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Abstract. In this paper, a new global exponential stability criterion is ob-

tained for a general multidimensional delay difference equation using induction

arguments. In the cases that the difference equation is periodic, we prove the
existence of a periodic solution by constructing a type of Poincaré map. The

results are used to obtain stability criteria for a general discrete-time neural

network model with a delay in the leakage terms. As particular cases, we ob-
tain new stability criteria for neural network models recently studied in the

literature, in particular for low-order and high-order Hopfield and Bidirectional

Associative Memory(BAM).

1. Introduction

Neural network models have an important role in several scientific areas, such
as geology [25], medicine [19], and physics [5], due to their power to be applied
in sign and image processing, pattern recognition, optimization problems, and so
on [1, 6, 25, 33]. Therefore, since the pioneer works of Cohen and Grossberg [8],
Hopfield [15], and Kosko [16], many researchers devoted themselves to study the
dynamic behavior of neural network models.

The artificial neural network models studied in [8, 15, 16] are described by ordi-
nary differential equations. However, to take into account the transmission speed
of signals between different neurons, it is essential to introduce delays in the mod-
els. Marcus and Westervelt [20] included a discrete delay in the model studied by
Hopfield [15] and observed that delays induce instability in its dynamical behavior
(see also [2]). Later, Gopalsamy [13] introduced discrete delays in the negative
feedback terms of a continuous-time BAM model. These terms are also called “for-
getting” or leakage terms [16]. Since then, the stability of continuous-time neural
network models with delays in the leakage terms has been the subject of study by
an increasing number of researchers (see [4, 18, 23, 24, 32] and references therein).

By computational reasons, the discrete-time models are better digitally imple-
mented than continuous-time ones [21], thus it is important to study the stability of
discrete-time neural network models. There are several works concerning discrete-
time neural networks [3, 7, 10, 9, 11, 14, 21, 22, 26, 27, 28, 29, 30, 31, 34, 35] but, as
far as we know, just a few works have been dedicated to the study of discrete-time
neural networks with delays in the leakage terms [7, 22, 28, 29, 31]. In [7, 22] the
global stability was studied for Hopfield type models with delays in the leakage
terms and, in [28], for a stochastic impulsive BAM model also with delays in the
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leakage terms. However, all models studied in [7, 22, 28] have constants parameters
such as neuron charging time, interconnection weights, and external inputs. In [29]
an asymptotic stability criterion for an uncertain BAM model with delays in the
leakage terms was established, while in [31] an exponential stability criterion for an
uncertain Hopfield model with delays in the leakage terms was obtained.

Models become more realistic if changes in parameters over time are considered,
thus it is important to study nonautonomous neural network models. As far as we
know, the global stability of discrete-time neural network models with delays in the
leakage terms and changes of parameters over the time has not yet been studied.
In particular, all periodic or almost periodic models studied have no delays in the
leakage terms [3, 10, 30, 34, 35].

In the present work, we establish a sufficient condition for the global exponential
stability of the following general N -dimensional delay difference equation

xi(m+ 1) = ci(m)xi(m− τ) + hi (m,xm) , m ∈ N0, i ∈ {1, . . . , N}, (1)

and, in the case of (1) being a periodic equation, we prove the existence of a periodic
solution as a consequence of its global exponential stability.

In this paper, we only apply our abstract results to neural network type mod-
els. Despite, equation (1) is general enough to include other type of discrete-time
models such as the hematopoiesis type models with monotone production rate [17].
The proof presented here to establish our main stability result involves induction
arguments, which is a new method to prove the stability of difference equations.
In fact, the proofs usually present in the literature involve the construction of a
suitable Lyapunov function [7, 13, 18, 21, 24, 27, 28, 29, 32, 34], or some Halanay
inequalities [31], or other type of inequality analysis techniques [10, 9, 11, 14, 22, 35].

The main novelties in this work are:

1. The global exponential stability criterion, Theorem 1, established for the
nonautonomous difference equation (1). We emphasize the new method
used in the proof and the fact that we are dealing with a difference equation
with a delay in the linear part.

2. The global exponential stability criterion, Theorem 3, established for a
discrete-time generalized neural network model with delay in the leakage
terms (11), which is general enough to include several neural network mod-
els as particular cases. We note that the low-order Hopfield type model
(14), the BAM model (20), and the high-order Hopfield type model (21) are
particular cases of (11).

3. The criterion for the existence of periodic solutions of (1), Theorem 2. This
result, together with Theorem 3, allowed us to assure the existence and
global exponential stability of a periodic solution of periodic Hopfield type
and BAM models with delay in the leakage terms, Corollaries 2, 5, and
6. Previously, the existence and global exponential stability of a periodic
solution were established for discrete-time periodic neural network models
without delays in the leakage terms [3, 10, 34].

This paper is organized into five sections. After the introduction, in Section 2 the
main global stability criterion of (1) is proved. In Section 3, we assume that (1)
is a periodic difference equation and, considering a Poincaré map, we obtain the
existence of a periodic solution as a consequence of the global exponential stability.
In Section 4, we apply the results in Section 2 and 3 to obtain stability criteria and
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the existence of periodic solutions of nonautonomous discrete-time neural network
models with delay in the leakage terms. In this section, a comparison of our results
with the ones in the literature is done. Finally, in Section 5, a numerical example
is given to illustrate the effectiveness of some of our results.

2. Stability of Models with delay in the leakage term

Consider the difference equation

xi(m+ 1) = ci(m)xi(m− τ) + hi (m,xm) , m ∈ N0, i ∈ {1, . . . , N}, (2)

with N ∈ N, τ ∈ N0, and, for each i ∈ {1, . . . , N}, ci : N0 →] − 1, 1[ and hi :
N0 × XN → R are functions. The space XN and the notation xm are explained
below.

Given a set I ⊆ R, define IZ = I ∩Z. Consider r ∈]−∞,−τ ]Z and denote by X
the space of the functions

α : [r, 0]Z → R
equipped with the norm

‖α‖ = max
j=r,...,0

|α(j)|.

We denote by XN and RN the cartesian products equipped with the supremum
norm, i.e., for α = (α1, . . . , αN ) ∈ XN and y = (y1, . . . , yN ) ∈ RN , we have

‖α‖ = max
i=1,...,N

‖αi‖ = max
i=1,...,N

(
max

j=r,...,0
|αi(j)|

)
and

|y| = max
i=1,...,N

|yi|.

We write y = (y1, . . . , yN ) > 0 in case of yi > 0 for all i ∈ {1, . . . , N}.
Given a function x : [r,+∞[Z→ RN we denote the ith component by xi, i.e.,

x = (x1, . . . xN ). For each m ∈ N0, we define xm ∈ XN by

xm(j) = x(m+ j), j = r, r + 1, . . . , 0.

For each α ∈ XN , we denote by x(·, α) the unique solution

x : [r,+∞[Z→ RN

of (2) with initial conditions x0 = α.
The main purpose in this section is to establish sufficient conditions for the global

stability of difference equation (2).

Definition 1. We say that difference equation (2) is:

1. uniformly stable if

∀ε > 0,∃δ > 0,∀α, β ∈ XN ,∀m ∈ N0 : ‖α− β‖ < δ ⇒ ‖xm(·, α)− xm(·, β)‖ < ε.

2. globally exponentially stable if there are C > 0, and ζ ∈]0, 1[ such that, for
all α, β ∈ XN ,

‖xm(·, α)− xm(·, β)‖ 6 Cζm‖α− β‖, ∀m ∈ N0.

3. globally attractive if

lim
m
‖xm(·, α)− xm(·, β)‖ = 0, ∀α, β ∈ XN .

4. globally asymptotically stable if it is uniformly stable and globally attractive.
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For each s ∈ {0, . . . , τ}, we denote by [s]τ the set

[s]τ := {n(τ + 1)− s : n ∈ N}. (3)

Consequently, the equality N =

τ⋃
s=0

[s]τ holds and [s]τ ∩ [s∗]τ = ∅ if s 6= s∗ with

s, s∗ ∈ {0, . . . , τ}.
For the functions ci and hi, we assume the following hypotheses

(H1): for each i ∈ {1, . . . , N}, there is a function Hi : N0 →]0,+∞[ such that

|hi(m,α)− hi(m,β)| 6 Hi(m)‖α− β‖, ∀α, β ∈ XN , m ∈ N0;

(H2): there is c ∈]0, 1] such that

|ci(m)| 6 c, ∀i ∈ {1, . . . , N}, ∀m ∈ N0;

and

λ := max
i=1,...,N

max
s=0,...,τ

[
sup
n∈N

n−1∑
l=0

(
n−1∏
k=l+1

|ci(k(τ + 1) + τ − s)|

)

·Hi(l(τ + 1) + τ − s)cl+
r−s−1
τ+1 −n+1

]
< 1.

In hypothesis (H2), we use the standard convention that a product is equal to
one if the number of factors is zero.

Before stating our main stability result, we need to prove the following lemma.

Lemma 1. Let α = (α1, . . . , αN ), β = (β1, . . . , βN ) ∈ XN .
If (H1) holds, then the solutions x(·, α) = x(·) = (x1(·), . . . , xN (·)) and x(·, β) =

y(·) = (y1(·), . . . , yN (·)) of (2) verify

|xi(n(τ + 1)− s)− yi(n(τ + 1)− s)|

6

(
n−1∏
k=0

|ci(k(τ + 1) + τ − s)|

)
‖α− β‖+

n−1∑
l=0

( n−1∏
k=l+1

|ci(k(τ + 1) + τ − s)|
)

·Hi(l(τ + 1) + τ − s)‖xl(τ+1)+τ−s − yl(τ+1)+τ−s‖, (4)

for all i ∈ {1, . . . , N}, s ∈ {0, . . . , τ}, and n ∈ N.

Proof. Let s ∈ {0, . . . , τ} and i ∈ {1, . . . , N}.
The proof is done using induction on n ∈ N.
For n = 1, we have, from (2) and (H1),

|xi(τ + 1− s)− yi(τ + 1− s)|
= |ci(τ − s)xi(τ − s− τ) + hi(τ − s, xτ−s)
−ci(τ − s)yi(τ − s− τ)− hi(τ − s, yτ−s)|

6 |ci(τ − s)||xi(−s)− yi(−s)|+ |hi(τ − s, xτ−s)− hi(τ − s, yτ−s)|
6 |ci(τ − s)|‖α− β‖+Hi(τ − s)‖xτ−s − yτ−s‖

=

(
1−1∏
k=0

|ci(k(τ + 1) + τ − s)|

)
‖α− β‖+

1−1∑
l=0

(
1−1∏
k=l+1

|ci(k(τ + 1) + τ − s)|

)
·Hi(l(τ + 1) + τ − s)‖xl(τ+1)+τ−s − yl(τ+1)+τ−s‖.
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Now we assume that (4) holds for some n ∈ N. Consequently, from (2), (H1) and
induction hypothesis, we have∣∣xi((n+ 1)(τ + 1)− s)− yi((n+ 1)(τ + 1)− s)

∣∣
=

∣∣xi(n(τ + 1) + τ − s+ 1)− yi(n(τ + 1) + τ − s+ 1)
∣∣

=
∣∣ci(n(τ + 1) + τ − s)xi(n(τ + 1)− s) + hi(n(τ + 1) + τ − s, xn(τ+1)+τ−s)
−ci(n(τ + 1) + τ − s)yi(n(τ + 1)− s)− hi(n(τ + 1) + τ − s, yn(τ+1)+τ−s)

∣∣
6 |ci(n(τ + 1) + τ − s)||xi(n(τ + 1)− s)− yi(n(τ + 1)− s)|

+Hi(n(τ + 1) + τ − s)‖xn(τ+1)+τ−s − yn(τ+1)+τ−s‖

6 |ci(n(τ + 1) + τ − s)|

(
n−1∏
k=0

|ci(k(τ + 1) + τ − s)|

)
‖α− β‖

+|ci(n(τ + 1) + τ − s)|
n−1∑
l=0

(
n−1∏
k=l+1

|ci(k(τ + 1) + τ − s)|

)
·Hi(l(τ + 1) + τ − s)‖xl(τ+1)+τ−s − yl(τ+1)+τ−s‖
+Hi(n(τ + 1) + τ − s)‖xn(τ+1)+τ−s − yn(τ+1)+τ−s‖

=

(
n∏
k=0

|ci(k(τ + 1) + τ − s)|

)
‖α− β‖+

n∑
l=0

(
n∏

k=l+1

|ci(k(τ + 1) + τ − s)|

)
·Hi(l(τ + 1) + τ − s)‖xl(τ+1)+τ−s − yl(τ+1)+τ−s‖

and the proof of (4) is concluded. �

Now we are in position to prove the main stability result about the difference
equation (2).

Theorem 1. Assume the hypotheses (H1) and (H2).
Then, for any α, β ∈ XN , the solutions x(·, α) and x(·, β) of (2) verify

‖xm(·, α)− xm(·, β)‖ 6 c
r
τ+1−1

1− λ

(
c

1
τ+1

)m
‖α− β‖, (5)

for all m ∈ N0.

Proof. Let α, β ∈ XN and consider the solutions x(·, α) = x(·) = (x1(·), . . . , xN (·))
and x(·, β) = y(·) = (y1(·), . . . , yN (·)) of (2).

First we prove that

|x(m,α)− x(m,β)| 6 1

1− λ
c
m−(τ+1)
τ+1 ‖α− β‖, ∀m ∈ N0. (6)

The proof of inequality (6) is done by induction on m ∈ N0.
As 0 < c 6 1 and 0 < 1− λ < 1, then condition (6) holds trivially for m = 0.
Assume that, for some m ∈ N, we have

|x(t)− y(t)| 6 1

1− λ
c
t−(τ+1)
τ+1 ‖α− β‖, ∀t ∈ [0,m− 1]Z. (7)

As N =

τ⋃
s=0

[s]τ and [s]τ ∩ [s∗]τ = ∅ for s 6= s∗, by (3) we conclude there are

unique s ∈ {0, . . . , τ} and n ∈ N such that m = n(τ + 1) − s. For l ∈ [0, n− 1]Z,
we have

l(τ+1)+τ−s+j 6 (n−1)(τ+1)+τ−s = n(τ+1)−s−1 < m, ∀j ∈ {r, . . . , 0},
thus, by (7),
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‖xl(τ+1)+τ−s − yl(τ+1)+τ−s‖ = max
j=r,...,0

|x(l(τ + 1) + τ − s+ j)− y(l(τ + 1) + τ − s+ j)|

6
1

1− λ
· max
j=r,...,0

{
c
l(τ+1)+τ−s+j−(τ+1)

τ+1

}
‖α− β‖

=
1

1− λ
c
l(τ+1)+τ−s+r−τ−1

τ+1 ‖α− β‖

=
1

1− λ
cl+

r−s−1
τ+1 ‖α− β‖. (8)

Let i ∈ {1, . . . , N}. From Lemma 1 and (8), we have

|xi(m)− yi(m)| = |xi(n(τ + 1)− s)− yi(n(τ + 1)− s)|

6

(
n−1∏
k=0

|ci(k(τ + 1) + τ − s)|

)
‖α− β‖

+

n−1∑
l=0

(
n−1∏
k=l+1

|ci(k(τ + 1) + τ − s)|

)
·Hi(l(τ + 1) + τ − s)‖xl(τ+1)+τ−s − yl(τ+1)+τ−s‖

6

(
n−1∏
k=0

|ci(k(τ + 1) + τ − s)|

)
‖α− β‖

+

n−1∑
l=0

(
n−1∏
k=l+1

|ci(k(τ + 1) + τ − s)|

)
·Hi(l(τ + 1) + τ − s) 1

1− λ
cl+

r−s−1
τ+1 ‖α− β‖

=

[(
n−1∏
k=0

|ci(k(τ + 1) + τ − s)|
c

)
c

+
1

1− λ

n−1∑
l=0

(
n−1∏
k=l+1

|ci(k(τ + 1) + τ − s)|

)
Hi(l(τ + 1) + τ − s)

·cl+
r−s−1
τ+1 −n+1

]
cn−1‖α− β‖.

Denoting

A =

(
n−1∏
k=0

|ci(k(τ + 1) + τ − s)|
c

)
c

and

B =

n−1∑
l=0

[(
n−1∏
k=l+1

|ci(k(τ + 1) + τ − s)|

)
Hi(l(τ + 1) + τ − s)cl+

r−s−1
τ+1 −n+1

]
,

we have

|xi(m)− yi(m)| 6
(
A+

1

1− λ
B
)
cn−1‖α− β‖.

From (H2), we obtain B 6 λ < 1 and A 6 1, thus, recalling that n = m+s
τ+1 , c ∈]0, 1]

and s ∈ {0, . . . , τ}, we conclude

|xi(m)− yi(m)| 6 1

1− λ
cn−1‖α− β‖ 6 1

1− λ
c
m−(τ+1)
τ+1 ‖α− β‖.
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As i is arbitrary, then condition (7) holds for t = m and consequently (7) holds for
all m ∈ N0. Finally, by (7), we have

‖xm − ym‖ = max
j=r,...,0

{|x(m+ j)− y(m+ j)|}

6 max
j=r,...,0

{
1

1− λ
c
m+j−(τ+1)

τ+1 ‖α− β‖
}

=
1

1− λ
c
m+r−(τ+1)

τ+1 ‖α− β‖ =
c

r
τ+1−1

1− λ

(
c

1
τ+1

)m
‖α− β‖

�

We remark that, Theorem 1 assures that, under hypotheses (H1) and (H2), differ-
ence equation (2) is uniformly stable and, if c < 1, then (2) is globally exponentially
stable.

3. Periodic Model

In this section we assume that difference equation (2) is periodic, i.e., for some
ω ∈ N, we consider the difference equation

xi(m+ 1) = ci(m)xi(m− τ) + hi (m,xm) , m ∈ N0, i ∈ {1, . . . , N}, (9)

with ci : N0 →]− 1, 1[ and hi : N0 ×XN → R functions satisfying the hypotheses:

(P1): For all i ∈ {1, . . . , N} and m ∈ N0, we have ci(m) = ci(m+ ω);
(P2): for all i ∈ {1, . . . , N}, m ∈ N0, and α ∈ XN , we have hi(m + ω, α) =
hi(m,α).

Theorem 2. Assume (P1), (P2), (H1), and (H2) with c ∈]0, 1[.
Then there is a ω-periodic solution x∗ of (9) verifying

‖xm(·, α)− x∗m‖ 6
c

r
τ+1−1

1− λ

(
c

1
τ+1

)m
‖α− x∗0‖, (10)

for all m ∈ N.

Proof. From Theorem 1, inequality (5), we have

‖xm(·, α)− x∗m‖ 6 Q(m)‖α− β‖, ∀α, β ∈ XN , ∀m ∈ N0,

where Q(m) =
c

r
τ+1−1

1− λ

(
c

1
τ+1

)m
. As c < 1, then there is p ∈ N such that Q(m) < 1

for all m ∈ [p,+∞[Z.
Define the map P : XN → XN by P (α) = xω(·, α). For α, β ∈ XN , we have

‖P p(α)− P p(β)‖ = ‖P (P p−1(α))− P (P p−1(β))‖
= ‖xω(·, P p−1(α))− xω(·, P p−1(β))‖
= ‖xω(·, xω(·, P p−2(α)))− xω(·, xω(·, P p−2(β)))‖,

and from (P1) and (P2) the difference equation (9) is ω-periodic and consequently

‖P p(α)− P p(β)‖ = ‖x2ω(·, P p−2(α))− x2ω(·, P p−2(β))‖
= ‖xpω(·, α)− xpω(·, β)‖ 6 Q(pω)‖α− β‖.
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As Q(ωp) < 1, then P p is a contraction map on Banach space XN , thus there is a
unique α∗ ∈ XN such that P p(α∗) = α∗. Consequently

P p(P (α∗)) = P (P p(α∗)) = P (α∗),

and we obtain P (α∗) = α∗, that is xω(·, α∗) = α∗.
As x(m,α∗) is a solution of the ω-periodic difference equation (9), then x(m +

ω, α∗) is also a solution of (9) verifying

x(m,α∗) = x(m,xω(·, α∗)) = x(m+ ω, α∗), ∀m ∈ N,
which means that x∗(m) = x(m,α∗) is a ω-periodic solution of (9).

Finally, the inequality (10) follows from Theorem 1. �

4. Applications to Neural Network models

In this section, we apply our main results to obtain criteria for the global expo-
nential stability of several discrete-time neural network type models with delay in
the leakage terms. Some criteria for the existence and global exponential stability
of a periodic solution of periodic models are also established.

First of all, we consider the following discrete-time generalized neural network
model with delay in the leakage terms

xi(m+ 1) = ci(m)xi(m− τ) +

N∑
j=1

hij (m,xm) , m ∈ N0, i = 1, . . . , N, (11)

where N ∈ N, τ ∈ N0, and ci : N0 →]− 1, 1[ and hij : N0 ×XN → R are functions
such that the following hypothesis holds:

(A1): The functions hij are Lipschitz, i.e. for each i, j ∈ {1, . . . , N} there
exists a positive constant Hij such that

|hij(m,α)− hij(m,β)| 6 Hij‖α− β‖, ∀m ∈ N0,∀α, β ∈ XN .

Now, we apply Theorem 1 to obtain the following stability result.

Theorem 3. Assume (A1).
If

1− c+i >
N∑
j=1

Hij , ∀i ∈ {1, . . . , , N}, (12)

where c+i = sup
m
|ci(m)|, then the model (11) is globally exponentially stable.

Proof. The model (11) is a particular case of (2) with

hi(m,α) =

N∑
j=1

hij(m,α),

for all α ∈ XN , m ∈ N0, and i, j ∈ {1, . . . , N}.

From (A1), the hypothesis (H1) holds withHi(m) =

N∑
j=1

Hij for all i ∈ {1, . . . , N}.

Now we show that (H2) also holds.
For each i ∈ {1, . . . , N} such that c+i 6= 0, by (12), we have c+i ∈]0, 1[ and define

νi = − ln(c+i ) ∈]0,+∞[. Thus, we have c+i = e−νi .
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For each i ∈ {1, . . . , N} such that c+i = 0, by (12) it is possible to choose
νi ∈]0,+∞[ such that

1− e−νi >

N∑
j=1

Hij .

From (12), we have

eνi −1

eνi
>

N∑
j=1

Hij , ∀i ∈ {1, . . . , , N}.

Consequently, there is a positive number µ < min
i
νi such that

eνi−µ−1

eνi
eµ

r
τ+1 >

N∑
j=1

Hij , ∀i ∈ {1, . . . , , N}. (13)

Defining c = e−µ, we have |ci(m)| 6 c for all m ∈ N0. Consequently, for i ∈
{1, . . . , N} and s ∈ {0, . . . , τ}, we have

sup
n∈N

[
n−1∑
l=0

(
n−1∏
k=l+1

|ci(k(τ + 1) + τ − s)|

)
Hi(l(τ + 1) + τ − s)cl+

r−s−1
τ+1 −n+1

]

6 sup
n∈N

n−1∑
l=0

e−νi(n−1−l) e−µ(l+
r−s−1
τ+1 −n+1)

N∑
j=1

Hij


= sup
n∈N

n−1∑
l=0

e(νi−µ)(l−n) eνi e−µ( r−s−1
τ+1 +1)

N∑
j=1

Hij


= sup
n∈N

(n−1∑
l=0

e(νi−µ)(l−n)

)
eνi e−µ( r−s−1

τ+1 +1)
N∑
j=1

Hij


= sup
n∈N

(n−1∑
l=0

e(νi−µ)l

)
e−(νi−µ)n eνi e−µ( r−s−1

τ+1 +1)
N∑
j=1

Hij


= sup
n∈N

1− e(νi−µ)n

1− eνi−µ
e−(νi−µ)n eνi e−µ( r−s−1

τ+1 +1)
N∑
j=1

Hij


= sup
n∈N

1− e−(νi−µ)n

eνi−µ−1
eνi e−µ( r−s−1

τ+1 +1)
N∑
j=1

Hij


= sup
n∈N

(
1− e−(νi−µ)n

)
e−µ( r−s−1

τ+1 +1) eνi

eνi−µ−1

N∑
j=1

Hij .
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As sup
n∈N

(
1− e−(νi−µ)n

)
= 1 and s ∈ {1, . . . , τ}, we have

λ 6 max
i=1,...,N

e−µ
r
τ+1

eνi

eνi−µ−1

N∑
j=1

Hij


and, by (13), we obtain

λ < max
i=1,...,N

(
e−µ

r
τ+1

eνi

eνi−µ−1

eνi−µ−1

eνi
eµ

r
τ+1

)
= 1,

thus hypotheses (H2) holds. From Theorem 1, we obtain that model (11) is globally
exponentially stable. �

If (11) is a periodic model then, from Theorem 2, we establish sufficient condi-
tions for the existence and global exponential stability of a periodic solution.

Theorem 4. Assume (A1) and there is ω ∈ N such that

ci(m) = ci(m+ ω) and hij(m+ ω, α) = hij(m,α)

for all m ∈ N0, α ∈ XN , and i, j ∈ {1, . . . , N}.
If condition (12) holds, then there is a ω-periodic solution of (11) which is globally

exponentially stable.

Proof. By the hypotheses, conditions (P1) and (P2) hold. From the proof of The-
orem 3, the conditions (H1) and (H2) also hold with c ∈]0, 1[. Thus, the result
follows from Theorem 2. �

As a particular case of (11) we consider the following discrete-time low-order
Hopfield neural network model with delay in leakage term

xi(m+ 1) = ci(m)xi(m− τ) +

N∑
j=1

K∑
k=1

bijk(m)fijk (xj(m− τijk(m))) + Ii(m), (14)

for m ∈ N0, i ∈ {1, . . . , N}, where N,K ∈ N, τ ∈ N0, and ci : N0 →] − 1, 1[,
τijk : N0 → N0, bijk, Ii : N0 → R, and fijk : R → R are functions such that the
following hypotheses hold:

(B1): The functions bijk and τijk are bounded;
(B2): the functions fijk are Lipschitz, i.e. for each i, j ∈ {1, . . . , N} and
k ∈ {1, . . . ,K}, there exists a constant Fijk such that

|fijk(x)− fijk(y)| 6 Fijk|x− y|, ∀x, y ∈ R.
The discrete-time autonomous Hopfield neural network model, studied in [14],

xi(m+ 1) = cixi(m) +

N∑
j=1

bijfj (xj(m− τij)) , m ∈ N0, i = 1, . . . , N, (15)

and the discrete-time Hopfield neural network model with delay in leakage term
and constant coefficients, studied in [26],

xi(m+ 1) = cixi(m− τ) +

N∑
j=1

aijfj (xj(m)) +

N∑
j=1

bijfj (xj(m− σ(m))) + Ii, (16)
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for m ∈ N0, i = 1, . . . , N , are particular case of model (14).
For i, j ∈ {1, . . . , N} and k ∈ {1, . . . ,K}, in what follows we use the notation

r = − max
i,j,k,m

{τijk(m), τ}, c+i = sup
m
|ci(m)|, and b+ijk = sup

m
|bijk(m)|.

From Theorem 3, we obtain the global exponential stability of (14).

Theorem 5. Assume (B1) and (B2).
If

1− c+i >
N∑
j=1

K∑
k=1

b+ijkFijk, ∀i ∈ {1, . . . , , N},

then the model (14) is globally exponentially stable.

Proof. The model (14) is a particular case of model (11) with

hij(m,α) =

(
K∑
k=1

bijk(m)fijk(αj(−τijk(m)))

)
+
Ii(m)

N
,

for all α = (α1, . . . , αN ) ∈ XN , m ∈ N0, and i, j ∈ {1, . . . , N}.

By (B1) and (B2), the hypothesis (A1) holds with Hij =

K∑
k=1

b+ijkFijk, for all

i, j ∈ {1, . . . , N}, thus the conclusion follows from Theorem 3. �

The previous result is improved in the following result.
Consider the N ×N -matrix M defined by

M = I − diag(c+1 , . . . , c
+
N )−

( K∑
k=1

b+ijkFijk

)
ij

 ,
where I is the N ×N identity matrix.

Corollary 1. Assume (B1) and (B2).
If M is a non-singular M-matrix, then the model (14) is globally exponentially

stable.

Proof. IfM is a non-singular M-matrix, then (see [12]) there is d = (d1, . . . , dN ) > 0
such that Md > 0, i.e.,

di(1− c+i ) >

N∑
j=1

dj

(
K∑
k=1

b+ijkFijk

)
, ∀i ∈ {1, . . . , N}. (17)

The change yi(m) = d−1i xi(m), m ∈ N and i ∈ {1, . . . , N}, transforms (14) into

yi(m+ 1) = ci(m)yi(m− τ) +

N∑
j=1

K∑
k=1

b̃ijk(m)f̃ijk (yj(m− τijk(m))) ,

where

b̃ijk(m) = d−1i bijk(m) and f̃ijk(u) = fijk(dju),
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for m ∈ N0 and u ∈ R. As fijk are Lipschitz functions with constant Fijk, then

f̃ijk verify (B2) with constant F̃ijk = djFijk. From (17) we have

1− c+i >
N∑
j=1

K∑
k=1

(
d−1i b+ijk

)
(djFijk) , ∀i ∈ {1, . . . , N}.

which is equivalent to

1− c+i >
N∑
j=1

K∑
k=1

b̃+ijkF̃ijk, ∀i ∈ {1, . . . , N}.

and the result follows from the Theorem 5. �

Now we consider the model (14) with periodic coefficients, i.e., we assume that
there is ω ∈ N such that ci(m), bijk(m), τijk(m) and Ii(m) are ω-periodic functions.
Naturally we have

c+i = max {|ci(1)|, . . . , |ci(ω)|} and b+ijk = max {|bijk(1)|, . . . , |bijk(ω)|} ,

for i, j ∈ {1, . . . , N}, k ∈ {1, . . . ,K}.
From Theorem 4 and Corollary 1 we have the following result, which extends,

to models with delay in the leakage terms, the result [3, Theorem 4].

Corollary 2. Assume ci, bijk, τijk, and Ii are ω-periodic function, and (B2).
If the matrix M, defined by (17), is a non-singular M-matrix, then model (14)

has a unique ω-periodic solution which is globally exponentially stable.

Considering model (14) with autonomous coefficients that is, for each i, j ∈
{1, . . . , N} and k ∈ {1, . . . ,K} we have

ci(m) = ci, Ii(m) = Ii, and bijk(m) = bijk, ∀m ∈ N0,

with ci ∈]− 1, 1[ and bijk, Ii ∈ R, the previous Corollary 2 allows us to obtain the
following result.

Corollary 3. Assume (B2).
If the matrix

N = I − diag(|c1|, . . . , |cN |)−

( K∑
k=1

|bijk|Fijk

)
ij

 (18)

is a non-singular M-matrix, then the model

xi(m+ 1) = cixi(m− τ) +

N∑
j=1

K∑
k=1

bijkfijk (xj(m− τijk(m))) + Ii (19)

for m ∈ N0, i ∈ {1, . . . , N}, has a unique equilibrium which is globally exponentially
stable.

In [14, Theorem 3.1], the global attractivity of (15), a particular case of (19), is
obtained assuming that activation functions fj : R→ R are differentiable such that

fj(0) = 0, lim
x→+∞

fj(x) = 1, lim
x→−∞

fj(x) = −1,

and
f ′j(0) = sup

x
f ′j(x) = 1, f ′j(u) > 0,∀u ∈ R,
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joint with the condition of

I − diag(|c1|, . . . , |cn|)− [|bij |]

being an M-matrix. By hypotheses in [14], it is clear that fj are Lipschitz functions
with Lipschitz constant equal to 1. We remark that Corollary 3 states the global
exponential stability of (15), instead of the global attractivity as in [14, Theorem
3.1], but we assume that N , defined by (18), is a non-singular M-matrix which is
more restrictive than N just be an M-matrix as is assumed in [14, Theorem 3.1].

Model (16), studied in [26], is also a particular case of (19), but the asymptotic
stability of (16) is established in [26] under a different hypotheses set.

It is relevant to observe that model (11) is general enough to include, as particular
cases, some BAM neural network models with delay in leakage term.

Considering, in the general model (11), N = N1 +N2, for N1, N2 ∈ N,

ci(m) =

{
ĉi(m), i = 1, . . . , N1

c̃i−N1(m), i = N1 + 1, . . . , N1 +N2
, ∀m ∈ N0,

and

hij(m,α) =



0, i = 1, . . . , N1, j = 1, . . . , N1

âi(j−N1)(m)fj−N1(αj(0))

+b̂i(j−N1)(m)fj−N1(αj(−τ̂i(j−N1)(m)))

+ Îi(m)
N2

,

i = 1, . . . , N1, j = N1 + 1, . . . , N1 +N2

ã(i−N1)j(m)gj(αj(0))

+b̃(i−N1)j(m)gj(αj(−τ̃(i−N1)j(m)))

+ Ĩi(m)
N1

,

i = N1 + 1, . . . , N1 +N2, j = 1, . . . , N1

0,
i = N1 + 1, . . . , N1 +N2,
j = N1 + 1, . . . , N1 +N2

,

for all m ∈ N0 and α ∈ XN1+N2 , we have the following BAM neural network model

xi(m+ 1) = ĉi(m)xi(m− τ) +

N2∑
j=1

âij(m)fj(yj(m))

+

N2∑
j=1

b̂ij(m)fj(yj(m− τ̂ij(m))) + Îi(m), i = 1, . . . , N1,

yj(m+ 1) = c̃j(m)yj(m− τ) +

N1∑
i=1

ãji(m)gi(xi(m))

+

N1∑
i=1

b̃ji(m)gi(xi(m− τ̃ji(m))) + Ĩj(m), j = 1, . . . , N2,

(20)

where ĉi, c̃j : N0 →] − 1, 1[, âij , ãji : N0 → R, τ̂ij , τ̃ji : N0 → N0 are bounded

functions, Îi, Ĩj : N0 → R are functions, and fj , gi : R→ R are Lipschitz functions
with Lipschitz constants Fj and Gi respectively.

For the functions in the model (20), we use the notation

r = −max
i,j,m
{τ̂ij(m), τ̃ji(m), τ}, ĉ+i = sup

m
|ĉi(m)|, c̃+j = sup

m
|c̃j(m)|,
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â+ij = sup
m
|âij(m)|, b̂+ij = sup

m
|b̂ij(m)|, ã+ji = sup

m
|ãji(m)|, and b̃+ji = sup

m
|̃bji(m)|.

We also define the matrix P by

P :=

[
IN1 − Ĉ −U
−S IN2 − C̃

]
,

where, for k = 1, 2, INk is the Nk × Nk identity matrix, Ĉ = diag(ĉ+1 , . . . , ĉ
+
N1

),

C̃ = diag(c̃+1 , . . . , c̃
+
N2

), U =
[
(â+ij + b̂+ij)Fj

]
, and S =

[
(ã+ji + b̃+ji)Gi

]
. Following the

same arguments presented in the proofs of Theorem 5 and Corollary 1, we obtain
the next exponential stability criterion.

Theorem 6. If P is a non-singular M-matrix, then the model (20) is globally
exponentially stable.

From Theorem 4 and Theorem 6, we obtain the following stability results for
model (20) with periodic and constant coefficients, respectively.

Corollary 4. Assume ĉi, c̃j âij, ãji, b̂ij, b̃ji, τ̂ij, τ̃ji, Îi, and Ĩj are ω-periodic
functions.

If P is a non-singular M-matrix, then the model (20) has a unique ω-periodic
solution which is globally exponentially stable.

Corollary 5. Assume ĉi(m) = ĉi, c̃j(m) = c̃j, âij(m) = âij, ãji(m) = ãji,

b̂ij(m) = b̂ij, b̃ji(m) = b̃ji, Îi(m) = Îi, Ĩj(m) = Ĩj for all m ∈ N0.
If

I−diag(|ĉ1|, . . . , |ĉN1 |, |c̃1|, . . . , |c̃N2 |)−

[
0

(
(|âij |+ |b̂ij |)Fj

)
ij(

(|ãji|+ |̃bji|)Gi
)
ji

0

]
is a non-singular M-matrix, then the model (20) has a unique equilibrium which is
globally exponentially stable.

The global exponential stability of (20), with constant coefficients but without
delay in the leakage terms, τ = 0, also was established in [27] but with a different
hypotheses set. Also with a different hypotheses set, the global asymptotic stabil-
ity of (20) with constant coefficients and different delays in the leakage terms, was
established in [29].

Now we consider the following discrete-time high-order Hopfield neural network
model with delay in leakage terms

xi(m+ 1) = ci(m)xi(m− τ) +

N∑
j=1

aij(m)fj(xj(m))

+

N∑
j=1

N∑
l=1

bijl(m)gj(xj(m− τijl(m)))gl(xl(m− ξijl(m))), (21)

for m ∈ N0, i ∈ {1, . . . , N}, where N ∈ N, τ ∈ N0, and ci : N0 →] − 1, 1[,
τijl, ξijl : N0 → N0, aij , bijl : N0 → R, and fj , gj : R → R are functions such that
the following hypotheses hold:
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(HO1): The functions aij , bijl, and τijl, ξijl are bounded, and consider

r = − max
i,j,l,m

{τijl(m), ξijl(m), τ}, c+i = sup
m
|ci(m)|,

a+ij = sup
m
|aij(m)|, b+ijl = sup

m
|bijl(m)|;

(HO2): for each j ∈ {1, . . . , N}, the functions fj and gj are Lipschitz i.e.,
there exist constants Fj and Gj such that

|fj(x)− fj(y)| 6 Fj |x− y| and |gj(x)− gj(y)| 6 Gj |x− y|, ∀x, y ∈ R;

(HO3): for each j ∈ {1, . . . , N}, the function gj is bounded i.e., there exists
mj > 0 such that

|gj(u)| 6 mj , ∀u ∈ R.

From Theorem 3 we obtain the following global exponential stability result.

Theorem 7. Assume (HO1), (HO2), and (HO3).
If there is q = (q1, . . . , qN ) > 0 such that

di(1− c+i ) >

N∑
j=1

(
djFja

+
ij +

N∑
l=1

b+ijl (mjdlGl +mldjGj)

)
, ∀i ∈ {1, . . . , N}, (22)

then model (21) is globally exponentially stable.

Proof. The change yi(m) = d−1i xi(m), m ∈ N and i ∈ {1, . . . , N}, transforms (21)
into

yi(m+ 1) = ci(m)yi(m− τ) +

N∑
j=1

ãij(m)f̃j(yj(m))

+

N∑
j=1

N∑
l=1

b̃ijl(m)g̃j(yj(m− τijl(m)))g̃l(yl(m− ξijl(m))), (23)

where

ãij(m) = d−1i aij(m), b̃ijl(m) = d−1i bijl(m), f̃j(u) = fj(dju), and g̃j(u) = gj(dju),

for all m ∈ N0, i, j, l ∈ {1, . . . , N}, and u ∈ R. Model (23) is a particular case of
model (11) with

hij(m,α) = ãij(m)f̃j(αj(0)) +

N∑
l=1

b̃ijl(m)g̃j(αj(−τijl(m)))g̃l(αl(−ξijl(m))), (24)

for all α = (α1, . . . , αN ) ∈ XN , m ∈ N0, and i, j ∈ {1, . . . , N}.
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For each i, j ∈ {1, . . . , N}, from (HO2) and (HO3) the function hij , defined by
(24), verifies

|hij(m,α)− hij(m,β)| 6 d−1i a+ij |f̃j(αj(0))− f̃j(βj(0))|

+

N∑
l=1

d−1i b+ijl|g̃j(αj(−τijl(m)))g̃l(αl(−ξijl(m)))− g̃j(βj(−τijl(m)))g̃l(βl(−ξijl(m)))|

6 d−1i a+ijFjdj |αj(0)− βj(0)|

+

N∑
l=1

d−1i b+ijl|g̃j(αj(−τijl(m)))g̃l(αl(−ξijl(m)))− g̃j(αj(−τijl(m)))g̃l(βl(−ξijl(m)))|

+

N∑
l=1

d−1i b+ijl|g̃j(αj(−τijl(m)))g̃l(βl(−ξijl(m)))− g̃j(βj(−τijl(m)))g̃l(βl(−ξijl(m)))|

6 d−1i a+ijFjdj‖α− β‖+

N∑
l=1

d−1i b+ijlmjGldl|αl(−ξijl(m))− βl(−ξijl(m))|

+

N∑
l=1

d−1i b+ijlmlGjdj |αj(−τijl(m))− βj(−τijl(m))|

6

(
d−1i a+ijdjFj +

N∑
l=1

d−1i b+ijl (mjdlGl +mldjGj)

)
‖α− β‖,

for all m ∈ N0, and α, β ∈ XN . Consequently hypothesis (A1) holds with

Hij =

(
d−1i a+ijdjFj +

N∑
l=1

d−1i b+ijl (mjdlGl +mldjGj)

)
, ∀i, j ∈ {1, . . . , N}.

By hypothesis (22), condition (12) also holds and the result follows from Theorem
3. �

Now we consider model (21) with periodic delays and coefficients functions. From
Theorem 4 and the proof of Theorem 7, we obtain the next result.

Corollary 6. Assume ci, aij, bijl, τijl, and ξijl are ω-periodic functions.
If there is q = (q1, . . . , qN ) > 0 such that condition (22) holds, then (21) has a

unique ω-periodic solution which is globally exponentially stable.

The exponential stability of (21) with constants coefficients, τijl(m) = ξijl(m)
for all i, j, l ∈ {1, . . . , N} and m ∈ N0, and without delay in the leakage terms
(τ = 0) was recently studied in [9]. The authors also assume that

fi(0) = gi(0) = 0, ∀i ∈ {1, . . . , N},

which implies that x = 0 is an equilibrium point of

xi(m+ 1) = cixi(m) +

N∑
j=1

aijfj(xj(m))

+

N∑
j=1

N∑
l=1

bijlgj(xj(m− τijl(m)))gl(xl(m− τijl(m))), (25)

where ci ∈] − 1, 1[ and aij , bijl ∈ R. Under all these restrictions, in [9] the global
exponential stability of the zero solution of (25) is obtained with the hypothesis:
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there is q = (q1, . . . , N) > 0 such that

di(1− |ci|) >
N∑
j=1

(
djFj |aij |+

N∑
l=1

|bijl|mjdlGl

)
, ∀i ∈ {1, . . . , N},

which is a slight weaker condition than (22).

5. Numerical simulation

In this section, we give a numerical example to illustrate the effectiveness of some
the new results presented in this paper.

In model (14) with N = 2, let K = 2 and

c1(m) =
1

4
cos

2mπ

ω
, c2(m) =

1

12
sin

2mπ

ω
, b111(m) =

1

8
cos

2mπ

ω

b112(m) =
1

8
sin

2mπ

ω
, b121(m) = 0, b221(m) = −1

6
sin

2mπ

ω
, b122(m) =

1

6
sin

2mπ

ω

b211(m) =
1

4
cos

2mπ

ω
, b212(m) =

1

4
sin

2mπ

ω
, b222(m) = − 5

12
sin

2mπ

ω
,

τ111(m) = τ121(u) = τ211(m) = τ221(m) = 0,

τ112(m) = τ122(u) = τ212(m) = τ222(m) = 2 + (−1)m,

f111(u) = f121(u) = f211(u) = f221(u) = arctanu, I1(m) = 0, I2(m) =
1

2
cos

2mπ

ω
,

f112(u) = f122(u) = f212(u) = f222(u) = tanhu, ω = 10, τ = 2, r = 3,

thus all coefficients and delay functions are 10-periodic.
We have Fijk = 1 for all i, j, k ∈ {1, 2} and the M-matrix, defined by (17), has

the form

M =

[
1 0
0 1

]
−
[

1
4 0
0 1

12

]
−
[

2
8

1
6

2
4

7
12

]
=

[
1
2 − 1

6
− 1

2
1
3

]
.

AsM is a non-singular M-matrix (the principal minors are positive [12]), by Corol-
lary 2 this example has a unique 10-periodic solution which is globally exponentially
stable. Figures 1 gives the plot of the periodic solution of the illustrative numerical
example. Figures 2 and 3 give the plot of first and second, respectively, component
of three solutions of the illustrative numerical example, together with the periodic
solution.

Figure 1. The 10-periodic solution of the numerical example.
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Figure 2. The first component, x1(m), of three solutions
of the numerical example with initial condition x0(j) =
(cos(j), sin(j)) , j ∈ [−3, 0]Z, x0(j) =

(
ej ,−1

)
, j ∈ [−3, 0]Z, and

x0(j) =
(
− 3

2 ej , 32 cos(j)
)
, j ∈ [−3, 0]Z respectively.

Figure 3. The second component, x2(m), of three solu-
tions of the numerical example with initial condition x0(j) =
(cos(j), sin(j)) , j ∈ [−3, 0]Z, x0(j) =

(
ej ,−1

)
, j ∈ [−3, 0]Z, and

x0(j) =
(
− 3

2 ej , 32 cos(j)
)
, j ∈ [−3, 0]Z respectively.
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[28] C. Sowmiya, R. Raja, J. Cao, X. Li, and G. Rajchakit, Discrete-time stochastic impulsive

BAM neural networks with leakage and mixed time delays: An exponential stability problem,

J. Franklin Inst. 355 (2018) 4404-4435.
[29] C. Sowmiya, R. Raja, J. Cao, G. Rajchakit, and A. Alsaedi, A delay-dependent asymptotic

stability criteria for uncertain BAM neural networks with leakage and discrete time-varying

delays: A novel summation inequality, Asian Journal Control 22(5) (2020) 1880-1891.
[30] S. Sun and Y. Li, Mean boundedness, global attractivity and almost periodic sequence of

stochastic neural networks with discrete-time analogue. Filomat 35(12) (2021) 3919-3931.

[31] E. Suntonsinsoungvon and S. Udpin, Exponential stability of discrete-time uncertain neural
networks with multiple time-varying leakage delays, Math. Comput. Simulation 171 (2020)

233-245.
[32] N. Thoiyab, P. Muruganantham, Q. Zhu, and N. Gunasekaran, Novel results on global stabil-

ity analysis for multiple time-delayed BAM neural networks under parameter uncertainties,

Chaos Solitons & Fractals 152 (2021) 111441.
[33] A. Velichko, M. Belyaev, and P. Boriskov, A model of an oscillatory neural network with

multilevel neurons for pattern recognition and computing, Electronics 8 (1) (2019) 75.

[34] H. Xu and R. Wu, Periodicity, exponential stability of discrete-time neural networks with
variable coefficients and delays, Adv. Differ. Equ. (2013) 226.

[35] F. Zheng and B. Du, Dynamic behaviors of almost periodic solution of discrete-time inertial

neural networks with delays, Chinese J. Phys. 73 (2021) 512-522.
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