
ar
X

iv
:2

21
1.

05
62

3v
2 

 [
m

at
h.

N
A

] 
 3

1 
M

ay
 2

02
3

A HIGH ORDER DISCONTINUOUS GALERKIN METHOD FOR THE

RECOVERY OF THE CONDUCTIVITY IN ELECTRICAL IMPEDANCE

TOMOGRAPHY

XIAOSHENG LI AND WEI WANG

Abstract. In this work, we develop an efficient high order discontinuous Galerkin (DG)

method for solving the Electrical Impedance Tomography (EIT). EIT is a highly nonlinear

ill-posed inverse problem where the interior conductivity of an object is recovered from the sur-

face measurements of voltage and current flux. We first propose a new optimization problem

based on the recovery of the conductivity from the Dirichlet-to-Neumann map to minimize the

mismatch between the predicted current and the measured current on the boundary. And we

further prove the existence of the minimizer. Numerically the optimization problem is solved

by a third order DG method with quadratic polynomials. Numerical results for several two-

dimensional problems with both single and multiple inclusions are demonstrated to show the

high accuracy and efficiency of the proposed high order DG method. Analysis and computation

for discontinuous conductivities are also studied in this work.
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Keywords: inverse problem, electrical impedance tomography, discontinuous Galerkin method,
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1. Introduction

Electrical Impedance Tomography (EIT) is an imaging method to find the conductivity of

an object by making current and voltage measurements at the boundary. It has many appli-

cations including the early diagnosis of breast cancer [15, 72], detection of pneumothorax [24],

monitoring pulmonary functions [36], detection of leaks from buried pipes [42] and in under-

ground storage tanks [60], as well as many industrial applications [69]. EIT is a typical inverse

boundary value problem. The unique determination results have been obtained in [7, 58, 66].

The stability estimates [4, 5, 9, 56] indicate that such inverse problem is severely ill-posed. We

refer to Uhlmann’s survey article [67] for the detailed development of the inverse boundary value

problems in the theoretical aspect since Calderón’s fundamental work [12].

Computationally, due to the high degree of nonlinearity and severe ill-posedness of the im-

age problem, many efforts have been made in the development of efficient and stable numerical

reconstruction algorithms. These algorithms include the direct methods [16, 46, 48, 63, 65], iter-

ative methods [14, 17, 26, 33, 37, 38, 47, 50], variational methods [11, 49], statistical approaches

[43, 44], neutral networks [3, 8, 28], among others. We refer to the survey articles [10, 39, 45, 55].

In practice, the full knowledge of the boundary measurement is not known. Only the data from

a finite number of experiments is available, and the data may also contain some noises. The

inverse problem is usually translated to an optimization problem to minimize the mismatch
1
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between the model predicted data and the measured data on the boundary. Because of the

ill-posedness arising in the EIT problem, some types of regularization techniques [27] are needed

to stabilize the problem. The Tikhonov regularization method is widely recognized as the most

commonly employed technique. The optimization problem can be solved iteratively, where in-

side each iteration the forward problem needs to be solved numerically. As the accuracy of

the algorithm highly relies on the accuracy of the forward problem, an efficient and accurate

forward solver is in desire. There are many numerical techniques present to solve the forward

problem, which can be modeled by elliptic types of problems. Since finite volume and finite dif-

ference approaches generally need regular grids, the finite element method is commonly used for

EIT applications. Recent work using finite element method including discontinuous Galerkin,

stochastic Galerkin and weak Galerkin methods as a forward solver in the simulations for EIT

includes [13, 30, 31, 32, 40, 41, 52, 54, 64], etc. However, there are not many works of high order

methods to simulate both the forward and inverse of EIT problems.

In this paper, we develop a high order discontinuous Galerkin (DG) method as the recon-

struction method to solve the forward elliptic problems. The DG method is a class of finite

element methods using completely discontinuous piecewise polynomial space for the numerical

solution and the test functions. An introduction of the development of DG methods can be

found in the survey papers and books [21, 22, 23, 25, 34, 61]. Recent developments, mainly for

elliptic problems, include [1, 2, 6, 18, 19, 20, 68, 70, 71]. There are several distinctive features

that make DG attractive in applications, which include the local conservativity, the ability for

easily handling irregular meshes with hanging nodes and boundary conditions, the flexibility for

hp-adaptivity. Besides those, DG also has advantages to deal with rough coefficients, especially

the coefficients containing discontinuities or multiscales. And thus, DG methods have been well

developed in a wide range of applications. However, to the authors’ best knowledge, there is

little work for DG method in solving EIT problems. In particular, it is difficult for traditional

finite element methods to go high order in multidimensions because it requires continuities on

the element boundaries. Furthermore, it is also challenging for traditional finite element meth-

ods to deal with discontinuities such as in the conductivity coefficients. Those advantages, the

hp-adaptivity to go high order and the ability to deal with rough coefficients, make DG method

attractive and suitable for EIT problems. Thus, we would like to design a high order DG method

and apply it to solve EIT problems.

In our work, we focus on the recovery of the conductivity from the Dirichlet-to-Neumann

map, where the given voltage is applied on the boundary and the corresponding current flux

after the interaction of the electromagnetic wave with the object is measured. We construct

an optimization problem to minimize the mismatch between the predicted current from the

Dirichlet-to-Neumann map and the measured current on the boundary with Tikhonov regular-

ization. We prove the existence of the minimizer and derive the derivative formulas associated

with the Dirichlet-to-Neumann map. We then apply our newly designed high order DG method

to solve this EIT problem.

This paper is organized as follows. In Section 2, we study the minimization problem for general

conductivities, state the iteration procedure, and derive the formulas for the derivatives of the

associated operators. In Section 3, we introduce the DG method for the forward problem. In



A HIGH ORDER DISCONTINUOUS GALERKIN METHOD FOR EIT 3

Section 4, we describe the detailed algorithm for solving the inverse problem. Several numerical

examples are presented to demonstrate the performance of the proposed method in Section 5.

A special case of piecewise continuous conductivity is discussed in Section 6. In Section 7, we

draw conclusions and make suggestions for further work.

2. The minimization problem

In this section we state the mathematical model and formulate the minimization problem.

Suppose that Ω is a bounded and simply connected domain in R
d (d ≥ 2) with Lipschitz bound-

ary, and let the voltage potential u solve the Dirichlet problem for the conductivity equation
{

div(σ∇u) = 0 in Ω

u = f on ∂Ω
(2.1)

where the conductivity function σ is positive and bounded in Ω. This problem has a unique

solution u ∈ H1(Ω) for any f ∈ H
1
2 (∂Ω) by the Lax-Milgram theorem. On the boundary, we

can measure the outgoing current flux for a given boundary voltage. The Dirichlet-to-Neumann

map

F (σ, ·) : H
1
2 (∂Ω) → H− 1

2 (∂Ω)

is given by

F (σ, f) =

(
σ
∂u

∂ν

) ∣∣∣
∂Ω

(2.2)

where ν is the unit outer normal of ∂Ω. The inverse problem consists of recovering σ from

F (σ, ·). We suppose that the conductivity is known on the boundary, and our main aim is to

reconstruct the conductivity inside the domain.

For the conductivity equation (2.1), when f ∈ H
1
2 (∂Ω), we know F (σ, f) ∈ H− 1

2 (∂Ω). It is

inconvenient to compute with H− 1
2 (∂Ω) norm. In order to work with the L2(∂Ω) norm for easy

computation, we need more regularity for the conductivity, the boundary data, and the domain,

so that the regularity theory for elliptic equation can be used. This is new and different from

EIT problem with Neumann-to-Dirichlet map (see Remark 2.2). Denote

A = {σ ∈ W 1,∞(Ω) : 0 < c1 < σ < c2, |∇σ| < N, and σ is known on ∂Ω}

the admissible set for the conductivity, where c1, c2 and N are fixed numbers. We suppose that

Ω has C1,1 boundary or Ω is a convex domain. If we take f ∈ H
3
2 (∂Ω), from elliptic theorem,

then F (σ, f) ∈ H
1
2 (∂Ω). We also endow A with the H1(Ω) norm.

Remark 2.1. When the conductivity is a piecewise continuous function, we can release the

higher regularity requirement. This case is studied in Section 6.

Remark 2.2. The Neumann-to-Dirichlet map G(σ, ·) : H− 1
2 (∂Ω) → H

1
2 (∂Ω) is given by

G(σ, g) = u|∂Ω, where u is the solution of
{

div(σ∇u) = 0 in Ω

σ ∂u
∂ν

= g on ∂Ω

with
∫
∂Ω gds = 1. The L2(∂Ω) norm can be employed since G(σ, g) ∈ H

1
2 (∂Ω) ⊂ L2(∂Ω).
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The Dirichlet-to-Neumann map involves an infinite number of boundary measurements. How-

ever, in practical applications, it is only feasible to collect a finite number of measurements, which

may also contain noise. As a consequence of these measurement limitations, we can only obtain

an approximate conductivity that deviates from the true conductivity. The accuracy of this

approximation is contingent on the degree of noise present in the measurements. Let σtrue be

the true conductivity we plan to reconstruct. Denote fj the imposed voltage on the boundary,

for j = 1, · · · ,M with M being the number of experiments. Let gtruej = F (σtrue, fj) be the

exact current flux on the boundary and gδj be the measured current flux on the boundary, which

contains some noises. So we have M pairs of the available data (fj, g
δ
j ). The inverse problem

we consider is to minimize the functional

R(σ) =
1

2

M∑

j=1

‖F (σ, fj)− gδj‖
2
L2(∂Ω) +

α

2
‖σ − σ0‖2H1(Ω) (2.3)

over the admissible set A. The first item describes the mismatch between model predictions and

measurements. The second term is the regularization term, where α > 0 is the regularization

parameter and σ0 is the initial guess of the true conductivity. The minimizer is considered as

an approximation to the true conductivity.

2.1. Existence of the minimizer. We show that there exists at least one minimizer to the

functional R(σ). The proof is based on the continuity of F (σ, f) for σ ∈ A. The current literature

is mainly for the Neumann-to-Dirichlet map (see, for example, [14, 17, 26, 37, 38]). Here we

consider the Dirichlet-to-Neumann map. We need some regularity results for the solution to

(2.1). From the standard elliptic theory, we first know that for σ ∈ A and f ∈ H
3
2 (∂Ω), we have

u ∈ H2(Ω) and

‖u‖H2(Ω) ≤ C‖f‖
H

3
2 (∂Ω)

(2.4)

where C may depend on c1, c2, and N in A, but is independent of u and f . Here and below

we use C to denote such generic constants, and they may vary from line to line. We also need

the following results of Meyers’s reverse Hölder estimates [57, 29, 62]. This result is also used

in [38].

Theorem 2.3. Suppose that 0 < c1 < σ < c2 in Ω ∈ R
d (d ≥ 2). Let u ∈ H1(Ω) be a weak

solution of

div(σ∇u) = divG+ h in Ω.

Then there exists p > 2, depending on c1, c2 and d, such that u ∈ W 1,p(Ω) and

‖u‖W 1,p(Ω) ≤ C(‖u‖H1(Ω) + ‖G‖Lp(Ω) + ‖h‖Lp(Ω))

where C depends on c1, c2, Ω and p.

Applying Theorem 2.3 to the solution of (2.1), we know that u ∈ W 1,p(Ω) for some p > 2 and

‖u‖W 1,p(Ω) ≤ C‖u‖H1(Ω) ≤ C‖f‖
H

1
2 (∂Ω)

≤ C‖f‖
H

3
2 (∂Ω)

. (2.5)
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Next we show u ∈ W 2,p(Ω). Denote x = (x1, x2, · · · , xd) and w = ∂u
∂xi

for some 1 ≤ i ≤ d. From

u ∈ H2(Ω) we know w ∈ H1(Ω) and w satisfies

div(σ∇w) = −div(
∂σ

∂xi
∇u) in Ω.

Applying Theorem 2.3 to the above equation, we obtain w ∈ W 1,p(Ω) and

‖w‖W 1,p(Ω) ≤ C(‖w‖H1(Ω) + ‖∇u‖Lp(Ω)) ≤ C(‖u‖H2(Ω) + ‖u‖W 1,p(Ω)) ≤ C‖f‖
H

3
2 (∂Ω)

where we use (2.4)(2.5) in the last step, and C also depends on N defined in the admissible set

A. Let i vary from 1 to d, we know u ∈ W 2,p(Ω) and

‖u‖W 2,p(Ω) ≤ C‖f‖
H

3
2 (∂Ω)

. (2.6)

Lemma 2.4. Suppose σ ∈ A, σ + δσ ∈ A with δσ = 0 on ∂Ω, and f ∈ H
3
2 (∂Ω). Let u be the

solution of (2.1) and v be the solution of
{

div((σ + δσ)∇v) = 0 in Ω

v = f on ∂Ω.

We have the following estimates

‖v − u‖H1(Ω) ≤ C‖δσ‖
1− 2

p

L2(Ω)
‖f‖

H
1
2 (∂Ω)

(2.7)

‖v − u‖H2(Ω) ≤ C‖δσ‖
1− 2

p

H1
0 (Ω)

‖f‖
H

3
2 (∂Ω)

(2.8)

where p > 2 from Theorem 2.3 and C may depend on c1, c2, N , Ω and p.

Proof: Clearly, v − u satisfies
{

div(σ∇(v − u)) = −div(δσ∇v) in Ω

v − u = 0 on ∂Ω.

From the standard elliptic theory, we have

‖v − u‖H1(Ω) ≤ C‖δσ∇v‖L2(Ω).

Applying the estimate (2.5) to v and using the Hölder inequality, we obtain

‖δσ∇v‖L2(Ω) ≤ ‖δσ‖Lq (Ω)‖∇v‖Lp(Ω) ≤ ‖δσ‖Lq(Ω)‖f‖
H

1
2 (∂Ω)

where p > 2 from Theorem 2.3 and q > 2 is such that 1
p
+ 1

q
= 1

2 . From

‖δσ‖Lq(Ω) =

(∫

Ω
|δσ|q−2|δσ|2dx

) 1
q

≤ C

(∫

Ω
|δσ|2dx

) 1
q

= C‖δσ‖
1− 2

p

L2(Ω)
,

we then get (2.7).

From the standard elliptic theory, we also have

‖v − u‖H2(Ω) ≤ C‖div(δσ∇v)‖L2(Ω) ≤ C‖∇δσ · ∇v‖L2(Ω) + C‖δσ∆v‖L2(Ω).
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Similarly, applying the estimate (2.5) to v, we obtain

‖∇δσ · ∇v‖L2(Ω) ≤ ‖∇δσ‖Lq(Ω)‖∇v‖Lp(Ω) ≤ C‖∇δσ‖Lq(Ω)‖f‖
H

3
2
≤ C‖∇δσ‖

1− 2
p

L2(Ω)
‖f‖

H
3
2 (∂Ω)

,

and applying the estimate (2.6) to v, we obtain

‖δσ∆v‖L2(Ω) ≤ ‖δσ‖Lq(Ω)‖∆v‖Lp(Ω) ≤ C‖δσ‖Lq(Ω)‖f‖
H

3
2 (∂Ω)

≤ C‖δσ‖
1− 2

p

L2(Ω)
‖f‖

H
3
2 (∂Ω)

.

Hence (2.8) holds. �

Theorem 2.5. There exists at least one minimizer to the functional R(σ).

Proof: Since R(σ) is nonnegative, there exists a minimizing sequence {σn} ⊂ A such that

R(σn) → R := lim inf
σ∈A

R(σ) as n → ∞.

Clearly, σn − σ0 is uniformly bounded in H1
0 (Ω). Thus, there exists a weakly convergent subse-

quence of {σn}, still denoted by {σn}, such that

σn − σ0 ⇀ σ̂ − σ0 weakly in H1
0 (Ω) and ‖σ̂ − σ0‖H1

0 (Ω) ≤ lim inf
n→∞

‖σn − σ0‖H1
0 (Ω). (2.9)

From the compact Sobolev embedding H1
0 (Ω) → L2(Ω), we have σn → σ̂ in L2(Ω). Let û and

un be the solutions of (2.1) with σ = σ̂ and σ = σn (n = 1, 2, · · · ). Applying (2.7) for σ = σ̂

and δσ = σn − σ̂, we have ‖un − û‖H1(Ω) → 0, that is,

un → û in H1(Ω). (2.10)

Applying (2.8), we then have

‖un − û‖H2(Ω) ≤ C‖σn − σ̂‖
1− 2

p

H1
0 (Ω)

‖f‖
H

3
2 (∂Ω)

.

Since σn is uniformly bounded in H1(Ω), from the above inequality, we know un is uniformly

bounded in H2(Ω). Thus, there exists a weakly convergent subsequence of {un}, still denoted

by {un}, such that

un ⇀ ˆ̂u weakly in H2(Ω).

From the compact Sobolev embedding H2(Ω) → H1(Ω), we have un → ˆ̂u in H1(Ω). In view of

(2.10), we know û = ˆ̂u. So

un ⇀ û weakly in H2(Ω).

The trace operator mapping from u to ∂u
∂ν

|∂Ω is bounded fromH2(Ω) toH
1
2 (∂Ω). The embedding

from H
1
2 (∂Ω) to L2(∂Ω) is compact, so we have

∂un
∂ν

→
∂û

∂ν
in L2(∂Ω)

and hence

‖F (σn, f)− F (σ̂, f)‖L2(∂Ω) = ‖σn
∂un
∂ν

− σ̂
∂û

∂ν
‖L2(∂Ω) = ‖σ̂(

∂un
∂ν

−
∂û

∂ν
)‖L2(∂Ω) → 0. (2.11)

The existence of the the minimizer then follows from the continuity of F and the weak lower

semicontinuity of the norm. In fact, from (2.9)(2.11), we have R(σ̂) = R.
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2.2. Gauss-Newton method. We first introduce some notations. Let ( , )H1(Ω), ( , )Ω =

( , )L2(Ω), and < , >∂Ω=< , >L2(∂Ω) denote the inner products on H1(Ω), L2(Ω), and L2(∂Ω).

Let Id be the identity operator on L2(Ω).

To find the minimizer σ to min
σ∈A

R(σ), iterative methods are commonly used. In this work,

we use the well-known Gauss-Newton method. The iterative procedure reads

σk+1 = σk + δσ, k = 0, 1, 2, . . . (2.12)

with δσ solving

D2R(σk)δσ = −DR(σk) (2.13)

where DR and D2R are the first derivative operator and second derivative operator of R, re-

spectively.

Next we derive the formulas for DR and D2R in order to find the update δσ in (2.13). We

start with the derivative formulas related to the Dirichlet-to-Neumann operator F (σ, ·). The

derivative formulas for Dirichlet-to-Neumann operator are similar to the derivative formulas for

Neumann-to-Dirichlet operator. Let DF be the derivative of F with respect to σ, (DF )∗ and

(D2F )∗ be the adjoints of the first and second derivatives of F with respect to σ.

Lemma 2.6. Suppose σ ∈ A, σ + δσ ∈ A with δσ = 0 on ∂Ω, and f ∈ H
3
2 (∂Ω). We have

DF (σ, f) : H1
0 (Ω) → H

1
2 (∂Ω) ⊂ L2(∂Ω) is given by

DF (σ, f)(δσ) = σ
∂δu

∂ν

∣∣∣
∂Ω

(2.14)

where δu is the solution of
{

div(σ∇δu) = −div(δσ∇u) in Ω

δu = 0 on ∂Ω
(2.15)

with u being the solution of (2.1).

Proof : Let ũ be the solution of
{

div((σ + εδσ)∇ũ) = 0 in Ω

ũ = f on ∂Ω.
(2.16)

Then

F (σ + εδσ, f) = (σ + εδσ)
∂ũ

∂ν

∣∣∣
∂Ω

= σ
∂ũ

∂ν

∣∣∣
∂Ω

,

where we use δσ = 0 on ∂Ω in the last step.

Denote

δu = lim
ε→0

ũ− u

ε
.

Direct computation shows

DF (σ, f)(δσ) =
d

dε
F (σ + εδσ, f)

∣∣
ε=0

= lim
ε→0

F (σ + εδσ, f)− F (σ, f)

ε

= lim
ε→0

σ ∂ũ
∂ν

− σ ∂u
∂ν

ε

∣∣∣
∂Ω

= lim
ε→0

σ
∂

∂ν
(
ũ− u

ε
)
∣∣∣
∂Ω

= σ
∂δu

∂ν

∣∣∣
∂Ω

.
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Next we show that δu satisfies (2.15). From (2.1)(2.16), clearly δu = 0 on ∂Ω, and by taking

the difference of these two equations in Ω we have

div(σ∇(ũ− u)) = −εdiv(δσ∇ũ).

So

div(σ∇(
ũ− u

ε
)) = −div(δσ∇ũ) = −div(δσ∇(ũ − u))− div(δσ∇u)

= −εdiv(δσ∇(
ũ − u

ε
))− div(δσ∇u).

Letting ε → 0 we know δu satisfies (2.15).

Lemma 2.7. Suppose σ ∈ A and f ∈ H
3
2 (∂Ω). We have (DF )∗(σ, f) : H

1
2 (∂Ω) ⊂ L2(∂Ω) →

H1
0 (Ω) is given by

(DF )∗(σ, f)(ϕ) = w (2.17)

where w is the solution of
{

−∆w +w = ∇u · ∇u∗ in Ω

w = 0 on ∂Ω
(2.18)

with u∗ being the solution of
{

div(σ∇u∗) = 0 in Ω

u∗ = ϕ on ∂Ω
(2.19)

and u being the solution of (2.1).

Proof: For any δσ ∈ H1
0 (Ω), from (2.14) and the boundary condition in (2.19), we have

(δσ, (DF )∗(σ, f)ϕ)H1(Ω) =< DF (σ, f)δσ, ϕ >L2(∂Ω)=

∫

∂Ω
σ
∂δu

∂ν
u∗ds. (2.20)

Next we show that ∫

∂Ω
u∗σ

∂δu

∂ν
ds =

∫

Ω
δσ∇u · ∇u∗dx. (2.21)

Multiplying u∗ to both sides of the equation (2.15) in Ω and integrating by parts, we have
∫

∂Ω
u∗σ

∂δu

∂ν
ds−

∫

Ω
σ∇δu · ∇u∗dx = −

∫

∂Ω
u∗δσ

∂u

∂ν
ds +

∫

Ω
δσ∇u · ∇u∗dx. (2.22)

Since δσ = 0 on ∂Ω, the first term on the right hand side of (2.22) is 0. Multiplying δu to both

sides of the equation (2.19) in Ω and integrating by parts, we have
∫

∂Ω
δuσ

∂u∗

∂ν
ds −

∫

Ω
σ∇u∗ · ∇δudx = 0.

In view of δu = 0 in ∂Ω, we know that
∫
Ω σ∇δu · ∇u∗dx = 0, that is, the second term on the

left hand side of (2.22) is also 0. So (2.21) holds.

From (2.20)(2.21), we have

(δσ,w)H1(Ω) = (δσ, (DF )∗(σ, f)ϕ)H1(Ω) = (δσ,∇u · ∇u∗)L2(Ω),
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that is, ∫

Ω
(δσw +∇δσ · ∇w)dx =

∫

Ω
δσ∇u · ∇u∗dx.

Hence w is the solution of (2.18).

Remark 2.8. w is known as the Sobolev gradient (see, for example [59, 38]). The regularity

requirement for the conductivity in the admissible set is also used here.

After getting the derivatives formulas related to F , we now study the formulas for DR and

D2R.

Lemma 2.9. The first and second derivatives of R of (2.3) are

DR(σ) =

M∑

j=1

(DF )∗(σ, fj)(F (σ, fj)− gδj ) + α(Id−∆)(σ − σ0) (2.23)

and

D2R(σ) =

M∑

j=1

[
(DF )∗(σ, fj)DF (σ, fj) + (D2F )∗(σ, fj)(F (σ, fj)− gδj )

]
+ α(Id −∆) , (2.24)

respectively.

Proof : We directly compute the derivative of R at σ in the direction δσ. From (2.3) we know

R(σ + εδσ) =
1

2

M∑

j=1

< F (σ + εδσ, fj)− gδj , F (σ + εδσ, fj)− gδj >∂Ω

+
α

2
(σ + εδσ − σ0, σ + εδσ − σ0)Ω +

α

2
(∇(σ + εδσ − σ0),∇(σ + εδσ − σ0))Ω.

So

DR(σ)(δσ) =
d

dε
R(σ + εδσ)

∣∣
ε=0

=
1

2

M∑

j=1

(
< DF (σ, fj)δσ, F (σ, fj)− gδj >∂Ω + < F (σ, fj)− gδj ,DF (σ, fj)δσ >∂Ω

)

+
α

2

(
(δσ, σ − σ0)Ω + (σ − σ0, δσ)Ω

)
+

α

2

(
(∇δσ,∇(σ − σ0))Ω + (∇(σ − σ0),∇δσ)Ω

)

=

M∑

j=1

< F (σ, fj)− gδj ,DF (σ, fj)δσ >∂Ω +α(σ − σ0, δσ)Ω + α(∇(σ − σ0),∇δσ)Ω (2.25)

=
M∑

j=1

((DF )∗(σ, fj)(F (σ, fj)− gδj ), δσ)Ω + α(σ − σ0, δσ)Ω + α(−∆(σ − σ0), δσ)Ω,

where we use the integration by part for the last term in (2.25) and δσ = 0 on the boundary.

So (2.23) holds.
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We then compute the bilinear second derivative of R at σ in the direction δσ. From (2.25)

we know

DR(σ + εδσ)(δσ) =
M∑

j=1

< F (σ + εδσ, fj)− gδj ,DF (σ + εδσ, fj)δσ >∂Ω

+α(σ + εδσ − σ0, δσ)Ω + α(∇(σ + εδσ − σ0),∇δσ)Ω.

So

D2R(σ)(δσ, δσ) =
d

dε
DR(σ + εδσ)δσ|ε=0

=
M∑

j=1

(
< DF (σ, fj)δσ,DF (σ, fj)δσ >∂Ω + < F (σ, fj)− gδj ,D

2F (σ, fj)(δσ, δσ) >∂Ω

)

+α(δσ, δσ)Ω + α(∇δσ,∇δσ)Ω

=
M∑

j=1

(
< (DF )∗(σ, fj)DF (σ, fj)δσ, δσ >∂Ω + < (D2F )∗(σ, fj)(F (σ, fj)− gδj , δσ), δσ >∂Ω

)

+α(δσ, δσ)Ω + α(−∆δσ, δσ)Ω,

which proves (2.24). �

Now we can apply the formulas (2.23), (2.24) to compute δσ in (2.13). For simplicity, we

also ignore the term (D2F )∗ in D2R and solve the following linear equation without second

derivative



M∑

j=1

(DF )∗(σk, fj)DF (σk, fj) + α(Id−∆)


 δσ

= −

M∑

j=1

(DF )∗(σk, fj)(F (σk, fj)− gδj )− α(Id−∆)(σk − σ0). (2.26)

We will use the conjugate gradient method (see, for example [27]) to solve (2.26). Typically

this method only needs a small number of iteration steps by generating orthogonal residuals.

The conjugate gradient methods for EIT related problems are studied in [33, 50, 51] and the

references therein.

3. The MD-LDG method

In this section, we introduce the numerical methods to solve the derivative operators DF

and (DF )∗ in (2.14) and (2.17), which involve several elliptic type equations. The minimal

dissipation local discontinuous Galerkin method (MD-LDG) [18] is used to solve all the partial

differential equations in each iteration step. MD-LDG method is a special LDG method for

which the stabilization parameters are taken to be identically zero on all interior faces.

Since our numerical examples are in two dimensions, let us illustrate the MD-LDG formulation

on the model problem on the domain Ω ∈ R
2. We remark that the formulation of MD-LDG in
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higher dimensions is similar.
{

div(σ(x, y)∇u) = −r(x, y) in Ω

u = b(x, y) on ∂Ω
(3.1)

where σ(x, y) ∈ L∞(Ω) satisfying 0 < c1 < σ(x, y) < c2, r(x, y) ∈ L2(Ω) and b(x, y) ∈ L2(∂Ω).

In order to define the LDG method, we rewrite (3.1) into a system of the first order equations

σ(x, y)−1q = ∇u

∇ · q = −r(x, y)
(3.2)

where q = (q1, q2) is a vector function. Then we introduce the finite element spaces associated

to the triangulation Ωh = {K} of Ω of shape-regular tetrahedra K. We set

Vh = {v ∈ L2(Ω) : v|K ∈ P k(K),∀K ∈ Ωh}

Wh = {w ∈ L2(Ω) : w|K ∈ [P k(K)]2,∀K ∈ Ωh}

where P k(K) denotes the set of all polynomials of degree at most k on K. LDG method is to

find uh ∈ Vh and qh ∈ Wh such that for all K ∈ Ωh and all test functions v ∈ Vh and w ∈ Wh

we have ∫

K

σ(x, y)−1qh ·w dxdy +

∫

K

uh∇ ·w dxdy −

∫

∂K

ûhnK ·w dS = 0 (3.3)

∫

K

qh · ∇v dxdy −

∫

∂K

q̂h · nKv dS −

∫

K

r(x, y)v dxdy = 0 (3.4)

where nK is the outward normal unit vector to the ∂K.

Next we define the numerical fluxes ûh and q̂h. For a scalar valued function u, we define the

average {{u}} and the jump [[u]] as follows. Let e be an interior edge shared by elements K1 and

K2. Define the unit normal vectors n1 and n2 on e pointing exterior to K1 and K2, respectively.

With ui := u|∂Ki
, we set

{{u}} =
1

2
(u1 + u2), [[u]] = u1n1 + u2n2.

For a vector-valued function q, we define q1 and q2 analogously and set

{{q}} =
1

2
(q1 + q2), [[q]] = q1 · n1 + q2 · n2.

We do not require either of the quantities {{u}} or [[q]] on boundary edges, and we leave them

undefined. The fluxes are chosen as follows:

ûh = {{uh}}+ β · [[uh]], on Γ0,

ûh = b, on ∂Ω,

and
q̂h = {{qh}} − β[[qh]], on Γ0,

q̂h = qh, on ∂Ω ∩ Γ−,

q̂h = qh − α(uh − b)n, on ∂Ω ∩ Γ+,

where β · nK(e) = 1
2sign(v · nK(e)) and v is any nonzero piecewise constant vector. Γ denotes

the union of the boundaries of the element K of Ωh and Γ0 denotes the interior boundaries

Γ0 := Γ\∂Ω.

Γ− = {e ∈ Γ : v · ne < 0}, Γ+ = Γ\Γ−.
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The stabilization parameter α is chosen as O(1/h).

We refer the error estimate results and proofs in [18].

Theorem 3.1. Suppose that Ω is convex and that the exact solution (q, u) of (3.1) belongs to

Hr(Ωh)×Hr+1(Ωh), for some r ∈ [1, k]. Let (qh, uh) ∈ Wh × Vh be the approximated solution

by MD-LDG defined above, then we have

||q− qh||L2(Ωh) ≤ C1(q, u)h
r , (3.5)

||u− uh||L2(Ωh) ≤ C2(q, u)h
r+1, (3.6)

where C1 and C2 are dependent of q and u but independent of h.

The order of convergence of the solution u by LDG with P k polynomial space is order k + 1

which is optimal. The order of convergence of q is of order k ( except in 1D, it is of order k+1).

Remark 3.2. There are different ways of defining q in LDG method in (3.2). Our definition

is natural because of the Dirichlet-to-Neumann map in (2.2).

4. Numerical algorithms

In this section we precisely describe our numerical algorithms. The Gauss-Newton method is

used to find the minimizer of (2.3). The iteration reads (2.12), which is the outer iteration. In

each iteration, from the analysis in Section 2, we need to solve (2.26). It will be solved by the

conjugate gradient algorithm, which is the inner iteration.

4.1. The Gauss-Newton algorithm. We describe the initialization, stopping criterion and

the iteration steps for (2.12).

Initialization:

Given an initial guess for conductivity σ0. Given M measurements of voltage on the boundary

fj, j = 1, . . . ,M . The exact current flux gtruej = σtrue ∂uj

∂ν
|∂Ω are precomputed from

{
div(σtrue∇uj) = 0 in Ω

uj = fj on ∂Ω
(4.1)

by MD-LDG on a fine mesh.

We add the noise to the exact current flux in the following way

gδj = gtruej + ε|gtruej |ξj, j = 1, . . . ,M (4.2)

where ξj follow the standard normal distribution.

Stopping criterion:

The iteration will be stopped when the error between the computed data and the measured

data reaches the noisy level. More precisely, let δ be the L2 norm of the noise level on the

boundary
M∑

j=1

‖gδj − gtruej ‖L2(∂Ω) ≤ δ.
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We take

δ =
M∑

j=1

‖gδj − gtruej ‖L2(∂Ω) =
M∑

j=1

‖εgtruej ξj‖L2(∂Ω) = ε
M∑

j=1

‖gtruej ξj‖L2(∂Ω).

The iteration will be stopped when
∑M

j=1 ‖F (σk, fj) − gδj‖L2(∂Ω) reaches the order of δ. We

choose τ > 1 and stop the iteration at the first occurrence of k such that

M∑

j=1

‖F (σk, fj)− gδj‖L2(∂Ω) ≤ τδ.

We will discuss τ in the next subsection.

Algorithm:

Set k = 0. Input a constant τ > 1 and a maximum number of iterations MaxOut. Start the

iteration to solve for σ.

While
(∑M

j=1 ‖F (σk, fj)− gδj‖L2(∂Ω) > τδ and k < MaxOut
)
do

(1) Solve the following linear equation for δσ using the conjugate gradient method:



M∑

j=1

(DF )∗(σk, fj)DF (σk, fj) + α(Id−∆)


 δσ

= −

M∑

j=1

(DF )∗(σk, fj)(F (σk, fj)− gδj )− α(Id−∆)(σk − σ0). (4.3)

(2) Set σk+1 = σk + δσ.

(3) Set k := k + 1.

We obtain σ = σk.

A flowchart of Gauss-Newton algorithm is shown in Figure 4.1.

4.2. The conjugate gradient algorithm. We use the conjugate gradient method to solve the

linear equation (4.3).

Initialization:

Denote the right hand side of (4.3) as

r0 = −
M∑

j=1

(DF )∗(σk, fj)(F (σk, fj)− gδj )− α(Id−∆)(σk − σ0),

where (DF )∗ is defined in Lemma 2.7, and (2.17) in Lemma 2.7 is solved by MD-LDG.

Given an initial guess (δσ)0 = 0. Set the initial direction p0 = r0.

Stopping criterion: The iteration will be stopped when the relative residual is smaller than a

given tolerance ρ (0 < ρ < 1). More precisely, we stop the iteration at the first occurrence of l

such that
M∑

j=1

||gδj − F (σk, fj)−DF (σk, fj)(δσ)l||L2(∂Ω) < ρ
M∑

j=1

||gδj − F (σk, fj)||L2(∂Ω).



14 LI AND WANG

Start

Input: σ0, k := 0

∑M
j=1 ‖F (σk, fj) − gδj‖L2(∂Ω) ≤ τδ

Or

k ≥ MaxOut?

Solve Eq. (4.3) for δσ (See Fig. 4.2 for flowchart of conjugate gradient algorithm)

σk+1 := σk + δσ, k := k + 1

Stop
yes

no

Figure 1. Flowchart of Gauss-Newton algorithm

We also require ρ2τ > 2 as in [33]. In this paper, we fix τ = 3 and ρ = 0.9. We would like to

point out that it is not our purpose to choose the optimal numbers for ρ and τ .

Algorithm:

Set l = 0. Input a constant ρ and a maximum number of iterations MaxInn. Start the

iteration to solve for δσ.

While
(∑M

j=1 ||g
δ
j − F (σk, fj)−DF (σk, fj)(δσ)l||L2(∂Ω) ≥ ρ

∑M
j=1 ||g

δ
j −F (σk, fj)||L2(∂Ω) and

l < MaxInn
)
do

(1) Set

αl =
||rl−1||

2
L2(Ω)∑M

j=1 ||DF (σk, fj)pl−1||
2
L2(Ω)

+ α||pl−1||
2
L2(Ω)

+ α||∇pl−1||
2
L2(Ω)

,

where DF is defined in Lemma 2.6, and (2.14) in Lemma 2.6 is solved by MD-LDG.

(2) Set (δσ)l = (δσ)l−1 + αlpl−1.

(3) Set

rl = rl−1 − αl




M∑

j=1

(DF )∗(σk, fj)DF (σk, fj) + α(Id −∆)


 pl−1.

(4) Set βl =
||rl||

2
L2(Ω)

||rl−1||
2
L2(Ω)

.
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Table 1. Example 5.1: L2-errors and orders of accuracy of MD-LDG P 2.

u σ ∂u
∂ν

N error order error order

8× 8 2.66E-05 – 1.23E-04 –

16×16 3.22E-06 3.05 1.82E-05 2.75

32×32 3.98E-07 3.01 2.86E-06 2.68

64×64 4.94E-08 3.01 4.70E-07 2.60

(5) Set pl = rl + βlpl−1.

(6) Set l := l + 1.

We obtain δσ = (δσ)l.

A flowchart of conjugate gradient algorithm is shown in Figure 4.2.

5. Numerical results

In this section, we will present several numerical experiments to demonstrate the performance

of the proposed numerical reconstruction method. We first test our MD-LDG method for the

forward problem. Then we apply MD-LDG method as the forward solver to solve the iterative

inverse problem. In the numerical reconstructions, we use the following 4 measurements

f1 = sin(x+ y), f2 = cos(x+ y), f3 = sin 2(x+ y), f4 = cos 2(x+ y). (5.1)

It is natural to choose the linearly independent sine and cosine functions as the measurements

functions fj. Note that more measurements may produce better results, but more computational

cost.

5.1. Example 5.1: Convergence of forward problem. In the first example, we would like

to test the convergence of our MD-LDG as the forward solver for (3.1). The convergence of

MD-LDG for (3.1) is well known in the literature (see, for example, [18]). We choose the exact

solution u = sin(x+ y) and the coefficient σ = e−(x2+y2). The computational domain is a square

[0, 1] × [0, 1]. The right hand side r(x, y) and the boundary b(x, y) in (3.1) are provided from

the calculation of u. We use the MD-LDG with P 2 polynomial space. Table 4 showed the

L2-errors and orders of accuracy of u, σ ∂u
∂ν

(in this example σux = σuy). We can see third order

convergence for u and second order for σ ∂u
∂ν
. This is confirmed with the optimal convergence for

u and suboptimal convergence for q in Theorem 3.1.

5.2. Example 5.2: Reconstruction of EIT: one smooth blob. We consider a 2D prob-

lem on the domain Ω = [−1, 1] × [−1, 1]. The true conductivity is given by σ(x) = σ0(x) +

e−8(x2+(y−0.55)2) with the background conductivity σ0 = 1, same as [41]. We take the back-

ground conductivity as our initial guess.

Figure 3 shows the true conductivity, which has a smooth blob centered at (0, 0.55). We

perform our numerical methods by MD-LDG with P 2 polynomial space on rectangular meshes.

We first set the regularization parameter α to 10−8, and investigate the effect of various α
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Start

Input: δσ0 := 0, l := 0; p0 = r0 = −
∑M

j=1 (DF )∗(σk, fj)(F (σk, fj)− gδj )− α(Id−∆)(σk − σ0)

∑M
j=1 ||g

δ
j − F (σk, fj) − DF (σk, fj)(δσ)l||L2(∂Ω)

< ρ
∑M

j=1 ||g
δ
j − F (σk, fj)||L2(∂Ω)

Or

l ≥ MaxInn?

αl :=
||rl−1||

2
L2(Ω)

∑M
j=1 ||DF (σk,fj)pl−1||

2
L2(Ω)

+α||pl−1||
2
L2(Ω)

+α||∇pl−1||
2
L2(Ω)

(δσ)l := (δσ)l−1 + αlpl−1

rl := rl−1 − αl

(∑M
j=1 (DF )∗(σk, fj)DF (σk, fj) + α(Id −∆)

)
pl−1

βl :=
||rl||

2
L2(Ω)

||rl−1||
2
L2(Ω)

pl := rl + βlpl−1

l := l + 1

Stop
yes

no

Figure 2. Flowchart of conjugate gradient algorithm
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Table 2. Example 5.2: The heights of the computed conductivity

N ε = 0% ε = 0.1% ε = 1%

16×16 1.696 1.681 1.668

32×32 1.776 1.758 1.695

64×64 1.816 1.790 1.715

values afterward. Our study involves three levels of data noise: ε = 0% (no noise), ε = 0.1% and

ε = 1%. The computed conductivities under each noise level are presented in Figures 4, 5 and

6, respectively. In each group of figures, the mesh sizes are 16 × 16 (degree of freedom (DOF)

1536), 32×32 (DOF 6144), and 64×64 (DOF 24576) from left to right. The figures demonstrate

that the recoveries from all meshes are able to accurately capture the shape and location of the

blob. Our result using DOF 6144 is comparable to the adaptive result with DOF 9818 in

Example 5.1 of [41], in terms of similar shape and height of the approximated conductivity

(Note that the minimization problem is not the same). Table 2 lists the heights of the computed

conductivities obtained using different meshes and noise levels, where the heights are measured

by the maximum value of the conductivity at the centers of all cells. The true conductivity has

a height of 2, and it is apparent that for the same level of noise, finer meshes are able to capture

a higher height of the blob and provide a more accurate approximation. Table 3 presents the

differences between the computed and measured data
∑M

j=1 ‖F (σcomputed, fj)− gδj‖L2(∂Ω). The

results indicate that as the mesh is refined, the difference becomes smaller. In general, the

results of lower noise levels are better than the results of higher noise levels for the same mesh.

We would like to mention that the proposed method is not sensitive to the regularization

parameter α. In Figure 7, we show the reconstructions for six different orders of magnitude

α = 10−4, 10−5, 10−6, 10−7, 10−8 and α = 0. We can see that the reconstructions change slightly

as the regularization parameter varies. Nonetheless, the overall structure of the reconstructions

in terms of conductivity magnitude and center locations remains fairly stable. From this exper-

iment, we notice that smaller α gives slightly better results with a higher height of the blob and

smaller error of conductivity. The results of α = 10−8 and α = 0 are indistinguishable. Thus,

we will use α = 10−8 for all the following examples throughout the paper. We would like to

remark that although we do not see any instability with zero regularization in this particular

example, from the analysis we do need a small positive α for stability and convergence.

5.3. Example 5.3: Reconstruction of EIT: two smooth blobs. The third example is

also a 2D problem on the domain Ω = [−1, 1] × [−1, 1]. The true conductivity is given by

σ(x) = σ0(x) + e−20((x+0.7)2+y2) + e−20(x2+(y−0.7)2) with the background conductivity σ0 = 1,

same as [41]. We take the background conductivity as our initial guess.

The figure of true conductivity is shown in Figure 8. It contains two neighboring smooth blobs

centered at (-0.7,0) and (0,0.7). We consider two levels of data noise ε = 0.1% and ε = 1% and

numerical results are computed by MD-LDG with P 2 polynomial space on rectangular meshes.

Figures 9 and 10 show the computed conductivity with data noise ε = 0.1% and ε = 1%
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Table 3. Example 5.2: The difference between the computed and the measured

data
∑M

j=1 ‖F (σcomputed, fj)− gδj‖L2(∂Ω)

N ε = 0% ε = 0.1% ε = 1%

16×16 7.74E-2 7.80E-2 1.10E-1

32×32 2.74E-2 2.87E-2 8.89E-2

64×64 7.18E-3 1.10E-2 8.08E-2
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Figure 3. Example 5.2: true conductivity.
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Figure 4. Example 5.2: computed conductivity with data noise ε = 0%. Left:

16× 16; Middle: 32× 32; Right: 64× 64.

respectively. In both sets of figures, the mesh sizes are 16× 16, 32× 32, and 64× 64 from left to

right. From all the figures, we can see that the recoveries capture the location and shape of the

two blobs very well. The two blobs are well captured and separated. Our results using fewer

DOF are also comparable to the results in Example 5.2 of [41] in terms of similar shape and

height of the approximated conductivity.
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Figure 5. Example 5.2: computed conductivity with data noise ε = 0.1%. Left:

16× 16; Middle: 32× 32; Right: 64× 64.
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Figure 6. Example 5.2: computed conductivity with data noise ε = 1%. Left:

16× 16; Middle: 32× 32; Right: 64× 64.

6. Piecewise continuous conductivity

In this section, we consider the case when the conductivity is a piecewise continuous function.

We will redefine the regularity requirement in Section 2 for piecewise continuous conductivity.

Recall in the minimization functional (2.3)

R(σ) =
1

2

M∑

j=1

‖F (σ, fj)− gδj‖
2
L2(∂Ω) +

α

2
‖σ − σ0‖2H1(Ω) ,

the first term describes the discrepancy between the measured data and the model-predicted data

on the boundary. In Section 2, in order to work on the L2(∂Ω) norm for the easy computation,

we have to impose some regularity for the conductivity in the definition of the admissible set

A. But if the conductivity is a piecewise continuous function, we can show that the L2(∂Ω) is

well-defined and hence we can release such a requirement.

More precisely, let Ωm (1 ≤ m ≤ L− 1) be some pairwise disjoint inclusions in Ω, and denote

ΩL = Ω \ ∪L−1
m=1Ωm. We suppose that restricting to each Ωm (1 ≤ m ≤ L), σ(x) ∈ Cµ(Ωm) for

some 0 < µ < 1. Clearly, it contains the case that σ is a constant on each Ωm. The following
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Figure 7. Example 5.2: computed conductivity with data noise ε = 0.1% and

mesh 32 × 32. Up left: α = 10−4; Up middle: α = 10−5, Up right: α = 10−6;

Down left α = 10−7; Down middle: α = 10−8, Down right: α = 0.
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Figure 8. Example 5.3: true conductivity.

estimate for the conductivity equation (2.1) are proved in [53] (see Corollary 1.3 in [53])

max
1≤m≤L

‖u‖C1,β (Ωm) ≤ C‖f‖C1,β(∂Ω)

for some β (0 < β ≤ µ), where C may depend on the domain, β, Cµ(Ωm) norms of σ, and other

factors, but is independent of f . We then have

‖∇u‖Cβ (∂Ω) ≤ C‖f‖C1,β(∂Ω)
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Figure 9. Example 5.3: computed conductivity with data noise ε = 0.1%. Left:

16× 16; Middle: 32× 32; Right: 64× 64.
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Figure 10. Example 5.3: computed conductivity with data noise ε = 1%. Left:

16× 16; Middle: 32× 32; Right: 64× 64.

and

‖F (σ, f)‖L2(∂Ω) = ‖σ
∂u

∂ν
‖L2(∂Ω) ≤ C‖∇u‖Cβ(∂Ω) ≤ C‖f‖C1,β(∂Ω).

Therefore, the first term of the minimization functional R(σ) is well-defined without adding extra

smooth conditions on the conductivity. For the regularization term, the H1(Ω) norm is used the

same as in (2.3), which implies that a smoother conductivity is constructed to approximate the

true conductivity. The admissible set is now defined as

Ã = {σ ∈ H1(Ω) : 0 < c1 < σ < c2, and σ is known on ∂Ω}

where c1 and c2 are fixed numbers. Then, the recovery procedure is the same as in Section 4.

6.1. Example 6.1: Convergence of forward problem with discontinuous coefficients.

We will first test the convergence of our MD-LDG as the forward solver for model equation

(3.1) with discontinuous coefficients. LDG (including MD-LDG) has the ability to deal with

discontinuous coefficients as long as the mesh is aligned with the discontinuous interface.



22 LI AND WANG

Table 4. Example 6.1: L2-errors and orders of accuracy of MD-LDG P 2.

u σux σuy
N error order error order error order

8× 8 1.08E-04 – 2.94E-03 – 2.68E-03 –

16×16 1.28E-05 3.08 7.33E-04 2.00 6.89E-04 1.96

32×32 1.54E-06 3.06 1.81E-04 2.02 1.75E-04 1.98

64×64 1.89E-07 3.02 4.50E-05 2.01 4.41E-05 1.99
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Figure 11. Example 6.2: true conductivity.

We take the example from [35]. The computational domain is a square [0, 1] × [0, 1]. The

coefficient σ is a piecewise constant

σ =

{
1, x < 0.5

10, x > 0.5.
(6.1)

We choose the exact solution to be

u =
1

σ
sin

(πx
2

)
(x− 0.5)(y − 0.5)(x2 + y2 + 1).

The right hand side r(x, y) and the boundary b(x, y) in (3.1) are provided from the calculation

of u. We use the MD-LDG with P 2 polynomial space. Table 4 showed the L2-errors and orders

of accuracy of u, σux and σuy. We again see third order convergence for u and second order for

σux and σuy.

6.2. Example 6.2: Reconstruction of EIT: inclusions with a constant background. In

this example, we consider a discontinuous conductivity field with a constant background. The

true conductivity is shown in Figure 11. It has a height of 1.5 in the four squares and 1 anywhere

else. A similar example can be found in [54]. Figure 12 shows the computed conductivity by

MD-LDG with P 2 polynomial space of 16× 16, 32× 32 and 64× 64 from left to right with data

noise ε = 0.1%. We can see that the recoveries can well capture the locations and heights of

the four squares. We admit that due to the H1 norm, the shapes of the conductivity have been

smoothened somehow.



A HIGH ORDER DISCONTINUOUS GALERKIN METHOD FOR EIT 23

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

1

1.1

1.2

1.3

1.4

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

1

1.1

1.2

1.3

1.4

1.5

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

1

1.1

1.2

1.3

1.4

1.5

Figure 12. Example 6.2: computed conductivity with data noise ε = 0.1%.

Left: 16× 16; Middle: 32× 32; Right: 64× 64.
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Figure 13. Example 6.3: true conductivity.

6.3. Example 6.3: Reconstruction of EIT: inclusions with a discontinuous back-

ground. In the last example, we consider a discontinuous conductivity field with a discontin-

uous background. The background has a discontinuity at y = 0 with a value of 1.5 for y > 0

and 1 for y < 0. A similar example can be found in [37]. The true conductivity consists of two

circles centered at (0, 0.7) and (0, -0.7) with a height of 2.5 and 2, respectively, which is shown

in Figure 13. Figure 14 shows the computed conductivity by MD-LDG with P 2 polynomial

space of 16 × 16, 32 × 32 and 64 × 64 from left to right with data noise ε = 0.1%. We can see

that the recoveries can well capture the locations, heights, and shapes of the two circles.

7. Concluding remarks

In this paper, we consider the numerical reconstruction of the conductivity from Dirichlet-to-

Neumann map. It is somehow different from the reconstruction from Neumann-to-Dirichlet map,

where the latter has been extensively studied in the computational aspect. We developed a high

order numerical method for solving the Electrical Impedance Tomography problem which uses a

third order minimal-dissipation local discontinuous Galerkin method as the forward solver. The

reconstruction is based on the iterative least-squares method with Tikhonov regularization. The

efficiency and convergence of the algorithm are demonstrated by several numerical experiments
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Figure 14. Example 6.3: computed conductivity with data noise ε = 0.1%.

Left: 16× 16; Middle: 32× 32; Right: 64× 64.

including continuous and discontinuous conductivities. The results show the proposed method

can well recover the locations and shapes.

We remark that there are many details of the scheme that can be improved and investigated

in future work. In the present work, we consider the traditional H1 penalty term in the regu-

larization. We plan to work on other types of penalty terms including l1 penalty for sparsity

and total variation for discontinuity. We will also work on EIT problem with complete electrode

model. Finally, we will extend the proposed reconstruction method to other types of inverse

problems.
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