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Abstract

Three-dimensional shape-based descriptors have been widely used in object recognition and

database retrieval. In the current work, we present a novel method called compact Shape-DNA

(cShape-DNA) to describe the shape of a triangular surface mesh. While the original Shape-DNA

technique provides an effective and isometric-invariant descriptor for surface shapes, the number

of eigenvalues used is typically large. To further reduce the space and time consumptions,

especially for large-scale database applications, it is of great interest to find a more compact way

to describe an arbitrary surface shape. In the present approach, the standard Shape-DNA is first

computed from the given mesh and then processed by surface area-based normalization and line

subtraction. The proposed cShape-DNA descriptor is composed of some low frequencies of the

discrete Fourier transform of the processed Shape-DNA. Several experiments are shown to

illustrate the effectiveness and efficiency of the cShape-DNA method on 3D shape analysis,

particularly on shape comparison and classification.

1 Introduction

With rapid generation and increasingly availability of digital models in recent years, surface

shape analysis has become one of the most important tasks in computer graphics community

[1]. Some popular applications are shape comparison, classification and retrieval. The

problem of rigid shape comparison and retrieval has been well studied and a large number of

methods and tools have been developed [2, 3]. How to efficiently and accurately retrieve

non-rigid (deformable) shapes from large databases, however, still remains a challenging

problem, which inspires researchers to find good descriptors for non-rigid surface shapes.

The existing methods on non-rigid shape descriptors can be roughly classified into two

categories: global methods and local methods. Global methods use some global and

isometric-invariant properties of shapes while local methods use local features of shapes as

shape descriptors. We refer the readers to [4, 5, 6, 7] for more details on these descriptors.

© 2014 Elsevier Ltd. All rights reserved.

Co-corresponding authors: Z. Gao (gzh@jlu.edu.cn) and Z. Yu (yuz@uwm.edu).

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Comput Aided Des. Author manuscript; available in PMC 2015 August 01.

Published in final edited form as:
Comput Aided Des. 2014 August 1; 53: 62–69. doi:10.1016/j.cad.2014.03.008.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The present paper is focused on the global methods and a new global and compact descriptor

is proposed to efficiently describe shapes. Among the work on non-rigid shape description

using global features, spectral-based methods have gained a lot of attention due to its

representing simplicity and computational efficiency [8], and have been studied both

theoretically [9] and computationally [10]. For a detailed survey of spectrum-based mesh

processing and shape description, the readers are referred to [11].

Thanks to the property of isometric invariance, the Laplace-Beltrami (L-B) operator on a

manifold has become one of the most popular operators for non-rigid shape analysis in such

applications as matching [12], recognition [13, 14, 15], retrieving [16, 17, 18], segmentation

[19] and registration [20]. In particular, the eigenvalues and eigenfunctions of the L-B

operator play important roles in describing shapes for shape-based retrieving and mesh

segmentation. Xu [21] proposed several schemes for discretizing the L-B operator on

triangular meshes and established the convergence under various conditions. Brandman [22]

approximated the eigenvalues of the L-B operator by solving an eigenvalue problem in a

bounded domain, discretized into a Cartesian grid. Rong et al. [23] used the eigenvalues and

eigenfunctions of the L-B operator for mesh deformation. Wu et al. [6] proposed a

symmetric mean-value L-B operator and used it as a descriptor in 3D non-rigid shape

comparison. Shi et al.[24] presented a surface reconstruction method based on the eigen-

projection and boundary reformation of the L-B operator. Ruggeri et al. [3] describeda

method of matching 3D shapes based on the critical points of the eigenfunctions

corresponding to some small eigenvalues of the L-B operator. As the eigenvalues are often

computed on a mesh, a discrete approximation of the true underlying manifold, Dey et al.

[25] studied the convergence and stability of eigenvalues to the true spectrum of the

manifold. In addition to the traditional use for surface shapes, the L-B operator has been

used for the recognition, retrieval and matching of images as well. Some early work dealing

with those topics can be found in [26] and [27], in which the images are treated as

Riemannian manifolds and the L-B or weighted L-B operators are applied to the manifold

for characterizing the images.

From the perspective of signal processing, the eigen-decomposition of the L-B operator can

be thought of as an frequency analysis of the shape: the eigenvalues correspond to the

frequency values and the eigenfunctions correspond to the signals of the associated

frequencies. The Shape-DNA [28, 29, 30, 31] consists of the N smallest eigenvalues of the

L-B operator and is often used as a shape descriptor for measuring the similarity between

different shapes by using the Euclidean (L2) distance between the Shape-DNA vectors. The

property of isometric invariance derived from the L-B operator is one of the most important

advantages of the Shape-DNA method, which makes it well suited for comparing non-rigid

shapes. However, it is unclear as to what number of eigenvalues, i.e. N, should be used to

form the Shape-DNA [32]. Reuter et al. used 20 eigenvalues for shape retrieval in [12] and

11 eigenvalues in [33]. In [34], the authors mentioned that 500 eigenvalues had to be

computed for extracting important information from Dirichlet eigenvalues. However, in

[35], the authors reported that 10 to 15 eigenvalues were enough for shape retrieving. In

view of signal processing, more eigenvalues contains more information of detail and can

describe the shape more accurately, but in the meantime, more time and space have to be
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used for computing, storing and comparing the Shape-DNAs. In this paper, we use at most

100 eigenvalues in the Shape-DNAs and our experiments show that the first 100 eigenvalues

are typically enough for describing shapes in the database we used for testing.

Motivated by the Shape-DNA technique, we present a novel shape descriptor, called

compact Shape-DNA (cShape-DNA), for analyzing the shape of a triangular surface mesh.

The proposed method is a combination of the original Shape-DNA and discrete Fourier

transformation (DFT), which encodes most of the shape information into only a small

number of feature values and inherits all the advantages of the original Shape-DNA,

including the isometric invariance. The time for computing the cShape-DNA is close to that

of the original Shape-DNA, but the proposed shape descriptor requires smaller space for

storing the cShape-DNA and less time for shape comparison, which makes the cShape-DNA

a good candidate for fast shape retrieval especially in very large database applications.

The remainder of this paper is organized as follows. In Section 2, we introduce the cShape-

DNA and the algorithmic detail. The comparison between the cShape-DNA and the original

Shape-DNA for shape comparison and classification is made in Section 3. The impact of

choosing different parameters and some other factors, such as noise and quality of the

surface meshes, is also discussed in Section 3. The conclusion is given in Section 4.

2 Method

In this section, we first briefly review the original Shape-DNA and its computational

procedure for a triangular surface mesh. We then elaborate on the detail of the proposed

cShape-DNA.

2.1 The Original Shape-DNA

Generally speaking, the Laplace-Beltrami (L-B) operator is the Laplace operator on a

Riemannian manifold. It is defined as the divergence of the gradient of a function f which is

defined on the manifold [36, 37]:

(1)

The eigenvalue problem of the L-B operator has the following form:

(2)

The solutions λi and fi for i = 0, 1, … are called the eigenvalues and eigenfunctions of the L-

B operator, respectively.

Let  be a triangular surface mesh in  with a set of vertices:  The eigenvalues

of the L-B operator on  can be numerically computed by solving the following

generalized eigenvalue problem:

(3)
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where λ and f are considered unknown with  being a vector of scalar function

values f(v) defined on the vertices of . The calculations of the NV × NV matrices, A and B,

are detailed below. The obtained λ’s and f’s are the eigenvalues and the eigenfunctions of

the L-B operator on  respectively, and the N smallest eigenvalues are known as the

Shape-DNA of  [29, 30].

The matrices A and B in Eq. (3) can be formulated when solving the partial differential

equation in Eq. (2) with the finite element method (FEM), in which linear or higher order

elements may be used. Although using quadratic or cubic elements typically yields better

computational accuracy, the time cost for solving the corresponding FEM problem is much

more expensive. After testing hundreds of mesh models taken from the McGill database

[38], we choose to adopt the linear elements in our method because it yields almost identical

Shape-DNAs to those obtained using quadratic or cubic elements but consumes much less

time. With the linear finite element method, the matrices A and B take the following form

when  is a closed mesh [33]:

(4)

(5)

where t1 and t2 are the two triangles adjacent to edge vivj, ti| is the area of triangle ti, αij and

βij are the angles opposite to vivj in t1 and t2 respectively, and N(i) is the index set of the

vertices adjacent to vi.

The eigenvalues of the L-B operator is discrete and can be sorted in an increasing order: λ0 ≤

λ1 λ2 ≤ …. The first eigenvalue λ0 is always 0 when  is closed.

The Shape-DNA should be normalized to guarantee scale-invariance, as the independence of

an object’s size is one of the desired properties for a shape descriptor. Several methods of

normalizing the Shape-DNA have been presented in [29]. Generally speaking, the values in

a Shape-DNA are divided or multiplied with a constant number, which can simply be the

first non-zero eigenvalue or the surface area of the given mesh. According to Weyl’s law

[39], another interesting property of the Shape-DNA is that, for any 2–manifold in R3, the

values of the Shape-DNA always distribute around a straight line determined only by the

shape of the model (for examples, see Fig.1 (a)). For this reason, the normalization of the

Shape-DNA can also be performed by considering the slope of the fitting line of the

eigenvalues. In the present paper, a Shape-DNA is normalized by multiplying the

eigenvalues with the surface area of the corresponding surface model. The normalized

ShapeDNAs of some models are shown in Fig. 1 (b), where we can see that the normalized

Shape-DNAs are distributed around a common straight line.
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2.2 Meshes with Boundary or Non-manifold Vertices

For meshes containing boundary or non-manifold vertices, we extend the coefficient

matrices in (4) and (5) in the following ways. With the Neumann boundary condition, we

have:

(6)

(7)

where T(ij) is the set of triangles which contains vivj as an edge, and χ(ij) is the set of angles

in T(ij) which are opposite to edge vivj. Note that the number of triangles in T(ij) may be one

(for boundary vertices), two (for inner vertices) or more (for non-manifold vertices). With

the Dirichlet boundary condition, we assume the function values on the boundary and non-

manifold vertices to be zero. Therefore, the unknowns are defined only on all inner and

manifold vertices (denoted by VI). The calculations of the elements in A and B are similar to

those in Equations (4) and (5), except that the vertices vi and vj are restricted to VI instead of

V.

Both Neumann and Dirichlet boundary conditions described above have been implemented

and tested on meshes with boundary or non-manifold vertices. The computed eigenvalues

and eigenfunctions are identical to the results of the executable code provided by Reuter et

al. on their website. According to [34], Neumann spectra can detect significant geometric

features better than Dirichlet spectra and are less sensitive to mesh discretization and data

loss. We thus always use Neumann boundary conditions for computing the raw Shape-DNA

in the rest of this paper unless otherwise specified.

2.3 The Compact Shape-DNA

For a given surface mesh, we first compute the original Shape-DNA (i.e., some selected

eigenvalues λk) and then normalize it by multiplying the eigenvalues with the surface area of

the mesh. According to Wyel’s law [39], the sequence of eigenvalues λk is in the same order

as  when k goes to infinite. In other words, the normalized Shape-DNA of a shape

can be approximated by a straight line given roughly by L(x) = 4πx. The main idea of the

modified Shape-DNA is to model the fluctuation of the normalized eigenvalues about this

straight line in a more compact way to represent and distinguish between different shapes.

By denoting the values in the normalized Shape-DNA as , we the

normalized Shape-DNA by the line, L(x) = 4πx, as follows:
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(8)

Fig.2 (a-d) show respectively the bimba surface model, the original Shape-DNA, the

normalized Shape-DNA by multiplying (b) with the surface area of the model, and the

subtracted Shape-DNA as in Eq. 8. Then we apply discrete Fourier transform (DFT) to the

N-vector . The DFT coefficients {Λi} are computed as follows:

(9)

where  The DFT coefficients are complex numbers which encode the magnitudes

and phases of the corresponding signals, namely, the normalized and subtracted Shape-DNA

.

Due to the periodicity of DFT, low frequencies of the normalized Shape-DNA reside in the

beginning and ending of the vector . Fig.2 (e) shows the magnitudes of the DFT

coefficients, where the low frequencies have been circularly shifted to the center of the

domain. Please note that the DFT coefficients are dominated by low frequencies. This

phenomenon has been observed in all other models we have tested. A common technique in

signal compression is by cropping high frequencies of an input signal. With the vector after

shifting denoted by . Then we keep the 2M + 1 values

around the center (i.e., ) and set the other frequencies as 0, where M is a user-specified

parameter which controls the data compression ratio and restoration accuracy. We call the

non-zeros in the vector the compact Shape-DNA (or cShape-DNA), with the following form:

(10)

Fig.2 (f) shows the cropped frequencies of the DFT of the normalized and subtracted Shape-

DNA. These cropped frequencies (or cShape-DNA) define a compact shape descriptor of the

original bimba surface model.

3 Experiments

In this section, we show some experiments to demonstrate the power of the proposed

cShape-DNA on shape description. First, we compare the accuracy of cShape-DNA and the

original Shape-DNA on shape comparison and shape classification in Section 3.1. We then

discuss the impact of the parameter M on the accuracy of shape description in Section 3.2.

Finally, we show the robustness of the proposed shape descriptor to geometric noise and

mesh quality in Section 3.3.
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3.1 Shape Comparison and Classification

To show the capability of the proposed shape descriptor on shape comparison and

classification, we consider in our experiments the McGill database [38], which contains 458

surface models. Each model in the database is first used as input to compute its normalized

Shape-DNA (with N = 100) and cShape-DNA (with M = 16) vectors. The dissimilarity of

any two models are measured as the Euclidean distance between the corresponding Shape-

DNAs or cShape-DNAs, resulting in two 458 × 458 matrices (one for Shape-DNA and the

other for cShape-DNA). Note that the dissimilarity values computed using Shape-DNAs and

cShape-DNAs are often different, which makes it unreasonable to directly compare the two

distance matrices. However, if we scale the values in each matrix into the same range, say

[0, 255], each value in the scaled matrices can be considered as a relative dissimilarity

(across the database) between two models, and the direct comparison between the two

matrices becomes possible. Fig.3 (a) and (b) show the two scaled matrices, where the

element values lie in the range of [0, 255]. The colors from blue to red correspond to high to

low similarities between two models respectively. By computing the difference between the

two scaled matrices, as shown in Fig.3 (c), we can see that the two scaled matrices are

almost identical with a mean value of 0.68 and a standard deviation of 0.69, meaning that

the proposed cShape-DNA can achieve the same accuracy as the normalized Shape-DNA on

measuring dissimilarity of models, but the size of the proposed shape descriptor is only 1/3

(i.e., 2M + 1) of that of the original shape descriptor in [29, 30].

To demonstrate the power of cShape-DNA on shape classification, we compute the

normalized Shape-DNAs (with N = 100) and cShape-DNAs (with M = 16) for several

models and project them onto a 2D plane using the multi-dimensional scaling (MDS)

method (see [40]). A variety of models are considered here, including animation models

(CM, CS, D1, D2), medical objects (B, L), molecular models (M1, M2, M3, M4), articulated

models (A1, A2, A3, A4, A5), and a few simple models (S1, S2, S3, C, E). The “CM” is

generated using the marching cubes method on the “cow” object, and the “CS” is the

optimized mesh using a quality improvement method [41] on the “CM” model. The “D1”

model is the “dancer” object having 24, 998 vertices, and is refined to generate the “D2”

model with 99, 992 vertices. Two medical objects are included in this study: the “brain”

model (or “B”) and the “lung” model (or “L”). We also consider four molecular shapes:

“M1” to “M4” standing for the molecules 1BPD, 2BPG, 2CJW, and domain A of 2CJW, all

taken from the Protein Data Bank (http://www.rcsb.org/pdb/). The surface meshes are

generated by using the surface modeling method described in [42]. The “M1” and “M2” are

similar in shape but one is deformed from the other. The “M4” is a sub-domain of “M3”, but

both are different from “M1” and “M2”. In addition, three versions of a unit spherical

surface mesh are investigated: “S1”, “S2” and “S3” with different numbers (roughly 2K,

10K and 40K respectively) of vertices. These models have similar but not identical shapes

because they are the representation of the unit sphere with different discretization levels.

Finally, we consider five isometric deformations of the “armadillo” model (A1 to A5) and

two other simple models (“C” for “cube” and “E” for “eight”) in this experiment.

Fig.4 (a) and (b) show the MDS plots for these models based on the normalized Shape-DNA

(N = 100) and cShape-DNAs (M = 16) vectors. We can see that the clustering result of
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cShape-DNA is almost the same as that of the normalized Shape-DNA. To see how the

discriminative power of the proposed method is affected by the size of the shape descriptor

(i.e., 2M + 1), we plot the MDS results with different values of M. As shown in Fig.4 (c)-(f),

when M decreases from 8, 4, 2 to 1 meaning that the sizes of the corresponding cShape-

DNAs are 17, 9, 5 and 3 respectively, we can see that the shape-clustering results do become

worse. However, even when M = 1, one can still separate different shapes well and

meanwhile observe high similarity scores between isometric models.

To see the performance of the normalized Shape-DNA in shape classification with smaller

descriptors, we plot in Fig.5 (a)-(e) the 2D MDS results of the normalized Shape-DNAs with

the first 33, 17, 9, 5, and 3 eigenvalues, corresponding to M = 16, 8, 4, 2, 1 respectively as

shown in Fig. 4. We can see that the classification results are much different from that of the

normalized Shape-DNA with 100 eigenvalues. For example, when N = 3, it is hard to

distinguish between the cube (C) and sphere ((S1 to S3) or the brain (B) and lungs (L), as

can be seen in Fig.5 (e). By comparison, the proposed cShape-DNA method can still

discriminate these models when a 3-vector descriptor is used (see Fig.4 (f)). This experiment

shows that the normalized Shape-DNA method performs worse than the proposed cShape-

DNA method in shape comparison or classification when the same size of descriptors are

used. Another related shape descriptor, presented in [13], is the F 1 feature vector and

defined as , where {λi} are the eigenvalues of the L-B operator.

The 2D MDS plots corresponding to the feature vectors (N = 100) are shown in Fig.5 (f).

We can see that the discriminative power of the F 1 feature vector is worse than the

proposed cShape-DNA method.

3.2 The Parameter M

In this subsection, we investigate how the parameter M affects the accuracy of similarity

measurement in the cShape-DNA method. Here, we compute the distance (similarity)

matrices between any pair of models in the McGill database based on the cShape-DNA with

different M values (M = 8, 4, 2, 1), as shown in Fig.6 (a)-(d). Visually these matrices do not

look too much different from each other. To quantitatively assess the influence of the

parameter M, the four matrices in Fig.6 (a)-(d) are compared with the distance matrix, seen

in Fig.3(a), based on the normalized Shape-DNA (N = 100) and the difference matrices are

plotted in Fig.6 (e)-(h). Note that the values in Fig.6 (a)-(d) have been scaled to [0, 255].

The mean values in the difference matrices are 1.3, 2.3, 4.8 and 6.0 respectively, and the

standard deviations are 1.1, 1.8, 3.1 and 3.8 respectively. We can see that, when M

decreases, the discriminating power of the cShape-DNA gradually becomes worse too. In

practice, we hope to use as small vectors as possible to describe a shape without much loss

of accuracy. The experiments shown here provide some hints on how small M could be in

order to achieve acceptable result on measuring shape similarity. In real-world applications,

however, the best value for the parameter M to be used really depends on the shapes under

investigation, as different shapes may contain different spectral distributions. Another factor

to be considered is the balance between accuracy and efficiency of shape description that the

user may decide.
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3.3 Sensitivities to Model Noise and Mesh Quality

The present shape descriptor takes a surface mesh (typically a triangular mesh) as input. It is

interesting to see how the proposed method is sensitive to model noise and mesh angle

quality, which are two common issues in a given mesh. Similar analysis on other shape

descriptors had been investigated in [34, 43]. In all experiments shown below unless

otherwise specified, N = 100 and M = 16 are considered for the normalized Shape-DNA and

cShape-DNA descriptors respectively.

First, five different levels of noise are added to each model in the McGill databases in the

following way. Each vertex in a model is disturbed with a random noise up to a maximum

distance of λ × L along the outward normal direction at that vertex, where L is the average

edge length of the original model and λ is the noise level chosen as 0.5, 1.0, 2.0, 4.0 or 10.0.

The normalized Shape-DNA and cShape-DNA are computed for each noisy model, yielding

ten distance matrices (two for each noise level). After being scaled to [0, 255], the ten

matrices are then compared with the corresponding distance matrix of the noise-free models

in the database (see Fig. 3(a) or (b)). The resulting difference matrices are illustrated in Fig.

7 (a) to (e) for the normalized Shape-DNA method and Fig. 7 (g) to (j) for the proposed

cShape-DNA method. From the difference matrices and the means and standard deviations

given in Fig. 7, we can conclude that the noise does affect shape comparison to some extent.

However, the proposed cShape-DNA descriptor gives very close results to those by the

normalized Shape-DNA descriptor. The above observation is further demonstrated in Fig. 8.

We first compute the normalized Shape-DNAs of the noisy models (with three noise levels

0.5, 1.0 and 10.0) in the McGill database, resulting in three 458-dimensional vectors. The

differences between the three vectors and the normalized Shape-DNAs of the noise-free

model in the databases are computed and plotted in Fig. 8 (a) after normalizing the values to

[0, 1]. The plot in Fig. 8 (b) is generated the same way except that the cShape-DNA is used

instead of the normalized Shape-DNA. From the curves, we can see the influence of noise

on the computed shape descriptors.

To see how mesh quality affects the cShape-DNA descriptor, we compute the cShape-DNA

for the “CM” and the “CS” models. The“CM” model is generated using the marching cube

method and hence the mesh quality is low. The “CS” is the optimized mesh using a quality

improvement method [41] on the “CM” model. The cShape-DNAs of these two models are

shown in Fig. 9 and it can be seen from the figure that the two spectra are almost identical,

which means that the cShape-DNA is very robust to mesh quality. This observation

confirms that the cShape-DNA, similar to the original shape-DNA, is a shape descriptor that

depends heavily on the shape (up to isometry) but little on the parametrization of the surface

[29].

4 Conclusion

In the present paper, we proposed a new shape descriptor, called compact Shape-DNA (or

cShape-DNA), based on the original Shape-DNA method. Numerous experiments have

shown that the capability of cShape-DNA on shape comparison and classification is as good

as that of the original Shape-DNA, while the size of the cShape-DNA could be much

smaller than that of the original Shape-DNA. The reduced size of the descriptor is important
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for saving space in storing the feature vectors of a shape and for saving time as well in

comparing the similarity between two meshes. The proposed method is expected to be

useful in shape retrieval from very large databases, especially when shapes with isometric

deformations are being retrieved. Experiments also show that, similar to the original Shape-

DNA, the proposed cShape-DNA is very robust to mesh angle quality but sensitive to high

levels of geometric noise on a surface shape.
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Highlights of A Compact Shape Descriptor for Triangular Surface Meshes

• A compact Shape-DNA is presented to describe the shape of a triangular surface

mesh.

• Compact Shape-DNA is composed of low frequencies of DFT of processed

Shape-DNA.

• The method reduces up to 97% space and time consumptions compared to

Shape-DNA.
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Figure 1.
(a) The Shape-DNAs (N = 100) of the bimba (red), cube (green) and sphere (blue) models,

showing that each Shape-DNA is distributed roughly along a straight line determined only

by the corresponding model. (b) After multiplying (a) with the surface areas of the

corresponding models, the normalized Shape-DNAs are distributed around a common

straight line of a slope about 4π.
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Figure 2.
(a) The bimba model. (b) The original Shape-DNA. (c) The normalized Shape-DNA by

multiplying (b) with the surface area of the model. (d) The subtracted Shape-DNA as in Eq.

8. (e) The magnitudes of the circularly shifted DFT coefficients of (d). Please note that, due

to the circular shifting, “low frequencies” are located around 50 but not 0 along the

horizontal axis. (f) The cShape-DNA, given as some cropped low frequencies of the DFT in

(e).
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Figure 3.
(a) The scaled distance matrix of the McGill database generated by the Shape-DNA (N =

100)). (b) The scaled distance matrix of the McGill database generated by the cShape-DNA

(M = 16). Note that the size of the cShape-DNA descriptor is only 1/3 (i.e., 2M + 1) of that

of the original shape descriptor (i.e., N = 100). (c) The difference matrix (absolute

substraction) of (a) and (b). Note that all the values in the matrices are scaled to [0, 255].

The mean and standard deviation of (c) are 0.68 and 0.69 respectively.
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Figure 4.
(a) 2D MDS plots of the normalized Shape-DNA. (b-f) 2D MDS plots of the proposed

cShape-DNA with M = 16, 8, 4, 2 and 1 respectively. Please note that the size of the cShape-

DNA descriptor is only 2M + 1, as compared to N = 100 or the size of the normalized

Shape-DNA descriptor.
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Figure 5.
(a-e) 2D MDS plots of the normalized Shape-DNA with different numbers of feature values

(eigenvalues): (a) N = 33, (b) N = 17, (c) N = 9, (d) N = 5 and (e) N = 3. One can compare

the results with those in Fig. 4 (b-f) generated by the cShape-DNA method. (f) The MDS

plots of the F1 feature vectors described in [40].
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Figure 6.
(a-d) The distance matrices are generated by the cShape-DNA with M = 8, 4, 2, 1

respectively. (e-h) The corresponding difference matrices by comparing (a-d) with the

distance matrix based on the Shape-DNA (see Fig. 3(a)). The mean values in the difference

matrices (from (e) to (h)) are 1.3, 2.3, 4.8 and 6.0 respectively and the standard deviations

are 1.1, 1.8, 3.1 and 3.8 respectively. Please note that the size of the cShape-DNA descriptor

is only 2M + 1, as compared to N = 100 or the size of the normalized Shape-DNA

descriptor.
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Figure 7.
(a-e) The difference matrices based on the normalized Shape-DNA with different levels of

noise: (a) λ = 0.5, (b) λ = 1.0, (c) λ = 2.0, (d) λ = 4.0, and (e) λ = 10.0. (f-j) The difference

matrices based on the cShape-DNA with different levels of noise: (f) λ = 0.5, (g) λ = 1.0, (h)

λ = 2.0, (i) λ = 4.0, and (j) λ = 10.0. The mean values in (a-e) are 4.3, 8.5, 11.8, 12.3 and

24.9, and in (f-j) the mean values are 4.6, 9.0, 12.2, 12.4, 24.9 respectively. The standard

deviations in (a-e) are 5.5, 9.1, 12.0, 11.5 and 23.7, and in (f-i) the standard deviations are

5.5, 9.1, 12.1, 11.5, 23.7 respectively.
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Figure 8.
(a) The difference between the normalized Shape-DNAs of the original models and three

versions of noisy models ( λ = 0.5, 1.0 and 10.0) in the McGill database. (b) The difference

between the cShape-DNAs of the original models and three versions of noisy models ( λ =

0.5, 1.0 and 10.0) in the McGill database.
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Figure 9.
The cShape-DNAs of the original cow model (red) generated using the marching cube

method and the smoothed model (blue) with improved mesh quality.
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