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Abstract As opposed to the distributed control of parabolic PDE’s, very few contributions
currently exist pertaining to the Dirichlet boundary condition control for parabolic PDE’s.
This motivates our interest in the Dirichlet boundary condition control for the phase field
model describing the solidification of a pure substance from a supercooled melt. In particular,
our aim is to control the time evolution of the temperature field on the boundary of the
computational domain in order to achieve the prescribed shape of the crystal at the given
time. To obtain efficient means of computing the gradient of the cost functional, we derive
the adjoint problem formally. The gradient is then used to perform gradient descent. The
viability of the proposed optimization method is supported by several numerical experiments
performed in one and two spatial dimensions. Among other things, these experiments show
that a linear reaction term in the phase field equation proves to be insufficient in certain
scenarios and so an alternative reaction term is considered to improve the models behavior.
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1 Introduction

Phase field models have found utility in various areas including phase transition modeling [5,
14, 22, 25], multi component flow simulations [2, 3] and fracture mechanics [10, 29]. They
can take the form of an initial boundary-value problem for a system of partial differential
equations (PDE’s). In this case, one of the PDE’s is the phase field equation, which is derived
by the minimization of the Allen-Cahn or Cahn-Hilliard functional [1, 9]. To describe the
solidification of a pure supercooled liquid [7, 28] the phase equation is augmented by the
heat equation. This formulation is linked to materials science and practical applications,
where controlling solidification is of interest [4, 18, 21, 27].

The optimal control phase field models (PFM) has been studied extensively both from
a theoretical and numerical simulations perspective. In particular, the distributed control
of this type of PFM with homogeneous Neumann or Dirichlet boundary conditions has
been addressed by a large number of publications [12, 13, 20, 30]. Another type of control
that may be considered for PFM is the Neumann or Robin Control (NoR) [11, 15]. To the
authors’ best knowledge however, the Dirichlet boundary control of parabolic equations
has not been studied as extensively. Hinze et. al. [16] and Kunisch [24] have utilized the
very weak formulation to derive optimality conditions and perform calculations using the
finite element method (FEM) [16, 24]. More recently, Gudi et. al. have utilized the weak
formulation along with an alternative control space formulation to derive theoretical results
and perform FEM simulations as well [17]. All these contributions however, only address
a single parabolic PDE and do not apply to the optimization of the Dirichlet boundary
condition in the PFM.

In this article, the numerical optimization of the Dirichlet boundary condition in a
PFM that describes the solidification of a supercooled pure substance is discussed. Since
we restrict ourselves to numerical simulations, the strong form can be used to formally
derive the adjoint equations. These are then used to propose an efficient method of gradient
computation. Gradient descent is then performed using an initial guess to eventually arrive
at a locally optimal control. A number of numerical simulations in one and two dimensions
have been performed to show the effectiveness of this method (see Section 5). Some of
these simulations show that the optimization is quantitatively and qualitatively affected by
the inadequacies of the linear reaction term in the phase field equation (see Section 5.1.3).
An alternative reaction term, proposed in [28], is then used to remove these limitations.

2 General Problem Formulation and Gradient Computation

For the general theory, we formally follow [19]. Let Y,U be Banach spaces and Z be a
Hilbert space. We call Y the solution space and U the control space. Consider a map

e : Y ×U → Z.

We call e the state map, implicitly defining the dependence of the solution y ∈ Y on the
control u ∈U by the state equation

e(y,u) = 0. (1)

For example, the state equation can assume the form of a system of ordinary differential
equations (ODE’s) with boundary conditions or a system of PDE’s with boundary and initial
conditions. In this setting, u is involved in the formulation of the problem for the ODE’s or
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PDE’s and y represents its solution. In particular, u can appear in the source term or an initial
or boundary condition.

Assume that there exists a map S : U → Y such that

e(S (u) ,u) = 0.

We call S the solution operator. The existence of the map S is equivalent to the existence and
uniqueness of the solution y = S (u) of (1) for any control u ∈U .

We introduce the cost functional J : Y×U→R. The fundamental minimization problem
then reads

min
u∈U

J (y,u) (2)

s.t. e(y,u) = 0 where y ∈ Y,u ∈U. (3)

To obtain the derivative of the cost functional J with respect to u, it is possible to either
perform direct computation (sensitivity analysis) or use adjoint methods [19]. We opt for
the latter approach since it’s computationally more efficient when performing optimization
with respect to a large amount of parameters.

First, define the reduced cost functional associated to the fundamental problem (2)-(3)
as

Ĵ (u) = J (y(u) ,u) ,

where the term y(u) is used in place of S (u) to denote the solution y of the state equation
(1) for the given control u. Then the fundamental problem (2)-(3) simply becomes

min
u∈U

Ĵ (u). (4)

We compute the Fréchet derivative of Ĵ at u formally. Define the Lagrange function L :
Y ×U×Z→ R as

L(y,u,λ )≡ J (y,u)+ 〈λ ,e(y,u)〉Z , (5)

where λ is called the adjoint variable. We notice that since e(y(u) ,u) = 0 for all u ∈U , we
have

L(y(u) ,u,λ ) = Ĵ (u) . (6)

By differentiating (6), we arrive at

Ĵ′ (u)s = Ly (y(u) ,u,λ )y′ (u)s+Lu (y(u) ,u,λ )s, (7)

where s ∈U . The equation
Ly (y(u) ,u,λ ) = 0 (8)

is called the adjoint problem. Finding a particular λ0 ∈ Z that solves (8) leads to a simplified
calculation of the derivative (7) and we no longer need to compute y′ (u) in order to evaluate
Ĵ′ (u)s for a given direction s ∈U .
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3 Adjoint Problem for Optimizing the Solution of the Phase Field Problem

Using strong formalism, the procedure shown in Section 2 is applied to an optimization
problem where the state equation (3) is the isotropic phase field problem in a simplified
dimensionless form [6, 7, 8, 28]. Let Ω ⊂ Rn be a bounded domain and let T > 0. The
course of solidification (or melting) of a pure material in Ω is described by the evolution of
the phase field ỹ with values between 0 and 1, identifying the solid subdomain Ωs (t), the
liquid subdomain Ωl (t) and the phase interface Γ (t) by

Ωs (t) =
{

x ∈Ω ; ỹ(t,x)>
1
2

}
, (9)

Ωl (t) =
{

x ∈Ω ; ỹ(t,x)<
1
2

}
, (10)

Γ (t) =
{

x ∈Ω ; ỹ(t,x) =
1
2

}
. (11)

The phase field problem governs the evolution of both the phase field ỹ and the temperature
field y by modeling phase transitions and heat transfer inside Ω . Our aim is to obtain such
solution that approaches the prescribed crystal shape at the given time T (i.e., the shape
of the solid subdomain Ωs (T )). This is done by controlling the time-dependent Dirichlet
boundary condition for the temperature y.

Consider the problem

min
u∈U

J (y, ỹ,u)≡ 1
2

∫
Ω

∣∣ỹ(T,x)− ỹ f (x)
∣∣2 dx+

α

2

T∫
0

∫
∂Ω

|u(t,x)|2 dSdt (12)

s.t.

yt =∆y+Hỹt , in (0,T )×Ω , (13)

y |∂Ω =u on [0,T ]×∂Ω , (14)

y |t=0 =yini in Ω , (15)

γξ
2ỹt =ξ

2
∆ ỹ+ f0 (y, ỹ;ξ ) in (0,T )×Ω , (16)

ỹ |∂Ω =ỹbc on [0,T ]×∂Ω , (17)

ỹ |t=0 =ỹini in Ω , (18)

where ỹ f ∈ L2 (Ω) in (12) is the target profile of the phase field ỹ, α denotes the strength of
the regularization term, and

f0 (y, ỹ;ξ ) = ỹ(1− ỹ)
(

ỹ− 1
2

)
−βξ (y− ymt) . (19)

Equation (13) is the heat equation with release of the latent heat of fusion H. The corresponding
Dirichlet boundary condition for the temperature y is given by the control u∈C([0,T ]×∂Ω)
and the initial temperature field is determined by (15).

Next, (16) is the Allen-Cahn (phase field) equation with a simple linear form of the
reaction term [23, 28], containing the melting temperature ymt, the parameter ξ related to
the interface thickness, and the dimensionless model parameters γ,β . For simplicity, we
consider a constant Dirichlet boundary condition (17) for ỹ. Finally, the initial condition
(18) describes the initial shape of the crystal Ωs (0).
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In order for the phase interface to form correctly and the solution to have physical
interpretation, the reaction term on the right hand side of (16) must have three roots in
terms of ỹ and thus satisfy the condition

βξ (y− ymt) ∈

(
−
√

3
36

,

√
3

36

)
, (20)

as detailed in [7, 8, 28]. As will be shown further in Section 5, the presented formulation
of the optimization problem may yield the optimal control u such that the solution (y, ỹ)
violates (20).

Let us proceed to the derivation of the adjoint problem. Consider the setting:

– Y ≡ C2
(
[0,T ]×Ω

)2
,

– U ≡ C(∂Ω × [0,T ]) ,
– Z ≡ L2

(
[0,T ]×Ω

)2×L2 (∂Ω × [0,T ])2×L2 (Ω)2.

Define the state equation operator component-wise as

e1 (y, ỹ) =yt −∆y−Hỹt ,

e2 (y,u) =y |t=0 − yini,

e3 (y) =y |∂Ω −u ,

e4 (y, ỹ) =γξ
2ỹt −ξ

2
∆ ỹ− ỹ(1− ỹ)

(
ỹ− 1

2

)
+βξ (y− ymt) ,

e5 (ỹ) =ỹ |t=0 − ỹini,

e6 (ỹ) =ỹ |∂Ω − ỹbc. (21)

Let λ ≡ (p1, p2, p3,q1,q2,q3) ∈ Z, then the Lagrangian for the problem (12)-(18) reads

L(y, ỹ,u,λ ) =J (y, ỹ,u)+λ (e(y, ỹ,u))

=
1
2

∫
Ω

∣∣ỹ |t=T − ỹ f
∣∣2 dx+

α

2

T∫
0

∫
∂Ω

|u|2 dSdt

+

T∫
0

∫
Ω

(yt −∆y−Hỹt) p1dxdt +
∫
Ω

(y |t=0 − yini) p2dx+
T∫
0

∫
∂Ω

(y |∂Ω −u) p3dSdt

+

T∫
0

∫
Ω

(
γξ

2ỹt −ξ
2
∆ ỹ− ỹ(1− ỹ)

(
ỹ− 1

2

)
+βξ (y− ymt)

)
q1dxdt

+
∫
Ω

(ỹ |t=0 − ỹini)q2dx+
T∫
0

∫
∂Ω

(ỹ |∂Ω − ỹbc)q3dSdt. (22)
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Consider (v, v̂) ∈ Y , then

L(y,ỹ) (y, ỹ,u,λ ) [(v, v̂)] =
∫
Ω

(
ỹ |t=T − ỹ f

)
v̂ |t=T dx+

I.︷ ︸︸ ︷
T∫
0

∫
Ω

(vt −∆v−Hv̂t) p1dxdt

+
∫
Ω

v |t=0 p2dx+
T∫
0

∫
∂Ω

v |∂Ω p3dSdt

+

II.︷ ︸︸ ︷
T∫
0

∫
Ω

(
γξ

2v̂t −ξ
2
∆ v̂+3ỹ2v̂−3ỹv̂+

1
2

v̂+βξ v
)

q1dxdt

+
∫
Ω

v̂ |t=0 q2dx+
T∫
0

∫
∂Ω

v̂ |∂Ω q3dSdt. (23)

Condition (8) is satisfied if and only if

L(y,ỹ) (y, ỹ,u,λ ) [(v, v̂)] = 0 for all (v, v̂) ∈ Y.
To this end, we use Greens formula to offload the derivatives in expressions I. and II.
Expression I. then becomes

I.=−
T∫
0

∫
Ω

(p1)t vdxdt +
∫
Ω

(p1v) |t=T − (p1v) |t=0 dx+
T∫
0

∫
Ω

∇p1 ·∇vdxdt

−
T∫
0

∫
∂Ω

p1∇v ·nnndSdt+
T∫
0

∫
Ω

H (p1)t v̂dxdt +
∫
Ω

−H (p1v̂) |t=T +H (p1v̂) |t=0 dx

=−
T∫
0

∫
Ω

(p1)t vdxdt +
∫
Ω

(p1v) |t=T − (p1v) |t=0 dx−
T∫
0

∫
Ω

∆ p1vdxdt+
T∫
0

∫
∂Ω

v∇p1 ·nnndSdt

−
T∫
0

∫
∂Ω

p1∇v ·nnndSdt+
T∫
0

∫
Ω

H (p1)t v̂dxdt +
∫
Ω

−H (p1v̂) |t=T +H (p1v̂) |t=0 dx. (24)

Analogously, expression II. can be rewritten as

II.=−
T∫
0

∫
Ω

γξ
2 (q1)t v̂dxdt +

∫
Ω

γξ
2 (q1v̂) |t=T − γξ

2 (q1v̂) |t=0 dx

+ξ
2

 T∫
0

∫
Ω

−∆q1v̂dxdt−
T∫
0

∫
∂Ω

q1∇v̂ ·nnndSdt+
T∫
0

∫
∂Ω

v̂∇q1 ·nnndSdt


+

T∫
0

∫
Ω

(
3ỹ2q1−3ỹq1 +

1
2

q1

)
v̂dxdt+

T∫
0

∫
Ω

βξ q1vdxdt. (25)
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Using (24), (25) along with (23) results in

L(y,ỹ) (y, ỹ,u,λ ) [(v, v̂)] =
∫
Ω

(
ỹ |t=T − ỹ f −H p1 |t=T + γξ

2q1 |t=T
)

v̂ |t=T dx

+

T∫
0

∫
Ω

(−(p1)t −∆ p1 +βξ q1)vdxdt +
∫
Ω

(p2− p1) |t=0 v |t=0 dx

+

T∫
0

∫
∂Ω

v(∇p1 ·nnn+ p3)dSdt−
T∫
0

∫
∂Ω

p1∇v ·nnndSdt +
∫
Ω

(p1v) |t=T dx

+

T∫
0

∫
Ω

(
−γξ

2 (q1)t −ξ
2
∆q1 +H (p1)t +3ỹ2q1−3ỹq1 +

1
2

q1

)
v̂dxdt

+
∫
Ω

(
H p1− γξ

2q1 +q2
)

v̂ |t=0 dx−
T∫
0

∫
∂Ω

ξ
2q1∇v̂ ·nnndSdt

+

T∫
0

∫
∂Ω

(
q3 +ξ

2
∇q1 ·nnn

)
v̂ |∂Ω dSdt. (26)

From (26), we see that by providing a p1 that solves

(p1)t +∆ p1 =βξ q1 in (0,T )×Ω ,

p1 |∂Ω =0 on ∂Ω × [0,T ] ,

p1 |t=T =0 in Ω (27)

and a q1 that solves

γξ
2 (q1)t +ξ

2
∆q1 =H (p1)t +3ỹ2q1−3ỹq1 +

1
2

q1 in (0,T )×Ω ,

q1 |∂Ω =0 on ∂Ω × [0,T ] ,

q1 |t=T =
1

γξ 2

(
ỹ f − ỹ |t=T

)
in Ω (28)

(in the weak sense) causes (26) to reduce to

L(y,ỹ) (y, ỹ,u,λ ) [(v, v̂)] =
∫
Ω

(p2− p1) |t=0 v |t=0 dx+
T∫
0

∫
∂Ω

v(∇p1 ·nnn+ p3)dSdt (29)

+
∫
Ω

(
H p1− γξ

2q1 +q2
)

v̂ |t=0 dx+
T∫
0

∫
∂Ω

(
q3 +ξ

2
∇q1 ·nnn

)
v̂ |∂Ω dSdt.

(30)
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Lastly, we set

p2 =p1 |t=0 ,

p3 =−∇p1 ·nnn |∂Ω ,

q2 =
(
γξ

2q1−H p1
)
|t=0 ,

q3 =−ξ
2
∇q1 ·nnn |∂Ω (31)

so that (30) becomes the zero operator. Next, we notice that the problems (27) and (28) can
be transformed using

t→ T − t.

We use the following notation for the transformed variables

p(t) =p1 (T − t) ,

q(t) =q1 (T − t) ,

z̃(t) =ỹ(T − t) . (32)

This gives rise to the well posed problem

pt = ∆ p−βξ q in (0,T )×Ω ,

p |∂Ω =0 on ∂Ω × [0,T ] ,

p |t=0 =0 in Ω , (33)

γξ
2qt = ξ

2
∆q+H pt −3z̃2q+3z̃q− 1

2
q in (0,T )×Ω ,

q |∂Ω =0 on ∂Ω × [0,T ] ,

q |t=0 =
1

γξ 2

(
ỹ f − ỹ |t=T

)
in Ω , (34)

where the equations for p,q resemble the heat equation (13) and the Allen-Cahn equation
(16), respectively, but with rather different reaction terms on the right hand side. After the
system (33)-(34) is solved and the additional adjoint variables are set according to (31), the
formula (7) can be used to compute the gradient of Ĵ. Notice, that the first term in (7) is zero
since (8) is satisfied. Let s ∈U be a functional variation, then the formal Fréchet derivative
at point u ∈U in direction s reads

Ĵ′ (u) [s] = α

T∫
0

∫
∂Ω

usdSdt−
T∫
0

∫
∂Ω

p3sdSdt. (35)

The numerical experiments performed in Sections 5.1.1, 5.1.3 and 5.2.1 show that using
the linear reaction term (19) produces nonphysical results due to the condition (20) being
violated by the optimal control. To rectify this, we additionally consider using an alternative
reaction term [28]

f0 (y, ỹ;ξ ) = 2ỹ(1− ỹ)
(

ỹ− 1
2
+ξ β

1
2

Σ (ỹ;ε0,ε1)(ymt− y)
)
, (36)
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where Σ (p;ε0,ε1) is a differentiable sigmoid function (a limiter) in the form

Σ (ỹ;ε0,ε1) =


0 ỹ≤ ε0,

1 ỹ≥ ε1,
3(ỹ−ε0)

2

(ε1−ε0)
2 −

2(ỹ−ε0)
3

(ε1−ε0)
3 ỹ ∈ (ε0,ε1) .

(37)

Since (36) does not lose its physical interpretation for any value of undercooling [28],
replacing (19) with (36) allows us to obtain meaningful controls for a broader range of
experiments (see Section 5.2).

The derivation of the corresponding adjoint equations is analogous to the steps leading
from (21) to (33) and (34). The resulting problem reads

pt = ∆ p−βξ q
(
z̃Σ (z̃;ε0,ε1)− z̃2

Σ (z̃;ε0,ε1)
)

in (0,T )×Ω , in (0,T )×Ω ,

p |∂Ω =0, on ∂Ω × [0,T ] ,

p |t=0 =0, in Ω , (38)

γξ
2qt = ξ

2
∆q+H pt −3z̃2q+3z̃q− 1

2
q−qh(z̃,z) in (0,T )×Ω ,

q |∂Ω =0 on ∂Ω × [0,T ] ,

q |t=0 =
1

γξ 2

(
ỹ f − ỹ |t=T

)
in Ω , (39)

where z(t) = y(T − t) and

h(z̃,z) = β (z− ymt)
(
Σ (z̃;ε0,ε1)+ z̃Σ

′ (z̃;ε0,ε1)−2z̃Σ (z̃;ε0,ε1)− z̃2
Σ
′ (z̃;ε0,ε1)

)
.

The gradient computation (35) and the relationships (31), (32) still hold in this case. Consequently,
the gradient evaluation for the phase field system with (36) as the reaction term is straightforward.

4 General Numerical Framework

This section introduces the numerical method that is used to solve the optimization problem
(12)-(18). Following the First-Optimize-Then-Discretize Paradigm [19, 26], optimality conditions
are provided along with an overview of their numerical treatment (Section 4.1). This results
in several sub-problems, addressed thoroughly in the section that follows (Section 4.2).

4.1 Numerical Treatment using the First-Optimize-Then-Discretize Paradigm

When following the classical first-optimize-then-discretize approach [19, 26] formally, optimality
conditions are derived and then discretized to give a well formulated finite dimensional
minimization problem that can then be solved numerically. Let (y,u) be a solution of the
problem (2)-(3) and λ0 the solution to the corresponding adjoint problem (8). Then the
optimality conditions read



10 Wodecki, Strachota, Oberhuber, Škardová, Balázsová

Lλ (ȳ, ū,λ0) = e(y,u) =0, (40)

Ly (ȳ, ū,λ0) = ey (y,u)
∗

λ0 + Jy (y,u) =0, (41)

Lu (ȳ, ū,λ0)s = Ju (y,u)s+ 〈λ0,eu (y,u)s〉Z ≥0 ∀s ∈U. (42)

The conditions (40)-(42) state that (y,u,λ0) satisfy the state equation (1), the adjoint problem
(8), and the necessary condition for a local minimum. The equations (40) and (41) are then
discretized using a suitable numerical method. For example, if (40) and (41) represent a
system of PDE’s with the requisite (initial and/or boundary) conditions, the finite difference
method (FDM) or the finite element method (FEM) can be applied. Condition (42) is approximated
numerically by plugging in the suitably interpolated numerical solutions of (40), (41).

For the discussion of the individual steps of the procedure, note that particular form of
the primary problem (40) is given by (13)-(18) and the adjoint problem (41) takes the form
of (33)-(34) or (38)-(39). Both these problems can be solved numerically by the FDM, using
a fixed time step ∆ t and a rectangular spatial mesh. Let the numerical solution of the state
equation yh, the control uh, and the adjoint variable λh all be mesh functions, i.e. functions
only defined on a discrete (sub)set of mesh points. We denote the spaces of these functions
as Yh, Uh, and Zh, respectively. The subscript h merely indicates that the dimension of these
spaces is finite. The actual dimensions of these spaces depend on the number of mesh points
and time levels used. The algorithm to solve the discrete counterpart of (40)-(42) then reads:

1. Start with an initial guess uh := uh,0 ∈Uh.
2. Use the FDM numerical solver to compute the solution of the primary problem yh (uh)∈

Yh.
3. Using the solution of the primary problem yh (uh), run the FDM adjoint problem solver

to compute λh (yh (uh)) ∈ Zh.
4. Compute all components of ∇Ĵh, i.e. the partial derivatives of the discrete analogue of Ĵ

with respect to all the basis vectors of Uh, using a discretization of the left hand side of
(42) with λh obtained in the previous step.

5. Perform one step of gradient descent by updating uh as uh := uh− ε∇Ĵh where ε > 0 is
a given step size.

6. Go to step 2 unless a suitable stopping criterion is satisfied.

Some of the possible stopping criteria include exceeding a given maximum number of
iterations or

∣∣∇Ĵh
∣∣ falling below a predetermined threshold [19].

4.2 Details of the Numerical Method

In this section, the detailed numerical treatment of each of the problems outlined in Section
3 is laid out.

As the numerical results presented later in Section 5 are limited to one and two spatial
dimensions, it is enough to follow the notation for the two-dimensional case. The one-
dimensional case then arises as a straightforward simplification.

4.2.1 Finite Difference Scheme

Let Ω = (0,Lx1)× (0,Lx2)⊂ R2, x = (x1,x2), and T > 0. Both the adjoint and the primary
problems are solved using the finite difference method on a uniform mesh. The time step
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and the spatial mesh resolution are

∆ t =
T

Nt −1
, ∆x1 =

Lx1

Nx1 −1
, ∆x2 =

Lx2

Nx2 −1
,

where Nt denotes the number of time layers and Nx1 ,Nx2 the number of mesh points in the
x1 and x2 directions, respectively. The explicit Euler scheme is employed. Let f be a real-
valued function defined on (0,T )×Ω and fh be its approximation by the respective mesh
function. Then we replace the time derivative of f by

ft (k∆ t, i∆x1, j∆x2)≈ fh,t (k∆ t, i∆x1, j∆x2)≡
fh ((k+1)∆ t, i∆x1, j∆x2)− fh (k∆ t, i∆x1, j∆x2)

∆ t
.

(43)

For the discretization of the Laplacian of f , the central difference quotient

∆ f (k∆ t, i∆x1, j∆x2)≈ ∆h fh (k∆ t, i∆x1, j∆x2)≡ (44)

fh (k∆ t,(i+1)∆x1, j∆x2)−2 fh (k∆ t, i∆x1, j∆x2)+ fh (k∆ t,(i−1)∆x1, j∆x2)

(∆x1)
2 (45)

+
fh (k∆ t, i∆x1,( j+1)∆x2)−2 fh (k∆ t, i∆x1, j∆x2)+ fh (k∆ t, i∆x1,( j−1)∆x2)

(∆x2)
2 (46)

is used.

4.2.2 Numerical Integration

The integral in (35) is evaluated using a piece-wise constant interpolation as follows. Let Π

be a subset of the Cartesian rectangular mesh representing the boundary ([0,T ]× ∂Ω ) and
let fh : Π → R, sh : Π → R be mesh functions. To improve readability, the subscript h is
dropped for both fh and sh in this section.

Let SΠ be an interpolation operator that transforms a mesh function on Π to a piecewise
(a.e.) constant function on [0,T ]× ∂Ω . More precisely, the definition of SΠ on the bottom
edge (x2 = 0) of a rectangular 2D domain reads

SΠ f (t,x1,0) = fk,i,0 for (t,x1,0) ∈Mk,i,0,

where

Mk,i,0 =

(
max

(
0,(k−1)∆ t +

∆ t
2

)
,min

(
T,k∆ t +

∆ t
2

))
×
(

max
(

0,(i−1)∆x1 +
∆x
2

)
,min

(
Lx1 , i∆x1 +

∆x1

2

))
×{0} ,

k denotes the time level and i represents the mesh point position along the x1 axis. Intuitively,
the set Mk,i,0 can be viewed as a rectangle in (0,T )× ∂Ω centered in (k∆ t, i∆x1,0) except
for k = 0,Nt , i = 0,Nx, where there is a “cut-off” at the boundary. The operator SΠ is
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defined analogously for the other edges. Since the numerical scheme described by (43)-
(44) does not require the points in the corners of the spatial domain Ω , they are left out in
the approximation of (35), giving rise to

T∫
0

∫
∂Ω

(SΠ f )(SΠ s)dSdt ≈
Nt−1

∑
k=0

Nx1−1

∑
i=1

[
fk,i,0sk,i,0 + fk,i,Nx2

sk,i,Nx2

]
∆ t∆x1

+
Nt−1

∑
k=0

Nx2−1

∑
j=1

[
fk,0, jsk,0, j + fk,Nx1 , j

sk,Nx1 , j

]
∆ t∆x2, (47)

where j represents the mesh point position along the x2 axis and α = 0 is chosen for
simplicity. Notice that omitting the corners of the spatial domain does not affect the convergence
of (47) as Nt ,Nx1 ,Nx2 →+∞.

In particular, (47) will be used along with a finite difference approximation p3,h of p3 in
(31) to get the computation rule for the k, i, j-th component of the gradient as

T∫
0

∫
∂Ω

(
SΠ p3,h

)(
SΠ ek,i, j

)
dSdt =

{(
p3,h
)

k,i, j ∆ t∆x1 if j = {1,Nx2 −1} ,(
p3,h
)

k,i, j ∆ t∆x2 if i = {1,Nx1 −1} ,
(48)

where ek,i, j is the characteristic function of Mk,i, j. Since p (see (33)) is subject to the
homogeneous Dirichlet boundary condition, the approximation p3,h in the gradient computation
(48) reduces to the interior values of p1 (see (32), (31)) adjacent to the boundary ∂Ω .

5 Numerical Results

Utilizing the adjoint formulations derived in Section 3 and the corresponding numerical
treatments detailed in Section 4, the problem (12)-(18) is solved numerically. In Section 5.1,
simulations in one spatial dimension using the linear reaction term (19) are performed and
the effects of regularization, changes in final time and different initial guesses are discussed.
Several scenarios where the bound (20) is not violated are shown. Some of the experiments,
however, show that the optimal control violates the bound (20) in order to achieve the desired
crystal shape (see some of the experiments in Section 5.1 and the experiment of Section
5.1.3). When this is the case, we call a simulation or associated optimal control non-realistic.

As expected, this inadequacy can be observed in experiments with two spatial dimensions
as well (see Section 5.2). In Section 5.2.1, an experiment that directly compares the behaviors
obtained using the linear reaction term (19) and the alternative reaction term (36) is described.
The last experiment of the section shows how the reaction term (36) can be used to find a
realistic optimal control that separates a crystal into two.

Before discussing each of the simulations in detail, some terminology and notes will
be presented. When commenting on experiments, we recall the definitions (9)-(11) and the
related terminology introduced in Section 3, using the terms “crystal” and “solid subdomain”
interchangeably to refer to Ωs (t). It is well known [7, 8, 28] that inside of Ωs (t) and
Ωl (t), the value of the phase field ỹ is very close to 1 and 0, respectively, except for a
thin transition layer between the phases near Γ (t). For both the models considered, this
transition layer (diffuse interface) has a characteristic profile with a thickness proportional
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Table 1 Parameter settings for the phase field simulations in Section 5.1.

Param. Value Physical Meaning

γ 1 coefficient of attachment kinetics
β 2 dimensionless representation of supercooling
ξ 0.005 interface thickness scaling

ymt 0.5 melting temperature
H 1 latent heat
Lx 1 spatial dimension in the x direction

to ξ . Specifically, in the one-dimensional case, let x0 (t) denote the position of the phase
interface (i.e. {x0 (t)}= Γ (t)) and Ωs (t) = [0,x0 (t)), Ωl (t) = (x0 (t) ,1]. Then

ỹ(t,x) =
1
2

[
1− tanh

(
x− x0 (t)

2ξ

)]
+o(ξ ) . (49)

This explanation can be extended to multiple dimensions, then the profile (49) is maintained
in the direction normal to the interface [6, 28].

Denote the numerical approximation of y as yh, the numerical approximation of ỹ as ỹh
and let Ph : Y → Yh be the projection operator onto the mesh.

5.1 Dirichlet Boundary Condition Control for the Phase Field Problem in 1D

All the experiments in this section are performed in one spatial dimension. Let all the
physical parameters be set according to the values in Table 1. These settings do not necessarily
correspond to any real material, they do however serve to illustrate the capabilities and
deficiencies of the optimization problem (12)-(18) with the linear reaction term (19). Additionally,
the influence of regularization α , changes in final time T and initial guess for the control are
discussed in this section also.

5.1.1 Controlling the Extent of Crystal Growth

We attempt to find a control that will produce a crystal Ωs, f of prescribed length inside of
the spatial domain Ω at the fixed final time T > 0. We set the phase field boundary condition
to

ỹbc (t,0) =1 ∀t ∈ [0,T ) ,

ỹbc (t,1) =0 ∀t ∈ [0,T ) , (50)

which creates a nucleation site at x = 0. The initial conditions ỹini,yini and the target profile
ỹ f are depicted in Figure 1. In this case, ỹ f is merely the characteristic function of the
target crystal shape Ωs, f . Alternatively, ỹ f could be chosen as a continuous function with
the characteristic shape across the interface (49), as demonstrated further in Sections 5.1.2
and 5.1.3. The initial guess for the control is

u0 (t,0) =0 ∀t ∈ [0,T ) ,

u0 (t,1) =1 ∀t ∈ [0,T ) . (51)
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Fig. 1 The initial temperature and phase field spatial profiles ỹini,yini along with the target profile ỹ f for
experiments 1, 2, 3. The values of the boundary condition ỹbc are given by (50).

Table 2 Settings for experiments 1, 2, 3 and the respective values of the difference (error) from the prescribed
profile.

Simulation number
Parameter 1 2 3

number of time steps Nt 4 ·105 4 ·105 4 ·105

number of grid points Nx 400 400 400
initial control given by (51) (51) (51)

final time T 0.1 0.05 0.05
regularization parameter α 0 0 5 ·10−11

gradient descent step size ε 3 ·1015 2 ·1016 2 ·1016

number of iterations 100 100 100∥∥ỹh−Phỹ f
∥∥

2 at t = T 1.117846 1.276584 13.64326

In this setting, three numerical experiments are presented. The parameters including
the spatial mesh resolution, the number of time steps as well as the difference of the final
solution from the prescribed phase field profile are summarized in Table 2.

For each of the experiments, the resulting temperature and phase field spatial profiles at
final time T are depicted in Figure 2. Figure 3 shows the respective temporal control profiles
of the Dirichlet boundary condition.

In experiment 1, the optimized control leads to a good agreement of the solution with
the target profile at the final time T = 0.1. The values of uh stay within the limits given by
(20) and thus the solution is realistic. This experiment was also repeated several time with
different nonzero values of the regularization parameter α . Up to the values α ≈ 10−7,
negligible impact of the regularization was observed. In experiment 2, the final time is
halved, i.e. T = 0.05. The target profile was still obtained at the cost of violating the bound
(20). Experiment 3 differs from experiment 2 by setting the regularization parameter to
α = 5 ·10−11 (i.e. α � 10−7, cf. Experiment 1). This was sufficient to keep the simulation
realistic but the target profile was not obtained. Such a situation can be interpreted as the
time T being too short for the target profile to be reached. This is true only in the context of
the linear model, where f0 is defined by (19). The use of a more advanced model, that is not
limited in this way is discussed in Sections 5.2.1 and 5.2.2.
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Fig. 2 Final temperature and phase field spatial profiles of experiments 1, 2, 3. We observe that ỹh reaches the
target Phỹ f in experiments 1 and 2. In experiment 3, the interface of ỹh does not reach its target Phỹ f because
sufficient regularization is added to prevent non-realistic behavior.

5.1.2 Keeping Crystal Separation

In this series of experiments, we attempt to keep two symmetrically placed crystals in
the interior of the domain separated from each other, while letting them grow toward the
boundaries. The target profile ỹ f and initial conditions yini, ỹini are depicted in Figure 4. In
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Fig. 3 Optimized temporal control profiles of experiments 1, 2, 3. In experiment 2, the values of the
temperature violate the bound (20) due to the short final time T . The regularization applied in experiment
3 fixes this issue at the cost of not attaining the target profile (see Figure 2).
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Fig. 4 The initial temperature and phase field profiles ỹini,yini along with the target profile ỹ f for experiments
4 through 8. The values of the boundary condition ỹbc are given by (52).

Table 3 The settings for experiments 4 through 8 and the respective values of the difference (error) from the
prescribed profile.

Simulation Number
Parameter 4 5 6 7 8

number of time steps Nt 105 105 105 105 105

number of grid points Nx 200 200 200 200 200
initial control given by (51) (51) (51) (51) (53)

T (final time) 0.05 0.4 0.4 0.4 0.4
regularization parameter α 0 0 5 ·10−10 10−9 0
gradient descent step size ε 2 ·1014 3 ·1013 1013 1013 3 ·1014

number of iterations 150 100 100 125 100∥∥ỹh−Phỹ f
∥∥

2 0.3359370 0.3392653 0.4725518 0.8469198 0.3293709

contrast to Section 5.1.1, ỹ f is a continuous function with a characteristic shape across the
interface (49). The boundary condition for the phase field reads

ỹbc (t,x) = 1 ∀x ∈ {0,1} , ∀t ∈ [0,T ) . (52)

First, we use the non-symmetric initial control guess (51) to observe its effects on the
obtained temporal profile of uh and overall quality of minimization expressed by the error∥∥ỹh−Phỹ f

∥∥
2 . Then we add regularization and use the symmetric initial guess

u0 (x, t) = 0 ∀x ∈ {0,1} , ∀t ∈ [0,T ) . (53)

and compare the results.
The settings of these experiments can be found in Table 3. First of all, let us emphasize

that all the experiments discussed below lead to a rather accurate reproduction of the target
profile. This is obvious from the values of the error

∥∥ỹh−Phỹ f
∥∥

2 listed in Table 3 as well as
from Figure 5 where the best and the worst final profiles are shown. Also, all the experiments
in this section remain realistic since y is kept within the admissible bounds (20).

Let us now focus on the differences in the obtained temporal control profiles uh between
the individual experiments (see Figure 6).
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Fig. 5 Comparison of the best and the worst (in terms of the error
∥∥ỹh−Phỹ f

∥∥
2) phase field profile

estimations for experiments 4 through 8.

– Experiments 4 and 5 demonstrate how the choice of very different final times T (T =
0.05 and T = 0.4) affects the control uh. When the control is given more time (experiment
5, T = 0.4), its action is delayed to the final part of the interval (0,T ). Nevertheless, the
range of uh is similar in both cases.

– Experiments 5, 6, and 7 show the effects of regularization α of different amplitudes
with the fixed final time T = 0.4. As expected, increasing α significantly reduces the
range of the control uh. However, this does not affect the overall minimization quality
substantially. This is because the action of the control is distributed over a longer time
period.

– Experiment 5 and 8 show the effect of the initial guess u0. It is not surprising that
in experiment 8, a spatially symmetric problem with a symmetric initial guess (53)
result in (almost) identical left and right temporal control profiles uh (·,0) and uh (·,1).
Experiment 5 differs from experiment 8 only in the non-symmetry of the initial guess
(51). As a consequence, the left and right temporal control profiles are completely
different.

– Experiments 5, 6, and 7 also indicate that the regularization partially symmetrizes the
left and the right temporal control profiles.

5.1.3 Moving a Gap Between Crystals

Experiment 9 showcases how even highly non-trivial control can be obtained. Consider a
situation in which two crystals occupy the whole domain except for a comparatively small
gap between them. We aim to move the liquid gap to a different position in the domain. This
is reflected by the settings of yini, ỹini and the target profile ỹ f shown in Figure 7 as well
as the use of the boundary condition (52). The full setup of the experiment is summarized
in Table 4. Note that during optimization, the gradient descent step size was (manually)
adjusted from ε1 to ε2 to ensure convergence.

The target profile ỹ f is achieved by a rather surprising process. First, the entire domain
is solidified. Afterward, the molten region is recreated next to the right boundary. As the
melting proceeds to the left, the right boundary is undercooled again to create another
solid subdomain on the right. The resulting control profiles for the entire time interval are
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Fig. 6 Optimized temporal control profiles of experiments 4 through 8. Experiments 4 and 5 show how an
optimization without regularization responds to an increase of final time T . Regularization is then added in
experiments 6 and 7. The control profiles flatten and the control becomes more evenly distributed. Lastly,
experiment 8 shows a different non-regularized control given by the symmetric initial condition ũini.

displayed in Figure 8. In addition, six snapshots of the final phase of the solution evolution
are depicted in Figure 10, with the corresponding times marked in Figure 9. In terms of the
condition (20), the simulation is not realistic.
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Fig. 7 The initial temperature and phase field profiles ỹini,yini along with the target profile ỹ f for experiment
9. The values of the boundary condition ỹbc are given by (52).
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Fig. 8 Temporal control profiles for experiment 9.
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Fig. 9 A detailed look at the latter part of the temporal control profile in experiment 9.
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Fig. 10 The spatial profiles of the phase field and temperature at the significant times (1)–(6) marked in
Figure 9.

Table 4 Settings for experiment 9 and the respective value of the difference (error) from the prescribed
profile.

Parameter Value

number of time steps Nt 105

number of grid points Nx 200
initial control given by (53)

T (final time) 0.1
regularization parameter α 0
gradient descent step size ε ε1 = 1016, ε2 = 5 ·1015

number of iterations 225 with step ε1, 25 with ε2∥∥ỹh−Phỹ f
∥∥

2 0.5932381
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Table 5 Parameter settings for the phase field simulations in Section 5.2.

Param. Value Physical Meaning

γ 3.0 coefficient of attachment kinetics
β 300 dimensionless representation of supercooling
ξ 0.0101 interface thickness scaling

ymt 1.0 melting temperature
H 2.0 latent heat
ε0 0 parameter of the sigmoid function in (36)
ε1 0.2 parameter of the sigmoid function in (36)
Lx1 0.6 spatial dimension in the x1 direction
Lx2 1.0 spatial dimension in the x2 direction

5.2 Dirichlet Boundary Condition Control for the Phase Field Problem in 2D

In the preceding Section, a bevy of examples detailed the utility and the possible shortcomings
that come with using a linear reaction term (19) in (12)-(18). Among other things, the effects
of regularization, changes in final time and initial guess for the control were discussed in
detail. In this section, simulations in two spatial dimensions are performed. The focus will
no longer be on tweaking the parameters of the simulations. Instead, we focus on the effect
of using the reaction term (36) in (12)-(18) as well as showing non-trivial realistic controls
that arise in some situations.

Parameters that are common to all the experiments detailed in this section are listed in
Table 5.

5.2.1 Moving a Crystal from North to South with Different Reaction Terms

The aim of this set of numerical experiments is to move a crystal from one position in the
domain to another, while maintaining its shape and size. Two experiments are performed.
One using the linear reaction term (19) and the other uses the alternative more advanced
reaction term (36).

For both of the experiments, the initial condition ỹini along with the target profile ỹ f can
be found in Figure 12. The boundary condition for the phase field ỹ is given by

ỹbc (t,x) = 0, ∀x ∈ ∂Ω , ∀t ∈ [0,T ) . (54)

The initial guess for the Dirichlet control on the boundary reads

u0 (t,x) = 1, ∀x ∈ ∂Ω , ∀t ∈ [0,T ) . (55)

Other data for the experiments (some of which is not common for both experiments), like
the mesh resolution or the final error, can be found in Table 5 and Table 6.

The resulting temporal control profiles along with the time evolution of the level set
Γ (t) (the shape of the crystal) for both experiments can be reviewed in Figures 12, for
the linear reaction term (19), and Figures 13 for the alternative term (36). Comparing the
aforementioned figures shows that the two controls obtained are qualitatively and quantitatively
different.

This is unsurprising, since the state equation (12)-(18) with (19) allows for spontaneous
nucleation when the bound (20) is violated [28]. It has been shown that the term (36) does
not suffer from such a deficiency [28] and the obtained control reflects this. As a result, only
the control depicted in Figure 13 can be interpreted as solidification.
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Fig. 11 Initial and target phase field interface Γ for the simulation in Section 5.2.1.

Fig. 12 Simulation with the linear reaction term
(19). For details, see Section 5.2.1.

Fig. 13 Simulation with the alternative reaction
term (36). For details, see Section 5.2.1.

In Figure 12, highly complex shape of the interface Γ can be observed at time t = 0.06
and the crystal assumes its final shape very close to the final time t = 0.08. More snapshots
of the phase field evolution are shown in Figure 14. On the other hand, in Figure 13, the
crystal keeps shape close to the original in all of the shown snapshots. In this simulation,
the evolution is affected by the non-symmetric initial position of the crystal, as the evolution
is driven mainly by the heating and cooling of the right boundary. A preference to keep
the crystal close to the right boundary, where the Dirichlet’s boundary condition has the
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ỹ(0) ỹ(0.02) ỹ(0.04)

ỹ(0.06) ỹ(0.08)

Fig. 14 Evolution of phase field in simulation with the linear reaction term (19). For details, see Section
5.2.1.

strongest influence, can be observed. Close to the final time t = 0.08, the crystal separates
from the domain boundary and fine adjustments in the control shape it to match the target
profile ỹ f . Figures 15 and 16 show the correspondence between the target phase interface
and the final phase interface obtained as the result of the simulation with both reaction terms
and the corresponding optimal boundary control. It may be noticed that in the case of linear
reaction term, the top portion of the final crystal does not have the optimal shape while in
the other case the crystal is pushed to the right. This difference is caused by the different
process leading to the final state.

5.2.2 Separating a Crystal with the Improved Reaction Term

The last numerical simulation aim to address the question of crystal separation. The more
advanced reaction term (36) is used. Namely, considering a single rectangular crystal in the
spatial domain at initial time, a control that separates this crystal into two circular ones is
sought after.
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Fig. 15 Target and final phase field obtained in the
simulation with the linear reaction term (19). For
details, see Section 5.2.1.

Fig. 16 Target and final phase field obtained in the
simulation with the alternative reaction term (36).
For details, see Section 5.2.1.

Figure 17 depicts the initial conditions ỹini and the target profile ỹ f . The boundary
condition for the phase field ỹ is given by

ỹbc (t,x) = 0, ∀x ∈ ∂Ω , ∀t ∈ [0,T ) . (56)

The initial guess for the Dirichlet control on the boundary reads

u0 (t,x) = 1, ∀x ∈ ∂Ω , ∀t ∈ [0,T ) . (57)

Additional data for the experiment are listed in Table 6.
The time evolution of the crystal shape Γ (t) and the temporal control profiles are

combined in Figure 17.
On both sides of the domain, the optimal control exhibits an effort to heat up the center

of the domain in order to separate the crystal into two. At the same time, the upper and lower
parts of the domain cool down, leading to the growth of crystals at the ends of the domain.
The two crystals end up being slightly deformed compared to the ones prescribed by ỹ f , as
can be seen in Figure 19.

5.3 Performance and Implementation Details

The 1D and 2D solvers used in Section 5.2.1 and 5.2.2, respectively, were implemented in
MATLAB and C++. This section intends to give the reader an idea about the performance
and not to serve as a comparison of the two implementations. Therefore, the performance
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Fig. 17 The initial and target position of the phase
interface Γ for the simulation in Section 5.2.2.

Fig. 18 The heating of the domain boundary in
time and the snapshots of the phase interface Γ (t)
during the evolution and in the final time T = 0.08.
For details on this simulation, see Section 5.2.2.

Fig. 19 Target and final phase field obtained in the simulation described in Section 5.2.2.
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Table 6 Settings for the 2D experiments and the respective values of the difference (error) from the prescribed
profile. The first experiment was performed with two reaction terms - linear and alternative.

Simulation
Parameter Moving crystal ( Section 5.2.1) Separating crystal (Section 5.2.2)

number of time steps Nt 8 ·103 8 ·103

number of grid points Nx 60 60
number of grid points Ny 100 100
initial control given by (55) (57)

final time T 0.081 0.081
regularization parameter α 0 0
gradient descent step size ε 5.0 7.5

number of iterations 400 (linear), 5000 (alternative) 1000∥∥ỹh−Phỹ f
∥∥

2 at t = T 7.66 (linear), 7.39 (alternative) 7.21

Table 7 Time to compute 100 iterations of gradient descent for different discretization resolutions. All
simulations were performed on desktop with Intel B360 AORUS MB, i7-8700 CPU and 16GB RAM (Fedora
31 Linux). The values of Nt are given in multiples of 103.

Nx Ny Nt Computational time [s]

51 51 1 37
51 101 1 78
101 101 4 585
101 101 8 1188
101 201 4 1281

analysis is only presented for the more computationally intensive 2D case. The C++ solver
used in Section 5.2 was executed on a single CPU core. Simple benchmark can be reviewed
in Table 7.

Conclusion

The formal adjoint problem for the numerical optimization of Dirichlet boundary condition
in the phase field model was derived for two different reaction terms. The possibilities of
this formulation were explored using several simulations performed in one and two spatial
dimensions with the help of the finite difference method. Among other things, the influence
of reaction term choice, initial control estimate and regularization are discussed. Ultimately,
several experiments performed in two spatial dimensions show how even non-trivial control
that may be interpreted as solidification can be obtained using this method.

Using the adjoint formulation makes it possible to achieve impressive performance
figures with limited hardware and a rudimentary numerical method. This gives a positive
future outlook for the application of Dirichlet boundary control optimization for crystal
morphology estimation and solidification control in three dimensions.

Data availability

The datasets and computer codes are available upon request from the authors.
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