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Abstract

In this work we consider the first encounter problems between a fixed and/or mo-
bile target A and a moving trap B on Bethe Lattices and Cayley trees. The survival
probability (SP) of the target A on the both kinds of structures are analyzed an-
alytically and compared. On Bethe Lattices, the results show that the fixed target
will still prolong its survival time, whereas, on Cayley trees, there are some initial
positions where the target should move to prolong its survival time. The mean first
encounter time (MFET) for mobile target A is evaluated numerically and compared
with the mean first passage time (MFPT) for the fixed target A. Different initial
settings are addressed and clear boundaries are obtained. These findings are helpful
for optimizing the strategy to prolong the survival time of the target or to speed
up the search process on Cayley trees, in relation to the target’s movement and
the initial position configuration of the two walkers. We also present a new method,
which uses a small amount of memory, for simulating random walks on Cayley trees.
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1 Introduction

Encounters between target A and a moving trap B on appropriate structures
have wide applications in target search [1–5] and prey-predator models [6].
Related researches often focus on the survival probability of the target and the
mean first encounter time (MFET) between the walkers [7–15]. By comparing
the survival probability (SP) or the MFET for a mobile target with SP or
the mean first-passage time (MFPT) for immobile target, one can find the
effect of the target’s move on the search efficiency. In general, the survival
probability of a mobile target is less than or equal to the SP of an immobile
target in the presence of randomly moving traps [16–19]. In other words, the
move of the target would speed up the encounter between the target and the
moving traps. This argument is also known as “Pascal principle”. However, the
argument is just proved on d-dimension lattice [16,20] and there are also some
different findings. Recent results show, if two walkers start from the same site
and the initial position is randomly drawn from the stationary distribution,
the move of the target A has no effect on the MFET on finite non-bipartite
connected graphs, and the move of the target A fastens the encounter between
the two walkers on finite bipartite connected graphs [21]. On infinite comb,
researchers find different results [14, 22–24], i.e., the ultimate SP for a mobile
target is greater than the ultimate SP for an immobile target in the presence of
a randomly moving trap. On finite comb, the move of the target A can speed
up the encounter process on some initial position settings, and the move of
the target A can also slow the encounter process on some other initial position
settings [21,25,26]. Therefore, one can optimize the search strategy in respect
to the target movement and the initial position configuration.

Bethe Lattices are infinite trees with same degree of all vertexes, and Cayley
trees are finite trees with same degree of all non-leaf vertexes. Cayley trees
can also be looked as Bethe Lattices confined in finite environments. Random
walks and encounters on Bethe Lattices and Cayley trees have attracted lots of
attention, and there are results for immobile target A [27–30]. Random walks
on Bethe Lattices are non-recurrent, whereas random walks on Cayley trees
are recurrent. What is the effect of target’s motion on the encounter for two
particles walking on Bethe Lattices and Cayley trees? What is the difference
between encounters on Bethe Lattices and those on Cayley trees? Are Bethe
Lattices thermodynamic limit of Cayley trees? They are interesting problems
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which are unsolved.

In this paper, we focus on encounters between two walkers (i.e., target A and
trap B) performing simple random walk on Bethe Lattices and Cayley trees.
On Bethe Lattices, there is a probability that the two walkers will never en-
counter and there is a nonzero probability that the target will survive forever.
We will consider the SP of a randomly moving target A in the presence of
randomly moving trap B and compare it with the SP for immobile target
A. On the finite Cayley tree structure, the two walkers will encounter in any
case whether the target A is mobile or not. In addition to the analysis of SP
for the target A, we also evaluate the MFET and compare it with MFPT.
Here we address the MFET numerically and different initial position settings
are considered. Note that shortage of memory is a common difficult for sim-
ulating random walk on graph with large size N . Here we introduce a new
method which just need O(log(N)) memory units. Therefore, the difficulties
in memory shortage for numerical simulation are solved.

This paper is organized as follows. In Sec. 2 we describe the topology of Bethe
lattices and Cayley trees. Next, in Sec. 3, we analyze analytically the SP for
the target A on Bethe Lattices and Cayley trees. In Sec. 4, the MFET for
mobile target A is evaluated numerically and compared it with the MFPT for
immobile target A. Finally, conclusions and discussions are provided in Sec. 5.

2 The network structure

Both, the Bethe lattice and Cayley tree, are simple connected undirected
graphs G = (V,E) (V represents the set of vertices and E represents the set of
edges) with no cycles, and they both are trees. The Bethe lattice, denoted by
BLm, is an infinite tree with same degree m (m ≥ 3) of all vertices, where m is
called a coordination number. Actually, the Bethe Lattice is an unrooted tree,
since any vertex will serve equally well as a root. The Cayley tree is rooted,
all other nodes are arranged in shells around its root vertex [27,28], and each
non-terminal vertex is connected to m (m ≥ 3) neighbors. A Cayley tree with
coordination number m and g (g ≥ 0) shells, Cm,g, is defined in the following
way. We link the root vertex O with m new vertices by means of m edges.
The first set of m nodes constitutes the shell k = 1 of Cm,g. Then, to build
the shell k (2 ≤ k ≤ g), each vertex of the shell k − 1 is linked to m− 1 new
vertices. The set of these new vertices constitutes the shell k of Cm,g. FIG. 1
shows the construction of the Cayley tree C4,3. Therefore, the vertices in the
last shell g have degree dg = 1, and all vertices in other shells have degree
dk = m (k = 0, 1, · · · , g − 1) (the shell k = 0 represents the single root vertex
O). The number of nodes of the shell k (k = 1, 2, · · · , g) is Nk = m(m−1)k−1,
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Fig. 1. Structure for a particular Cayley tree C4,3. Vertices colored with green belong
to the first shell, with red to the second shell, and with blue to the third shell of
C4,3.

while the total number of nodes and total number of edges in Cm,g read

N = |V | =
m(m− 1)g − 2

m− 2
, (1)

|E| = N − 1 =
m(m− 1)g −m

m− 2
, (2)

respectively. The main difference between Bethe Lattice and Cayley tree is
the fact that Bethe Lattice is infinite while Cayley tree finite, and Cm,g can be
considered as BLm confined in finite environments. All vertexes of BLm are
equivalent, whereas vertexes of Cm,g are divided into g+1 shells: the vertexes
in different shells are not equivalent, while the vertexes in a same shell of Cm,g

are equivalent. In this paper, an arbitrary vertex in shell k of Cm,g is denoted
by vk (k = 0, 1, . . . , g).

3 Survival probability

Let us consider target A and a moving trap B on Bethe Lattice or Cayley tree.
The survival probability (SP) up to time t for the target A is defined by

S(t) = 1−
t
∑

s=1

F (s), (3)

where F (t) is the first encounter probability (FEP), i.e., the probability that
the two players arrive at the same site for the first time at time t. In order
to find the effect of the target’s movement on SP, we analyze FEP and SP,
distinguishing between the cases with fixed and mobile target.
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3.1 Survival probability on Bethe Lattices

First we consider SP for a target A in the presence of a moving trap B on
Bethe Lattice Bm. Note that all vertexes of Bm are equivalent. The SP for
the target A is subject to the structure parameter m of Bethe Lattice and the
initial distance L between the two walkers. Let FIm(t;m,L) and SIm(t;m,L)
be the FEP and SP for immobile target, while FM(t;m,L) and SM(t;m,L)
for mobile target, respectively.

Let the target A is immobile, and let Xt be the distance between the two
walkers at time t. Thus, we have X0 = L, and

Xt+1 =











Xt + 1 with probability q = m−1
m

,

Xt − 1 with probability p = 1
m
,

(4)

for any t ≥ 0, if Xt > 0. If Xt = 0, the two players encounter at time t and the
game is over. Therefore, the first encounter processes for the two players on Bm

can be mapped into the first passage processes for biased random walk on semi-
infinite line, which is modeled by {Xt, t ≥ 0}, and F (t;m,L) ≡ P{Xt = 0}.
Here P{Xt = 0} is the probability that the walker, starting from L, first
reaches 0 at time t, on semi-infinite line. Recalling the result of P{Xt = 0}
(e.g., see Ref. [31]), we have

∑

t

FIm(t;m,L) = (
1

m− 1
)L,

and for any integer t (t ≥ L),

FIm(t;m,L) =











0, t < L,

L
t

(

t
(t+L)/2

)

p
t+L
2 q

t−L
2 , t ≥ L,

(5)

where the binomial coefficient is zero if t and L are not of the same parity.

As for the case the two walkers are mobile, let Yt be the distance between the
two walkers at time t. Thus, we have Y0 = L, and

Yt+1 =



























Yt + 2 w.p. (m−1)2

m2 ,

Yt − 2 w.p. 1
m2 ,

Yt w.p. 2m−2
m2 ,

(6)

for any t > 0, if Yt > 0. If Yt = 0, the two players encounter at time t and the
game is over. Therefore, the first encounter processes for the two walkers on
Bm can be modeled by {Yt, t ≥ 0}, and FM(t;m,L) = P{Yt = 0}.
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For a random walk, modeled by {Yt, t ≥ 0}), at any step there is a nonzero
probability 2m−2

m2 that the walker will stay in situ. Let k be the total number
of steps that the walker stay in situ, before it arrives at the site 0 at time t.
Then for the rest t − k steps, the walker moves left or right and reach site 0
at the (t−k)-th step. If we ignore the k steps that the walker stay in situ, the
process of other t − k steps is similar to {Xt, t ≥ 0}. The difference is in the

probability p = 1
(m−1)2+1

(or q = (m−1)2

(m−1)2+1
) that the walker moves to the left

(or right), and here the walker jumps 2 units at each step. The probability
that the walker reaches 0 at time t − k can be exactly addressed by using a
similar formula to Eq. (5).

If the walker for the first time arrives at site 0 at time t, then k steps that
the walker stays in situ must happened in t − 1 steps before time t, and
0 ≤ k ≤ t − L/2, t − k and L/2 are of the same parity 1 . Note that the
probability that the walker stays in situ for k times in t− 1 steps before time
t, reads

pk =
(

t−1
k

)

(
2m− 2

m2
)k(

m2 − 2m+ 2

m2
)n−k−1.

By using the whole probability formula, we get the FEP

FM(t;m,L) = P{Yt = 0, Yn > 0, 0 < n < t}

=
∑

k











pk
L/2

t− k

(

t−k
(t−k+L/2)/2

)

(

1

(m− 1)2 + 1

)

t−k+L/2
2

×

(

(m− 1)2

(m− 1)2 + 1

)

t−k−L/2
2











, (7)

for mobile target, where the sum runs over all possible k ∈ {k : 0 ≤ k ≤
t− L/2, t− k and L/2 are of the same parity}.

By comparing FIm(t;m,L) with FM(t;m,L), we find that both FIm(t;m,L)
and FM(t;m,L) decay exponentially with t and the decay of FM(t;m,L) is
faster than FIm(t;m,L) (see FIG. 2 (a) for m = 4 and L = 2).

Inserting Eqs. (5) and (7) into Eq. (3), we obtain SIm(t;m,L) and SM(t;m,L).
By comparing SIm(t;m,L) and SM(t;m,L), we find

SIm(t;m,L) ≥ SM(t;m,L), (8)

1 If k > t−L/2, we get t− k < L/2, the walker starting from site L can not reach
0 in t− k steps and the probability that the walker reaches the site 0 at time t is 0.
Similarly, if t− k and L/2 are not of the same parity, the walker starting from site
L can not reach 0 in t− k steps as well.
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Fig. 2. (a) Plots of FIm(t; 4, 2) and FM (t; 4, 2) versus t. Data for FIm(t; 4, 2)
and FM (t; 4, 2) are obtained by evaluating the exact expression (5) and(7). Both
FIm(t; 4, 2) and FM (t; 4, 2) decay exponentially with t and the decay of FM (t; 4, 2)
is faster than that of FIm(t; 4, 2). (b) Plots of SIm(t;m, 2) and SM (t;m, 2) as
functions of t. Data for SIm(t; 4, 2) and SM (t; 4, 2) are obtained by inserting
FIm(t; 4, 2) and FM (t; 4, 2) into Eq. (3). It shows SIm(t;m,L) ≥ SM (t;m,L) and
lim
t→∞

SIm(t;m,L) = lim
t→∞

SM (t;m,L).

and

lim
t→∞

SIm(t;m,L) = lim
t→∞

SM(t;m,L) = 1− (
1

m− 1
)L,

see FIG. 2 (b) for m = 4 and L = 2. Just as expected, “Pascal principle”
holds on Bethe Lattices, where the random walk is non-recurrent.

3.2 Survival probability on Cayley trees

Next we consider SP for the target A in the presence of a moving trap B on
Cayley tree Cm,g by means of numerical simulation. The FEP between the two
walkers are also analyzed. Note that the initial positions of the two walkers
have great effect on SP, and it is impossible to enumerate all the possible cases.
In order to highlight the difference between SP on Bethe Lattice Bm and SP
on Cayley tree Cm,g, similarly to the problem analyzed in Sec. 3.1, here we
consider initial position of target A at the root of Cm,g and initial distance L
between the two walkers. We also compare the SP of the target A for mobile
target with the one for immobile target and disclose the effect of target’s move
on its SP.

As in Sec. 3.1, FIm(t;m, g, L) and SIm(t;m, g, L) denote the FEP and SP
for immobile target, while FM(t;m, g, L) and SM(t;m, g, L) for mobile target,
respectively. Contrary to the results on Bethe Lattice, we find that the decay
of FIm(t;m, g, L) and FM(t;m, g, L) display three regimes with different speed,
and the decays of FIm(t;m, g, L) and FM(t;m, g, L) are slower than the decay
of FIm(t;m,L) and FM(t;m,L) (see FIG. 3 (a) for m = 4, g = 7, L = 2). For
initial position of the target A at the root of Cayley tree Cm,g, we find

SIm(t;m, g, L) ≤ SM(t;m, g, L), (9)
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Fig. 3. (a) Plot of FIm(t; 4, 7, 2) and FM (t; 4, 7, 2) versus time t. The decay of
FIm(t; 4, 7, 2) and FM (t; 4, 7, 2) displays three regimes with different speed. The
decays of FIm(t; 4, 7, 2) and FM (t; 4, 7, 2) are slower than those of FIm(t; 4, 2)
and FM (t; 4, 2), as shown in FIG 2 panel (a); (b) Plot of SIm(t;m, g, L) and
SM (t;m, g, L) as function of t for m = 4, g = 7, L = 2 and m = 4, g = 7,
L = 6. For both cases, both SIm(t;m, g, L) and SM (t;m, g, L) decay exponentially
with t, and the decay of SIm(t;m, g, L) is faster than that of SM (t;m, g, L), i.e.,
SIm(t;m, g, L) ≤ SM (t;m, g, L), which is not consistent with “Pascal principle”.
The data shown here have been obtained via numerical simulations and the sample,
for each case, contains 107 realizations.

which is opposite to the result on Bethe Lattice, as shown in Eq. (8), and is
not consistent with the “Pascal principle”. Therefore, in this sense, we cannot
look on Bethe Lattices as the thermodynamic limit of Cayley trees. FIG. 3 (b)
shows the plot of SIm(t;m, g, L) and SM(t;m, g, L) as functions of t for m = 4,
g = 7, L = 2 and for m = 4, g = 7, L = 6. Furthermore, Eq. (9) is robust and
it also holds for initial position of the target A close to the root of the Cayley
tree.

4 MFET and MFPT for two walkers on Cayley trees

In what follows, the mean first encounter time (MFET) and some related
quantities for two particles walking on Cayley trees, are evaluated and com-
pared with corresponding quantities of mean first-passage time (MFPT) while
one of the two particles is fixed. Different initial settings are considered. Here,
the MFET is obtained by means of numerical simulation.

4.1 Definitions and method for numerical simulation

For two walkers, A and B, performing simple random walk on Cayley tree
Cm,g, the MFET between two walkers, MFET(iA,iB), is the mean time it takes
the two walkers to be on the same site for the first time, after they leave
their initial position (iA, iB). For immobile target A, the MFET recovers the

8



MFPT, MFPT(iA,iB), which is the mean time it takes the walker B starting
from iB reaches iA for the first time.

In order to get more synthetic information, one should analyze the global-mean
first-encounter time (GFET), defined by

GFET :=
∑

iA∈V

∑

iB∈V

πiAπiBMFET(iA,iB). (10)

where πk = dk/
∑

i di, and dk is the degree of the arbitrary vertex k.

To find the effect of target’s initial position iA on GFET, one can also consider
GFET for fixed iA, defined by

GFETiA :=
∑

iB∈V

πiBMFET(iA,iB). (11)

For fixed target A, GFET recovers the global-mean first-passage time (GFPT),
defined by

GFPT :=
∑

iA∈V

∑

iB∈V

πiAπiBMFPT(iA,iB), (12)

and
GFPTiA :=

∑

iB∈V

πiBMFPT(iA,iB). (13)

In order to simulate a random walk on graph, the method for labeling all the
vertexes and links of the graph is employed [32, 33], and the use of adjacency
matrix is a common choice. However, it needs huge memory units when the
size of the graph is large. As an alternative of adjacency matrix representation
of the Cayley tree, here we introduce a new method, where the vertexes of
Cayley tree Cm,g are labeled by integers with base m, and the links between
the vertexes can be found in the labels of the vertexes.

Labeling of the vertexes. First, we label the root of the Cayley tree by integer 0.
Then, for any other vertex of Cayley tree Cm,g, it must be a vertex, denoted by
vk, in shell k (k = 1, 2, . . . , g), and there is an unique path {v0, v1, v2, . . . , vk}
from the root v0 to the vertex vk. Therefore, we can label the vertex by the
unique path. The method is as follows. For any non-leaf vertex of Cayley
tree Cm,g, we label its children sequentially with integers starting from 1.
Then the path {v0, v1, v2, . . . , vk} (and vertex vk) can be labeled by a sequence
{i1, i2, . . . , ik}, where ij represents the label of vj as a child of vj−1. It is
easy to find that the vertex labeled by {i1, i2, . . . , ik} is a child of vertex
{i1, i2, . . . , ik−1} and there is a link between them. Note that the root of Cayley
tree Cm,g has m children vertexes, and all other non-leaf vertexes have m− 1
children vertexes. We have 1 ≤ i1 ≤ m and 1 ≤ ij ≤ m − 1 for j > 1.
Therefore, the sequence {i1, i2, . . . , ik} can be represented by an integer with

9



base m, which is equal to
∑k

j=1(ij × mk−j). Any vertex of Cayley tree Cm,g

can be labeled by an integer with base m. The label of its parents vertex can
be obtained by removing the lowest bit of the integer, and its child vertex can
be obtained by adding one more bit after the lowest bit of the integer.

Simulation of random walk. For two walkers walking on Cm,g, we introduce
two integers with base m, pA and pB, to represent the current positions for
the walkers. pA and pB change at every step. We remove the lowest bit of the
integer when the walker moves to its parents vertex and we add one more
bit after the lowest bit of the integer when the walker moves to one of its
children vertexes. If pA = pB, encounter happens and the process ends. The
total number of bits of both integers increases with the increase of the size
N , and we should replace the two integers by two integer arrays when size
N is huge. However, we just need O(log(N)) memory units. By comparing
with the adjacency matrix, which needs O(N2) memory units, the memory
requirements of our method are negligible, and the difficulties for memory
shortage are solved. We note that the method presented here can also be used
on other regular hierarchical networks.

4.2 Walkers starting from a same site

Next, we consider a system of two walkers initially set at the same site (iA =
iB), distinguishing between the cases with fixed and mobile target. Note that
all nodes in the same shell of Cm,g are equivalent and Cm,g has just g+1 differ-
ent shells. There are only g+1 different settings for the initial position of the
two walkers. We analyze the MFET for iA = iB = vk, MFETiA=iB=vk , where
vk represents an arbitrary vertex in the shell k (k = 0, 1, 2, ...g), and compare
MFETiA=iB=vk with MFPTiA=iB=vk , where MFPTiA=iB=vk is the MFPT for
iA = iB = vk.

We analyze MFETiA=iB=vk (k = 0, 1, 2, ...g) by means of numerical simula-
tion, and disclose the relation between MFETiA=iB=vk and system size N . If
iA = iB = vg (i.e., both walkers start from a leaf vertex of Cm,g), it fol-
lows that MFETiA=iB=vg = 1. If iA = iB = vg−1, as shown in FIG. 4 (b),
MFETiA=iB=vg−1/N is almost a constant as N increases, and MFETiA=iB=vg−1

scales linearly with the size N . Therefore, we get

MFETiA=iB=vg−1 ∼ N. (14)

If iA = iB = v0 (i.e., both particles start from the root of Cm,g), as shown in
FIG. 4 (a), MFETiA=iB=v0/N increases with N , MFETiA=iB=v0/g/N is almost
a constant as N increases, and MFETiA=iB=v0/g increases linearly with N .
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Fig. 4. (a) Main plot: plot of MFETiA=iB=v0/g versus N on Cayley trees with dif-
ferent size (i.e., C4,g, g = 6, 7, . . . , 10). MFETiA=iB=v0/g scales linearly with N . In-
set plot: MFETiA=iB=v0/g/N and MFETiA=iB=v0/N versus N . MFETiA=iB=v0/N
increases with N , MFETiA=iB=v0/g/N is almost a constant as N increases. (b)
Main plot: plot of MFETiA=iB=vg−1 versus N on Cayley trees with different size
(i.e., C4,g, g = 6, 7, . . . , 10). MFETiA=iB=vg−1 scales linearly with N . Inset plot:
MFETiA=iB=vg−1/N versus N . MFETiA=iB=vg−1/N is almost a constant as N in-
creases. The data shown here has been obtained via numerical simulations and, for
every g, the sample contains 107 realizations.

Therefore, we can state

MFETiA=iB=v0 ∼ gN ∼ Nlog(N). (15)

In order to find the relation between MFETiA=iB=vk and N for all possible
starting sites vk (k = 1, 2, . . . , g − 2), we also analyze the relation between
MFETiA=iB=vk with k on Cm,g. We find that MFETiA=iB=vk/N decreases lin-
early with the increase of k (see FIG. 5 (a) for the results on C3,9, C3,10, C4,9

and C4,10), and (MFETiA=iB=vk/N)/(g − k − 1) is almost a constant as k
increases (see FIG. 5 (b) for the results on C3,9, C3,10, C4,9 and C4,10). There-
fore, MFETiA=iB=vk ∼ (g−k−1)N (k = 1, 2, . . . , g−2). Recalling the scaling
of MFETiA=iB=vg−1 and MFETiA=iB=v0 , as shown in Eqs. (14) and (15), we
obtain

MFETiA=iB=vk ∼ (g − k)N, (16)

for k = 0, 1, 2, . . . , g − 1.

Let us now consider the MFPT in the case where one of the two particles
is immobile and fixed at a given vertex vk, while the other one is allowed to
perform a random walk starting from the same site. In this case, the MFPT
corresponds to the first return time of the mobile particle. Thus, one finds,
see Ref. [34],

MFPTiA=iB=vk =
2|E|

dk
=











2[m(m−1)g−m]
(m−2)

, k = g,

2[m(m−1)g−m]
m(m−2)

, k < g.
(17)
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Fig. 5. (a) Plot of MFETiA=iB=vk/N versus k (k = 0, 1, 2, . . . , g − 1) on C3,9, C3,10,
C4,9 and C4,10. MFETiA=iB=vk/N decreases linearly as k increases; (b) Plot of
(MFETiA=iB=vk/N)/(g−k−1) versus k (k = 1, 2, . . . , g−2) on C3,9, C3,10, C4,9 and
C4,10. (MFETiA=iB=vk/N)/(g − k − 1) is almost a constant as k increases. There-
fore, MFETiA=iB=vk ∼ (g − k − 1)N . The data shown here have been obtained via
numerical simulations and, for every k, the sample contains 107 realizations.

Therefore MFPTiA=iB=vk ∼ N for all k (0 ≤ k ≤ g).

In order to find the effect of the target’s move on the encounter between
the two walkers, one should analyze the ratio between MFETiA=iB=vk and
MFPTiA=iB=vk . On Cayley tree Cm,g, let

R(k,m, g) ≡
MFETiA=iB=vk

MFPTiA=iB=vk

, (18)

where m ≥ 3, g ≥ 1 and k = 0, 1, 2, . . . , g. Note that R(k,m, g) < 1 for
k = g. For k < g, we find that R(k,m, g) monotonically increases with m (see
FIG. 6 (c), but R(k,m, g) changes a little as m increases while k = g− 1, and
R(k,m, g) decreases monotonically as k increases, see FIG. 6 (d).

For m = 3, as shown in FIG. 6 (a), R(0, m, g) > R(g − 3, m, g) > 1 and
R(g − 1, m, g) < R(g − 2, m, g) < 1. Note that R(k,m, g) decreases with k,
and we can state











R(k,m, g) < 1 if k ≥ g − 2,

R(k,m, g) > 1 if k ≤ g − 3.
(19)

Similarly, for m = 4 (see FIG. 6 (b), we get



























R(k,m, g) < 1 if k = g − 1,

R(k,m, g) ≈ 1 if k = g − 2,

R(k,m, g) > 1 if k ≤ g − 3.

(20)
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m k Encounter Times

3
≥ g − 2 MFETiA=iB=vk < MFPTiA=iB=vk

≤ g − 3 MFETiA=iB=vk > MFPTiA=iB=vk

4

≥ g − 1 MFETiA=iB=vk < MFPTiA=iB=vk

g − 2 MFETiA=iB=vk ≈ MFPTiA=iB=vk

≤ g − 3 MFETiA=iB=vk > MFPTiA=iB=vk

≥ 5

≥ g − 1 MFETiA=iB=vk < MFPTiA=iB=vk

≤ g − 2 MFETiA=iB=vk > MFPTiA=iB=vk

Table 1
The comparison between the MFET and MFPT on Cm,g while iA = iB = vk, with
m ≥ 3, g ≥ 3, and k = 0, 1, . . . , g.

Recalling R(k,m, g) monotonically increases with m, for m ≥ 5, we get











R(k,m, g) ≈ R(k, 4, g) < 1 if k = g − 1,

R(k,m, g) > R(k, 4, g) > 1 if k ≤ g − 2.
(21)

All the results given by Eqs (19)-(21) are summarized in TABLE 1, which
shows that MFETiA=iB=vk > MFPTiA=iB=vk for k ≤ g − 3, i.e., the move of
the target A slows down the encounter if the two walkers start from a site
which is not close to the leaf-vertex of the Cayley tree. It is quite different
with the result in Ref [21], which shows,

∑

k∈V

d2k
∑

d2i
MFPTiA=iB=vk = 2

∑

k∈V

d2k
∑

d2i
MFETiA=iB=vk , (22)

i.e., the move of the target A fastens the encounter if the same initial position
of the two walkers are selected randomly. The reason is in the fact that there
are so many leaf-vertexes in Cayley tree, where the move of target A fastens
the encounter.

4.3 Walkers starting from different but fixed sites

We consider the case where A and B start from arbitrary fixed sites iA and
iB on Cm,g. We will analyze MFPT for immobile target A, and MFET for
mobile target A. The MFPT is analyzed analytically based on the results
obtained in our previous work [35], while the MFET is obtained numerically
via simulations. Note that the initial position (iA, iB) of the two walkers has
great effect on MFPT and MFET. There are so many different choices of the

13



6 7 8 9 10

g

0

1

2

4

6

R
(k

,m
,g

)

(a)

m=3

k=0
k=g-3
k=g-2
k=g-1

6 8 10

g

0
1
2

4

6

8

10

12

R
(k

,m
,g

)

(b)

m=4

k=0
k=1
k=g-3
k=g-2
k=g-1

2 4 6 8 10

m

0
1
2

4

6

8

10

12

R
(k

,m
,g

)

(c)

g=4

k=0
k=1
k=g-2
k=g-1

0 5 10

k

0
1

5

10

R
(k

,m
,g

)

(d)m=3,g=10
m=4,g=10

Fig. 6. (a) R(k,m, g) versus g for m = 3 and different k (i.e., k = 0, g−3, g−2, g−1).
For any g, R(0,m, g) > R(g − 3,m, g) > 1 and R(g − 1,m, g) < R(g − 2,m, g) < 1,
which presents evidence to support Eq. (19); (b) R(k,m, g) versus g for
m = 4 for different k (i.e., k = 0, 1, g − 3, g − 2, g − 1). For any g,
R(0,m, g) > R(1,m, g) > R(g − 3,m, g) > 1, R(g − 2,m, g) ≈ 1 and
R(g−1,m, g) < 1; (c) R(k,m, g) as a function of m (m = 3, 4, . . . , 10) for g = 4 and
different k (i.e., k = 0, 1, g − 2, g − 1). R(k,m, g) increases with m, but R(k,m, g)
shows a little increase with m while k = g − 1. For g = 4, k = g − 1, R(k,m, g) < 1
for all m; for g = 4, k = g−2, R(k, 3, g) < 1, R(k, 3, g) > 1 for any m > 3; for g = 4,
k = 1 and g = 4, k = 0, R(k,m, g) > 1 for any m; (d) R(k,m, g) as a function of k
(k = 0, 1, . . . , g − 1) for m = 3, g = 10 and m = 4, g = 10. R(k,m, g) decreases as
k increases in both cases. In all four panels, R(k,m, g) is obtained by dividing the
numerical estimate for MFETk

iA=iB=vk
by the exact evaluation of MFPTk

iA=iB=vk
from (17). For every (k,m, g), the sample of the simulation contains 107 realizations.

pair (iA, iB), and, thus, we can not enumerate all the possible choices. We just
analyze the case with initial position of one of the walkers at the root.

We analyze the MFPT from iB to iA, i.e., MFPT(iA,iB). By exploiting the
connection between MFPT and effective resistance (see, e.g., Ref. [21,35,36]),
we get

MFPT(iA,iB) = |E|(LiA,iB +WiA −WiB), (23)

where Lx,y denotes the shortest-path length between vertex x and y, |E| =
N − 1 is the total number of edges, and Wy is defined as

Wy =
∑

x∈V

dx
2|E|

Lx,y. (24)
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Therefore, if (LiA,iB +WiA −WiB) ∼ const,

MFPT(iA,iB) ∼ N, (25)

and if (LiA,iB +WiA −WiB) ∼ g ∼ log(N),

MFPT(iA,iB) ∼ Nlog(N). (26)

In particular, if iA = v0 and iB = vk, (k 6= 0), one finds LiA,iB = k,WiA−WiB =

−k+ 2(m−1)
m(m−2)

− 2(m−1)1−k

m(m−2)
(see Ref. [35]). Therefore, (LiA,iB+WiA−WiB ) ∼ const,

and for any k = 1, 2, . . . , g,

MFPT(v0,vk) ∼ N. (27)

Contrary to this, if iB = v0 and iA = vk, , (k 6= 0), (LiA,iB +WiA −WiB) ≈ 2k,
and for any k = 1, 2, . . . , g,

MFPT(vk,v0) ∼ Nk. (28)

Particularly, MFPT(vg ,v0) ∼ Ng ∼ Nlog(N).

Now we turn our analysis to MFET(iA,iB), which is the MFET in case the two
walkers start from two different sites iA, iB. Here we just analyze the cases
while the initial position for one of the two walkers is at the root. For any
even k, we get

MFET(v0,vk) = MFET(vk ,v0) ∼ Nlog(N), (29)

by means of numerical simulation. Part of the results are shown in FIG. 7,
which represent the numerical results for two walkers with a minimum distance
(i.e., iA = v0, iB = v2), and maximum distance (i.e., iA = v0, iB = vmax, with
max = g if g is even and max = g−1 if g is odd). As shown in FIG. 7 (a), both
MFET(v0,v2)/g and MFET(v0,vmax)/g increase linearly with the size N ; and in
panel (b), we find that both MFET(v0,v2)/N and MFET(v0,vmax)/N increase
as N increases, whereas both MFET(v0,v2)/g/N and MFET(v0,vmax)/g/N are
almost constant as N increases. Therefore, Eq, (29) holds while iB = v2 and
iB = vmax. Note that MFET increases with the distance between the initial
position of the two walkers. We can state that Eq. (29) holds for any even k.
For odd k, the two walkers can not encounter for ever because Cayley tree is
a bipartite graph.

Comparing Eq. (27) and Eq. (29), as long as N is large enough, we find

MFPT(v0,vk) < MFET(v0,vk). (30)

It has been checked by numerical results as shown in FIG. 8. We find that
Eq. (30) is robust, and MFPT(iA,iB) < MFET(iA,iB) while iA is close to the
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Fig. 7. (a) MFET(v0,v2)/g and MFET(v0,vmax)/g as function of N on Cayley
trees with different size (i.e., Cm,g, g = 6, 7, . . . , 10). Both MFET(v0,v2)/g and
MFET(v0,vmax)/g increase linearly as N increases; (b) Plot of MFET(v0,v2)/N ,
MFET(v0,vmax)/N , MFET(v0,v2)/g/N and MFET(v0,vmax)/g/N versus N on Cay-
ley trees with different size (i.e., Cm,g, g = 6, 7, . . . , 10). Both MFET(v0,v2)/N
and MFET(v0,vmax)/N increase with N , while both MFET(v0,v2)/g/N and
MFET(v0,vmax)/g/N are almost constant as N increases. The data shown here has
been obtained via numerical simulations and, for every k, the sample contains 107

realizations.

root of the Cayley trees (e.g. iA = v0, v1, v2). Therefore, the move of the target
A slows down the encounter for a start site iA close to the root of the Cayley
trees.

Our numerical results also show that, see FIG. 8

MFPT(iA,v0) > MFET(iA,v0), (31)

while iA is close to the leaf-vertex of the Cayley trees (e.g. iA = vg−1, vg).
Therefore, the move of the target A fastens the encounter for a start site close
to the leaf-vertex of the Cayley trees.

4.4 One walker starting randomly

Here, we consider the case where the initial position of the target A is fixed
at iA, while the initial position of the trap B, iB, is random and drawn from
stationary distribution. We will analyze the GFET, which is obtained by av-
eraging the MFET over all possible iB, as defined in (11), and then compare
the GFET with GFPT, as defined in (13). The GFET is obtained numerically
for different choices of iA, while the GFPT is obtained by referring to our
previous work [35].

Note that all nodes in the same shell of Cm,g are equivalent. There are only
g + 1 different kinds of choices for the initial position of the target A. Let
vk be an arbitrary vertex in the shell k (k = 0, 1, 2, . . . , g). We will analyze

16



4 6 8 10

g

0
1
2

4

6

8

10
(a)R

(v
max

,v
0
)

R
(v

0
,v

max
)

2 4 6 8

k

0

0.5

1

1.5

2

2.5
105

(b)MFPT
(v

k
,v

0
)

MFPT
(v

0
,v

k
)

MFET
(v

0
,v

k
.)

Fig. 8. (a) The ratio R(vmax,v0) =
MFPT(vmax,v0)

MFET(vmax,v0)
and R(v0,vmax) =

MFPT(v0,vmax)

MFET(v0,vmax)

as function of g on Cayley trees Cm,g (m = 4, g = 4, 5, . . . , 10). Data for
MFET are obtained via numerical simulations while for MFPT are obtained
by evaluating the exact expression (23). Results show that R(vmax,v0) > 1 and
R(v0,vmax) < 1 for all g, which confirm the correctness of Eqs. (30) and (31);
(b) MFPT(v0,vk), MFPT(vk ,v0) and MFET(v0,vk) versus k, and compared on Cay-
ley tree C4,8. Data for MFET(v0,vk) are obtained via numerical simulations while
for MFPT(v0,vk) and MFPT(vk ,v0) are obtained by evaluating the exact expres-
sion (23). Results show that MFPT(v0,vk) < MFET(v0,vk) for all k, whereas
MFPT(vk ,v0) > MFET(vk ,v0) = MFET(v0,vk) for k ≥ 4. They all confirm the cor-
rectness of Eqs. (30) and (31).

GFETiA=vk and GFPTiA=vk , which are GFET and GFPT while iA is fixed at
vk, respectively.

For GFPTiA=vk , we find that GFETiA=vk/g increases linearly with the size
N , and GFETiA=vk/N increases as N increases, whereas GFETiA=vk/g/N is
almost constant as N increases (see FIG. 9 for iA = v0 and iA = vg on Cayley
trees Cm,g with m = 4, g = 6, 7, . . . , 10). Therefore, we can state that

GFETiA=vk ∼ gN ∼ Nlog(N), (32)

for k = 0, 1, 2, . . . , g.

We also find, for any different i, j, GFETiA=vi ≈ GFETiA=vj , which means
that the initial position iA has a little effect on GFETiA=vk (see FIG. 9, where
the signs of GFETiA=v0 are overlapped with those of GFETiA=vg , with v0 and
vg being two sites with largest difference), and we can look on GFETiA=vk as
a quantity which is independent of k.

As for GFPTiA=vk , for an immobile target A, Refs. [29, 35] shows that
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Fig. 9. (a) Plot of GFETiA=vk/g (k = 0, g) versus N on Cayley trees Cm,g with
m = 4, g = 6, 7, . . . , 10. Both GFETiA=v0/g and GFETiA=vg/g increase linearly
with N , and GFETiA=v0/g ≈ GFETiA=vg/g, which means that the selection of iA
has a little effect on GFETiA=vk ; (b) Plot of GFETiA=vk/N and GFETiA=vk/g/N
(k = 0, g) versus N on Cayley trees Cm,g with m = 4, g = 6, 7, . . . , 10. Both
GFETiA=v0/N and GFETiA=vg/N increase with N , whereas GFETiA=v0/g/N and
GFETiA=vg/g/N are almost constant as N increases. The data shown here have
been obtained via numerical simulations and, for every initial position iA, the sample
contains 107 realizations.

GFPTiA=vk = (m− 1)g[
2km

m− 2
−

2(m− 1)

(m− 2)2
]

+
4(m− 1)g−k+1

(m− 2)2
−

m(3m2 − 8m+ 8)

(m− 2)3

≈ 2kN −
2(m− 1) + 4(m− 1)1−k

m(m− 2)
N, (33)

for any k = 0, 1, 2, . . . , g. Therefore, GFPTiA=vk increases monotonically in
respect to k, and the initial position of the target A has a great effect on the
GFPT. Particularly, GFPTiA=vk ∼ N for k = 0, and GFPTiA=vk ∼ Nlog(N)
for k = g. Hence, r(k,m, g) increases with k, where

r(k,m, g) ≡
GFPTiA=vk

GFETiA=vk

(34)

with m and g being parameters of the Cayley tree Cm,g.

As shown in FIG. 10, we also find that r(k,m, g) decreases as m increases, see
panel (a), and

r(
g − 1

2
, m, g) ≥ 1 ≥ r(

g − 3

2
, m, g), (35)
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Fig. 10. (a) r(k,m, g) versus m for g = 5 and different k (i.e., k = g−3
2 , g−2

2 , g−1
2 ).

r(k,m, g) decreases as m increases and expression (35) holds. It also informs us that
r(g−2

2 ,m, g) > 1 while m = 3, r(g−2
2 ,m, g) ≈ 1 while m = 4, and r(g−2

2 ,m, g) < 1
while m ≥ 5, which give us an evidence to support of expression (39); (b)-(d)
r(k,m, g) versus g for m = 3, m = 4, m = 5, and different choices of k, respectively.
Expressions (35) and (39) hold for all considered cases. In all four panels, r(k,m, g)
is obtained by dividing the exact evaluation of GFPTiA=vk from Eq. (33) by the nu-
merical estimates for any GFETiA=vj , j = 0, 1, 2, . . . , g and, for every triple (k,m, g)
the sample of the simulation contains 107 realizations.

for any m and g, see panels (a)-(d) 2 . Therefore,











r(k,m, g) ≤ r( g−3
2
, m, g) ≤ 1 if k ≤ g−3

2
,

r(k,m, g) ≥ r( g−1
2
, m, g) ≥ 1 if k ≥ g−1

2
.

(36)

Thus, for any non-negative integer k, if k ≥ g−1
2
, the move of target A fastens

the encounter between the two walkers,

GFPTiA=vk ≥ GFETiA=vk ; (37)

and if k ≤ g−3
2
, the move of the target A slows down the encounter between

the two walkers,
GFPTiA=vk ≤ GFETiA=vk . (38)

2 Note that GFETiA=vk can be considered as a quantity which is independent of
k and GFPTiA=vk can be exactly evaluated from Eq. (33) for any real k. If k is
not an integer, r(k,m, g) can also be obtained by dividing the exact evaluation
of GFPTiA=vk from Eq. (33) by the numerical estimates for any GFETiA=vj , j =
0, 1, 2, . . . , g, and then be used as a reference value.
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As for k = g−2
2
, from FIG. 10, we can find

r(
g − 2

2
, m, g)



























> 1 if m = 3,

≈ 1 if m = 4,

< 1 if m ≥ 5.

(39)

Therefore, if k = g−2
2

is a non-negative integer,



























GFPTiA=vk > GFETiA=vk if m = 3,

GFPTiA=vk ≈ GFETiA=vk if m = 4,

GFPTiA=vk < GFETiA=vk if m ≥ 5.

(40)

4.5 Walkers starting randomly

For completeness, we analyze walkers starting from sites iA and iB drawn in-
dependently from the stationary distribution Π on a Cayley tree Cm,g. We an-
alyze the GFET for a mobile target, and compare it with the GFPT for an im-
mobile target. Note that the initial position iA has little effect on GFETiA=vk .
We have GFET ≈ GFETiA=vk . Recalling Eq. (35), we get

GFPTiA=v g−3
2

< GFET < GFPTiA=v g−1
2

, (41)

where

GFPTiA=v g−1
2

≈ gN −
m2 − 2 + 4(m− 1)

3−g
2

m2 − 2m
N,

and

GFPTiA=v g−3
2

≈ gN −
3m2 − 4m+ 4(m− 1)

5−g
2

m2 − 2m
N.

Therefore,
GFET ∼ Nlog(N). (42)

The GFPT can be rewritten as, see Ref. [21]

GFPT= |E|
∑

y∈V

dy
2|E|

Wy, (43)
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Fig. 11. The ratio GFPT/GFET, obtained by dividing the exact evaluation of GFPT
from Eq. (45) by the numerical estimates for GFET, versus N . GFPT/GFET > 2
and GFPT/GFET approaches 2 as N → ∞.

where [35]

∑

y∈V

dy
2|E|

Wy =
2m(2gm2 − 2m− 4gm−m2 + 2)(m− 1)2g

2(m− 2)32|E|2

+
m(3m2 + 4m− 4)(m− 1)g −m3

2(m− 2)32|E|2
. (44)

Therefore,

GFPT=
2m(2gm2 −m2 − 2m− 4gm+ 2)(m− 1)2g

2|E|(m− 2)3

+
m(3m2 + 4m− 4)(m− 1)g −m3

2|E|(m− 2)3

≈ 2gN −
m2 + 2m− 2

m2 − 2m
N

∼Nlog(N). (45)

Comparing GFET and GFPT, as shown in Eqs. (41) and (45), we get

GFPT > 2GFET, (46)

and in the limit of large size, N → ∞ (see FIG. 11 for m = 4),

GFPT

GFET
→ 2. (47)

Therefore the move of target A fastens the encounter between A and B.
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5 Conclusion

Bethe Lattices are infinite regular trees with same degree of all vertexes,
whereas Cayley trees are regular finite trees with same degree of all non-leaf
vertexes. Bethe Lattices are often seen as the thermodynamic limit of Cayley
trees. In this work we considered the first encounter problems between the
target A (or a prey) and a moving trap B on Bethe Lattices and Cayley trees,
distinguishing between the case with fixed and mobile target. The survival
probability (SP) of the target A on both trees are evaluated. Results show,
if we fix the distance between the two particles, whose initial positions are
close to the root, the SP of a mobile target is less than or equal to the SP of
an immobile target on Bethe Lattices, whereas the SP of a mobile target is
greater than or equal to the SP of an immobile target on Cayley trees. There-
fore, if the initial position of the pray is close to the root, in order to prolong
survival time, on Bethe Lattices, it is better for the prey to stay still, whereas
on Cayley trees – the prey should move. In this sense, we can not consider the
Bethe Lattices as thermodynamic limit of Cayley trees.

On Cayley trees, the MFET for a mobile target A is analyzed and compared
with the MFPT for a fixed target A. Different initial position settings are
considered and some interesting results are found. In general, if the initial
position of the both particles are set randomly, the move of target A would,
on average, speed up the encounter between them. However, if the initial
position of target A is fixed at an arbitrary site in the shell k, and the initial
position of the trap B is randomly drawn from the stationary distribution,
two different results are observed. Namely, the move of the target A speeds
up the encounter while k ≥ g−1

2
, whereas the move of the target A slows down

the encounter while k ≤ g−3
2
. These findings would be helpful for prolonging

the survival time of the target on Cayley trees. The target should move if
its initial position is close to the root, but it should stay still if its initial
position is close to the leaf-vertex. It is known, see Ref. [21], that the move
of the target A would, on average, speed up the encounter, if the two walkers
start from the same site on Cayley tree and if the same initial position of the
two walkers are selected randomly. However, if we classify all the vertexes of
Cayley tree Cm,g into different shells according to its distance from the root,
and let the two walkers both start from the same site in shell k, we find that
the argument just holds for k = g or k = g − 1, and for all the other cases
where k = 0, 1, . . . , g− 3, the move of the target A slows down the encounter.
If two friends, separating at a certain site in Cayley tree, want to meet again
quickly, it is better one of the two friends to stay still if their initial position is
not close to the leaf-vertex. All these findings would be helpful for optimizing
the search process on regular branch structures in relation to the motion of
the target and to the initial position setting of the target. The effect of the
target’s move on the encounter time on other structures is an interesting topic
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and worth for further analysis.
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