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Abstract

Fractional vector calculus is the building block of the fractional partial differential equations
that model non-local or long-range phenomena, e.g., anomalous diffusion, fractional elec-
tromagnetism, and fractional advection-dispersion. In this work, we reformulate a type of
fractional vector calculus that uses Caputo fractional partial derivatives and discretize this
reformulation using discrete exterior calculus on a cubical complex in the structure-preserving
way, meaning that the continuous-level properties curlα gradα = 0 and divα curlα = 0 hold
exactly on the discrete level. We discuss important properties of our fractional discrete ex-
terior derivatives and verify their second-order convergence in the root mean square error
numerically. Our proposed discretization has the potential to provide accurate and stable nu-
merical solutions to fractional partial differential equations and exactly preserve fundamental
physics laws on the discrete level regardless of the mesh size.

Keywords: Fractional vector calculus, Discrete exterior calculus, Structure-preserving
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1. Introduction

Fractional calculus generalizes the integer order integration and differentiation to non-
integer order. Unlike standard derivatives and integrals, fractional derivatives and integrals
are non-local operators, enabling them to model long-range dependence. In this work, we
focus on fractional vector calculus (FVC), which analogously extends the vector calculus to
fractional order. Fractional calculus and FVC are widely used in fractional partial differential
equations (FPDEs), which recently have a wide range of new scientific and engineering
applications. For example, fractional diffusion equations model anomalous diffusion [1, 2, 3,
4, 5], fractional Maxwell’s equations generalize Maxwell’s equations to fractional order [6,
7, 8], fractional advection-dispersion equations describe subsurface transport [9, 10, 11, 12],
fractional Laplacians are used in image processing [13], fractional differential equations are
used in finance [14], and a fractional gradient has been used for fractional backpropagation
in training neural networks [15].
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There are various definitions of FVC, each with their own strengths and weaknesses.
Many approaches use a fractional partial derivative in each coordinate direction to construct
a fractional nabla operator. Other approaches use an anisotropic mixture of fractional di-
rectional derivatives in each direction via an integral, while still other approaches use an
isotropic mixture of function values throughout Euclidean space to define the operators.

Due to the complexity of FPDEs, the solutions cannot usually be computed symbolically,
so numerical approximations are essential for solving them. Various finite-element and finite-
difference methods have been developed for the discretization of FVC to be used in solving
these FPDEs, with techniques including finite-difference methods [16], the discretization
of fractional directional derivatives [17, 18, 10], spectral decompositions [19] and physics-
informed neural networks [10].

When solving PDEs and FPDEs numerically, some consideration must be given to com-
putational efficiency (i.e., how much time or computer memory is required), as well as the
accuracy of the solution obtained (i.e., how close the numerical approximation is to the true
solution). Another property that is often desirable is to have chosen continuous-level prop-
erties of the model be satisfied exactly in its discretization. Such discretizations are termed
structure-preserving. One possible structure to preserve is to preserve the de Rham exact se-
quence, which essentially means preserving the vector calculus identities curl grad f = 0 and
div curlF = 0 exactly in the discretization. The de Rham exact sequence plays an important
role in many physical laws, such as incompressibility and Gauss’s law of magnetism.

One way to preserve this de Rham exact sequence is by using discrete exterior calculus
(DEC). DEC is a computational toolkit that creates discrete operators and definitions that
are analogous to the corresponding operators from multivariate calculus. It has recently
been gaining popularity as a tool for developing numerical methods for solving PDEs in
computational simulations, such as mechanics problems [20], Lie advection [21], and compu-
tational fluid dynamics [22]. In addition to being used as a structure-preserving finite-element
method, DEC is also widely used in other areas such as computer graphics applications [23]
and geometry processing applications [24].

In DEC, the discrete exterior derivative operator, Dp, is the discrete version of grad, curl,
and div for p = 0, p = 1, and p = 2, respectively. Dp is a np+1 × np matrix, where np is the
number of p-cells in the complex (for more detail, see Section 2.3). DEC preserves the de
Rham exact sequence because the discrete exterior derivative operators satisfy Dp+1Dp = 0
for p ≥ 0, which is the discrete version of curl grad f = 0 and div curlF = 0 for p = 0 and
p = 1, respectively.

Many types of fractional vector calculus possess an analogous exact sequence curlα gradα f =
0 and divα curlα F = 0. However, to the best of our knowledge, no discretization of FPDEs
or FVC preserves this exact sequence. Additionally, despite the usefulness of DEC and the
applicability of fractional calculus and fractional vector calculus, there is rarely any work
on formulating a fractional discrete exterior calculus (FDEC), which generalizes DEC to a
fractional order.

To the best of our knowledge, the only existing work on FDEC is [25], which considered
the following “two-sided” fractional Caputo derivative of order α ∈ (0, 1) of a function
f ∈ C1[a, b] in 1D:

Dαf(x) :=
1

Γ(1− α)

∫
[a,b]\{x}

f ′(τ)

|x− τ |α
dτ. (1)
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[25] then defined a fractional discrete exterior derivative by discretizing (1), and then gen-
eralizing the resultant discrete operator to higher dimensions. This results in the following
np+1 × np matrix,

Dα
p = W 1−α

p+1 Dp,

where W 1−α
p+1 ∈ Rnp+1×np+1 is a straightforward generalization of the discretization of the

fractional integration of order 1−α present in (1) to higher dimensions. (Dα
0 is a discretization

of (1) when the complex is one-dimensional.) Unfortunately, the FDEC introduced in [25]
does not satisfy the fractional generalization of the property Dp+1Dp = 0, i.e., Dα

p+1Dα
p ̸=

0. Therefore, even if it is a discretization of some type of FVC, it cannot possibly be a
discretization that preserves a fractional de Rham exact sequence. Furthermore, in [25],
since the FDEC in the higher dimensional case is obtained directly from the 1D case, it is
not clear whether it is indeed a discretization of any FVC anymore in higher dimensions,
which may limit its potential in numerical simulations involving FPDEs in higher dimensions.
Indeed, while numerical experiments verified the expected result that Dα

0 converges to Dα

in one dimension, convergence in higher dimensions was not shown; although the authors
compared Dα

0 to a 2-sided Caputo gradient field of a scalar-valued function in 2-d, convergence
with decreasing mesh size was not shown in this case. This is understandable, since due to
their definition of the fractional discrete exterior derivative, one would not expect that Dα

0

should converge to this fractional gradient field.

1.1. Contributions

Our goal in this work is to define an FDEC that does not suffer the abovementioned
problems. Namely, we want our FDEC operators to (1) be direct discretizations of a type
of FVC that possesses the exact sequence curlα gradα = 0 and divα curlα = 0, and (2) be
structure-preserving, by having the corresponding exact sequence Dα

p+1 Dα
p = 0. Both of

these properties are achieved by rewriting the operators from a type of FVC that does have
the exact sequence (namely, one defined by a fractional nabla operator) as compositions of
fractional integration and exterior derivatives on the continuous level, and then discretizing
these composite operators using DEC on a regular cubical complex. This results in the
following fractional discrete exterior derivative operators,

Dα
p = I1−α

p+1 Dp (I1−α
p )−1, p = 0, 1, 2, 0 < α < 1,

where the matrix I1−α
p is a discretization of p-dimensional fractional integration of order 1−α

on the p-cells.
By discretizing a type of FVC, these operators can be implemented in software and

open doors for numerically solving FPDEs. Furthermore, since our approach is structure-
preserving – satisfying the continuous-level properties curlα gradα = 0 and divα curlα = 0
exactly on the discrete level – our proposed FDEC operators have high accuracy in discretiz-
ing the corresponding continuous operators and behave similarly even at coarse mesh sizes,
and can potentially increase the fidelity of numerical solutions to FPDEs. In addition, unlike
the usual dense matrices obtained from discretizing the fractional derivatives, the matrices
involved in our discretization are relatively sparse, which enables fast computations. Finally,
since these operators are extensions of DEC, they can provide fractional generalizations of
applications that use DEC.
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1.2. Outline

An outline of the paper is as follows. In Section 2, we recall fractional calculus, fractional
vector calculus, and discrete exterior calculus. In Section 3, we present and prove our
reformulation of Tarasov’s FVC and describe its discretization. In Section 4, we show the
convergence of our FDEC to Tarasov’s FVC numerically, and finally we summarize our work
and suggest possible future work in Section 5.

2. Preliminaries

In this section, we briefly recall fractional calculus first, and then introduce the fractional
vector calculus and discrete exterior calculus, which are the building blocks of our FDEC.

2.1. Fractional calculus

First, we discuss fractional calculus. There are many different definitions. This paper
focuses on the Riemann-Liouville fractional integral and the Caputo and Riemann-Liouville
fractional derivatives. Rather than defining the usual fractional integrals and derivatives,
below we define “partial” fractional integrals and derivatives of a scalar-valued function of
multiple variables, f : Ω → R, where Ω = [x1

min, x
1
max] × · · · × [xm

min, x
m
max] ⊂ Rm. This

generalizes the usual definitions, in the sense that if m = 1, then these definitions reduce to
the usual one-dimensional definitions. Furthermore, definitions of partial fractional integrals
and derivatives that are essentially the same as the ones we will define can be found in [26].

2.1.1. Fractional integrals and derivatives

For a real number α > 0 and a real-valued function g : [a, b] → R, the left-sided Riemann-
Liouville fractional integral of order α is defined as follows:

aI
α
x [x

′]g(x′) =
1

Γ(α)

∫ x

a

dx′

(x− x′)1−α
g(x′) (a ≤ x ≤ b)

where Γ(·) denotes the gamma function. Similarly, the left-sided Riemann-Liouville partial
fractional integral with respect to coordinate xj from a to b of order α of a function f : Ω → R
is defined as follows:

aI
α
b,xj [x′]f := aI

α
b [x

′]f(x1, . . . , xj−1, x′, xj+1, . . . , xm)

=
1

Γ(α)

∫ b

a

f(x1, . . . , xj−1, x′, xj+1, . . . , xm)

(b− x′)1−α
dx′, (xj

min ≤ a ≤ b ≤ xj
max).

Also, we define
Iαxjf(x1, . . . , xm) :=

xj
min

Iαxj ,xj [x′]f.

Next, we recall the left-sided Riemann-Liouville derivative and the left-sided Caputo deriva-
tive. If we let Dn

xj denote the nth partial derivative with respect to coordinate xj (we drop
the superscript when n = 1), then the left-sided Riemann-Liouville fractional partial deriva-
tive of f with respect to coordinate xj at a point (x1, . . . , xm) of order α ≥ 0 is defined as,
for n = ⌊α⌋+ 1,

RLDα
xjf := Dn

xj In−α
xj f =

1

Γ(n− α)

(
∂

∂xj

)n ∫ xj

xj
min

f(x1, . . . , xj−1, x′, xj+1, . . . , xm)

(xj − x′)1−(n−α)
dx′.
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Naturally, RLDk
xjf = Dk

xjf if k ∈ N0 := {0, 1, 2, . . . }.
Similarly, for 0 < α /∈ N0, the left-sided Caputo fractional partial derivative with respect

to coordinate xj of order α is defined as, for n = ⌊α⌋+ 1,

CDα
xjf := In−α

xj Dn
xjf =

1

Γ(n− α)

∫ xj

xj
min

Dn
xjf(x1, . . . , xj−1, x′, xj+1, . . . , xm)

(xj − x′)1−(n−α)
dx′.

Otherwise, for integer orders, we define CDk
xjf := Dk

xjf for α = k ∈ N0.

2.1.2. Fractional calculus identities

Here we will present some identities involving the fractional derivatives and integrals de-
fined above that will be used in this work. The first such identity is named the “fundamental
theorem of fractional calculus” (FTFC) by [6], which generalizes the fundamental theorem
of calculus to fractional order. Only the first part of the FTFC will be presented, since the
other part is not necessary for the results of this paper.

The first part of the FTFC states that both the Caputo and Riemann-Liouville derivatives
are left inverse operators of the Riemann-Liouville integration operator from the left. This
generalizes the well-known formula d

dx

∫ x

a
f(t) dt = f(x).

Lemma 1. Let f : Ω ⊂ Rm → R be continuous and let α > 0. Then at any point
(x1, . . . , xm) ∈ Ω and any j = 1, . . . ,m,

RLDα
xj Iαxjf = f and CDα

xj Iαxjf = f.

Proof. Since f is continuous, it is continuous in each variable separately. Then the first
equality follows from Lemma 2.4 on page 74 and Lemma 2.9 (b) on page 77 of [26], and the
second equality follows from Lemma 2.21, part (a) on page 95 of [26].

We also have the following result which will be used later:

Lemma 2. Let f : Ω ⊂ Rm → R be continuous and let α ∈ (0, 1). Then at any point
(x1, . . . , xm) ∈ Ω and any j = 1, . . . ,m,

Iαxj
RLDα

xjf = f.

Proof. The proof uses the FTFC (Lemma 1) presented above:

Iαxj
RLDα

xjf = IαxjDxj I1−α
xj f = CD1−α

xj I1−α
xj f = f.

The third identity that we will present is that the Riemann-Liouville fractional integral
satisfies the so-called semigroup property :

Lemma 3 (Theorem 2.2, [27]). Let f : Ω ⊂ Rm → R be continuous and let α > 0, β > 0.
Then for any j = 1, . . . ,m and any a, b ∈ [xj

min, x
j
max] with a ≤ b,

aI
α
b [x

′]aI
β
x′,xj [x

′′]f = aI
α+β
b,xj [x

′]f.
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2.2. Fractional vector calculus

There are various approaches to defining FVC. Many approaches are similar to the inte-
gral order: use the standard basis of the vector space V and represent the fractional gradient
of a scalar function f on V by an n-tuple of the one-dimensional partial fractional derivatives
along the coordinate axes. These operators, which we will term standard basis directional,
are the operators we discretize in this work (specifically, Tarasov’s). Other approaches use
an anisotropic mixture of fractional directional derivatives in each direction via an integral,
and these operators are referred to as directional. Yet a third approach is to use an isotropic
mixture of the function values throughout Rn to define the operators, and these operators
are referred to as isotropic (termed “Cartesian” in [28]). Finally, nonlocal vector calculus
generalizes isotropic vector calculus by using an integral with an arbitrary interaction ker-
nel to define a nonlocal gradient and divergence. Both standard basis directional operators
[12, 11] and isotropic operators [28] are special cases of directional operators.

2.2.1. Tarasov’s fractional vector calculus

In [6], FVC operators using the one-dimensional (left-sided) Caputo derivative are de-
fined. Considering a parallelepiped Ω = [x1

min, x
1
max] × [x2

min, x
2
max] × [x3

min, x
3
max], Tarasov’s

FVC (T-FVC) is based on the following generalization of the nabla operator to fractional
order α > 0:

C∇α := e1
CDα

x1 + e2
CDα

x2 + e3
CDα

x3 . (2)

For a scalar-valued function f and vector-valued function F , the T-FVC operators are then
defined as,

gradα
T f := C∇αf, curlαT F := C∇α × F , divαT F := C∇α · F . (3)

A property of the T-FVC operators is that they satisfy fractional generalizations of Green’s,
Stokes’, and Gauss’s theorem, which use fractional line and surface integrals, see [6] for
details.

Another important property of the operators defined above, which is necessary for our
goal to make structure-preserving FDEC operators, is that they satisfy

curlαT gradα
T = 0 and divαT curlαT = 0, (4)

which are generalizations of the identities from vector calculus curl grad = 0 and div curl = 0.
Property (4) is the main reason we choose to discretize the T-FVC operators. We plan to
retain these properties on the discrete level to produce structure-preserving FDEC operators.
This is feasible via rewriting these operators, and the details will be discussed later in
Section 3.

2.2.2. Other fractional vector calculus

From the fractional nabla operator (2), we can see that the T-FVC operators are standard
basis directional. In [29], another standard basis directional fractional vector calculus was
introduced. Different from Tarasov’s work, both left-sided and right-sided FVC operators
were introduced. In addition, each coordinate can have different fractional orders, which
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makes their FVC framework more flexible. This is done by introducing left-sided and right-
sided fractional nabla operators first and then defining two sets of fractional gradient, curl,
and divergence operators accordingly in the same manner as the T-FVC operators.

An anisotropic, directional FVC was first present in [12]. The authors defined a fractional
integration using a mixing measure, a positive finite measure on the set of unit vectors.
This considers the relative strength of the dispersion in each radial direction and, hence,
introduces anisotropy. The fractional gradient is defined by taking the usual gradient and
then the fractional integral. On the other hand, the fractional curl and divergence operators
are defined in a reverse order, i.e., taking the fractional integral first and then the usual curl
and divergence. [12] and [11] point out that if the mixing measure is a point mass at each
coordinate, the T-FVC gradient is a special case of the directional gradient defined in [12].
In addition, [11] further generalized the FVC in [12] by allowing the fractional order to vary
by direction.

As for isotropic FVC, there is generally a single kind of isotropic fractional vector calculus
that appears repeatedly in the literature, for example, Refs. [30, 31, 32], and can take on
various functional forms which are all equivalent. Generally, authors only define a fractional
gradient, but in [32], a fractional divergence is also defined. [32] points out that due to the
construction, FVC constructed using the standard basis directional approach depends on
the chosen coordinate system, which could be a drawback since the resulting FVC operators
do not transform under rotations. [32] introduces an isotropic FVC that satisfies specific
transformation rules for translation, rotation, and scaling, and they also generalize the def-
initions to any real-number fractional order. Unfortunately, although a fractional gradient
and divergence are defined, a fractional curl is currently missing from isotropic FVC.

Nonlocal vector calculus is any type of generalization of vector calculus that uses an
integral with an interaction kernel to make vector calculus nonlocal. [28] presents a unified
framework for nonlocal vector calculus, of which isotropic FVC is a special case. In addition,
the authors prove that the directional and isotropic fractional gradients and divergences are
equivalent up to constants if the mixing measure is constant. Just as with isotropic FVC, a
nonlocal curl is not defined in nonlocal FVC.

Finally, although we only consider the T-FVC in this paper (which is a special case of
directional FVC), we believe our approach can be generalized to more general cases, which
is a subject of our ongoing work and will be reported in the future.

2.3. Discrete exterior calculus

Since our discretization of FVC employs DEC, we give a short description of DEC fol-
lowing the methodology developed in [33, 34, 35, 36].

Let us start with exterior calculus, which is essentially a generalization of vector calculus
to more than three dimensions. Scalar and vector fields from vector calculus are replaced with
p-forms. From a geometric perspective, a differential p-form can be viewed as an oriented
p-dimensional density [37]. We denote a p-form as ωp and the space of p-forms as Λp. If we
define Jp,m := {J = (i1, . . . , ip) : 1 ≤ i1 < i2 < · · · < ip ≤ m}, then the p-forms {dxJ}J∈Jp,m
span the space of differential p-forms, where we denote dxJ := dxi1 ∧ · · · ∧ dxip =

∧
i∈J dx

i.
Thus, any p-form can be written as

ωp =
∑

J∈Jp,m

aJdx
J ,
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where each aJ is a scalar-valued function of the coordinates. The exterior derivative, an
important operation on differential forms, is denoted as dp : Λ

p → Λp+1. It is defined by:

dp

 ∑
J∈Jp,m

aJdx
J

 =
∑

J∈Jp,m

m∑
i=1

∂aJ
∂xi

dxi ∧ dxJ .

In 3D, we have d0 = grad, d1 = curl, and d2 = div. The capstone of exterior calculus
is Stokes’s theorem, which is a generalization of the fundamental theorem of calculus. It
states that under relatively mild smoothness requirements on a compact oriented (p + 1)-
dimensional manifold S with boundary ∂S,∫

S
dp ω

p =

∫
∂S

ωp, ωp ∈ Λp. (5)

DEC is a discrete analog of exterior calculus. A p-cell, i.e., a cell of order p, denoted by
σp, may be represented as an ordered set of vertices comprising a convex p-polytope. For
example, the 0- 1-, 2-, and 3-cells are called nodes, edges, faces, and volumes, respectively. A
cell complex of dimension n, or an n-complex, is a collection of cells of order at most n that
obeys certain properties regarding how the cells are connected to each other. We denote
the number of p-cells in the complex as np. Each p-cell is oriented and may have one of
two possible orientations. A node (0-cell) has two orientations, “sourceness” or “sinkness”.
The orientation of an edge (1-cell) corresponds to a notion of direction, the orientation of a
face (2-cell) corresponds to a notion of clockwise/counterclockwise, and the orientation of a
volume (3-cell) corresponds to a notion of outward/inward.

A p-chain τp represents a domain of integration, and is a formal sum of the p-cells with
coefficients in Z, i.e., τp =

∑np

i=1 aiσ
p
i , σ

p
i ∈ Cp and ai ∈ Z, where we denote the vector space

of p-chains as Cp. Note that the set of p-cells forms a basis for Cp. Without confusion, we
abuse the notation and also use a vector representation, i.e., τp = [a1, . . . anp ]

⊤. In addition,
a p-cochain, also known as a discrete p-form, is a linear map cp from Cp to R. The vector
space of p-cochains is denoted Cp. The natural pairing of a p-cochain cp and a p-chain τp is
defined as

Jcp, τpK := cp(τp) = cp

(
np∑
i=1

aiσ
p
i

)
=

np∑
i=1

aic
p(σp

i ).

Therefore, we can identify a p-cochain as a vector cp = [cp(σp
1), . . . , c

p(σp
np
)]⊤, which implies

that Jcp, τpK = (cp)⊤τp.
Now we introduce the coboundary operators or discrete exterior derivative operators,

Dp : C
p → Cp+1 for 0 ≤ p ≤ n− 1, which are the discrete versions of the exterior derivatives

dp : Λp → Λp+1, and can be represented as incidence matrices Dp ∈ Rnp+1×np which are
defined as

Dp(i, j) =


0 if σp

j is not on the boundary of σp+1
i ,

+1 if σp
j is coherent with the induced orientation of σp+1

i ,

−1 if σp
j is not coherent with the induced orientation of σp+1

i .

Furthermore, we denote the boundary operator as ∂p : Cp → Cp−1, which satisfies Dp = ∂⊤
p+1.
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An important property of the coboundary and boundary operators is that Dp+1Dp = 0
and ∂p+1∂p+2 = 0, for 0 ≤ p ≤ n − 2. In addition, the DEC version of Stokes’ theorem can
be stated as follows:

JDpc
p, τp+1K = Jcp, ∂p+1τp+1K. (6)

Let Rp : Λ
p → Cp be the p-th de Rham map, which is defined as, for ωp ∈ Λp and τp ∈ Cp,

JRpω
p, τpK = (Rpω

p)(τp) :=
∫
τp
ωp. Using (5) and (6), we have that for any ωp ∈ Λp and

τp+1 ∈ Cp+1,

JDpRpω
p, τp+1K = JRpω

p, ∂p+1τp+1K =
∫
∂p+1τp+1

ωp =

∫
τp+1

dpω
p = JRp+1dpω

p, τp+1K,

which implies
DpRp = Rp+1dp,

and the following commutative diagram,

Λp Λp+1

Cp Cp+1

dp

Rp Rp+1

Dp

which essentially says that Dp is the discretization of dp. For example, in 3D, D0, D1, and
D2 are discretizations of the gradient, the curl, and the divergence, respectively. In addition,
such a discretization is structure-preserving since we have dp+1dp = 0 on the continuous level
and Dp+1Dp = 0 on the discrete level. In Section 3, we define our FDEC operators to be
structure-preserving as well, satisfying the analogous property that Dα

p+1Dα
p = 0.

Finally, we introduce the following generalized incidence matrix D0→q ∈ Rnq×n0 for 2 ≤
q ≤ n,

D0→q(i, j)=

{
0 if σ0

j is not on the boundary of σq
i ,

Πσ1
k∩∂σ

q
i ̸=∅, ∂σ1

k∩σ
0
j ̸=∅D0(k, j) if σ0

j is on the boundary of σq
i ,

and define D0→1 := D0. Here we use the notation ∂σq
i to denote the boundary of σq

i which
consists of all the p-cells, 0 ≤ p ≤ q − 1, that are on the boundary of σq

i . In 3D, the edge-
node, face-node, and volume-node incidence matrices, D0→1, D0→2, and D0→3, are useful for
our discretization.

3. Fractional discrete exterior calculus via reformulation

This section describes the main result of this work, namely, the discretization of T-FVC
via DEC. In Section 3.1, we show an equivalent way to write Tarasov’s FVC, which is suitable
for discretization using DEC. Our discretization of T-FVC using DEC is then described in
detail in Section 3.2.
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3.1. Reformulation and equivalence

In this section, we define a Caputo fractional exterior derivative of order α that is equiv-
alent to T-FVC in 3D, and then reformulate this fractional exterior derivative into a form
that can be easily discretized using DEC. Again, we mainly focus on the case 0 < α < 1 to
keep the presentation simple and comment that our results hold for general α > 0. To avoid
confusion, we use β > 0 to denote a fractional integration or differentiation order that is not
necessarily 1−α or α. In addition, although we use exterior calculus notations mainly in this
section, we confine our discussion on the region Ω = [x1

min, x
1
max] × · · · × [xm

min, x
m
max] ⊂ Rm

and leave the general manifold case for future work.
In the following lemma, we present some properties of the fractional partial integrals

and the partial Riemann-Liouville fractional derivatives introduced in Section 2.1. Those
properties are useful for the reformulation.

Lemma 4. Let f : Ω ⊆ Rm → R, g : Ω ⊆ Rm → R be sufficiently smooth scalar fields. Then
the following identities hold.

Iβ
xj(c1f + c2g) = c1I

β
xjf + c2I

β
xjg (β > 0, c1 ∈ R, c2 ∈ R), (7)

Iβ1

xi I
β2

xj f = Iβ2

xj I
β1

xi f (β1 > 0, β2 > 0, i ̸= j), (8)

Dk
xi I

β
xjf = Iβ

xj D
k
xif (β > 0, k ∈ N, i ̸= j), (9)

Iβ1

xi
RLDβ2

xj f = RLDβ2

xj I
β1

xi f (β1 > 0, β2 > 0, i ̸= j). (10)

Proof. (7) can be easily verified by the linearity of the regular integral, which implies that
the Riemann-Liouville fractional partial integral is linear. (8) is a consequence of Fubini’s
theorem.

To prove (9), we use mathematical induction on k. The base case k = 1 can be shown
using the Leibniz integral rule directly. For the inductive step, assume Dk

xiI
β
xj = Iβ

xjD
k
xi for

some k ∈ N. Then

Dk+1
xi Iβ

xj = DxiDk
xiI

β
xj = DxiIβ

xjD
k
xi = Iβ

xjDxiDk
xi = Iβ

xjD
k+1
xi .

Finally, (10) follows from (8) and (9).

Next, we define a Caputo fractional exterior derivative as follows:

Definition 1. We define the Caputo fractional exterior derivatives of order α > 0, dαp :
Λp → Λp+1, as

dαp

 ∑
J∈Jp,m

aJdx
J

 :=
∑

J∈Jp,m

m∑
i=1

(
CDα

xiaJ
)
dxi ∧ dxJ .

where coefficients aJ are real-valued functions on Ω.

Note that Definition 1 is essentially the same as the fractional exterior derivative that
appears in [7]. It is also similar to the fractional exterior derivative defined in [38], where
the Riemann-Liouville, rather than Caputo, partial derivative is used.

Additionally, in 3D, by direct calculation and identifying 1- and 2-forms as vector fields
and 3-forms as scalar functions, we can verify that Definition 1 is equivalent to the T-FVC
operators (3), which is summarized in the following proposition.

10



Proposition 1. In 3D, for α > 0, dα0 = gradα
T , d

α
1 = curlαT , and dα2 = divαT .

Although it is possible to show that dαp+1d
α
p = 0 directly from Definition 1, here we

take another approach by reformulating dαp , which also allows us to discretize dαp using DEC
intuitively. To this end, first, we need to define the following Riemann-Liouville fractional
integration operator of order β > 0, Iβ

p : Λp → Λp, for p ≥ 1,

Iβ
p

 ∑
J∈Jp,m

aJdx
J

 :=
∑

J=(i1,...,ip)∈Jp,m

(
Iβ
xi1

· · · Iβ
xipaJ

)
dxJ ,

and the following Riemann-Liouville fractional differentiation operator of order β > 0, RLDβ
p :

Λp → Λp, for p ≥ 1,

RLDβ
p

 ∑
J∈Jp,m

aJdx
J

 :=
∑

J=(i1,...,ip)∈Jp,m

(
RLDβ

xi1
· · · RLDβ

xipaJ

)
dxJ .

For the p = 0 case, we simply define Iβ
0 := id and RLDβ

0 := id. Note that the iterated
fractional integrals and derivatives Iβ

xi1
· · · Iβ

xip and RLDβ

xi1
· · · RLDβ

xip present in these defini-
tions have been defined in [26], in which the iterated fractional integrals are called “mixed
Riemann-Liouville fractional integrals with respect to a part of the variables” (and similarly
for the iterated fractional derivative).

Using I1−α
p and RLD1−α

p , we can reformulate dαp as follows.

Theorem 1. Let 0 < α < 1. Then dαp = I1−α
p+1 dp

RLD1−α
p .

Proof. If p = 0, then by definition, RLD1−α
0 = id, thus I1−α

p+1 dp
RLD1−α

p = I1−α
1 d0. Taking a

0-form, i.e., a scalar field, f : Rm → R, we have,

I1−α
1 d0f = I1−α

1

m∑
i=1

(Dxif) dxi =
m∑
i=1

(
I1−α
xi Dxif

)
dxi =

m∑
i=1

(
CDα

xif
)
dxi = dα0f.

If p ≥ 1, then for a p-form ωp =
∑

J∈Jp,m aJdx
J , we have

dp
RLD1−α

p ωp = dp
∑

J∈Jp,m

(
RLD1−α

xi1
· · · RLD1−α

xip aJ
)
dxJ

=
∑

J∈Jp,m

m∑
i=1

(
Dxi

RLD1−α
xi1

· · · RLD1−α
xip aJ

)
dxi ∧ dxJ

=
∑

J∈Jp,m

∑
i∈{1,...,m}\J

(
Dxi

RLD1−α
xi1

· · · RLD1−α
xip aJ

)
dxi ∧ dxJ ,

where we use the fact that dxi ∧ dxJ = 0 if i ∈ J in the last step. Finally, applying I1−α
p+1

11



from the left, we obtain

I1−α
p+1 dp

RLD1−α
p ωp

=
∑

J∈Jp,m

∑
i∈{1,...,m}\J

(
I1−α
xi I1−α

xi1
· · · I1−α

xip Dxi
RLD1−α

xi1
· · · RLD1−α

xip aJ
)
dxi ∧ dxJ

=
∑

J∈Jp,m

m∑
i=1

(
I1−α
xi DxiI1−α

xi1
· · · I1−α

xip

RLD1−α
xi1

· · · RLD1−α
xip aJ

)
dxi ∧ dxJ

=
∑

J∈Jp,m

m∑
i=1

(
CDα

xiI1−α
xi1

RLD1−α
xi1

· · · I1−α
xip

RLD1−α
xip aJ

)
dxi ∧ dxJ

=
∑

J∈Jp,m

m∑
i=1

(
CDα

xiaJ
)
dxi ∧ dxJ

= dαpω
p.

This completes the proof.

Remark. Following the same argument, Theorem 1 can be generalized to any 0 < α /∈ N by
using high-order analogues of the exterior derivatives.

From Lemma 1 and (10), we can easily verify RLD1−α
p I1−α

p = id. Thus,

dαp+1 d
α
p =

(
I1−α
p+2 dp+1

RLD1−α
p+1

)(
I1−α
p+1 dp

RLD1−α
p

)
= I1−α

p+2 dp+1dp
RLD1−α

p = 0.

From Proposition 1 and Theorem 1, we have the following corollary which reformulates
the T-FVC operators. Such a reformulation enables us to discretize T-FVC using the DEC
framework.

Corollary 1. In 3D, for 0 < α < 1, we have

gradα
T = I1−α

1 grad, curlαT = I1−α
2 curl RLD1−α

1 , divαT = I1−α
3 div RLD1−α

2 .

3.2. Definition of FDEC by discretization

In this section, we discretize the fractional exterior derivatives dαp in 3D to produce the
corresponding FDEC operators Dα

p , p = 0, 1, 2. Our discrete exterior derivative is defined
as the composition of the discretizations of each of the three composite operators in our
reformulated fractional exterior derivative, dαp = I1−α

p+1 dp
RLD1−α

p . First, as explained in
Section 2.3, the discretization of dp is Dp. Next we need to discretize Iβ

p : Λp → Λp and
RLDβ

p : Λp → Λp. Naturally, their discretizations should map p-cochains to p-cochains,
i.e., matrices of size np × np. Furthermore, noting that RLDβ

p Iβ
p = id, we use a matrix

Iβp ∈ Rnp×np : Cp → Cp (which will be defined later) as the discretization of Iβ
p , while

RLDβ
p

is discretized by
(
Iβp
)−1 ∈ Rnp×np : Cp → Cp in order to enforce the structure-preserving

property. The resultant discrete exterior derivative is hence defined as Dα
p = I1−α

p+1 Dp (I1−α
p )−1.

Our discretization was done on a 3D regular cubical complex as shown in Figure 1.
It is obtained by dividing the parallelepiped that the discretized dαp operators are defined
on, Ω = [xmin, xmax] × [ymin, ymax] × [zmin, zmax], into cuboids. Specifically, the division is

12



x

y

z

Figure 1: Diagram of a 3D regular cubical complex, with nx = 3, ny = 2, nz = 2

xmin = x1 < x2 · · · < xnx+1 = xmax, ymin = y1 < y2 · · · < yny+1 = ymax, and zmin = z1 <
z2 · · · < znz+1 = zmax, respectively (see Figure 1).

We only present the discretization on the cubical complex because, while constructing
the Dp matrices is straightforward for general meshes, defining the Iβp matrices on a general
mesh is difficult and challenging for practical implementation. In particular, computing the
entries in this matrix requires computing multiple fractional integrals through multiple mesh
elements, which makes efficient implementation difficult in practice although it is theoreti-
cally feasible. This computation is much easier, however, when a square or cube grid is used.
We would like to point out that, such a difficulty also arises in other types of discretiza-
tions for fractional derivatives and, to the best of our knowledge, finding an efficient method
for computing those fractional integrals on general meshes is still an open question in the
community.

We will first discuss the strategy of discretizing Iβ
p on the cubical complex. We will then

introduce two FDEC operators: the fractional discrete exterior derivative Dα
p , p = 0, 1, 2,

and the fractional de Rham map, Rα
p , p = 0, 1, 2, 3, and discuss their properties.

3.2.1. Discretization of Iβ
p

Next, we consider a discretization of the fractional integral operator Iβ
p , p = 1, 2, 3. We

use Iβ
1 as an example to illustrate the general procedure for discretization of Iβ

p .
On the cubical complex, there are n1,x, n1,y, and n1,z (n1,x + n1,y + n1,z = n1) edges

are along the x, y, and z direction, respectively. Considering an x direction edge, σ1,x
i,j,k =

[xi, xi+1]×yj×zk, for any 1-form ω1 = fxdx+fydy+fzdz, we apply Iβ
1 and take the integral

along σ1,x
i,j,k to obtain,∫

σ1,x
i,j,k

Iβ
1 ω

1 = xi
I1xi+1

[x′] x1
Iβx′,x[x

′′]fx

= x1
I1xi+1

[x′] x1
Iβx′,x[x

′′]fx − x1
I1xi

[x′] x1
Iβx′,x[x

′′]fx

= x1
I1+β
xi+1,x

[x′]fx − x1
I1+β
xi,x

[x′]fx. (11)

13



In the last step, we used fractional integrals’ semigroup property (Lemma 3). (11) implies
that the above integral can be computed by a signed sum of the values of the x component
of I1+β

1 ω1 on the edge’s two incident nodes. If we write the edge-node incidence matrix
D0→1 = D0 into a block form according to edges along each direction, i.e.,

D0 =

B1,x

B1,y

B1,z

. (12)

Then such a signed sum can be encoded into the matrix B1,x.
The main step of our discretization is to compute x1

I1+β
xi,x

[x′]fx approximately at the node

σ0
i,j,k by using a piecewise constant approximation on each edge. Specifically, on edge σ1,x

i′,j,k,

we use the average ω1 := |σ1,x
i′,j,k|−1

∫
σ1,x

i′,j,k
ω1 = |σ1,x

i′,j,k|−1c1(σ1,x
i′,j,k), where c

1 = R1ω
1, to be the

constant approximation of ω1, and then have

x1
I1+β
xi,x

[x′]fx =
1

Γ(1 + β)

∫ xi

x1

1

(xi − x′)−β
fx dx

′

=
i−1∑
i′=1

1

Γ(1 + β)

∫ xi′+1

xi′

1

(xi − x′)−β
fx dx

′

≈
i−1∑
i′=1

1

Γ(1 + β)

∫ xi′+1

xi′

1

(xi − x′)−β
ω1 dx

=
i−1∑
i′=1

c1(σ1,x
i′,j,k)

|σ1,x
i′,j,k|

(xi − xi′)
1+β − (xi − xi′+1)

1+β

Γ(2 + β)
.

Thus, if we let C1
x be the space of 1-cochains that uses 1-cells along the x direction only,

then the matrix form of the discrete Riemann-Liouville fractional integral operator of the x
component, Iβ1,x ∈ Rn1,x×n1,x : C1

x → C1
x, is defined as

Iβ1,x := B1,xM1+β
1,x V−1

1,x.

Here B1,x ∈ Rn1,x×n0 is defined in (12), V1,x = diag(|σ1,x
i,j,k|) ∈ Rn1,x×n1,x , and M1+β

1,x :=

M1+β
1,x ⊗ Iny+1 ⊗ Inz+1 ∈ Rn0×n1,x where ⊗ denotes the standard Kronecker product, In

denotes a n× n identity matrix, and M1+β
1,x ∈ R(nx+1)×nx is defined as follows,

(
M1+β

1,x

)
i,i′

=


(xi − xi′)

1+β − (xi − xi′+1)
1+β

Γ(2 + β)
, if i′ < i,

0, otherwise.

Repeating the same procedure for a y direction edge, σ1,y
i,j,k = xi × [yj, yj+1] × zk, and a

z direction edge, σ1,z
i,j,k = xi × yj × [zk, zk+1], we can define the discrete Riemann-Liouville

fractional integral operator of the y and z component, Iβ1,y and Iβ1,z, as follows,

Iβ1,y := B1,y M1+β
1,y V−1

1,y and Iβ1,z := B1,z M1+β
1,z V−1

1,z.

14



where B1,y ∈ Rn1,y×n0 and B1,z ∈ Rn1,z×n0 are defined in (12), V1,y = diag(|σ1,y
i,j,k|) ∈ Rn1,y×n1,y ,

and V1,z = diag(|σ1,z
i,j,k|) ∈ Rn1,z×n1,z . We also similarly defineM1+β

1,y := Inx+1⊗M1+β
1,y ⊗Inz+1 ∈

Rn0×n1,y where

(
M1+β

1,y

)
j,j′

=


(yj − yj′)

1+β − (yj − yj′+1)
1+β

Γ(2 + β)
, if j′ < j,

0, otherwise,

and M1+β
1,z := Inx+1 ⊗ Iny+1 ⊗M1+β

1,z ∈ Rn0×n1,z where

(
M1+β

1,z

)
k,k′

=


(zk − zk′)

1+β − (zk − zk′+1)
1+β

Γ(2 + β)
, if k′ < k,

0, otherwise.

Finally, combining Iβ1,x, I
β
1,y, and Iβ1,z, we define the overall discrete Riemann-Liouville frac-

tional 1-form integral operator Iβ1 ∈ Rn1×n1 : C1 → C1 as follows,

Iβ1 := B1M1+β
1 V−1

1 = diag(Iβ1,x, I
β
1,y, I

β
1,z),

where B1 = diag(B1,x,B1,y,B1,z), M1+β
1 = diag(M1+β

1,x ,M1+β
1,y ,M1+β

1,z ), and
V1 = diag(V1,x,V1,y,V1,z).

Analogously, to discretize Iβ
2 , we notice that there are n2,yz faces parallel to the yz plane,

n2,xz faces parallel to the xz plane, and n2,xy faces parallel to the xy plane. So we expect the

discrete fractional integral Iβ2 to also have a diagonal block form. To discretize Iβ
2 , for any

2-form ω2, we apply Iβ
2 and then take integration on a face. Using the average value of ω2

on the face as a constant approximation, we can compute approximately the face integral,
leading to the discrete fractional 2-form integral operator. We omit the details here and
directly present Iβ2 . First, we need the signed face-node incidence matrix D0→2 ∈ Rn2×n0 ,
which has the block form

D0→2 =

B2,yz

B2,xz

B2,xy

.

Then we need matrices M1+β
2,yz ∈ Rn0×n2,yz ,M1+β

2,xz ∈ Rn0×n2,xz ,M1+β
2,xy ∈ Rn0×n2,xy , which are the

discretizations of approximately evaluating the dy ∧ dz, dz ∧ dx, and dx∧ dy components of
I1+β
2 ω2 at each node, respectively. The overall discrete Riemann-Liouville fractional integral

operator Iβ2 ∈ Rn2×n2 : C2 → C2 is defined as

Iβ2 := B2M1+β
2 V−1

2 ,

where B2 = diag(B2,yz,B2,xz,B2,xy), M1+β
2 = diag(M1+β

2,yz ,M
1+β
2,xz ,M

1+β
2,xy), and

V2 = diag(diag(|σ2,yz
i,j,k|), diag(|σ

2,xz
i,j,k |), diag(|σ

2,xy
i,j,k |)).

Finally, to discretize Iβ
3 , note that there is only one type of volume (cuboids) in the

cubical complex. We no longer expect the discrete fractional integral Iβ3 to have a diagonal
block form. Similarly, to discretize Iβ

3 , for any 3-form ω3, we apply Iβ
3 and then take a volume

integration. Using the average value of ω3 on the volume as a constant approximation, we
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Table 1: Sizes and number of nonzeros of the Bp and M1+β
p matrices as function of n, n = nx = ny = nz.

(n0 = (n+ 1)3, n1 = 3n(n+ 1)2, n2 = 3n2(n+ 1), and n3 = n3)

size number of nonzeros

p Bp M1+β
p Bp M1+β

p

1 n1 × 3n0 3n0 × n1 2n1
3
2
n(n+ 1)3

2 n2 × 3n0 3n0 × n2 4n2
3
4
n2(n+ 1)3

3 n3 × n0 n0 × n3 8n3
1
8
n3(n+ 1)3

can compute approximately the volume integral, leading to the discrete fractional integral on
3-forms operator. Letting M1+β

3 ∈ Rn0×n3 be the discretization of evaluating I1+β
3 ω3 at each

node, we define the discrete Riemann-Liouville fractional integral operator Iβ3 ∈ Rn3×n3 :
C3 → C3 as

Iβ3 := B3M1+β
3 V−1

3 ,

where B3 := D0→3 ∈ Rn3×n0 is the signed volume-node incidence matrix and V3 = diag(|σ3
i,j,k|).

In general, our discrete Riemann-Liouville fractional integral operators are defined as

Iβp = Bp M1+β
p V−1

p , p = 1, 2, 3.

We summarize the sizes and number of nonzeros of Bp and M1+β
p as a function of n, n = nx =

ny = nz, in Table 1. We exclude Vp because they are diagonal. As we can see, on the cubical
complex, the matrices Bp are sparse since they are constructed from incidence matrices. On
the other hand, the matrices M1+β

p become denser and denser as p increases. However, they
are still relatively sparse. Even for p = 3, only 12.5% of the entries are nonzeros.

3.2.2. FDEC operators

After discretizing Iβ
p , we now introduce two FDEC operators: the fractional discrete

exterior derivative, and the fractional de Rham map. We first introduce the fractional
discrete exterior derivative. As mentioned before, based on RLDβ

p Iβ
p = id on the continuous

level, we simply define the discrete version of the RLDβ
p operator as the inverse of the Iβp

matrix to preserve the property on the discrete level. Based on the discrete versions of Iβ
p ,

RLDβ
p , and dp, i.e., Iβp ,

(
Iβp
)−1

, and Dp, it is straightforward to define the FDEC operators
Dα

p as follows.

Definition 2. The fractional discrete exterior derivative operators are defined as

Dα
p := I1−α

p+1 Dp (I1−α
p )−1, p = 0, 1, 2, 0 < α < 1,

where we define I1−α
0 := In0 , i.e., an identify matrix of size n0 × n0.

From Definition 2, we can easily see that Dα
p+1Dα

p = 0 because

Dα
p+1Dα

p = I1−α
p+2 Dp+1 (I1−α

p+1 )
−1 I1−α

p+1Dp (I1−α
p )−1 = I1−α

p+2 Dp+1Dp (I1−α
p )−1 = 0.
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Remark. We can discretize RLDβ
p directly using the same method as was done to discretize

Iβ
p and obtain a discrete Riemann-Liouville fractional derivative operator,

RLDβ
p = BpM1−β

p (Vp)
−1, p = 0, 1, 0 < β < 1.

This provides two alternative ways to define the FDEC operators. The first one is

Dα
p := I1−α

p+1 Dp
RLD1−α

p .

Although this approach seems to be more natural than Definition 2, unfortunately, these
operators do not satisfy Dα

p+1Dα
p = 0 due to the fact that RLDβ

p Iβp ̸= Inp . But
RLDβ

p Iβp ≈ Inp

as the mesh size gets smaller, which leads to Dα
p+1 Dα

p ≈ 0 when the mesh is refined. The
second approach is

Dα
p :=

(
RLD1−α

p+1

)−1Dp
RLD1−α

p ,

which also satisfies Dα
p+1Dα

p = 0. However, we empirically observe worse convergence than
the version we are using. This is why we decided to use Definition 2. We would like to
thoroughly understand these three approaches’ approximation properties and convergence
behaviors in our future work.

Remark. We comment that the FDEC operators defined in Definition 2 are closely related
to the mimetic finite difference (MFD) method [39, 40] since Dα

p = I1−α
p+1 Dp (I1−α

p )−1 =(
Bp+1 M2−α

p+1

) (
V−1

p+1DpVp

) (
BpM2−α

p

)−1
and V−1

p+1DpVp are the MFD operators as pointed
out in [41, 42].

Next, after defining the fractional discrete exterior derivative, we define a “fractional de
Rham map,” as follows. Recall that in the integer case, we have the identity DpRp = Rp+1 dp.
However, in the fractional case, Dα

pRp ̸= Rp+1d
α
p in general. To remedy this, we define the

following fractional de Rham map Rα
p : Λp → Cp:

Rα
p := I1−α

p Rp
RLD1−α

p , p = 0, 1, 2, 3.

Then Dα
p Rα

p = Rα
p+1 d

α
p holds by the following direct calculation:

Dα
p Rα

p = I1−α
p+1 Dp (I1−α

p )−1 I1−α
p Rp

RLD1−α
p = I1−α

p+1 Dp Rp
RLD1−α

p

= I1−α
p+1 Rp+1 dp

RLD1−α
p = I1−α

p+1 Rp+1
RLD1−α

p+1 I1−α
p+1 dp

RLD1−α
p = Rα

p+1 d
α
p .

This implies the following commuting diagram

Λp Λp+1

Cp Cp+1

dαp

Rα
p Rα

p+1

Dα
p

and suggests that, with the fractional de Rham map, the FDEC operator Dα
p can be viewed

as an “error-free” discretization of dαp , which provides another structure-preserving property
and, therefore, makes the FDEC operators useful for preserving physics laws in numerical
simulations, e.g., fractional conservation of mass [43] and fractional Gauss’s laws [44].
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4. Numerical experiments

In this section, we numerically test the FDEC operators. The MATLAB and Mathemat-
ica code is available at https://github.com/71c/Frac-DEC. In Section 4.1, we numerically
study the convergence of Dα

p to dαp , while in Section 4.2, the property Dα
p+1Dα

p = 0 is verified
numerically.

4.1. Convergence of our FDEC to T-FVC

In this section, we numerically study the approximation property of the FDEC oper-
ators (Definition 2) to their continuous counterparts (Definition 1) for p = 0, 1, 2. Their
convergence rates are tested using a regular cubical complex (see Figure 1).

Recall that Dα
pRp ̸= Rp+1d

α
p in general, however, we do expect that Dα

pRp → Rp+1d
α
p

as the number of the subdivisions increases (i.e., the mesh size decreases). Therefore, to
properly check the convergence rate, for a given p-form ωp ∈ Λp, we compute the following
root mean square (RMS) error,

RMS
(
V−1

p+1Dα
pRpω

p − V−1
p+1Rp+1d

α
pω

p
)
, (13)

where RMS(x) :=
√

1
n

∑n
i=1 x

2
i for x ∈ Rn. Here V−1

p+1 makes sure that we are measuring

the average error throughout space by dividing the cochain value on a (p + 1)-cell by the
volume of that (p+ 1)-cell.

In Figures 2 and 3, we plot the error (13) against the number of subdivisions and the
fractional order α, for p = 0, 1, 2. We use the region Ω = [0, 1] × [0, 1] × [0, 1] for all plots.
We use the scalar field

f(x, y, z) = −8xy2z − 3 cos(20(x− 1/2)(y − 1)z) + 4(x− 1/2)2 + (y − 1/2)2

as ω0 to test the fractional gradient, and use the vector field

F (x, y, z) =


y sin(5xy + z) + 3

(
xz − 1

2

)2 − 3
(
y − 1

2

)2
z cos(10xyz) + xz − y3

2 sin(5x3y) + xy
(
z − 1

4

)
+ cos(2xyz)− x+ y3z


as ω1 and ω2 to test the fractional curl and divergence, respectively.

Figure 2 plots the error (13) for p = 0, 1, 2 against the number of subdivisions for two
values of α: α = 0.25 and α = 0.9. From the plots, we can see that the convergence is
generally slower at small n, and the convergence becomes faster approaching second-order
convergence for large n. Thus, we conjecture that our proposed FDEC operators converge in
second-order asymptotically. We can also see, at least for the fractional curl and divergence,
that for α = 0.25, the convergence is close to second-order, while for α = 0.9, the convergence
is slower than second-order (at least empirically for small n). This likely means that when α
is close to 1, the asymptotic second-order convergence appears more slowly. The theoretical
study of the convergence order is a subject of our future work.
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(a) Discrete fractional gradient error for function f(x, y, z)

(b) Discrete fractional curl error for function F (x, y, z)

(c) Discrete fractional div error for function F (x, y, z)

Figure 2: Error of discrete fractional gradient, curl, and divergence to their continuous counterparts against
the number of subdivisions. Left column: α = 0.25. Right column: α = 0.9.
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(a) Discrete fractional gradient error for function f(x, y, z), at 16 subdivisions.

(b) Discrete fractional curl error for function F (x, y, z), at 16 subdivisions.

(c) Discrete fractional divergence error for function F (x, y, z), at 8 subdivisions.

Figure 3: Error of discrete fractional gradient, curl, and divergence to their continuous counterparts against
the fractional order α. Left column: error versus α in linear scale. Right column: error versus 1− α in log
scale.

On the other hand, Figure 3 plots the error (13) for p = 0, 1, 2 against α for a fixed
number of subdivisions (n = 16 for p = 0, 1 and n = 8 for p = 2). The plots in Figure 3
deserve some explanation. On the left column plots, the error (in linear scale) is plotted
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Figure 4: Numerical verification of Dα
p+1Dα

p c
p = 0

against α (in linear scale), showing the relationship between the error and α. One can see
in these plots that the error approaches 0 as α approaches 1. This makes sense, since we
have that Dα

pRp = Rp+1d
α
p when α = 1. The plots on the right-hand sides of Figure 3 more

clearly show this phenomenon: the x-axis is 1 − α, which is how far α is to 1, and it is in
log scale in order to clearly show values of 1 − α that are very close to 0, i.e., values of α
that are very close to 1. The y-axis is the error, also in log scale, resulting in a clear linear
relationship on the plot for 1− α sufficiently small.

4.2. Numerical verification of Dα
p+1Dα

p = 0

In this section, we numerically verify Dα
1Dα

0 = 0 and Dα
2Dα

1 = 0 by computing the errors
in the same way as was done in Section 4.1. Concretely, the error is calculated as

RMS(V−1
p+2Dα

p+1(Dα
pRpω

p))

where we used the same scalar and vector field as in Section 4.1 for ω0 and ω1. Although the
operators were mathematically defined such that Dα

p+1Dα
p = 0 holds exactly, small numerical

errors are expected in practice due to the floating point errors. This is confirmed by Figure 4.
As we can see, for different values of α, the errors slightly increase when the number of
subdivisions increases. However, the magnitude of the errors is of the order 10−14, which
numerically verifies that Dα

p+1Dα
p = 0.

5. Conclusion and future work

In this paper, a type of fractional vector calculus was discretized on a 3D regular cubical
complex using discrete exterior calculus. To do this, Tarasov’s standard basis directional
FVC operators were re-formulated so that they could be discretized using DEC. Discretizing
the reformulated FVC operators led to the FDEC operators Dα

p = I1−α
p+1 Dp (I1−α

p )−1, which
are structure-preserving in the sense that Dα

p+1Dα
p = 0, just as dαp+1 d

α
p = 0. In addition,

our FDEC operators involve relatively sparse matrices and accurately approximate the cor-
responding continuous operators numerically with a second-order convergence rate in the
RMS error.
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For future work, firstly, we would like to generalize our FDEC operators beyond cubical
complexes to arbitrary cell complexes or simplicial complexes. Secondly, besides T-FVC
considered in this work, it is natural to consider other types of FVC (possibly more generally
nonlocal vector calculus) and their structure-preserving discretizations. Finally, although our
approach involves relatively sparse matrices, the sparsity does decrease with increasing p.
Therefore, we plan to investigate whether it is possible to compute the Dα

p matrices in a
more memory-efficient manner for practical implementations.
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