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Abstract

Four novel implicit finite difference methods with (q + s)-th order in space
based on Padé approximations have been analyzed and developed for the sine-
Gordon equation. Specifically, (0, 4), (2, 2), (2, 4), and (4, 4) Padé methods.
All of them share the treatment for the nonlinearity and integration in time,
specifically, the one that results in an energy-conserving (0, 2) Padé scheme. The
five methods have been developed with and without Richardson extrapolation in
time. All the methods are linearly, unconditionally stable. A comparison among
them for both the kink–antikink and breather solutions in terms of global error,
computational cost and energy conservation is presented. Our results indicate
that the (0, 4) and (4, 4) Padé methods without Richardson extrapolation are
the most cost-effective ones for small and large global error, respectively; and
the (4, 4) Padé methods in all the cases when Richardson extrapolation is used.

Keywords: Sine-Gordon equation, Padé numerical methods, Implicit time
integration, Richardson extrapolation

1. Introduction

The one-dimensional sine-Gordon equation (sGE) has been used for model-
ing a large amount of physical systems in classical field theory. To mention just
a few, it models the propagation of magnetic flux in large Josephson junctions,
dislocations in crystals, nonlinear spin waves in superfluids, or waves in ferro-5

magnetic and anti-ferromagnetic materials, among others [1, 2, 3]. The great
advantage of the sGE as a model in physics is its exact solvability [4, 5]. The
general solution for its initial-value problem can be obtained by using the inverse
scattering method, a kind of nonlinear Fourier method [6, 7]. The numerical
study of the sGE with small perturbations still attract the attention of mathe-10

maticians and physicists [3], including new applications, like the propagation of
nonlinear electromagnetic waves in graphene superlattices [8].
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Guo Ben-Yu et al. [9] developed an implicit, energy-conserving, leapfrog
finite difference scheme for the Klein–Gordon equation. This method was in-
spired in the explicit one developed by Strauss and Vázquez [10], first used for15

the sGE in Ref. [11]. These methods are energy-conserving and second-order in
both space and time.

Finite difference schemes based on (q, s) Padé approximants, with (q+ s)-th
order in space, are also referred to as compact operator methods. (0, 2), (1, 1),
and (1, 2) Padé methods were developed by Bratsos and Twizell [12]; a (2, 2)20

scheme by Duncan [13], applied to the sGE in Bratsos [14]; and a (2, 4) one
by Sari and Güarslan [15]. A comparison of some Padé methods shows that
the high-order ones are more efficient for high accuracy [13]. In fact, fourth-
order Padé methods were used for the two-dimensional sGE in Refs. [16, 17, 18].
All these Padé methods use the nonlinearity treatment of the finite difference25

scheme developed by Perring and Skyrme [19] (the first numerical method for
the sGE until these authors’ knowledge).

Recently, we have developed (0, 4), (2, 2), (2, 4), and (4, 4) Padé meth-
ods for the sGE using the nonlinearity treatment developed by Strauss and
Vázquez [10]; our results show that the most cost-effective ones are those of30

higher order, being the spatial order of accuracy more relevant for accuracy than
the energy conservation property, even in long-time integrations [20]. Similar
conclusions have been obtained for other schemes in older studies [13, 21, 22].

Richardson extrapolation (RE) can be used to increase the order of accuracy
of a numerical method [23]. This technique could be applied in both space and35

time [24, 25], but in this paper will be applied only in time. The successful ap-
plication of RE requires the knowledge of the order of accuracy of the numerical
scheme calculated by means of an asymptotic expansion of the truncation error.
In practice, codes solving partial differential equations may not achieve the the-
oretical order of accuracy. For the sGE, the best results have been obtained by40

applying only one level of extrapolation in time [26, 27]. Let us also emphasize
that in long-time integrations the use of RE requires restarting to cope with
phase errors in velocity [28, 29].

The goal of this paper is the development and comparison of new Padé
methods with the nonlinearity treatment developed by Guo Ben–Yu et al. [9],45

with and without Richardson extrapolation. The contents of this paper are as
follows. Section 2 presents five numerical Padé approximation schemes for the
sGE; their local truncation error terms are given in Subsection 2.1; their linear
stability analysis is in Subsection 2.2; and the implementation details, including
the application of RE, the Newton’s iterative method and the avoidance of50

catastrophic cancellations in the nonlinearity are exposed in Subsection 2.3. A
detailed comparison of the five methods with and without RE is presented in
Section 3, for the kink-antikink solution in Subsection 3.1, and for the breather
one in Subsection 3.2. Finally, the last section summarizes the main conclusions.
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2. Numerical schemes55

The non-dimensional form for the initial-value problem of the sGE is written
as

∂2u

∂t2
− ∂2u

∂x2
+

dF (u)

du
= 0, x ∈ R, t ≥ 0, (1)

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x), (2)60

where u(x, t) denotes the amplitude of the solution, x is the spatial coordinate, t
is time, and F (u) = 1− cos(u) is the potential energy, with dF (u)/du = sin(u).
It is well-known that the sGE is integrable with an infinite set of conservation
laws. The momentum and energy of the solutions can be used to assess the
accuracy of the numerical solution; they are given by65

P (t) = −
∫

∞

−∞

(

∂u

∂t

) (

∂u

∂x

)

dx = P (0), (3)

and

E(t) =

∫

∞

−∞

(

1

2

(

∂u

∂t

)2

+
1

2

(

∂u

∂x

)2

+ F (u)

)

dx = E(0), (4)

respectively. The speed of the kinks (antikinks) of the sGE can be calculated by
using v(t) = P (t)/E(t); note that |P (t)| ≤ E(t), since F (u) is positive definite.70

Let us consider the general Padé numerical method given by

Ai(E)
Un+1
m − 2Un

m + Un−1
m

∆t2
− Bi(E)

(Un+1
m + Un−1

m )

2
+Ai(E)H(Un+1

m ) = 0,

(5)

with

H(Un+1
m ) ≡ F (Un+1

m )− F (Un−1
m )

Un+1
m − Un−1

m

, (6)

where A−1
i (E)Bi(E)u

n
m is a Padé approximant for the second-order spatial75

derivative of u(xm, tn), with E being the shift operator, i.e., EUn
m = Un

m+1,
Un
m ≈ u(xm, tn) = un

m, with xm = m∆x, m ∈ Z, with ∆x as the grid size, and
tn = n∆t, n ∈ N, with ∆t as the time step. Hereon, for the numerical solution
of the initial-value problem of Eq. (1), periodic boundary conditions are used in
the finite interval x ∈ (−L/2, L/2], with xm = −L/2 +m∆x, m = 1, 2, . . . ,M ,80

and ∆x = L/M (note that x0 ≡ xM ), and a finite time interval t ∈ [0, T ], with
tn = n∆t, n = 0, 1, . . . , N , and ∆t = T/N .

Method 1. The finite difference method developed by Guo Ben-Yu et al. [9]
is interpreted as a (0,2)-Padé method by using

A1(E) = I,85
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B1(E) =
E−1 − 2 + E1

∆x2
,

where I is the identity operator. Method 1 is second-order accurate in space
(p1 = 2) since

B1(E)

A1(E)
u(xm, tn) =

∂2u

∂x2
+

∆x2

12

∂4u

∂x4
+O(∆x4).90

Method 2. A novel (0,4)-Padé method with a fourth-order discretization
of the spatial derivatives given by

A2(E) = I,

B2(E) =
−E−2 + 16E−1 − 30 + 16E1 − E2

12∆x2
.95

By using Taylor series expansion, the Padé operator yields

B2(E)

A2(E)
u(xm, tn) =

∂2u

∂x2
− ∆x4

90

∂6u

∂x6
+O(∆x6).

Method 3. A novel (2,2)-Padé approximation written as

A3(E) =
E−1 + 10 + E1

12
,

100

B3(E) =
E−1 − 2 + E1

∆x2
,

which approximates the second-order derivative up to the fourth-order, as shown
by Taylor series expansion,

B3(E)

A3(E)
u(xm, tn) =

∂2u

∂x2
− ∆x4

240

∂6u

∂x6
+O(∆x6).

Method 4. A novel, sixth-order accurate in space, (2,4)-Padé approxima-105

tion given by

A4(E) =
2E−1 + 11 + 2E1

3
,

B4(E) =
E−2 + 16E−1 − 34 + 16E1 + E2

4∆x2
,

which can be easily checked by Taylor series expansion yielding110

B4(E)

A4(E)
u(xm, tn) =

∂2u

∂x2
+

23∆x6

75600

∂8u

∂x8
+O(∆x8).

Method 5. A novel eighth-order accurate (4,4)-Padé approximation written
as

A5(E) =
23E−2 + 688E−1 + 2358 + 688E1 + 23E2

15
,
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115

B5(E) =
31E−2 + 128E−1 − 318 + 128E1 + 31E−2

∆x2
,

whose accuracy can be verified by Taylor series expansion resulting in

B5(E)

A5(E)
u(xm, tn) =

∂2u

∂x2
− 79∆x8

4762800

∂10u

∂x10
+O(∆x10).

The existence, uniqueness, and regularity of the solutions of the initial-
boundary value problem for the sGE is widely known in the literature. For120

example, Theorem B.5 in Ref. [30, Appendix B] states that for u0(x) ∈ Lp(R),
∂u0(x)/∂x ∈ Lp(R), and u1(x) ∈ Lp(R), the unique weak solution of the sGE
for t ∈ [0, T ] is u(x, t) ∈ Lp(R) × L∞[0, T ]. Hence, for a regular enough initial
condition, the classical solution achieves the same regularity, and there is no
problem with the consistency in both space and time for Methods 1–5.125

2.1. Local truncation error

Let us determine the local truncation error terms Li(u) of Method 1–5. By
using Taylor series expansion, after the substitution of Un

m by the exact solution
u(xm, tn) in Eq. (5) for the i-th method, results in

Mi(u) ≡ G(u) + Li(u) = 0, (7)130

where G(u) is the sine-Gordon equation, cf.

G(u) ≡ ∂2u

∂t2
− ∂2u

∂x2
+ sin(u),

and the local truncation error is

Li(u) = T (u)∆t2 + Si(u)∆xpi + h.o.t., (8)

where h.o.t. corresponds to the higher-order terms depending on u and its partial135

derivatives, pi is spatial order of accuracy of the i-th method, and

T (u) =− 1

6
sin(u)

(

∂u

∂t

)2

+
1

2
cos(u)

∂2u

∂t2
+

1

12

∂4u

∂t4

− 1

2
sin(u)

(

∂u

∂x

)2

+
1

2
cos(u)

∂2u

∂x2
− 1

2

∂4u

∂x4
.

Method 1. The local truncation error for Method 1 is given by

L1(u) = T (u)∆t2 − ∆x2

12

∂4u

∂x4
+ h.o.t. . (9)140

Method 2. The local truncation error for Method 2 can be written as

L2(u) = T (u)∆t2 +
∆x4

90

∂6u

∂x6
+ h.o.t.. (10)
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Method 3. For this method, the calculation of the local truncation error
yields

L3(u) = T (u)∆t2 +
∆x4

240

∂6u

∂x6
+ h.o.t.. (11)145

Method 4. In this case, the local error is

L4(u) = T (u)∆t2 − 23∆x6

75600

∂8u

∂x8
+ h.o.t.. (12)

Method 5. The local error for Method 5 is given by

L5(u) = T (u)∆t2 +
79∆x8

4762800

∂10u

∂x10
+ h.o.t. . (13)

Note that the C∞ regularity of the solutions of the initial-boundary value150

problem for the sGE for a C∞ initial condition ensures that the truncation error
terms for Methods 1–5 are properly defined.

2.2. Stability analysis

The linear stability of Methods 1–5 can be studied by using the von Neumann
analysis of Eq. (5) with F ≡ 0. Let us substitute in Eq. (5) the Fourier expansion155

of Zn
m = Un

m − Un∗
m = eimβ∆x ξn, where Un∗

m is a reference solution, i =
√
−1,

β is the spatial frequency, and ξ is the amplification factor. After cancelling
common factors the resulting polynomial equation for ξ is given by

pi(ξ) = Ai ξ
2 − 2Bi ξ +Ai = 0, (14)

whose two roots ξ1 and ξ2 have modulus smaller than or equal to unity for every160

ξ if and only if |Bi| ≤ Ai, i.e., −Ai ≤ Bi ≤ Ai. These two inequalities yield
necessary condition for linear stability on both ∆x and ∆t. For simplicity, let
us use r = ∆t/∆x, and ω = β∆x/2.

Method 1. The stability polynomial (14) for the Guo Ben-Yu et al. [9]
method has coefficients165

A1 = B1 + 2 r2 sin2(ω), B1 = 1.

Method 2. The stability polynomial (14) for this method is given by

A2 = B2 +
8

3
r2 sin2(ω)− 1

6
r2 sin2(2ω), B2 = 1.

Method 3. This method has a stability polynomial (14) with coefficients

A3 = B3 + 2 r2 sin2(ω), B3 = 1− 1

3
sin2(ω).170

Method 4. The stability polynomial (14) of this method can be written as

A4 = B4 + 8 r2 sin2(ω) +
1

2
r2 sin2(2ω),
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B4 = 5− 8

3
sin2(ω).

Method 5. The stability polynomial (14) of this method yields175

A5 = B5 + 256 r2 sin2(ω) + 62 r2 sin2(2ω),

B5 = 252− 2752

15
sin2(ω)− 92

15
sin2(2ω).

The stability conditions for the five methods −Ai ≤ Bi, and Bi ≤ Ai are
always true, since Bi ≥ 0, and Ai − Bi ≥ 0, in all the cases. Hence, the five180

methods are linearly, unconditionally stable.
Method 1 is nonlinearly stable since it exactly conserves a positive definite,

discrete analogue of the energy (4), concretely [9]

En = ∆x
∑

m





1

2

(

Un+1
m − Un

m

∆t

)2

+

(

Un+1
m+1 − Un+1

m

2∆x

)2

+

(

Un
m+1 − Un

m

2∆x

)2




+∆x
∑

m

[

F (Un+1
m ) + F (Un

m)

2

]

. (15)185

For a fair comparison of the five methods, the same discrete energy (15) will be
used for all the methods.

Let us also use a discrete analogue of the momentum (3) given by [9]

Pn = −∆x
∑

m

[(

Un+1
m − Un

m

∆t

) (

Un
m+1 − Un

m−1

2∆x

)]

. (16)

Thanks to the Lax equivalence theorem, Methods 1–5 are convergent since190

they are consistent and linearly stable. Moreover, Method 1 is also nonlinearly
stable, so in long-time integrations it is expected to behave better than the other
four methods; however, in practice, this behaviour should be further explored.

2.3. Richardson extrapolation and implementation

In order to increase the order of Methods 1–5 from their second-order up195

to the fourth-order of accuracy in time, Richardson extrapolation can be used.
Let us apply only one level of Richardson extrapolation by using

Un+1
m =

4U
n+1,(∆t/2)
m − U

n+1,(∆t)
m

3
, (17)

where U
n+1,(∆t/2)
m and U

n+1,(∆t)
m are the second-order approximations in time

to u(xm, tn+1) calculated with timesteps ∆t/2 and ∆t, respectively, and Un+1
m200

is its fourth-order extrapolation in time.
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Methods 1–5 are implicit, hence a nonlinear equation should be solved for
the calculation of Un+1

m from Un
m and Un−1

m in Eq. (5). Let us use Newton’s
iterative method given by

Ai(E)
(

U (k+1)
m − 2Un

m + Un−1
m

)

−∆t2 Bi(E)
(U

(k+1)
m + Un−1

m )

2
205

+∆t2 Ai(E)
(

H(U (k)
m ) +Hu(U

(k)
m ) (U (k+1)

m − U (k)
m )

)

= 0, (18)

with

Hu(U
(k)
m ) ≡ Fu(U

(k)
m ) (U

(k)
m − Un−1

m )− (F (U
(k)
m )− F (Un−1

m ))
(

U
(k)
m − Un−1

m

)2 . (19)

Our stopping test for Newton’s iteration convergence is based on the relative

error using the infinite norm, i.e., ‖U (k+1)
m − U

(k)
m ‖∞ ≤ Tolrel ‖U

(k+1)
m ‖∞, with210

‖U (k)
m ‖∞ = maxm |U (k)

m |, and Tolrel being a small enough relative tolerance.
In the numerical evaluation of Eqs. (6) and (19) there exists catastrophic

cancellations when |U (k)
m − Un−1

m | ≪ 1. For the sGE, they can be avoided by
rearranging the expression of H(U) by means of the exact formula [31, 32, 33]

H(U) =
cos(U)− cos(Un−1

m )

U − Un−1
m

=
2 sin((U + Un−1

m )/2) sin((U − Un−1
m )/2)

U − Un−1
m

,215

and that of Hu(U) by means of

Hu(U) =
sin(U)

U − Un−1
m

− 2 sin((U + Un−1
m )/2) sin((U − Un−1

m )/2)
(

U − Un−1
m

)2 .

Let us highlight that, although round-off errors are reduced after the application
of these rearrangements, the discrete energy-conservation property of Method 1
can be affected by its use; the corresponding penalty grows as the numbers of220

points where these rearrangements do.

3. Numerical results

Let us summarize the main results for the comparison of Methods 1–5 both
with and without RE for sGE, obtained after a large set of simulations for the
kink–antikink and breather solutions. The five methods are compared in terms225

of error, energy conservation, and computational cost. Subsection 3.1 shows the
results for a kink–antikink solution and Subsection 3.2 for the breather solution.

3.1. Kink–antikink

The analytical solution of the sGE for a kink–antikink collision is given by

uka(x, t) = 4 tan−1 sinh(v (t− 10)/r−)

v cosh(x/r−)
, (20)230
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Figure 1: Numerical error (left plots) and computational cost (right plots) with (bottom plots)
and without (top plots) RE for the kink-antikink solution with T = 20 and ∆t = 0.001 as
a function of ∆x ∈ [1/800, 1/700, . . . , 1/100, 1/90, 1/80, . . . , 1/10, 2/10, 3/10, . . . , 1] for
Methods 1–5.

where r− =
√
1− v2. Methods 1–5 with the initial conditions (2) approximated

by means of U0
m = uka(xm, 0), and U−1

m = uka(xm,−∆t), with v = 1/2, yield
the numerical solution Un

m for n = 1, 2, . . . , N . Let us present results as function
of ∆t and ∆x, with T = 20, L = 50, and Tolrel = 10−14.

Table 1 shows a linear fitting of the logarithm of the numerical error versus235

the logarithm of the grid size for Methods 1–5 without and with RE, for ∆t =
0.001, T = 20, and L = 50 with several values of ∆x ∈ [1/800, 1]. This table
validates the spatial order of Methods 1–5 since the results are in good agreement
with the theoretical orders of accuracy, cf. 2, 4, 4, 6, and 8, respectively.

Figure 1 (left plots) shows the numerical error ‖UN
m − uka(xm, 20)‖∞ for240

Table 1: The numerical order of accuracy in space of Methods 1–5 obtained by linear fitting
of the logarithm of the error versus the logarithm of the grid size (fitted only for ∆x such that
the error in time is smaller than the error in space). The results in this table have L = 50,
∆t = 0.001, and T = 20.

Method 1 Method 2 Method 3 Method 4 Method 5
Fit for ∆x ≥ 1/800 1/30 1/30 1/10 1/5
Without RE 2.06 3.98 3.92 5.83 8.14
With RE 2.12 4.22 4.37 6.66 8.93
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Figure 2: Numerical error |EN −E0| (left plots) and ‖En−E0‖∞ (right plots) of the discrete
energy, with (bottom plots) and without (top plots) RE, for the kink-antikink solution with
the same parameters as Fig. 1.

Methods 1–5 with RE (left bottom plot) and without RE (left top plot), using
∆t = 0.001 and ∆x ∈ [1/800, 1/700, . . . , 1/100, 1/90, 1/80, . . . , 1/10, 2/10,
3/10, . . . , 1]. In both cases the error decreases as ∆x does until the contribution
of the timestep dominates that of the grid size; without RE the error in time is
about 2× 10−6, and with RE it is in the band of 10−7 and 10−8.245

Figure 1 (right plots) shows the computational cost, estimated by using the
run-time in seconds, for Methods 1–5 with (bottom right plot) and without (top
right plot) RE as a function of the numerical error; note that ∆x > ∆t = 0.001
is used. It is observed that without Richardson extrapolation Method 2 is the
most efficient one for errors larger than 10−3 in terms of computational cost; for250

errors smaller than 10−3, Method 5 is the most cost-effective one, being about
tens of times more efficient than Method 1. In the case of using RE the trends
are similar, but with a higher cost and reaching an smaller error, down to the
band between 10−7 and 10−8, instead of 10−6 attainable without RE.

Figure 2 shows the energy conservation of Methods 1–5 by using the discrete255

energy (15), exactly conserved by Method 1, in order to make a fair comparison
of the energy conservation properties among all the methods; specifically, this
figure shows the value of |EN − E0| (left plots) and ‖En − E0‖∞ (right plots),
without (top plots) and with (bottom plots) RE, for Methods 1–5 with T = 20
and ∆t = 0.001 as a function of ∆x ∈ [1/800, 1]. For Method 1, the left top plot260
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Figure 3: Evolution in time of the energy En − E0 (left plots) and of the speed V (tn) (right
plots), with (bottom plots) and without (top plots) RE, for the kink-antikink solution with
T = 20, ∆t = 0.001, and ∆x = 0.01, for Methods 1–5.

in Fig. 2 confirms that the discrete energy (15) is exactly conserved without RE.
However, it is not exactly conserved with RE, as shown in the left bottom plot in
Fig. 2; although the extrapolated solution is obtained by a linear combination of
two solutions both conserving the discrete energy, this property is lost due to the
nonlinearity in Eq. (15). Methods 2–5 without RE (left top plot in Fig. 2) only265

show good conservation properties for ∆x ≤ 1/30; but for ∆x > 1/30 the error
in the energy increases as the grid size does, with a higher slope for higher-order
methods; but when using RE (left bottom plot), the higher time accuracy of the
methods results in good conservation properties when ∆x ≤ 1/5 for Method 5,
when ∆x ≤ 1/10 for Method 4, and when ∆x ≤ 1/20 for Methods 2–3.270

Figure 2 (right plots) shows that the maximum error in the energy is nearly
constant for Method 1 with (bottom plots) and without (top plots) RE. For
Methods 2–5 its value decreases with ∆x, being equal for all the methods in-
dependently of the spatial order of each method. The loss of conservation of
Method 1 with RE is observed in the bottom right plot of Fig. 2, where the max-275

imum error in energy is approximately equal to 4.4× 10−6, being independent
of ∆x, and equal to that of Methods 2–5 for the smallest values of ∆x.

In order to understand the results observed in the right plots of Fig. 2, the
maximum error in the discrete energy is shown in Fig. 3 (left plots). The max-
imum energy error for Methods 2–5 without RE and for Methods 1–5 with RE280

is reached at t = T/2, the instant where the solution and its spatial derivative
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Figure 4: Numerical error (left plot) and computational cost (right plot) for the breather
solution obtained with Methods 1–5 without Richardson extrapolation for T = 20 and ∆t =
1/1000 as a function of ∆x ∈ [1/7000, 1].

becomes exactly null, but its time derivative has a local maximum; surprisingly,
a careful evaluation indicates that the maximum error for Methods 2–5 with
RE is equal to the addition of its result without RE plus that of Method 1. A
comparison between the right plots in Fig. 2 with the left plots in Fig. 3 shows285

that the error in the discrete energy for ∆t = 0.001 and ∆x = 0.01 is dominated
by the discretization in time; hence, the maximum error in the energy is exactly
the same for Method 2–5 in the plots in both figures. Let us emphasize that
the non-conservation of the discrete energy for Method 1 with RE results in a
trend for the maximum error similar to that of the other methods, as shown in290

Fig. 3 (bottom left plot).
Figure 3 (right plots) shows the evolution in time of the speed of the kink (an-

tikink) before (after) the collision in the kink-antikink solution. Since the speed
v(t) = P (t)/E(t) of the exact kink-antikink solution is zero, the half-interval
speed, defined as v1/2(t) = 2P1/2(t)/E(t), where P1/2(t) is the half-momentum,295

has been used. The half-momentum is calculated by integrating Eq. (3) in
the interval x ∈ (−∞, 0), and the discrete half-momentum by summing for
m ∈ {1, 2, . . . ,M/2} in Eq. (16). The half-interval speed for Methods 1–5 with
and without RE are shown in Fig. 3 bottom right and top right plots, respec-
tively. The curves are overlapped in both cases since all these methods approx-300

imately conserve the half-momentum with an error smaller than the resolution
of the plot. Figure 3 (right plots) shows that, before the collision, v1/2(t) is the
speed of the kink, v1/2(0) = 1/2, that decreases monotonically in time down to
v1/2(T/2) = 0; after the collision, v1/2(t) is negative, as expected for the speed
of the antikink; as time passes it monotonically decreases from v1/2(T/2) = 0305

down to v1/2(T ) = −1/2.

3.2. Breather

The breather solution for the sGE is given by

ubr(x, t) = 4 tan−1 sin(v (t− 10)/r+)

sech(x/r+)/v
,
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where r+ =
√
1 + v2, and v = 1/2. Let us take U−1

m = ubr(xm,−∆t), and U0
m =310

ubr(xm, 0), as initial conditions for Methods 1–5. For the comparison among
these methods, the numerical solution Un

m for n = 2, 3, . . . , N , is calculated with
T = 20, L = 50, and Tolrel = 10−14.

Figure 4 (left plot) shows the numerical error ‖UN
m − ubr(xm, 20)‖∞ for

Methods 1–5 without RE, with ∆t = 1/1000, as a function of ∆x ∈ {1/7000,315

1/6000, . . . , 1/1000, 1/900, 1/800, . . . , 1/100, 1/90, 1/80, . . . , 1/10, 2/10, 3/10,
. . . , 1}. For ∆x . 0.001 for Method 1, ∆x . 0.05 for Method 2 and 3, ∆x . 0.1
for Method 4, and ∆x . 0.2 for Method 5, the global error is dominated by
error due to the discretization in time, reaching a constant value ≈ 4.5×10−7; as
expected, using values of ∆t < 0.001, this plateau error can be reduced. Where320

the error due to the discretization in space dominates the global error, the high-
order methods are more accurate than the lower order ones. Let us emphasize
that Fig. 4 (left plot) shows results for ∆x < ∆t, violating the CFL condition,
thanks to the unconditional stability of Methods 1–5. Figure 4 (right plot)
shows the run-time (in seconds) for Methods 1–5 without RE, with ∆t = 0.001325

as a function of the numerical error. Method 2 is the most efficient one for
errors larger than 10−4, but its cost is similar in magnitude to that of high-
order methods; for errors smaller than 10−4, Method 5 is the most cost-effective
one.

Figure 5 shows the numerical error ‖UN
m −ubr(xm, 20)‖∞ without (left plots)330

and with (right plots) RE for Methods 1 (first row) up to 5 (fifth row) for values
of ∆t ∈ {0.001, 0.005, 0.01, 0.05, 0.1}, as a function of ∆x ∈ [0.001, 1]. Without
RE, the error for Methods 1–5 (left plots) decreases until reaching a constant
value, specifically, the error approaches 0.44∆t2. These methods differ for large
enough ∆x, being their slopes depending on the spatial order, as expected.335

With RE, the error of Methods 1–5 (right plots) decreases until reaching a
constant value of about 2.60∆t4; but this behaviour can only be seen in the
right plots for Method 1 with two largest values of ∆t; in fact, it cannot be
seen for Methods 2–5 with ∆t = 0.001 for which the error oscillates randomly.
This oscillatory behaviour starts about ∆x = 1/100 for Methods 2–3, and about340

∆x = 1/60 for Methods 4–5.
Table 2 shows the estimation of the spatial order for Methods 1–5 with and

without RE by means of linear fitting of the logarithm for ∆t = 0.001 as a func-
tion of ∆x large enough to avoid that the discretization in time dominates the

Table 2: The numerical order of accuracy in space of Methods 1–5 obtained by linear fitting
of the logarithm of the error versus the logarithm of the grid size (fitted only for ∆x such that
the error in time is smaller than the error in space). The results in this table have L = 50,
∆t = 0.001, and T = 20.

Method 1 Method 2 Method 3 Method 4 Method 5
Fit for ∆x ≥ 1/1000 1/20 1/20 1/9 1/8
Without RE 1.96 3.98 4.02 6.45 8.51
With RE 2.02 4.07 4.25 6.56 8.67
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Figure 5: Numerical error without (left plots) and with (right plots) Richardson extrapolation
for Methods 1–5 applied to the breather solution (3.2) with T = 20 and L = 50, calculated
with ∆t ∈ {0.001, 0.005, 0.01, 0.05, 0.1} as a function of ∆x ∈ [0.001, 1].
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Figure 6: Computational costs (in seconds) without (left plots) and with (right plots) Richard-
son extrapolation for Methods 1–5 applied to the breather solution (3.2) with T = 20 and
L = 50, calculated with ∆t ∈ {0.001, 0.005, 0.01, 0.05, 0.1} as a function of ∆x ∈ [0.001, 1].
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Figure 7: Numerical error of the discrete analogue of the energy (15) for the breather solution
without (top plots) and with (bottom plots) Richardson extrapolation for T = 20 and ∆t =
0.001 as a function of ∆x ∈ {1/1000, 1/900, 1/800, . . . , 1/100, 1/90, 1/80, . . . , 1/10, 2/10,
3/10, . . . , 1}, for Methods 1–5. The left plots shows |EN −E0|, the numerical approximation
of |E(T )−E(0)|, and right plots shows ‖En −E0‖∞.

global error (as seen in Fig. 5). As expected, the results are in good agreement345

with the theoretical orders of accuracy, cf. 2, 4, 4, 6, and 8, respectively.
Figure 6 shows the run-time (in seconds) for Methods 1 (first row) up to 5

(fifth row) with (right plots) and without (left plots) Richardson extrapolation
for ∆t ∈ {0.001, 0.005, 0.01, 0.05, 0.1} as a function of ∆x ∈ [0.001, 1]. For all
cases, the lowest cost is produced for the highest value of ∆t. For errors larger350

than 10−3, Fig. 6 shows that Method 2 without RE is the most efficient method
in terms of computational cost; for errors smaller than 10−3, the most cost-
effective method is Method 5 with RE. As expected, from the kink–antikink
numerical results, the most accurate method is the most cost-efficient one; note
that Method 5 is tens of times more efficient than Method 1. Figure 6 (left355

plots) shows that without RE the smallest error attainable is about 10−6, but
whenever RE is applied, as shown in Fig. 6 (right plots), the smallest error
reachable is in the band of 10−9 and 10−10.

Figure 7 illustrates the energy-conservation property of Methods 1–5 with
(bottom plots) and without (top plots) RE; specifically, it shows the value of360

|EN − E0| (left plots) and ‖En − E0‖∞ (right plots) with T = 20 and ∆t =
0.001, as a function of ∆x ∈ [1/1000, 1]. Figure 7 (top left plot) shows that, as
expected, Method 1 without RE conserves the discrete energy (15) for all ∆x.
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Figure 8: Numerical energy (left plots) and speed (right plots) of the breather solution with
T = 20, ∆t = 0.001, and ∆x = 0.01, for Methods 1–5 with (bottom plots) and without (top
plots) Richardson extrapolation.

Methods 2–5 without RE only show good conservation properties for ∆x ≤ 1/30;
however, for ∆x > 1/30 the error in the energy increases as the grid size does,365

with a higher slope for higher-order methods. Figure 7 (bottom left plot) shows
that Method 1 with RE almost preserves the discrete energy; the loss of its
energy-conservation property was also observed with the kink–antikink solution
in Subsection 3.1. None of the Methods 2–5 with RE conserves the energy;
for ∆x ≤ 1/60, the maximum error coincides among all the methods, but for370

∆x > 1/60 this error increases as the grid size does.
Figure 7 (top right plot) shows that the maximum error in the energy de-

creases with ∆x for Methods 2–5 without RE at the same rate, coinciding among
all of them; for Method 1 without RE the maximum error in the energy is very
small since it is conserved. Figure 7 (bottom right plot) shows that none of375

the five methods with RE preserves the energy; for ∆x ≤ 1/300, the maximum
error coincides exactly among all the methods, but for ∆x > 1/300 this error
increases as the grid size does for Methods 2–5. For Method 1 with RE the
error reaches a constant value ≈ 3.1× 10−6.

Figure 8 (left plots) illustrates the maximum error in the discrete energy380

in order to help the analysis of the results observed in Fig. 7 (right plots).
For Method 1 without RE the maximum error has a constant value, but for
Methods 2–5 without RE an oscillatory behaviour at the same frequency of the
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breather solution is observed; due to the oscillation, it presents three maxima at
t = 2.98, 10.0, and 17.0, where the numerical energy reaches a maximum value385

of 2.095× 10−5 (top left plot). At these maxima, the breather solution and its
spatial derivative becomes null, hence the maximum error in the discrete energy
is dominated by the method of integration in time, which is exactly the same
for Method 2–5 without RE in Fig. 7 (right plots).

Figure 8 (right plots) shows the evolution in time of v1/2(t), cf. Subsec-390

tion 3.2, for the numerical breather solution. Methods 1–5 without RE, Fig. 8
(top right plot), and with RE, Fig. 8 (bottom right plot), the curves show the
same oscillatory behaviour for v1/2(t), overlapping in the plots, since all these
methods approximately conserve the half-momentum with an error smaller than
the resolution of the plot, as in the case of the kink–antikink solution in Subsec-395

tion 3.1. The value of v1/2(t) oscillates at the same frequency that the breather,
with local maxima at t = 1.33, 8.36, and 15.4, and local minima at t = 4.62,
11.6, and 18.7 for both with and without RE. Between the maxima and minima
there is a tiny plateau, at the same position of the maxima in Fig. 8 (left plot);
its origin is similar to the one observed in the kink-antikink case. In fact, as in400

the kink-antikink case, the difference between the energy for Methods 2–5 with
RE (whose maximum value is 2.41×10−5) and that of Method 1 with RE (whose
maximum is 3.13× 10−6) in Fig. 8 (bottom right plot) approximately coincides
with the energy for Methods 2–5 without RE (whose maximum is 2.095× 10−5)
in Fig. 8 (top right plot); in our opinion, the value for Method 1 is an estimation405

of the contribution of the Richardson extrapolation to the non-conservation of
the energy in all the methods.

4. Conclusions

Five numerical Padé schemes with and without Richardson extrapolation
for the sine-Gordon equation have been developed and analyzed. All of them410

use the same second-order differences in time and the same approximation to
the nonlinearity, the one used by Guo Ben–Yu et al. [9]. Method 1 is a (0,2)-
Padé method conserving a discrete analog of the energy of the sGE and it is
of second-order in space; Method 2 is a (0,4)-Padé method which is fourth-
order accurate in space; Methods 3–5 are fourth-, sixth-, and eight-order order415

(2,2)-, (2,4)-, and (4,4)-Padé methods, respectively. The local truncation error
terms of the five methods have been calculated by using Taylor series expan-
sion. Methods 1–5 are linearly, unconditionally stable. One level of Richardson
extrapolation have been used to increase the order of accuracy in time of the
numerical methods.420

Methods 1–5 have been compared for both the kink–antikink and breather
solutions of the sGE obtaining similar results in both cases. The spatial order
of the methods has been validated by fitting the error for large enough ∆x
with respect to ∆t, in order to avoid the contribution of the error due to the
discretization in time. The computational cost (the run-time in seconds) for425

Methods 1–5 both with and without RE shows that Method 2 and 5 are the
most efficient one for errors larger than and smaller than 10−3, respectively,
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for the kink–antikink solution. For the breather solution, among Methods 1–5
without RE is the most efficient one for errors larger than 10−4 is Method 2, but
for smaller ones is Method 5; moreover, Method 5 with RE is the most efficient430

one in all cases among Methods 1–5.
In the next future, there are several possibilities to be explored, like the

use of diagonally implicit Runge–Kutta–Nyström methods, or the application
of deferred correction techniques based on modified equations. Another fruitful
line of further research is the application of our five numerical methods to the435

two-dimensional sine-Gordon equation [34], and to time-fractional and spatial-
fractional sGE [35], including its extension to two dimensions [36].
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