, the second player obtains (ε + β
5 −

2
5α) ·

pjc3 + (ε+ β
5 −

2
5α) · (1− pjc3) = (ε+ β

5 −
2
5α) when plays PF, and (β+ α

4) · pic3 +
(β + α

4) · (1− pic3) = (β + α
4) when chooses NPF.

As we have demonstrated ε+ β
5 −

2
5α > β+ α

4 above, then we can state than
playing PF is a dominant strategy for both players.

21

Corollary 4.1. The incentive scheme also grants that an honest (H) node will
obtain a positive payoff while delivering a proof of forwarding (PF).

Proof. The payoff obtained by a node that plays H and PF is positive if the
next equation holds.

πi(H,PF) > 0;

ε+
1

5
β − 2

5
α > 0;

ε+
1

5
β >

2

5
α

Given that ε is defined to be higher than 13
20α, then ε > 2

5α also holds because
13
20α >

2
5α, so, this equation holds for any value of α and β even when β ≈ 0.

5.3.5. Subgame 4. The dilemma of delivering proofs of delivery

To obtain proofs of forwarding from the origin or proofs of delivery is im-
portant for the IM. When a chain of custody is completed, the IM can delete
it and free resources. To a node, there are no differences between forwarding a
message from its origin than forwarding it from any other node. The same way,
there are no differences between the reward obtained by delivering any proof of
forwarding. Therefore, decisions involving proofs of forwarding from the origin
are covered by subgames 1 and 3.

A node that has received a message can deliver (PD) the proof of delivery
in order to be rewarded by the IM. On the other hand, a node that has received
a message can chose not to deliver (NPD) this proof. This way it will never
recover from the punishment −α for being considered suspicious, and the same
happens to its previous node on the chain of custody. This subgame is a one-
player game because only the destination node has the proofs of delivery and
can choose to deliver them or not.

Last New A’s Previous B’s Y ’s ϕ
state state gain B’s reward gain gain

. . . A...AB} +β +ε 1/3
X...Y A X...AB} +α+ β +ε +α+ β 1/3
X...AB X...AB} +α+ β −α +ε+ α 1/3

Table 9: Possible situations when delivering A −→ B}. The message has arrived at
its destination and all implied nodes are rewarded.

Table 9 shows all possible situations that can occur when node B delivers a
proof of delivery A −→ B}. Let ϕ be the probability of every possible state of
the chain of custody at the moment of delivery. Taking this into account, Table
10 provides the payoff matrix for this subgame.

Theorem 5. Any node that delivers proofs of delivery (PD) with pic4 = 1 form
a unique Nash equilibrium for subgame 4.

22

previous node (i− 1) on the chain of custody

node i
PD(pic4) (ε+ 1

3α), (2
3α+ β)

NPD(1-pic4) (− 1
3α), −α

Table 10: The payoff matrix of subgame 4.

Proof. Node i obtains ε + 1
3α when plays PD, and − 1

3α when chooses NPD.
Therefore, his payoff is higher when it plays PD than when it plays NPD because
both α and ε are defined to be positive.

πi(PD) > πi(NPD);

ε+
1

3
α > −1

3
α

Therefore, playing PD is a dominant strategy.

Corollary 5.1. The incentive scheme also grants that a node that delivers a
proof of delivery (PD) will obtain a positive payoff, and that this will cause
another node which has forwarded (F) the message to obtain a positive payoff.

Proof. The payoff obtained by a node that plays PD is positive because both α
and ε are positive.

πi(PD) > 0;

ε+
1

3
α > 0

The payoff obtained by the previous node, which has played F, when node i
plays PD, is positive because both α and β are also positive.

πi−1(F) > 0;

2

3
α+ β > 0

5.4. Nash equilibrium

From a game theory perspective, every node of the network has to choose a
global strategy, which consists of picking a strategy for each of the subgames.

As we have proven in this section, for any node, choosing a strategy that
consists of accepting messages addressed to others (P), forwarding these mes-
sages (F), being honest during the receipt exchange protocol (H) and delivering
to the IM all kind of proofs (PF and PD) is a strictly dominant strategy. This
behaviour grants the node higher benefits than any other possible strategy, and
it does not matter what the other nodes of the network do.

Consequently, a profile of strategies where all nodes choose to behave this
way form a unique Nash equilibrium because it is impossible for any node to
increase its profits by deviating from this strategy.

23

6. Performance evaluation

In this section we present some details about the proof-of-concept we have
implemented. Then, we provide measurements of the computational overhead
introduced by the receipt exchange protocol. Finally, we study if the computa-
tional overhead introduced by this protocol is affordable for the network.

6.1. Overhead calculation

As a proof-of-concept and in order to obtain a measure of the overhead that
the receipt exchange protocol adds to every transaction, we have deployed an
implementation of the receipt exchange protocol on two Raspberry Pi devices5.
We have used this implementation to send 250 messages of sizes between 1MB
and 5MB and measured the performance of the protocol and the time needed
to compute and exchange the receipts.

Transmission time Transmission time
Absolute

Message without the receipt with the receipt
overhead

Relative
size exchange protocol exchange protocol overhead

Average σ Average σ Average σ

1MB 1.07s 0.14s 4.23s 0.26s 3.16s 0.19s 294%
2MB 2.11s 0.21s 5.40s 0.21s 3.29s 0.16s 155%
3MB 4.46s 0.26s 7.78s 0.38s 3.31s 0.36s 74%
4MB 7.24s 0.22s 10.62s 0.25s 3.37s 0.17s 46%
5MB 10.95s 0.57s 14.31s 0.61s 3.35s 0.26s 30%

Table 11: Average values and standard deviation (σ) of the time needed to complete
a transaction with and without the receipt exchange protocol. The absolute overhead
is almost constant.

The obtained results are shown in Table 11, where the introduced overhead
is shown, and Table 12, where the detail of the overhead introduced by each
operation is shown. This results have been incorporated to the simulations via
a parameter called overhead time.

6.2. Impact of the overhead

We have used simulations6 to measure the impact of the overhead caused
by the receipt exchange protocol. For this, we have compared a scenario where
the fully cooperative nodes does not need to use the protocol (modelled by an
overhead time of 0 seconds) with a scenario where the selfish behaviours of

5Raspberry Pi Broadcom BCM2835 SoC full HD, 700MHz Low Power ARM1176JZ-F,
512MB SDRAM, 4GB SD with Raspbian, equipped with a Wireless Edimax EW-7811Un
(802.11b/g/n up to 150Mbps), a GPS receiver NL-302U (baud rate: 4,800 bauds) and a dual
output 5,000mAh battery.

6In order to avoid redundancy, all details about the methodology, the parameters used, the
simulated scenario and the simulator will be found on Section 7.

24

Executions per
Time consumed Time consumed

Operation
transaction

per execution per transaction
Average σ Average σ

FSign 2 0.90 0.10s 1.81 0.21s
SVerify 2 0.71 0.07s 1.42 0.14s

Send receipt 2 0.03 0.002s 0.06 0.004s

Total 3.30 0.25s

Table 12: Detail of the different parts of the receipt exchange protocol and the time
consumed by each one. To sign the receipts is the most costly operation.

the nodes urges us to use the receipt exchange protocol to enable the incentive
system.

The experiments show that, as can be seen in Table 13, without the over-
head introduced by our protocol, the ratio of aborted transactions is 2.4%,
corresponding to the transactions of messages that can not be finished before
the involved nodes move out of reach one from another. When we take into
account the overhead introduced by the receipt exchange protocol, the ratio of
aborted transactions is 4.5 times higher, because there are more transactions
than can not be successfully finished before the end of an opportunistic contact.

Despite the abort rate, the overall performance of the network is not injured.
The design of the receipt exchange protocol, where the transmission of the
message is the last step of the protocol, causes that when an exchange finishes
abruptly the transaction is considered as not done, and the message is not
removed from the source. Even with this increased rate of aborted messages,
the impact on the network in terms of delivery ratio is negligible, and the impact
in terms of latency is, as will be seen in Section 7, very positive.

Scenario Overhead
Aborted ratio Delivery ratio

Latency
Average σ Average σ

Cooperative 0s 2.43% 0.65% 94.85% 0.03% ≈ 21, 600s

Selfish 3.3s 11.02% 0.57% 93.74% 0.05% N/A7

Table 13: Average values and standard deviation (σ) of the results. Although the
aborted ratio grows when using the receipt exchange protocol, delivery ratio remains
almost unaffected, and latency depends on other parameters.

7The latency of the network for the selfish case is heavily dependent on the behaviour of
the nodes and the parameters of the incentive system. For this reason, the results obtained
can not be condensed in a single latency value. See Section 7 for more details.

25

7. Simulations and results

In this section, we define how we expect rational nodes to behave when they
obtain keys depending on their Level of Cooperation. Afterwards, we present
a scenario where our proposal can be applied, and we explain and justify the
simulation parameters we have used. Finally, we show and explain the results
obtained through simulations.

7.1. Re-defining rational behaviour and the utility function

As we proved in the previous section, for all nodes in the network, to behave
in a fully cooperative way is a strictly dominant strategy. This apply if they
try to maximize their Level of Cooperation, thus, if the utility function of a
node is its LC. However, in practical scenarios, nodes would probably be more
interested in the benefit they obtain from their LC than in the LC itself.

In order to model this kind of behaviour, we have defined the concept of
selfishness and the selfish utility function, formalized in Algorithm 5. The self-
ishness of a node measures the percentage of times (selfishness ∈ [0, 100]) that
a node behaves in a non-cooperative way.

The selfish utility function operates with two variables: the received amount
of keys (rK), and an indicator of the desired amount of keys that the node
would like to receive when it contacts with the IM (dK ∈ [0, 1]). When a node
receives an amount of keys lower than the amount established by dK, the utility
it obtains is 0, and when it receives an amount of keys higher or equal than the
desired amount, the utility it obtains is its selfishness. This function models the
interest of a node that wants to be as selfish as possible, to save resources, but
also wants to keep its LC high enough to obtain a certain amount of keys.

Algorithm 5 Selfish utility function

Input: rK: Amount of received IBC keys.
dK: Desired amount of IBC keys.

Output: 0 or 1
1: if rK > minK + dK(maxK −minK) then
2: return selfishness
3: else
4: return 0
5: end if

We have also defined an algorithm that models the strategy used by nodes
to maximize their utility; it is shown in Algorithm 6. This algorithm updates
nodes’ selfishness with the goal of obtaining the maximum utility possible. The
update is performed every time they get new IBC keys from the IM. Essentially,
nodes quickly reduce their selfishness when receive fewer keys than the desired
amount, and they slowly increase their selfishness while the amount of obtained
keys satisfies them.

26

Algorithm 6 Node strategy

Input: rK: Amount of received IBC keys.
dK: Desired amount of IBC keys.

1: if K > minK + dK(maxK −minK) then
2: selfishness = max (100, selfishness +1);
3: else
4: selfishness = min (0, selfishness −2);
5: end if

7.2. Scenario

The scenario we have used in all the simulations is based on the scenario
presented by Borrego et al. in [35]. This scenario consists of a mobile robot
sensor network where messages use the time they are being carried by nodes
to execute some tasks. These tasks are called sensing jobs and are injected
into the network by the heterogeneous applications that coexist in the network.
The multi-purpose approach of the network allows applications to deploy their
own nodes. These nodes serve the sensing jobs of some applications without
restrictions, forwarding their messages, prioritizing their jobs, etc. These nodes
could cooperate with all other applications in order to improve the performance
of the whole network, but they have no incentive to do that.

We have chosen this scenario because it has particular characteristics that
fit well with our incentive schema: 1) nodes have to return periodically to a base
station to recharge their batteries or to deliver some data to the sink node, 2) it
is a multi-purpose sensor network that works with different kinds of applications,
and 3) nodes are as heterogeneous as the applications and can be deployed by
different operators with different goals, so the idea of rational nodes that do not
always act in a fully cooperative way makes sense.

According to this scenario, we have modelled the operation of the sensing
jobs that travel among the network of the original publication using messages.
A message that travels from one concrete node to another represents a job that
has been executed in a node and wants to travel to another one to continue its
work, or a new job recently injected into the network which travels to its first
destination. These messages are created with a frequency of one message every
40-80 seconds and their sizes are between 500KB and 3MB.

7.3. Simulation parameters

All simulations have been performed using The Opportunistic Network Sim-
ulator (The ONE) [36]. We have developed or customized a set of classes that
model the behaviour and the movement models of all participants.

We ran all simulations in a field of 1, 500 x 1, 500 meters with 100 nodes
implementing a custom random walk movement with random speeds between
0.5 m/s and 1.5 m/s that returns to the base station, located at (0, 0), when
their IBC keys expire. The Incentive Manager is placed at the base station,
without any movement model. Proofs are sent to the IM using direct delivery

27

routing. As in [35], the communication range has been adjusted to 15 meters
to all nodes.

Nodes may cooperate and forward messages, may not forward messages and
save their own resources, or may drop messages. Dropping messages is a way
to reduce the load of the network and assure that messages of their application
will be slightly better treated (because there would be more space in the buffers,
less congestion in nodes, etc.). Nodes decide how to behave with each message
depending on their selfishness and the application that owns the message. Nodes
model this behaviour using Algorithm 6 to update their selfishness. Then, when
a node is requested to receive a message, it uses its selfishness value to decide
probabilistically to behave selfishly or cooperatively. When acting selfishly,
nodes randomly choose either not accepting the message (50%) or dropping it
(50%). When a node decides to be cooperative with one message, it uses Spray-
and-Wait [37] to route it, using L = 3, where L is the maximum number of
message copies present in the network. The initial selfishness of each node is
randomly chosen at the beginning of the simulation.

Parameter Value

Punishment α 49 CP
Reward β 1 CP
Reward ε 30 CP
Duration of keys 5 minutes
minK 3
maxK 30
Interval of selfishness [0%, 100%]8

Simulation time 1, 000, 000 seconds
Update interval t 500 seconds
Overhead time 3.3 seconds
Desired amount of keys dK Defined for each simulation
Time constant T Defined for each simulation

Table 14: Parameters used in the simulations.

Table 14 shows the chosen values of all parameters needed to run the sim-
ulations. Note that the amount of desired IBC keys of the nodes, dK, and the
time constant T are not fixed, we have defined their values at every simulation
in order to study their impact on the system. For the sake of simplicity and
to avoid interferences with the simulations that make use of different values of
dK, we disabled the waiting time of the nodes when rK < minK .

In order to obtain conclusive results, every simulation has been run five times
with the same parameters but different random seeds, and all results have been

8The interval of selfishness, [Min selfishness, Max selfishness], has been fixed to [0%, 100%]
for each simulation except those necessary to obtain results for the best case ([0%, 0%]) and
for the worst case ([100%, 100%]).

28

Figure 5: A snapshot of a simulation. On the upper side, a node carries two mes-
sages and waits for an opportunity to forward them. On the left side, one node tries to
forward the only message it carries, but the other acts selfishly and rejects the trans-
mission. On the right side, two cooperative nodes just forwarded messages between
them, generating some proofs of forwarding.

calculated as the average of the five runs. In total, we have executed 150 runs.

7.4. Results. Study of the time constant

This set of tests has been designed to identify how risky and likely selfish
bursts are in relation to the time constant T and to study the impact of T re-
garding the fairness of the incentive schema. We ran simulations with different
T values between 5, 000 and 35, 000 seconds and we disabled the update be-
haviour of all nodes. This models a scenario where nodes ignore the incentives
and do not care about their Level of Cooperation. Nodes randomly chose their
selfishness at the beginning of the simulation and held it until the end.

To know if this incentive schema allows nodes to save high amounts of CP
and then behave selfishly without being punished, we have developed the metric
messages to loose (mtl), that is calculated using the following equation.

mtl =
maxbalance −minbalance

α
(3)

What mtl defines is the amount of messages that the node with the highest
Level of Cooperation of the system can lose before its LC becomes the lowest,
assuming all other nodes’ LC will stay frozen. We have studied this metric for
a set of different T values.

As can be seen in Figure 6, after the transient period, the number of messages
that can be lost becomes stable at a higher or smaller value with small peaks,
depending on the T used. There is an exception when T = ∞, which means
that there is no decay function applied, and nodes can infinitely save CP from
their past actions, increasing the risk of selfish bursts and the damage they can
do.

Note that highly increasing T lead to very small increases of mtl. Besides,
it is important to note that the average number of messages flowing through

29

10

25

50

100

250

500

0 200 400 600 800

N
u
m
be
r
of

m
es
sa
g
es

T ime (thousands ofseconds)

mtl

T (seconds)
∞

35,000
30,000
25,000
20,000
15,000
10,000
5,000

Figure 6: Number of messages that the node with the highest LC can lose before
becoming the node with the lowest balance, note the logarithmic scale. Higher values
of T imply higher values of mtl because the LC of the nodes decrease slowly and
present behaviour are less important compared with past behaviours. When no decay
is applied (T =∞), mtl increases linearly.

the network is 1, 945.56. Therefore, mtl, that oscillates between 14.2 and 36.5,
suppose a percentage between the 0.73% and the 1.89% of the total messages
of the network.

Figure 7 shows the average Level of Cooperation of all nodes inside every
selfishness interval. We only show the results of three of the T simulated values,
25, 000, 20, 000 and 15, 000 seconds because they are enough to understand what
we address here. All graphics, the three included here, and all others, show the
same pattern: after a transient state, all nodes stabilize their LC and hold it
without major changes until the end of the simulation. As the time constant T
becomes higher, the values where the nodes stabilize their LC are higher too.
In all cases, nodes with lesser selfishness have a higher LC almost all the time,
except during occasional, little time intervals. In these intervals, it is possible
that a category (e.g. 20%-30%) has a higher LC than the immediately less
selfish category (e.g. 10%-20%). These intervals become a little more frequent
as the time constant T becomes lower.

On the basis of the previous results, we can conclude that a higher T is better
for the fairness of the system because it increases the differences between the
LC obtained by a selfish node and a cooperative one. But a extreme T = ∞,
meaning no decay is applied, allow nodes to perform selfish bursts without
prejudice, so the time constant has to be chosen high enough to assure fairness,
but not too high to avoid this.

30

−400

−200

0

200

400

600

800

1,000

0 250 500 750

L
ev
el
of

C
oo
p
er
a
ti
on

(C
P

)
T = 25,000 s

0 250 500 750

Time (thousands ofseconds)

T = 20,000 s

0 250 500 750

T = 15,000 s

Selfishness
0− 10%

10− 20%
20− 30%
30− 40%
40− 50%
50− 60%
60− 70%
70− 80%
80− 90%

90− 100%

Figure 7: Average Level of Cooperation of all nodes inside every selfishness interval
using different values for the time constant T . The three graphics share the Y axle.
After a transient period, nodes stabilize their LC. As T becomes smaller, the value
where the LC stabilizes and the differences between categories become lesser too, and
moments where nodes of one selfish category have a higher LC than nodes of a more
cooperative category become slightly more frequent.

7.5. Results. Impact of message expiration

In DTN, messages usually have a time-to-live (ttl) and they are discarded
when their expiration time is reached. The presented Incentive Scheme punishes
the node that discards a message and the previous one. Taking into account
that the reason why a node has discarded a message can not be known, it is
mandatory to study the fairness of the system when dealing with this. We need
to be sure that nodes will not refuse to accept messages because they are afraid
of being punished if the messages expire.

We have measured the mean absolute error (mae), this measures how close
is the ranking of nodes elaborated by the IM to an ideal ranking of cooperative
nodes elaborated by an omniscient entity that knows all about nodes’ actual
and past behaviours. We have calculated mae using Equation 4.

mae =
1

|N |

|N |∑
i=0

|lcr(i)− rbr(i)| (4)

Where

• lcr(i) is the level of cooperation rank, the position of node i on a list of all
nodes of the network, ordered by level of cooperation.

31

• rbr(i) is the real behaviour rank, the position of node i on a list of all
nodes of the network, ordered by their real behaviour, elaborated by an
omniscient entity.

• |N | is the amount of nodes of the network.

On this set of simulations we measured the fairness of the presented Incentive
Scheme to handle message expiration. We have fixed T to 20, 000 seconds. We
have ran the experiments without message expiration to obtain the lower bound
of the mae and the average latency. Then, the ttl of each message was set to
10, 000, 20, 000 or 30, 000 seconds (one third, two thirds, and one time the
average latency without message expiration).

7

8

9

10

11

12

13

14

15

50 250 450 650 850

m
a
e

(a
bs
ol
u
te
p
os
it
io
n
s)

Time (thousands of seconds)

Mean absolute error

ttl (seconds)
∞

30,000s
20,000s
10,000s

Figure 8: Mean absolute error depending on the ttl. The obtained results are very
similar. High decreases of the ttl lead to small increases of the mae.

Figure 8 shows the average mae obtained when different ttl are used. As it
can be seen, each high decrease of the ttl leads to a small increase of the mean
absolute error. The reason for this is that the punishment applied to nodes
when the messages expire is distributed among all nodes. Besides, cooperative
nodes are more exposed to message expiration, but they also have a higher LC,
meaning they are more resistant to the punishment. As a result, when a message
expires, the LC of its custody node is reduced, but its position on the overall
ranking remains almost unchanged. This means that the Incentive Scheme is
fair with the nodes regarding message expiration.

7.6. Results. Performance of the network

To perform this set of simulations, we have chosen T = 20, 000 seconds.
Besides which, we have enabled the update behaviour of all nodes and we have
run simulations with different values of dK.

32

20,000

25,000

30,000

35,000

40,000

45,000

50,000

55,000

60,000

65,000

50 250 450 650 850

T
im
e

(s
ec
on
d
s)

Time (thousands ofseconds)

Average latency time

Legend
Selfish

dK = 0.1
dK = 0.2
dK = 0.3
dK = 0.4
dK = 0.5
Optimum

Figure 9: Latency average depending on the dK of nodes. If nodes conform with
obtaining 20% or less of the keys, the latency decreases a little. The latency is reduced
a 30% if nodes wants to obtain at least the 30% of the keys. When nodes want to
obtain the 40% of the keys or more, the latency is reduced more than 50%.

Figure 9 shows the average latency (defined as the time required by messages
to travel from their source to their destination) of a network where nodes share
the dK parameter. The selfish case has been measured with all nodes behaving
with a 100% of selfishness, meaning the only way a message can arrive at its
destination is using direct delivery, so it can be considered the worst case, the
upper bound. The optimum case has been measured with all nodes behaving
with a 0% of selfishness, so it can be considered the best case, the ideal network
where all nodes are fully cooperative: the lower bound.

The obtained results are extremely successful because they show that the
incentive system improves the performance of the network significantly. Even
when dK is as low as 0.3, the latency of the network is reduced by about 30%.
When dK > 0.3 which definitely is not a strong requirement, the latency of the
network is reduced by more than 50% and approaches a lot the lower bound.

Figure 10 shows the average latencies obtained with dK > 0.5. As can be
seen, the differences are not significant. This is a good point because it means
that the incentive system does not need nodes to care a lot about the amount of
IBC keys they receive to improve the overall performance of the network. Even
in networks where nodes are easily satisfied when they obtain half of the keys
they could obtain, or even little less than half, the incentive scheme provides an
important increase in network performance.

We can conclude that the presented incentive scheme, that punishes and
rewards nodes on the basis of their behaviour by giving them a higher or lesser
amount of IBC keys, forces nodes to be more cooperative, and improves the
performance of the network by reducing the latency of the messages by more

33

20,000

22,000

24,000

26,000

28,000

30,000

50 250 450 650 850

T
im
e

(s
ec
on
d
s)

Time (thousands ofseconds)

Average latency time with dK > 0.5

Legend
dK = 0.6
dK = 0.7
dK = 0.8
dK = 0.9
dK = 1

Optimum

Figure 10: Latency average for values of dK greater than 0.5. Differences between
results obtained with values of dK greater than 0.5 are very small. In all cases, the
obtained performance of the network is similar to the performance obtained in the
Optimum case.

than 50%.

8. Conclusions and future work

We have presented an asynchronous incentive scheme for DTNs. This scheme
is based on a receipt exchange protocol designed to overcome the inherent lim-
itations of DNTs and uses the policy “guilty until proven innocent” to punish
suspicious nodes and reward cooperative nodes.

Moreover, we have developed a new way of tracking the actions of nodes that
allow us to treat nodes in a new, fair way: they will be rewarded for the actions
they perform, without depending on other elements like the actions performed
by others, the delivery ratio of the routing algorithm used, etc. . .

The game theory analysis of the incentive scheme has proven that, for each
node, accepting and relaying messages, delivering receipts to the Incentive Man-
ager and avoiding cheating is a dominant strategy and the best response to any
other node behaviour. This way, we have proved that all nodes behaving this
way form a Nash equilibrium.

The results of the simulations show that the usage of the incentive scheme
improves the performance of a network, even if nodes try to behave in a selfish
way, ignoring their balance. In the concrete scenario of a wireless robot sensor
grid network with heterogeneous nodes and applications, latency is reduced by
more than 50%. And this improvement is obtained with the only requirement
that nodes has to want to obtain at least 40% of the keys they could obtain.

34

As a future line of research, we plan to modify the system by using different
types of IBC keys that only allow nodes to perform a subset of all the possible
actions, this way we plan to improve the enforcing mechanism by increasing
the punishment to uncooperative nodes, but at the same time giving them
more options to redeem and recover. We also plan to be specially focused on
adapting this scheme to incentive nodes to behave in a certain way not only in
terms of routing and cooperation but also in terms of movement and location,
improving the coverage of the network and the quality of the opportunistic
contacts. Finally, we think that re-designing the incentive scheme, respecting
the main principles, to charge nodes for every message sent will allow the scheme
to be useful to a wider range of networks.

Acknowledgements

This work has been partially funded by the Ministry of Science and Innova-
tion of Spain, under the reference project TIN2010-15764 and by the Catalan
Government under the reference project 2014SGR691.

References

[1] S. Farrell, V. Cahill, Delay- and Disruption-Tolerant Networking, Artech
House, Inc., Norwood, MA, USA, 2006.

[2] K. Scott, S. Burleigh, Bundle Protocol Specification, RFC 5050 (Experi-
mental) (2007).

[3] M. Joye, G. Neven, Identity-Based Cryptography, IOS Press., 1013 BG,
Amsterdam, The Netherlands, 2008.

[4] S. Giordano, et al., Mobile ad hoc networks, Handbook of wireless networks
and mobile computing (2002) 325–346.

[5] S.-B. Lee, G. Pan, J.-S. Park, M. Gerla, S. Lu, Secure incentives for com-
mercial ad dissemination in vehicular networks, in: Proceedings of the 8th
ACM international symposium on Mobile ad hoc networking and com-
puting, MobiHoc ’07, ACM, New York, NY, USA, 2007, pp. 150–159.
doi:10.1145/1288107.1288128.

[6] A. Garyfalos, K. Almeroth, Coupons: A multilevel incentive scheme for
information dissemination in mobile networks, Mobile Computing, IEEE
Transactions on 7 (6) (2008) 792 –804. doi:10.1109/TMC.2008.37.

[7] H. Zhu, X. Lin, R. Lu, Y. Fan, X. Shen, Smart: A secure mul-
tilayer credit-based incentive scheme for delay-tolerant networks, Ve-
hicular Technology, IEEE Transactions on 58 (8) (2009) 4628–4639.
doi:10.1109/TVT.2009.2020105.

35

[8] R. Lu, X. Lin, H. Zhu, X. Shen, B. Preiss, Pi: A practical incentive protocol
for delay tolerant networks, Wireless Communications, IEEE Transactions
on 9 (4) (2010) 1483 –1493. doi:10.1109/TWC.2010.04.090557.

[9] L. Buttyán, J.-P. Hubaux, Nuglets: a virtual currency to stimulate coop-
eration in self-organized mobile ad hoc networks, Tech. rep., Swiss Federal
Institute of Technology (2001). doi:DSC/2001/001.

[10] L. Buttyan, L. Dora, M. Felegyhazi, I. Vajda, Barter-based cooperation
in delay-tolerant personal wireless networks, 2013 IEEE 14th International
Symposium on ”A World of Wireless, Mobile and Multimedia Networks”
(WoWMoM) 0 (2007) 1–6.

[11] L. Buttyán, L. Dóra, M. Félegyházi, I. Vajda, Barter trade improves mes-
sage delivery in opportunistic networks, Ad Hoc Networks 8 (1) (2010)
1–14. doi:http://dx.doi.org/10.1016/j.adhoc.2009.02.005.

[12] N. Nisan, Algorithms for selfish agents, in: STAC’99. Symposium on Theo-
retical Aspects of Computer Science, STACS’99, Springer-Verlag, Springer-
Verlag, Trier, Germany, 1999, p. 1–15.

[13] C. Papadimitriou, Algorithms, games, and the internet, in: Proceed-
ings of the thirty-third annual ACM symposium on Theory of com-
puting, STOC ’01, ACM, New York, NY, USA, 2001, pp. 749–753.
doi:10.1145/380752.380883.

[14] T. Roughgarden, E. Tardos, How bad is selfish routing?, J. ACM 49 (2)
(2002) 236–259. doi:10.1145/506147.506153.

[15] S. Zhong, J. Chen, Y. Yang, Sprite: a simple, cheat-proof, credit-based sys-
tem for mobile ad-hoc networks, in: INFOCOM 2003. Twenty-Second An-
nual Joint Conference of the IEEE Computer and Communications. IEEE
Societies, Vol. 3, 2003, pp. 1987–1997. doi:10.1109/INFCOM.2003.1209220.

[16] A. Balasubramanian, B. Levine, A. Venkataramani, Dtn routing as a re-
source allocation problem, SIGCOMM Comput. Commun. Rev. 37 (4)
(2007) 373–384. doi:10.1145/1282427.1282422.

[17] U. Shevade, H. H. Song, L. Qiu, Y. Zhang, Incentive-aware routing in dtns,
in: Network Protocols, 2008. ICNP 2008. IEEE International Conference
on, 2008, pp. 238–247. doi:10.1109/ICNP.2008.4697042.

[18] D. Levin, K. Lacurts, N. Spring, B. Bhattacharjee, Bittorrent is an auc-
tion: analyzing and improving bittorrent’s incentives, in: ACM SIGCOMM
Conference, 2008, pp. 243–254. doi:10.1145/1402958.1402987.

[19] A. Seth, D. Kroeker, M. Zaharia, S. Guo, S. Keshav, Low-cost communi-
cation for rural internet kiosks using mechanical backhaul, in: Proceedings
of the 12th annual international conference on Mobile computing and net-
working, MobiCom ’06, ACM, New York, NY, USA, 2006, pp. 334–345.
doi:10.1145/1161089.1161127.

36

[20] F. Milan, J. J. Jaramillo, R. Srikant, Achieving cooperation in multihop
wireless networks of selfish nodes, in: Proceeding from the 2006 workshop
on Game theory for communications and networks, GameNets ’06, ACM,
New York, NY, USA, 2006. doi:10.1145/1190195.1190197.

[21] J. J. Jaramillo, R. Srikant, Darwin: distributed and adaptive reputa-
tion mechanism for wireless ad-hoc networks, in: Proceedings of the
13th annual ACM international conference on Mobile computing and net-
working, MobiCom ’07, ACM, New York, NY, USA, 2007, pp. 87–98.
doi:10.1145/1287853.1287865.

[22] D. Irwin, J. Chase, L. Grit, A. Yumerefendi, Self-recharging virtual cur-
rency, in: Proceedings of the 2005 ACM SIGCOMM workshop on Eco-
nomics of peer-to-peer systems, P2PECON ’05, ACM, New York, NY, USA,
2005, pp. 93–98. doi:10.1145/1080192.1080194.

[23] H. Zhu, S. Du, Z. Gao, M. Dong, Z. Cao, A probabilistic misbehavior detec-
tion scheme toward efficient trust establishment in delay-tolerant networks,
IEEE Transactions on Parallel and Distributed Systems 25 (1) (2014) 22–
32. doi:http://doi.ieeecomputersociety.org/10.1109/TPDS.2013.36.

[24] B. N. Chun, P. Buonadonna, A. Auyoung, C. Ng, D. C. Parkes, J. Shnei-
dman, A. C. Snoeren, A. Vahdat, Mirage: A microeconomic resource allo-
cation system for sensornet testbeds, in: In Proceedings of the 2nd IEEE
Workshop on Embedded Networked Sensors, 2005.

[25] D. G. Sullivan, M. I. Seltzer, Isolation with flexibility: a resource man-
agement framework for central servers, in: Proceedings of the annual con-
ference on USENIX Annual Technical Conference, ATEC ’00, USENIX
Association, Berkeley, CA, USA, 2000, pp. 27–27.

[26] Q. Li, G. Cao, Mitigating routing misbehavior in disruption tolerant net-
works, Information Forensics and Security, IEEE Transactions on 7 (2)
(2012) 664–675. doi:10.1109/TIFS.2011.2173195.

[27] S. Marti, T. J. Giuli, K. Lai, M. Baker, Mitigating routing misbehavior in
mobile ad hoc networks, in: Proceedings of the 6th annual international
conference on Mobile computing and networking, MobiCom ’00, ACM, New
York, NY, USA, 2000, pp. 255–265. doi:10.1145/345910.345955.

[28] S. Kremer, O. Markowitch, J. Zhou, An Intensive Survey of Fair Non-
Repudiation Protocols, Computer Communications 25 (17) (2002) 1606–
1621.

[29] O. Markowitch, Y. Roggeman, Probabilistic Non-Repudiation without
Trusted Third Party, in: 2nd Conference on Security in Communication
Networks, Amalfi, Italy, 1999.

[30] J. Mitsianis, A new approach to enforcing non-repudiation of receipt,
manuscript (2001).

37

[31] J. Liu, R. Sun, W. Ma, Y. Li, X. Wang, Fair exchange signature schemes,
in: Advanced Information Networking and Applications - Workshops, 2008.
AINAW 2008. 22nd International Conference on, 2008, pp. 422 –427.

[32] N. Asokan, K. Kostianinen, P. Ginzboorg, J. Ott, C. Luo, Applicability
of Identity-Based Cryptography for Disruption-Tolerant Networking, in:
MobiOpp ’07: Proceedings of the 1st international MobiSys workshop on
Mobile opportunistic networking, ACM, New York, NY, USA, 2007, pp.
52–56. doi:http://doi.acm.org/10.1145/1247694.1247705.

[33] Y. Cao, Z. Sun, Routing in delay/disruption tolerant networks: A tax-
onomy, survey and challenges, Communications Surveys Tutorials, IEEE
15 (2) (2013) 654–677. doi:10.1109/SURV.2012.042512.00053.

[34] J. C. Harsanyi, Rational Behaviour and Bargaining Equilibrium in Games
and Social Situations, Press Syndicate of the University of Cambridge, New
York, USA, 1977.

[35] C. Borrego, S. Robles, A store-carry-process-and-forward paradigm for in-
telligent sensor grids, Information Sciences 222 (2013) 113 – 125.

[36] A. Keränen, J. Ott, T. Kärkkäinen, The ONE Simulator for DTN Protocol
Evaluation, in: SIMUTools ’09: Proceedings of the 2nd International Con-
ference on Simulation Tools and Techniques, ICST, New York, NY, USA,
2009.

[37] T. Spyropoulos, K. Psounis, C. Raghavendra, Spray and Wait: an Effi-
cient Routing Scheme for Intermittently Connected Mobile Networks, in:
Proceedings of the 2005 ACM SIGCOMM workshop on Delay-tolerant net-
working, ACM, 2005, p. 259.

38

