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a b s t r a c t

In this article, a pair of hybrid block techniques is constructed and successfully applied to
integrate Emden–Fowler third-order singular boundary problems. One of the proposed
one-step hybrid block techniques is obtained by considering two intermediate points.
The obtained method is then paired with a hybrid block strategy of order three to
bypass the singularity at the left endpoint of the integration interval. Some third-order
Emden–Fowler type problems are solved numerically to show the effectiveness of the
proposed technique. The numerical results are compared with other recent numerical
approaches in the literature, and the numerical simulations confirm the superiority and
robust performance of the proposed strategy.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

In this study, we provide numerical solutions to the following third-order Emden–Fowler type equations given in [1,2]

u′′′(x) = k(x, u(x)) − g(x)u′(x) −
λ

x
u′′(x) = f (x, u(x), u′(x), u′′(x)), x0 = 0 ≤ x ≤ xN , (1)

together with any of the set of boundary conditions

u(x0) = u0, u′(x0) = u′

0, u(xN ) = uN , (2)

u(x0) = u0, u′(x0) = u′

0, u′(xN ) = u′

N , (3)

u(x0) = u0, u(xN ) = uN , u′(xN ) = u′

N , (4)

where λ ≥ 1, u0, u′

0, uN , u′

N are known real-values, and g(x), k(x, u(x)) are continuous real functions.
Because of several practical applications of the Emden–Fowler type equations in real-life modeling problems in various

disciplines of applied sciences and engineering, the quest to solve the class of (1) analytically or numerically has been of
great concern to researchers in this field.
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Owing to the singularity of the third-order singular boundary value problems (TSBVP) (1) at x = 0 and its nonlinear
eatures, it becomes one of the complex problems to solve theoretically. Hence, numerical methods have played a vital
ole in providing meaningful and reasonable approximate solutions.

There are many existing numerical methods for integrating the Lane–Emden–Fowler type equation given in (1).
One of the many numerical techniques to provide solutions to (1) is the series solutions using the Adomian decompo-

ition method (ADM). The ADM or the modified Adomian decomposition method (MADM) are semi-analytical techniques
ependent on a decomposition approach to form the approximate solutions with proper and suitable initial data for
onlinear systems. It is worth noting that ADM or MADM can give the solution to the Emden–Fowler type equation (1)
nd related problems in the form of a series using Adomian polynomials.
This strategy has numerous merits. It is effortless to apply and can solve broad classes of complex problems. Besides, it

ircumvents the cumbersome integrations of the Picard method. An essential advantage of the ADM and its modifications
s that they can generate theoretical approximations to nonlinear differential equations without linearization, discretiza-
ion, or perturbation. The primary demerit of ADM or MADM is that they give only locally convergent results. For further
etails about ADM and MADM methods, we refer the reader to [3] - [4].
There are other approaches in the accessible literature for solving the TSBVP in (1). Those methods include various types

f spline methods, the variational iteration techniques, neuro-swarming-based heuristic approach, spectral methods or
symptotic numerical strategies (see [1,2,5–20]).
We remark that the research of the Emden–Fowler equations arises from theories involving gaseous dynamics

n mathematical physics and astrophysics. Additionally, the problem of reactant concentration in a chemical reactor,
eaction–diffusion processes inside a porous catalyst, the conduction of heat in the human head, the distribution of oxygen
n a spherical shell, and so on, can be modeled using Emden–Fowler equations. For more details about the application of
mden–Fowler equations in nonlinear sciences see [21,22]. Motivated by the various applications of the Emden–Fowler
quations in real-world modeling problems in nonlinear physical and applied sciences mentioned above, in the present
aper, we apply a pair of one-step hybrid block Nyström type methods (OHBNTM) to give a numerical solution to the
onlinear third-order Lame–Emden–Fowler equation in (1).

. Development of the OHBNTM method

Here, we present the mathematical formulation of the proposed OHBNTM strategy.

.1. Main formulas

Consider a partition of the form xj = x0 + jh, j = 0, 1, . . . ,N with h = xj+1 − xj. We assume that the following
polynomial on a generic subinterval [xn, xn+1] can approximate the exact solution of the TSBVP given in (1)

u(x) ≃ w(x) =

6∑
j=0

cj xj, (5)

being the approximations of the first, second, and third derivatives as follows

u′(x) ≃ w′(x) =

6∑
j=1

cjjxj−1, (6)

u′′(x) ≃ w′′(x) =

6∑
j=2

cjj(j − 1)xj−2, (7)

u′′′(x) ≃ w′′′(x) =

6∑
j=3

cjj(j − 1)(j − 2)xj−3, (8)

with the cj ∈ R unknown coefficients that would be obtained imposing some collocation conditions at specified nodes.
We consider the following intermediate nodes: xn+r = xn + rh and xn+s = xn + sh with 0 < r < s < 1, on [xn, xn+1].

Consider the approximations in (5), (6) and (7) evaluated at xn, and the one in (8) evaluated at xn, xn+r , xn+s, xn+1. We
obtain the following system, with unknowns cn, n = 0(1)6,

w(xn) = un , w′(xn) = u′

n , w′′(xn) = u′′

n , w′′′(xn) = fn,
w′′′(xn+r ) = fn+r , w′′′(xn+s) = fn+s , w

′′′(xn+1) = fn+1,

where un+j, u′

n+j, u
′′

n+j and fn+j denote approximations to u(xn+j), u′(xn+j), u′′(xn+j) and u′′′(xn+j), respectively. After getting
the values of cn, n = 0(1)6, and using the substitution, x = xn + zh, the function w(x) in (5) may be expressed as

w(x + zh) = α (z)u + hα (z)u′
+ h2α (z)u′′

+ h3(β (z)f + β (z)f + β (z)f + β (z)f ), (9)
n 0 n 1 n 2 n 0 n r n+r s n+s 1 n+1

2
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where the coefficients α0(z) = 1, α1(z), α2(z), {βi(z)}i=0,r,s,1 depend on r, s.
Evaluating the formula in (9) and its first and second derivatives at z = 1 we obtain the approximations of u(xn+1),

u′(xn+1) and u′′(xn+1), which are given respectively by

un+1 = un +
h
2

(
hu′′

n + 2u′

n

)
+

h3
(
21

(√
21 + 12

)
fn+r − 21

(√
21 − 12

)
fn+s − 186fn − 118fn+1

)
1200

,

u′

n+1 = u′

n + hu′′

n +
h2

600

(
21

(√
21 + 20

)
fn+r − 21

(√
21 − 20

)
fn+s − 304fn − 236fn+1

)
,

u′′

n+1 = u′′

n +
h
10

(14 (fn+r + fn+s) − 9fn − 9fn+1) . (10)

Now, evaluating w(x), w′(x) and w′′(x) at xn+r , xn+s, we get the following hybrid Nyström-type formulas

un+r = un −
1

168
h
((

8
√
21 − 37

)
hu′′

n + 4
(
4
√
21 − 21

)
u′

n

)
+

(
28788

√
21 − 131857

)
h3fn

2116800

+

h3
(
9
(
92512 − 20183

√
21

)
fn+r +

(
2018016 − 440369

√
21

)
fn+s + 8

(
17364

√
21 − 79571

)
fn+1

)
16934400

,

un+s = un +
h

168

((
8
√
21 + 37

)
hu′′

n + 4
(
4
√
21 + 21

)
u′

n

)
−

(
28788

√
21 + 131857

)
h3fn

2116800

+

h3
((

440369
√
21 + 2018016

)
fn+r + 9

(
20183

√
21 + 92512

)
fn+s − 8

(
17364

√
21 + 79571

)
fn+1

)
16934400

. (11)

u′

n+r = u′

n +
h
42

(
21 − 4

√
21

)
u′′

n +

(
7436

√
21 − 33879

)
h2fn

151200

+

h2
(
6
(
5696 − 1239

√
21

)
fn+r + 6

(
9719 − 2121

√
21

)
fn+s +

(
5524

√
21 − 25311

)
fn+1

)
151200

,

u′

n+s = u′

n +
h
42

(
21 + 4

√
21

)
u′′

n −

(
7436

√
21 + 33879

)
h2fn

151200

+

h2
(
6
(
2121

√
21 + 9719

)
fn+r + 6

(
1239

√
21 + 5696

)
fn+s −

(
5524

√
21 + 25311

)
fn+1

)
151200

. (12)

u′′

n+r = u′′

n +

(
512

√
21 − 2193

)
hfn

5040

+

h
(
7
(
2016 − 419

√
21

)
fn+r +

(
14112 − 3083

√
21

)
fn+s + 4

(
512

√
21 − 2343

)
fn+1

)
20160

,

u′′

n+s = u′′

n −

(
512

√
21 + 2193

)
hfn

5040

+

h
((

3083
√
21 + 14112

)
fn+r + 7

(
419

√
21 + 2016

)
fn+s − 4

(
512

√
21 + 2343

)
fn+1

)
20160

. (13)

.2. Strategy to avoid the singularity

The above main formulas cannot be used directly for solving (1) because it is not possible to get f0 = f (x0, u0, u′

0, u
′′

0),
since there is a singularity at x0 = 0. We have obtained a similar approach as in 2.1 to overcome this shortcoming,
explicitly designed for the subinterval [x0, x1], where the value f0 is not reflected. The following formulas are obtained

u1 = u0 + hu′

0 +
h2

2
u′′

0 +
h3

240
(63fr̄ − 36fs̄ + 13f1) , (14)

u′

1 = u′

0 + hu′′

0 +
1
8
h2 (5fr̄ − 2fs̄ + f1) ,

u′′
= u′′

+
h

(3fr̄ + f1) .
1 0 4
3
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and the remaining formulas are given by

ur̄ = u0 +
h
3
u′

0 +
h2

18
u′′

0 +
h3 (97fr̄ − 84fs̄ + 27f1)

6480
,

us̄ =
2
9
h
(
hu′′

0 + 3u′

0

)
+

1
405

h3 (39fr̄ − 28fs̄ + 9f1) . (15)

u′

r̄ = u′

0 +
h
3
u′′

0 +
1

216
h2 (27fr̄ − 22fs̄ + 7f1) ,

u′

s̄ = u′

0 +
2h
3

u′′

0 +
2
27

h2 (5fr̄ − 3fs̄ + f1) . (16)

u′′

r̄ = u′′

0 +
1
36

h (23fr̄ − 16fs̄ + 5f1) ,

u′′

s̄ = u′′

0 +
1
9
h (7fr̄ − 2fs̄ + f1) . (17)

e take a small step-size h, r =
1
2 −

2
√
21

, s =
1
2 +

2
√
21
, r̄ =

1
3 , s̄ =

2
3 and using all the formulas in (10)–(13) for

= 1, 2, . . . ,N − 1, along with the ones derived in (14)–(17) for the initial step, we obtain a global method that can
ive good approximations to problem (1) on the integration interval [0, xN ].

3. Analysis of the proposed OHBNTM

The main characteristics of the proposed technique OHBNTM are analyzed here.

3.1. Consistency and order of the formulas

The formulas in (10)–(13) may be written as

Ā1 Vn = h Ā2 V ′

n + h2 Ā3 V ′′

n + h3 Ā4 Fn, (18)

with Ā1, Ā2, Ā3, Ā4 constant matrices containing the coefficients of the formulas (10)–(13), and

Vn = (un, un+r , un+s, un+1)
T ,

V ′

n =
(
u′

n, u
′

n+r , u
′

n+s, u
′

n+1

)T
,

V ′′

n =
(
u′′

n, u
′′

n+r , u
′′

n+s, u
′

n+1

)T
,

Fn = (fn, fn+r , fn+s, fn+1)
T .

Assuming that u(x) is sufficiently differentiable, we define the operator L associated to the formulas in (10)–(13):

L(u(xn+1); h) =

∑
j∈I

[
αju (xn + jh) − hβju′ (xn + jh) − h2γju′′ (xn + jh) − h3νju′′′ (xn + jh)

]
, (19)

where αj, βj, γj and νj are respectively vector columns of Ā1, Ā2, Ā3, Ā4, and I denotes the set of indices, I = {0, r, s, 1}.
Expanding in Taylor series about xn we get

L(u(xn+1); h) = C0u(xn) + C1hu′(xn) + C2h2u′′(xn) + C3h3u′′′(xn) + · · · + Cqhquq(xn) + . . . , (20)

here

Cq =
1
q!

⎡⎣ k∑
j∈I

jqαj − q
k∑
j∈I

jq−1βj − q(q − 1)
k∑
j∈I

jq−2γj − q(q − 1)(q − 2)
k∑
j∈I

jq−3γj

⎤⎦ , (21)

nd q = 0, 1, 2, 3, 4, . . . .
The above operator and the associated formulas are said to be of order p if C0 = C1 = · · · = Cp+1 = Cp+2 = 0, Cp+3 ̸= 0.

The Cp+3 contains the coefficients of the principal terms of the local truncation errors (LTE). Applying this to the formulas
in (10), we get the order (p) and LTEs of the main formulas as follows

p = 4, L(u(xn+1); h) =
11h7u(7) (xn)

80640
+ O(h8)

p = 4, L(u′(xn+1); h) =
59h6u(7) (xn)

+ O(h7)

120960

4
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p = 4, L(u′′(xn+1); h) =
59h5u(7) (xn)

60480
+ O(h6). (22)

e also obtain the principal LTE and order (p) of the ad-hoc formulas by applying the same procedure presented above
o formulas in (14); along this line, we get

p = 3, L(u(x1); h) = −
1

540

(
h6u(6) (x0)

)
+ O(h7)

p = 3, L(u′(x1); h) = −
13h5u(6) (x0)

3240
+ O(h6)

p = 3, L(u′′(x1); h) = −
1

216

(
h4u(6) (x0)

)
+ O(h5). (23)

As the order of the formulas is greater than one, then they are consistent.

.2. Convergence analysis

We define convergence and show that the proposed method is convergent by writing it in an appropriate matrix–vector
otation.

efinition 3.1. Let u(x) denote the exact solution of the given singular boundary value problem and let
{
uj

}N
j=0 be the

pproximations obtained with the developed numerical strategy. The method is said to be convergent of order p if for
ufficiently small h, there exists a constant C independent of h such that

max
0≤j≤N

|u(xj) − uj| ≤ Chp.

Note that in this situation we get that max
0≤j≤N

|u(xj) − uj| → 0 as h → 0.

heorem 3.1 (Convergence Theorem). [13] Let u(x) denote the true solution of the SBVP in (1) along with the boundary
onditions in (2), and {uj}

N
j=0 the discrete solution provided by the proposed global method. Then the proposed method is

onvergent of order four.

roof. Following the ideas in [13–15], we consider the matrix D of dimension 9N × 9N given by

D =

⎡⎢⎢⎣
D1,1 D1,2 . . . D1,3N

...
...

...

D3N,1 D3N,2 . . . D3N,3N

⎤⎥⎥⎦ ,

here the elements Di,j are 3 × 3 sub-matrices, except the Di,N , i = 1, . . . , 3N which are of size 3 × 2, and the
Di,2N+1, i = 1, . . . , 3N which are of size 3 × 4. These sub-matrices are

Di,i = I, i = N + 1, . . . , 2N; 2N + 2, . . . , 3N, being I the identity matrix of order three,

DN,N =

⎡⎣1 0
0 1
0 0

⎤⎦ ;Di,i−1 =

⎡⎣0 0 −1
0 0 −1
0 0 −1

⎤⎦ , i = 2, . . . ,N;N + 2, . . . 2N; 2N + 3, . . . , 3N;

D2N+1,2N+1 =

⎡⎣−1 1 0 0
−1 0 1 0
−1 0 0 1

⎤⎦ ; D2N+2,2N+1 =

⎡⎣0 0 0 −1
0 0 0 −1
0 0 0 −1

⎤⎦ ;DN+1,2N+1 = h

⎡⎢⎣−
1
3 0 0 0

−
2
3 0 0 0

−1 0 0 0

⎤⎥⎦ ;

DN+2,2N+1 = h

⎡⎢⎢⎣
0 0 0 −

(
1
2 −

2
√
21

)
0 0 0 −

(
1
2 +

2
√
21

)
0 0 0 −1

⎤⎥⎥⎦ ;Di,N+i−1 = h

⎡⎢⎢⎣
0 0 −

(
1
2 −

2
√
21

)
0 0 −

(
1
2 +

2
√
21

)
0 0 −1

⎤⎥⎥⎦ , i = 2 . . . ,N;N + 3, . . . , 2N;

D1,2N+1 = h2

⎡⎢⎣−
1
18 0 0 0

−
2
9 0 0 0

−
1
2 0 0 0

⎤⎥⎦ ;D2,2N+1 = h2

⎡⎢⎢⎢⎣
0 0 0 −

(
37−8

√
21

)
168

0 0 0 −

(
37+8

√
21

)
168

0 0 0 −
1

⎤⎥⎥⎥⎦ ;
2

5
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Di,2N+i−1 = h2

⎡⎢⎢⎢⎣
0 0 −

(
37−8

√
21

)
168

0 0 −

(
37+8

√
21

)
168

0 0 −
1
2

⎤⎥⎥⎥⎦ , i = 3 . . . ,N.

The rest of the submatrices not given above are null matrices. We also define the matrix U of dimension 9N × (3N +1)

U =

⎡⎢⎢⎣
U1,1 U1,2 . . . U1,N

...
...

...

U3N,1 U3N,2 . . . U3N,N

⎤⎥⎥⎦ ,

ith the Ui,j submatrices of dimension 3 × 3, except the Ui,1, i = 1, . . . , 3N , which are of size 3 × 4. These submatrices
re

U1,1 = h2

⎡⎢⎣ 0 −
97

6480
7

540 −
1

240

0 −
13
135

28
405 −

1
45

0 −
21
80

3
20 −

13
240

⎤⎥⎦ ;

Ui,i = h2

⎡⎢⎢⎢⎣
−

59
1200 +

20183
89600

√
21

−
143
1200 +

440369
806400

√
21

79571−17364
√
21

2116800

−
143
1200 −

440369
806400

√
21

−
59

1200 −
20183

89600
√
21

79571+17364
√
21

2116800

−
7

400

(
12 +

√
21

)
7

400

(
−12 +

√
21

)
59
600

⎤⎥⎥⎥⎦ , i = 2 . . . ,N;

Ui,i−1 = h2

⎡⎢⎢⎣
0 0 131857−28788

√
21

2116800

0 0 131857+28788
√
21

2116800

0 0 31
200

⎤⎥⎥⎦ , i = 3, . . . ,N; U2,1 = h2

⎡⎢⎢⎣
0 0 0 131857−28788

√
21

2116800

0 0 0 131857+28788
√
21

2116800

0 0 0 31
200

⎤⎥⎥⎦ ;

UN+1,1 = h

⎡⎢⎣ 0 −
1
8

11
108 −

7
216

0 −
10
27

2
9 −

2
27

0 −
5
8

1
4 −

1
8

⎤⎥⎦ ;

UN+j,j = h

⎡⎢⎢⎢⎢⎣
−

356
1575 +

59
√

7
3

400
−9719+2121

√
21

25200
25311−5524

√
21

151200

−9719−2121
√
21

25200 −
356
1575 −

59
√

7
3

400
25311+5524

√
21

151200

−
7

200

(
20 +

√
21

)
7

200

(
−20 +

√
21

)
59
150

⎤⎥⎥⎥⎥⎦ , j = 2, . . . ,N;

UN+j,j−1 = h

⎡⎢⎢⎣
0 0 33879−7436

√
21

151200

0 0 33879+7436
√
21

151200

0 0 38
75

⎤⎥⎥⎦ , j = 3, . . . ,N; UN+2,1 = h

⎡⎢⎢⎣
0 0 0 33879−7436

√
21

151200

0 0 0 33879+7436
√
21

151200

0 0 0 38
75

⎤⎥⎥⎦ ;

U2N+1,1 =

⎡⎢⎣ 0 −
23
36

4
9 −

5
36

0 −
7
9

2
9 −

1
9

0 −
3
4 0 −

1
4

⎤⎥⎦ ;U2N+j,j =

⎡⎢⎢⎢⎢⎣
−

7
10 +

419
√

7
3

960 −
7
10 +

3083
960

√
21

2343−512
√
21

5040

−
7
10 −

3083
960

√
21

−
7
10 −

419
√

7
3

960
2343+512

√
21

5040

−
7
5 −

7
5

9
10

⎤⎥⎥⎥⎥⎦ , j = 2, . . . ,N;

U2N+j,j−1 =

⎡⎢⎢⎣
0 0 2193−512

√
21

5040

0 0 2193+512
√
21

5040

0 0 9
10

⎤⎥⎥⎦ , j = 3, . . . ,N; U2N+2,1 =

⎡⎢⎢⎣
0 0 0 2193−512

√
21

5040

0 0 0 2193+512
√
21

5040

0 0 0 9
10

⎤⎥⎥⎦ .

The remaining submatrices not included above are null matrices.
We note that the submatrices Di,j and Ui,j contain the coefficients of the formulas in (14)–(17) and those of the formulas

in (10)–(13), for n = 1, 2, . . . ,N − 1.
Let us denote the vectors of exact values as

Y =
(
u(xr̄ ), u(xs̄), u(x1), . . . , u(xN−1+s), u′(xr̄ ), . . . , u′(xN ), u′′(x0), u′′(xr̄ ), . . . , u′′(xN )

)T
,

F =
(
f (x , u(x ), u′(x ), u′′(x )), f (x , u(x ), u′(x , u′′(x )), . . . , f (x , u(x ), u′(x ), u′′(x ))) .
0 0 0 0 r̄ r̄ r̄ r̄ N N N N

6
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Note that Y has 9N components, while F has (3N + 1) components, because due to the boundary conditions in (2) u(x0),
(xN ), and u′(x0) are known values. The exact form of the discretized formulas to approximate the boundary value problem
an be written as

D9N×9NY9N + hU9N×(3N+1)F3N+1 + C9N = L(h)9N , (24)

We use the subscripts in (24) to indicate the dimensions of matrices and vectors. The vector C9N collects the known values
given through the conditions in (2), that is,

C9N = (−u0 − r̄hu′

0, −u0 − hs̄u′

0, −u0 − hu′

0, 0, . . . , 0, uN , −u′

0, −u′

0, −u′

0, 0, . . . , 0)
T ,

hile L(h)9N collects the LTEs of the formulas, as follows

L(h)9N ≃

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L[u(xr̄ ), h]
L[u(xs̄), h]
L[u(x1), h]
L[u(x1+r ), h]
L[u(x1+s), h]
L[u(x2), h]

. . .

L[u(xN ), h]
L[u′(xr̄ ), h]
L[u′(xs̄), h]
L[u′(x1), h]
L[u′(x1+r ), h]
L[u′(x1+s), h]
L[u′(x2), h]

. . .

L[u′(xN ), h]
L[u′′(xr̄ ), h]
L[u′′(xs̄), h]
L[u′′(x1), h]
L[u′′(x1+r ), h]
L[u′′(x1+s), h]
L[u′′(x2), h]

. . .

L[u′′(xN ), h]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Concerning the approximate values, they are provided by the system

D9N×9N Ȳ9N + hU9N×(3N+1)F̄3N+1 + C9N = 0 , (25)

where Ȳ9N approximates the vector Y9N , that is,

Ȳ9N =
(
ur̄ , us̄, u1, . . . , uN−1+s, u′

r̄ , . . . , u
′

N , u′′

0, u
′′

r̄ , . . . , u
′′

N

)T
,

and

F̄3N+1 = (f0, fr̄ , fs̄, f1, . . . , fN)T .

We subtract (25) from (24) to get

D9N×9NE9N + hU9N×(3N+1)
(
F − F̄

)
3N+1 = L(h)9N , (26)

where E9N = Y9N − Ȳ9N =
(
er̄ , es̄, . . . , eN−1+s, e′

r̄ , . . . , e
′

N , e′′

0, e
′′

r̄ , . . . , e
′′

N

)T is a vector of errors at the discrete points.
Through the Mean-Value Theorem, we can put for any convenient subindex i as

f (xi, u(xi), u′(xi), u′′(xi)) − f (xi, ui, u′

i, u
′′

i ) = (u(xi) − ui)
∂ f
∂u

(ξi) +
(
u′(xi) − u′

i

) ∂ f
∂u′

(ξi) +
(
u′′(xi) − u′′

i

) ∂ f
∂u′′

(ξi),

here ξ denotes an intermediate point in the line between (x , u(x ), u′(x ), u′′(x )) and (x , u , u′, u′′). Thus, we have that
i i i i i i i i i

7
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(F − F̄ )3N+1 =

⎛⎜⎜⎜⎜⎜⎝
∂ f
∂u (ξ0) . . . 0 ∂ f

∂u′ (ξ0) . . . 0 ∂ f
∂u′′ (ξ0) . . . 0

0 . . . 0 0 . . . 0 0 . . . 0
. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

0 . . .
∂ f
∂u (ξN ) 0 . . .

∂ f
∂u′ (ξN ) 0 . . .

∂ f
∂u′′ (ξN )

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e0
er̄
...

eN
e′

0
e′

r̄
...

e′

N
e′′

0
e′′

r̄
...

e′′

N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . 0 0 . . . 0 ∂ f
∂u′′ (ξ0) . . . 0

∂ f
∂u (ξr ) . . . 0 ∂ f

∂u′ (ξr ) . . . 0 0 . . . 0
. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

0 . . .
∂ f
∂u (ξN−1+s) 0 . . . 0 0 . . . 0

0 . . . 0 0 . . .
∂ f
∂u′ (ξN ) 0 . . .

∂ f
∂u′′ (ξN )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

er̄
...

eN−1+s
e′

r̄
...

e′

N
e′′

0
e′′

r̄
...

e′′

N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= J(3N+1)×9N E9N .

Note that in the second identity we have used that e0 = u(x0)− u0 = 0, e′

0 = u′(x0)− u′

0 = 0 and eN = u(xN )− u0 = 0.
With the use of the above equation, (26) may be arranged as(

D9N×9N + hU9N×(3N+1)J(3N+1)×9N
)
E9N = L(h)9N , (27)

and setting M = D + hUJ we simply get that

M9N×9NE9N = L(h)9N . (28)

Let us prove that except for a few selected values of h > 0, matrix M is invertible. If we use the abbreviate notation
DN = D9N×9N , given the form of this matrix where the submatrices have many zeros, it is easy to verify that for N = 2,

the determinant is |D2| = −2h2. By induction, it can be proved that |DN | = −
(−1)(N+1)(N2h2)

2
, and thus DN is invertible

rovided that h > 0. Now the matrix M may be rewritten as

M = D + hUJ = (Id − B)D

here Id is the identity matrix of order 9N , and B = −hUJD−1. Thus, we have that |M| = |Id − B| |D|.
As |λId − B| =

∏9N
i=1(λ − λi) is the characteristic polynomial of B, in order to have |Id − B| ̸= 0, if we take λ = 1, it is

ufficient to choose h such that

h /∈
{
1/λ̄i : λ̄i is an eigenvalue of UJD−1} .

For such values of h the equation in (28) may be rewritten as

E =
(
M−1) L(h) . (29)

he maximum norm in R and the corresponding matrix-induced norm in R9N×9N are considered. If we expand the terms
f M−1 in powers of h it can be shown that ∥M−1

∥ = O(h−2).
Assuming that u(x) has in [0, xN ] bounded derivatives up to the necessary order, from (29) we obtain that

∥E∥ ≤ ∥M−1
∥ ∥L(h)∥

= O(h−2)O(h6)

≤ K h4.

herefore, the proposed method is convergent, providing fourth-order approximations. □
8
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4. Implementation details

The current method is implemented as a global method, providing approximate solutions at the grid points at once.
he system in (25) can be formulated as F (u) = 0 where the unknowns are

Ũ =
{
ur̄ , us̄, u′

r̄ , u
′

s̄, u
′′

r̄ , u
′′

s̄

}⋃{
uj

}
j=1,...,N−1

⋃{
u′

j

}
j=1,...,N

⋃{
u′′

j

}
j=0,...,N

⋃{
uj+r , uj+s, u′

j+r , u
′

j+s, u
′′

j+r , u
′′

j+s

}
j=1,...,N−1

.

Since the proposed technique is an implicit scheme, we use a Modified Newton’s method (MNM) to solve the above
system. The MNM can be formulated as

Ũi+1
= Ũi

−
(
Ji
)−1 Fi,

where J is the jacobian matrix of F. Note that the only known information are the boundary values. Thus, the starting
guesses in the Newton’s approach are taken based on this information. For example, in case one has the values in (2),
u(x0) = u0, u′(x0) = u′

0, u(xN ) = uN , then we consider the mixed interpolating polynomial, H(x), verifying these conditions.
The values of H(x),H ′(x),H ′′(x) at the grid points provide the necessary starting guesses for the Newton’s approach. We
adopted a stopping criterion considering a maximum number of 50 iterations, while the error between two successive
approximations should be less than 10−16.

4.1. Pseudocode for the algorithm

A pseudocode of the proposed method is as follows:

Data: Take N > 0 ∈ N, and define h =
xN−x0

N
Total number of steps in the main method: N − 1;
Starting and end-point of the integration intervals: [x0, xN ]

Result: Approximations of the problem in (1) at selected points.
22 Take equations in (14)–(17), and equations in (10)–(13) for n = 1, 2, . . . ,N − 1;

44 Solve the system of equations in (10)–(17) for the above values of n to obtain the ui;

5 Save the obtained approximate solution {(xi, ui)}i=0,1,2,3,...,N

6 end

5. Numerical results

This section reports the obtained approximate solutions to the TSBVP in (1) using the newly introduced OHBNTM
echnique. The efficiency and accuracy of the proposed scheme are tested and calculated by using the following formulas:

AE = ∥u(xj) − uj∥∞, MAXAE = max
j=0,...,N

∥u(xj) − uj∥∞, ROC(h) ≃ − log2

(
MAXAEh
MAXAE2h

)
,

where AE stands for the absolute error at the considered node, MAXAE is the maximum absolute error along with the
considered interval, ROC(h) denotes numerical rates of convergence, u(xj) is the exact solution, and uj is the approximate
solution at the point xj.

5.1. Numerical example 1

We firstly consider the following TSBVP [1,10]

u′′′(x) −
2
x
u′′(x) − u(x)2 − u(x) = −x6 exp(2x) + 7x2 exp(x) + 6x exp(x) − 6 exp(x), (30)

u(0) = 0, u′(0) = 0, u(1) = e, x ∈ [0, 1].

The exact solution of this problem is u(x) = x3 exp(x).
We solved (30) by the proposed OHBNTM. We report the comparison of the obtained solutions with the cubic B-spline

method (CBSM) in [1], the quintic B-spline method (QBSM) in [10], and the exact solution to measure the accuracy of the
present technique. The data in Tables 1 − 2 show that the proposed OHBNTM is more accurate than CBSM and QBSM.
Besides, the plot of the absolute errors displayed to the right of Fig. 1 indicates that the MAXAE is 2.5×10−9. At the same
time, the reported MAXAE for the CBSM in [1] with h =

1
40 is 1.15000 × 10−6, evincing the better performance of the

OHBNTM.
9
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Table 1
Order of convergence and comparison for test problem (30).
h Method MAXAE ROC(h)
1
25 OHBNTM 1.57366 × 10−8

1
25 QBSM [10] 1.56259 × 10−7

1
50 OHBNTM 1.08169 × 10−9 3.863
1
50 QBSM [10] 1.01767 × 10−8 3.912
1

100 OHBNTM 7.0491 × 10−11 3.940
1

100 QBSM [10] 6.12965 × 10−10 3.970

Table 2
Comparison of approximate solutions on test problem (30) for h =

1
30 .

x Exact OHBNTM CBSM [1]

0.1 0.001105170918075648 0.0011051706827446236 0.0011094283
0.2 0.009771222065281361 0.009771221867922246 0.0097757339
0.3 0.03644618780455208 0.03644618780455208 0.0364507031
0.4 0.09547678064904133 0.09547678064904133 0.0954809351
0.5 0.20609015883751602 0.20609015883751602 0.2060935138
0.6 0.3935776608843499 0.3935776608843499 0.3935797567
0.7 0.6907171786623734 0.6907171786623734 0.6907176118
0.8 1.1394769553881439 1.1394769553881439 1.1394754575
0.9 1.7930506680334166 1.7930506680334166 1.7930472271
1.0 2.718281828459045 2.718281828459045 2.7182767565
MAXAE − − −− 7.83230 × 10−9 3.98000 × 10−6

Fig. 1. Plots of exact and OHBNTM solutions (left), and absolute errors (right) for (30) with h =
1
40 .

.2. Numerical example 2

For the second test problem, we consider the following TSBVP [1,23]

u′′′(x) −
3
x
u′′(x) − u(x)3 = 24 exp(x) + 12x2 exp(x) + 36x exp(x) + x3 exp(x) − x9 exp(3x), (31)

u(0) = 0, u′(0) = 0, u(1) = e, x ∈ [0, 1].

The exact solution of this problem is u(x) = x3 exp(x).
The results reported in Table 3 indicate that our method performs significantly better than the methods CBSM in [1]

and SM in [23]. The left plot of Fig. 2 depicts a good agreement of the numerical solution with the exact solution. Again
the plot of the absolute errors to the right of Fig. 2 indicates that the MAXAE is 8.85× 10−9, while the presented MAXAE
for the CBSM in [1] with h =

1
30 is 3.98 × 10−5, showing the more reliable and accurate performance of the OHBNTM.

5.3. Numerical example 3

In the next test problem, we consider the following TSBVP

u′′′(x) +
6
x
u′′(x) +

6
x2

u′(x) =
6x6 + 12x3 + 60

exp(3u(x))
, (32)

u(0) = 0, u′(0) = 0, u(1) = log(2), x ∈ [0, 1].
10
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Table 3
Comparison of approximate solutions on test problem (31) for h =

1
50 .

x Exact OHBNTM CBSM [1] SM [23]

0.1 0.001105170918075648 0.0011051711656528632 0.0011050461 0.0010868904
0.2 0.009771222065281361 0.009771222569744891 0.0097709476 0.0097345516
0.3 0.03644618780455208 0.03644618854494258 0.0364457990 0.0363925859
0.4 0.09547678064904133 0.0954767815890795 0.0954762717 0.0954086907
0.5 0.20609015883751602 0.20609015992230556 0.2060895778 0.2060113496
0.6 0.3935776608843499 0.39357766203615413 0.3935770360 0.3934935957
0.7 0.6907171786623734 0.6907171797756839 0.6907165753 0.6906354473
0.8 1.1394769553881439 1.1394769563241363 1.1394764444 1.1394077724
0.9 1.7930506680334166 1.7930506686138648 1.7930503509 1.7930074373
1.0 2.718281828459045 2.7182818285 2.7182767565 2.7182818285
MAXAE − − −− 1.15353 × 10−9 6.25000 × 10−6 8.43000 × 10−5

Fig. 2. Plots of analytical and OHBNTM solutions (left), and absolute errors (right) for (31) with h =
1
30 .

Table 4
Comparison of OHBNTM and Exact solutions on test (32) with h =

1
10 .

x OHBNTM Exact solution AE

0.0 0 0 0
0.1 0.0010007107537268378 0.0009995003330834232 1.21042 × 10−6

0.2 0.007969947137280598 0.007968169649176881 1.77749 × 10−6

0.3 0.026644225320534738 0.026641930946421092 2.29437 × 10−6

0.4 0.06203778629920728 0.0620353909194527 2.39538 × 10−6

0.5 0.11778510483060821 0.11778303565638346 2.06917 × 10−6

0.6 0.19556823220513123 0.19556678354397541 1.44866 × 10−6

0.7 0.2949066931015952 0.2949059175411005 7.75560 × 10−7

0.8 0.41343355231614093 0.4134332777573413 2.74559 × 10−7

0.9 0.5475432406809645 0.5475432067011535 3.39798 × 10−8

1.0 0.6931471805599453 0.6931471805599453 0.00000

Table 5
Order of convergence and CPU time in seconds for test problem (32).
h Method MAXAE CPU ROC(h)
1
20 OHBNTM 9.80042 × 10−8 1.796875
1
40 OHBNTM 5.53262 × 10−9 9.531250 4.03247
1
80 OHBNTM 3.38094 × 10−10 59.953125 4.14681

The exact solution of this problem is u(x) = log
(
1 + x3

)
.

Table 4 collects the approximate and exact solutions and MAXAE for h =
1
10 . The MAXAE, CPU time and ROC(h) are

ecorded in Table 5. We see that the obtained ROC(h) is consistent with the theoretical analysis of the proposed method
given in Section 3. Also, Fig. 3 shows the good results attained with the OHBNTM when solving (32).
11
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a

Fig. 3. Plots of exact and OHBNTM solutions (left), and absolute errors (right) for (32) with h =
1
20 .

Table 6
Comparison of the maximum absolute errors
(MAXAE) for problem (33).
h ϵ Methods MAXAE
1
16 2−4 OHBNTM 9.10582 × 10−15

1
16 2−4 CBSM [1] 1.15000 × 10−6

1
16 2−4 QBSM [10] 1.130000 × 10−8

1
32 2−20 OHBNTM 1.01743 × 10−16

1
32 2−20 CBSM [1] 8.60000 × 10−12

1
32 2−20 QBSM [10] 1.01000 × 10−15

Fig. 4. Plots of absolute errors for ϵ = 2−8, h =
1
16 (left) and ϵ = 2−10, h =

1
32 (right) for (33).

.4. Numerical example 4

In the last test problem, we consider following self-adjoint TSBVP [1,10], which is one of the model in nonlinear science
nd engineering

ϵu′′′(x) +
1
x
u′′(x) + u(x) = 3ϵ

(
−27ϵ cos(3x) −

9 sin(3x)
x

+ sin(3x)
)

, (33)

u(0) = 0, u′(0) = 9ϵ, u(1) = 3ϵ sin(3), x ∈ [0, 1].

The exact solution of this problem is u(x) = 3ϵ sin(3x).
The obtained results with our technique and those in [1,10] are reported in Table 6. We can see that the proposed

method provides closer approximations to the known exact solution than those in [1,10]. In addition, the plots in Fig. 4
show the absolute errors for different values of ϵ and h, which are smaller than the ones reported in [1,10]. Figures 5− 6
also show that the OHBNTM solutions approximate the exact solution to test problem (33) pretty well.
12
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Fig. 5. Plots of exact and OHBNTM solutions for ϵ = 2−8, h =
1
16 (left), and ϵ = 2−10, h =

1
32 (right) for (33).

Fig. 6. Numerical solutions of OHBNTM for (33) with h =
1
10 for different values of ϵ.

6. Conclusions

In this article, a new one-step hybrid block Nyström-type method (OHBNTM) is proposed and efficiently applied to
obtain reliable approximate solutions to Emden–Fowler type equations given in (1). The proposed OHBNTM is zero-
stable, consistent, and the convergence analysis of the current approach is established to be fourth-order convergent.
Furthermore, numerical results in Tables 1–6 and Figs. 1–6 confirm that the proposed strategy is more realistic and
efficient than other existing numerical techniques used for comparisons and found to be in good agreement with known
exact solutions.
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