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Abstract

This paper presents two realizations of linear quantum systems for covariance assignment corresponding to pure Gaussian states. The
first one is called a cascade realization; given any covariance matrix corresponding to a pure Gaussian state, we can construct a cascaded
quantum system generating that state. The second one is called a locally dissipative realization; given a covariance matrix corresponding
to a pure Gaussian state, if it satisfies certain conditions,we can construct a linear quantum system that has only local interactions with
its environment and achieves the assigned covariance matrix. Both realizations are illustrated by examples from quantum optics.
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1 Introduction

For stochastic systems, many of the performance objectives
are expressed in terms of the variances (or covariances) of
the system states. In a large space structure, for example,
the vibration at certain points on the structure must be re-
duced to an acceptable level. This objective in fact involves
keeping the variances of some variables such as deflections
within prescribed bounds. One way to achieve this is to as-
sign an appropriate matrix value to the covariance of the
state vector. This method, referred to ascovariance assign-
ment, has been extensively studied in a series of papers by
Skelton and colleagues, e.g., in [1–3]. For linear stochas-
tic systems with white noises, the covariance matrix can be
computed by solving the Lyapunov equation for the system.
In this case, the covariance assignment problem reduces to
designing system matrices such that the corresponding Lya-
punov equation has a prescribed solution.

Turning our attention to the quantum case, we find that a
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covariance matrix plays an essential role as well in the field
of quantum information. In particular for alinear quantum
system, the importance of a covariance matrix stands out,
because it can fully characterize theentanglementproperty,
which is indeed crucial for conducting quantum information
processing [4,5]. Therefore it should be of great use to inves-
tigate the covariance assignment problem for linear quantum
systems. In fact, there are several such proposals; [6] studies
a quantum feedback control problem for covariance assign-
ment, and [7–10] analyze systems that generate apureGaus-
sian state. Note that, since a Gaussian state (with zero mean)
is uniquely determined by its covariance matrix, the afore-
mentioned covariance assignment problem is also known as
the Gaussian state generation problem; thus, if a linear quan-
tum system achieves a covariance matrix corresponding to a
target Gaussian state, we call that the system generates this
Gaussian state.

Let us especially focus on Refs. [7–10], which provide the
basis of this paper. As mentioned before, in those papers
pure Gaussian states are examined, which are a particularly
important subclass of Gaussian states such that the highest
performance of Gaussian quantum information processing
can be realized [4, 5, 11, 12]. Then they provided several
methods to construct a stable linear quantum system gen-
erating a given pure Gaussian state. Moreover, conditions
for generating an arbitrary pure entangled Gaussian state are
given there; surely these are important results, because such
a state serves as an essential resource for Gaussian quan-
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tum information processing tasks. Of course in the litera-
ture several methods for generating various pure entangled
Gaussian states have been proposed. For instance, [13] gives
a systematic method to generate an arbitrary pure entangled
Gaussian state; the idea is to construct acoherentprocess by
applying a sequence of prescribed unitary operations (com-
posed of beam splitters and squeezers in optics case) to an
initial state. Thus this method is essentially aclosed-system
approach. In contrast, the approach we take here is anopen-
system one; that is, we aim to constructdissipativeprocesses
such that the system is stable and uniquely driven into a de-
sired target pure Gaussian state. This strategy is categorized
into the so-calledreservoir engineeringmethod [14–18]; in
general, this approach has a clear advantage that the system
has good robustness properties with respect to initial states
and evolution time.

Now we describe the problem considered in this paper. The
methods developed in [7–10] lead to infinitely many linear
quantum systems that uniquely generate a target pure Gaus-
sian state. Some of these systems are easy to implement,
while others are not. Then a natural question is how to find
a linear quantum system that is simple to implement, while
still uniquely generates the desired pure Gaussian state.

In this paper, we provide two convenient realizations of a
linear quantum system generating a target pure Gaussian
state. The first one is acascade realization, which is a typical
system structure found in the literature [19–21]. We show
that, given any covariance matrix corresponding to a pure
Gaussian state, we can construct a cascaded quantum system
uniquely generating that state. This cascaded system is a
series connection of several subsystems in which the output
of one is fed as the input to the next. A clear advantage of the
cascade realization is that those subsystems can be placed at
remote sites. Note that the cascade structure has also been
widely studied in the classical control literature [22–24].

The second one is alocally dissipative realization, which
is motivated by the specific system structure found in, e.g.
[9,25–27]. Note that in these references the notion ofquasi-
locality has been studied, but in this paper we focus on a
stronger notion,locality. Here “locally dissipative” means
that all the system-environment interactions act only on one
system component. Implementations of locally dissipative
systems should be considerably easier than that of systems
which have non-local interactions [28]. In this paper, we
show that, given a covariance matrix corresponding to a
pure Gaussian state, if it satisfies certain conditions, we can
construct a locally dissipative quantum system generating
that state.

Lastly we remark that the state generated by our method is
an internal one confined in the system (e.g. an intra-cavity
state in optics), rather than an external optical field state. This
means that, if we aim to perform some quantum information
processing with that Gaussian state, it must be extracted to
outside by for instance the method developed in [29]. In
particular by acting some non-Gaussian operations such as

the cubic-phase gate or photon counting on that extracted
Gaussian state, we can realize, e.g., entanglement distillation
and universal quantum computation [5]. On the other hand, a
generated internal Gaussian state is not necessarily extracted
to outside for the purpose of precision measurement in the
scenario of quantum metrology; for instance a spin squeezed
state of an atomic ensemble can be directly used for ultra-
precise magnetometry [30].

Notation. For a matrix A = [A jk] whose entriesA jk are
complex numbers or operators, we defineA⊤ = [Ak j],
A† = [A∗

k j], where the superscript∗ denotes either the
complex conjugate of a complex number or the adjoint
of an operator. diag[τ1, · · · ,τn] denotes ann× n diago-
nal matrix with τ j , j = 1,2, · · · ,n, on its main diago-
nal. PN is a 2N × 2N permutation matrix defined by
PN[x1 x2 x3 x4 · · · x2N]

⊤ = [x1 x3 · · · x2N−1 x2 x4 · · · x2N]
⊤

for any column vector[x1 x2 x3 x4 · · · x2N]
⊤.

2 Preliminaries

We consider a linear quantum systemG of N modes. Each
mode is characterized by a pair of quadrature operators
{q̂ j , p̂ j}, j = 1,2, · · · ,N. Collecting them into an operator-
valued vector ˆx , [q̂1 · · · q̂N p̂1 · · · p̂N]

⊤, we write the
canonical commutation relations as

[

x̂, x̂⊤
]

, x̂x̂⊤−
(

x̂x̂⊤
)⊤

= iΣ, Σ ,

[

0 IN

−IN 0

]

. (1)

Here we emphasize that the transpose operation⊤, when ap-
plied to an operator-valued matrix (say, ˆxx̂⊤), only exchanges
the indices of the matrix and leaves the entries unchanged.

Therefore
(

x̂x̂⊤
)⊤ 6= x̂x̂⊤. Let Ĥ be the Hamiltonian of the

system, and let{ĉ j}, j = 1,2, · · · ,K, be Lindblad operators
that represent the interactions between the system and its
environment. For convenience, we collect all the Lindblad

operators as an operator-valued vectorL̂ =
[

ĉ1 ĉ2 · · · ĉK

]⊤

and callL̂ thecoupling vector. SupposeĤ is quadratic in ˆx,
i.e., Ĥ = 1

2 x̂⊤Mx̂, with M = M⊤ ∈ R2N×2N, andL̂ is linear
in x̂, i.e., L̂ = Cx̂, with C ∈ CK×2N, then the quantum sys-
temG can be described by the following quantum stochastic
differential equations (QSDEs)







dx̂(t) = A x̂(t)dt+B

[

dÂ⊤(t) dÂ†(t)
]⊤

,

dŶ(t) = C x̂(t)dt+dÂ(t),
(2)

whereA = Σ(M+ Im(C†C)), B = iΣ[−C† C⊤], C =C [8],

[31, Chapter 6]. The inputdÂ(t) =
[

dÂ1(t) · · · dÂK(t)
]⊤

representsK independent quantum stochastic processes,
with dÂ j(t), j = 1,2, · · · ,K, satisfying the following quan-
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tum It ō rules:
{

dÂ j(t)dÂ∗
k(t) = δ jkdt,

dÂ j(t)dÂk(t) = dÂ∗
j (t)dÂ∗

k(t) = dÂ∗
j (t)dÂk(t) = 0,

(3)

where δ jk is the Kronecker δ -function. The output

dŶ(t) =
[

dŶ1(t) · · · dŶK(t)
]⊤

satisfies quantum It ō rules
similar to (3) [8, 31–35]. The quantum expectation of the
vectorx̂ is denoted by〈x̂〉 and the covariance matrix is given
by V = 1

2〈△x̂△x̂⊤+(△x̂△x̂⊤)⊤〉, where△x̂= x̂−〈x̂〉; see,
e.g., [7,8,11]. The time evolutions of the mean vector〈x̂(t)〉
and the covariance matrixV(t) can be derived from (2) by
using the quantum It ō rule. They are given by











d〈x̂(t)〉
dt

= A 〈x̂(t)〉, (4)

dV(t)
dt

= A V(t)+V(t)A ⊤+
1
2
BB

†. (5)

As in the classical case, a Gaussian state is completely char-
acterized by the mean vector〈x̂〉 and the covariance ma-
trix V. Since the mean vector〈x̂〉 contains no information
about noise and entanglement, we will restrict our atten-
tion to zero-mean Gaussian states (i.e.,〈x̂〉= 0). A Gaussian
state is pure if and only if its covariance matrixV satisfies
det(V) = 2−2N. In fact, when a Gaussian state is pure, its
covariance matrixV can always be factored as

V =
1
2

SS⊤, S=

[

Y− 1
2 0

XY− 1
2 Y

1
2

]

, (6)

whereX = X⊤ ∈ RN×N, Y = Y⊤ ∈ RN×N andY > 0 [11,
36]. For example, theN-mode vacuum state is a special
pure Gaussian state withX = 0 andY = IN. It can be seen
from (6) that a pure Gaussian state is uniquely specified by
a complex, symmetric matrixZ , X+ iY, which is referred
to as thegraphcorresponding to a pure Gaussian state [11].
Note also that the matrixSsatisfiesSΣS⊤ = Σ, which means
that S is a symplectic matrix. The symplectic nature ofS
guarantees that the mapping ˆx 7−→ x̂′ , Sx̂ preserves the
canonical commutation relations (1), that is

[

x̂′, x̂′⊤
]

=
[

Sx̂,(Sx̂)⊤
]

= S
[

x̂, x̂⊤
]

S⊤ = S(iΣ)S⊤ = iΣ.

Note that if the systemG is initially in a Gaussian state,
then the systemG will always be Gaussian, with the mean
vector 〈x̂(t)〉 and the covariance matrixV(t) obeying (4)
and (5), respectively. We shall be particularly interestedin
the steady-state covariance matrixV(∞).

Assume that the systemG is initially in a Gaussian state.
The problem of pure Gaussian state covariance assignment
is to find a HamiltonianĤ and a coupling vector̂L such that
the corresponding linear quantum system described by (2)
is asymptotically stable and achieves the covariance matrix

corresponding to a given pure Gaussian state. Since a pure
Gaussian state (with zero mean) is uniquely specified by its
covariance matrix, so if a linear quantum system achieves a
covariance matrix corresponding to a pure Gaussian state, we
can simply say that such a linear quantum system uniquely
generates the pure Gaussian state. The problem can be ex-
pressed mathematically as:

find M = M⊤ ∈ R2N×2N and C∈ CK×2N

subject to A is Hurwitz,

A V +VA
⊤+

1
2
BB

† = 0,

whereV is the covariance matrix corresponding to the de-
sired target pure Gaussian state. Here a matrixA is said to
be Hurwitz if all its eigenvalues have strictly negative real
parts. A system described by (2) is said to beasymptoti-
cally stableif the matrixA is a Hurwitz matrix. Recently, a
necessary and sufficient condition has been developed in [7]
for solving the pure Gaussian state covariance assignment
problem. The result is summarized as follows.

Lemma 1 ( [7, 8]). Let V be the covariance matrix corre-
sponding to a given N-mode pure Gaussian state. Assume
that V is expressed in the factored form(6). Then this pure
Gaussian state is uniquely generated by the linear quantum
system(2) if and only if

M =

[

XRX+YRY−ΓY−1X−XY−1Γ⊤ −XR+ΓY−1

−RX+Y−1Γ⊤ R

]

,

(7)

and

C= P⊤[−Z IN], (8)

where R= R⊤ ∈ RN×N, Γ = −Γ⊤ ∈ RN×N, and P∈ CN×K

are free matrices satisfying the following rank condition

rank
([

P QP · · · QN−1P
])

= N, Q,−iRY+Y−1Γ. (9)

Remark 2. From (8), we see that the resulting coupling vec-
tor L̂ of the engineered system isL̂ = Cx̂= P⊤[−Z IN]x̂ =

P⊤([p̂1 · · · p̂N]
⊤ −Z [q̂1 · · · q̂N]

⊤). Therefore, all the com-
ponents ofL̂ arenullifiers for the desired target pure Gaus-
sian state [11]. As a special example, one can engineer a
purely dissipative system (witĥH = 0) to generate a pure
Gaussian state. In this case, one could takeR= Γ = 0N×N
andP= IN in Lemma 1. Then the resulting coupling vector
L̂ is the so-callednullifier vectorfor the desired target pure
Gaussian state.

Remark 3. Lemma 1 has a simple interpretation in terms
of symplectic transformations [8,37]. As mentioned before,
vacuum states are a special class of pure Gaussian states.
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The covariance matrix corresponding to theN-mode vacuum
state isV = 1

2IN. By using physical realizability conditions,
it can be proved that theN-mode vacuum state can only be
generated by anN-mode passive linear quantum system [37].
The converse is also true. That is, anN-mode passive linear
quantum system, if it is asymptotically stable, must evolve
toward theN-mode vacuum state [38]. Recall that for a
passive linear quantum system, the Hamiltonian is always of

the formĤ = 1
2 x̂⊤M̃x̂, with M̃ =

[

R̃ Γ̃

Γ̃⊤ R̃

]

, R̃= R̃⊤ ∈RN×N,

andΓ̃ =−Γ̃⊤ ∈RN×N, and the coupling vector is always of
the formL̂= C̃x̂, with C̃= P̃⊤ [−iIN IN], P̃∈CN×K [21,39–
41]. Now we apply a symplectic transformation to ˆx, that is,
we define ˆx′ , Sx̂. Then, in terms of ˆx′, the Hamiltonian is
rewritten asĤ = 1

2 x̂′⊤S−⊤M̃S−1x̂′ and the coupling vector
is rewritten aŝL = C̃S−1x̂′. We also observe that the relation
between the covariance matrixV ′ of x̂′ and the covariance
matrixV of x̂ is given as follows:

V ′ =
1
2
〈△x̂′△x̂′⊤+(△x̂′△x̂′⊤)⊤〉

=
1
2

S〈△x̂△x̂⊤+(△x̂△x̂⊤)⊤〉S⊤

= SVS⊤.

If the passive linear quantum system is asymptotically stable,
then based on the result in [38], we haveV → 1

2IN, as t →
+∞. As a result,V ′ → 1

2SS⊤, which gives the desired pure
Gaussian state. Combining the results above, we conclude
that for a given pure Gaussian stateV = 1

2SS⊤, a com-
plete parametrization of the linear quantum systemG that
uniquely generates this pure Gaussian state is given by

{

M = S−⊤M̃S−1, (10)

C= C̃S−1, (11)

where (M̃,C̃) form an asymptotically stable passive lin-

ear quantum system. Substituting̃M =

[

R̃ Γ̃

Γ̃⊤ R̃

]

and C̃ =

P̃⊤ [−iIN, IN] into (10), (11) and using some additional ma-
trix transformations, we will obtain the formulas (7), (8),
respectively. This is the idea behind Lemma 1. The rank
constraint (9) indeed gives a sufficient and necessary sta-
bility condition for the original passive linear quantum sys-
tem [40, 41]. As a result, it also guarantees the stability of
the linear quantum systemG based on the linear transfor-
mation theory in the control field [42].

3 The cascade realization

As we have seen in Lemma 1, the matricesR, Γ and P
are free matrices, although they must satisfy the rank con-
dition (9). By varying them we can obtain different linear

quantum systems that uniquely generate a given pure Gaus-
sian state. Based on this fact, we provide two feasible re-
alizations of linear quantum systems for covariance assign-
ment corresponding to pure Gaussian states, and this section
is devoted to the first one, the cascade realization.

3.1 The cascade realization

For convenience, we denote a linear quantum systemG with
the HamiltonianĤ and the coupling vector̂L asG= (Ĥ, L̂).
Suppose we have two linear quantum systemsG1 = (Ĥ1, L̂1)
and G2 = (Ĥ2, L̂2). If we feed the output of the system
G1 into the input of the systemG2, we will obtain a cas-
caded quantum systemG = G2 ✁G1, as shown in Fig. 1.
Based on the quantum theory of cascaded linear quantum

Â(t) Ŷ (t)G1 G2

G

Fig. 1. The cascade connection of two linear quantum systems:
G= G2✁G1.

systems [43], the Hamiltonian̂H and the coupling vector̂L
of the cascaded systemG are, respectively, given by







Ĥ = Ĥ2+ Ĥ1+
1
2i

(

L̂†
2L̂1− L̂†

1L̂2

)

,

L̂ = L̂2+ L̂1.
(12)

This result can be extended to the cascade connection ofN
one-dimensional harmonic oscillators. Suppose we haveN
one-dimensional harmonic oscillatorsG j with the Hamilto-
nian Ĥ j =

1
2 ξ̂⊤

j M j ξ̂ j , M j = M⊤
j ∈ R2×2, ξ̂ j , [q̂ j p̂ j ]

⊤, and

the coupling vector̂L j =Cj ξ̂ j , Cj ∈ CK×2, j = 1,2, · · · ,N.
The systemG is obtained by a cascade connection of these
harmonic oscillators, that is,G = GN ✁ · · ·✁G2 ✁G1, as
shown in Fig. 2. By repeatedly using (12), the Hamiltonian
Ĥ and the coupling vector̂L of the cascaded systemG are
given by the following lemma.

G1 G2 GNÂ(t) Ŷ (t)
G

Fig. 2. The cascade connection ofN one-dimensional harmonic
oscillators:G= GN ✁ · · ·✁G2✁G1.

Lemma 4 ( [20]). Suppose that the system G is obtained
via a cascade connection of the aforementioned N one-
dimensional harmonic oscillators Gj , j = 1,2, · · · ,N, that
is, G=GN✁ · · ·✁G2✁G1. Then the Hamiltonian̂H and the
coupling vector̂L of the system G are, respectively, given by







Ĥ =
1
2

x̂⊤Mx̂, M = PNMP
⊤
N

L̂ =Cx̂, C= [C1 C2 · · · CN]P
⊤
N ,
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whereM= [M jk] j ,k=1,··· ,N is a symmetric block matrix with
M j j =M j ,M jk = Im(C†

j Ck) whenever j> k andM jk =M⊤
k j

whenever j< k.

It can be seen from Lemma 4 that due to the cascade fea-
ture, the Hamiltonian matrixM and the coupling matrixC
of the cascaded systemG depend on each other in a compli-
cated way. Nevertheless, given any pure Gaussian state, we
can always construct a cascade connection of several one-
dimensional harmonic oscillators such that this cascaded
quantum system is asymptotically stable and achieves the
covariance matrix corresponding to the desired target pure
Gaussian state. The result is stated as follows.

Theorem 5. Any N-mode pure Gaussian state can be
uniquely generated by constructing a cascade of N one-
dimensional harmonic oscillators.

Proof. We prove this result by construction. Recall that for
an arbitraryN-mode pure Gaussian state, the corresponding
covariance matrixV has the factorization shown in (6). Us-
ing the matricesX andY obtained from (6), we construct a
cascaded systemG= GN✁ · · ·✁G2✁G1 with the Hamilto-
nianĤ j and the coupling vector̂L j , j = 1,2, · · · ,N, given by























Ĥ j = 0,

L̂ j =Cj ξ̂ j , Cj = iY− 1
2 [−Z IN]PN









0(2 j−2)×2

I2

0(2N−2 j)×2









.

Using Lemma 4, we can calculate the HamiltonianĤ =
1
2x̂⊤Mx̂ and the coupling vector̂L = Cx̂ for the cascaded
systemG. We find thatM = 0 andC= iY−1/2 [−Z IN]. Then
it follows from the QSDE (2) that

A = Σ(M+ Im(C†C))

= Σ Im

([

(X− iY)Y−1(X+ iY) −(X− iY)Y−1

−Y−1(X+ iY) Y−1

])

= ΣΣ =−I2N,

D ,
1
2
BB

† = ΣRe(C†C)Σ⊤

= ΣRe

([

(X− iY)Y−1(X+ iY) −(X− iY)Y−1

−Y−1(X+ iY) Y−1

])

Σ⊤

=

[

Y−1 Y−1X

XY−1 XY−1X+Y

]

.

Clearly,A is Hurwitz. Furthermore, it can be verified that

A V +VA
⊤+D = 0. (13)

The stability ofA and the Lyapunov equation (13) guaran-
tee that the cascaded systemG constructed above is asymp-
totically stable and achieves the covariance matrixV. In
other words, the cascaded systemG uniquely generates the
desired target pure Gaussian state.

3.2 Example

Example 6. We consider the generation oftwo-mode
squeezed states[11]. Two-mode squeezed states are highly
symmetric entangled states, which are very useful in several
quantum information protocols such as quantum telepor-
tation [44]. The covariance matrixV corresponding to a
two-mode squeezed state is

V =
1
2















cosh(2α) sinh(2α) 0 0

sinh(2α) cosh(2α) 0 0

0 0 cosh(2α) −sinh(2α)

0 0 −sinh(2α) cosh(2α)















,

(14)

whereα is the squeezing parameter. Using the factoriza-

tion (6), we haveX = 0 andY =

[

cosh(2α) −sinh(2α)

−sinh(2α) cosh(2α)

]

.

Therefore, the graph corresponding to a two-mode squeezed

state is given byZ = X+ iY =

[

i cosh(2α) −i sinh(2α)

−i sinh(2α) i cosh(2α)

]

.

Next we provide two different cascade realizations. The first
one, Realization 1, is constructed based on a heuristic deriva-
tion, while the second one, Realization 2, is constructed
based on the proof of Theorem 5.

Realization 1. In this cascade realization, the subsystems
G1 = (Ĥ1, L̂1) andG2 = (Ĥ2, L̂2) are, respectively, given by



























Ĥ1 =
1
2

ξ̂⊤
1

[

2 Q1

Q1 2

]

ξ̂1, L̂1 = [iQ2 1]ξ̂1,

Ĥ2 =−1
2

ξ̂⊤
2

[

2 Q1

Q1 2

]

ξ̂2, L̂2 = [iQ2 1]ξ̂2,

where Q1 ,
sinh2(2α)
cosh(2α)

− sinh(2α) and Q2 , sinh(2α) −
cosh(2α). It can be proved that the cascaded system
G = G2 ✁ G1 is asymptotically stable and achieves the
covariance matrix (14). The proof is similar to that of The-
orem 5, and hence is omitted. Using the result in [45], a
corresponding quantum optical realization is provided in
Fig. 3. For each subsystemG j , j = 1, 2, the Hamiltonian
Ĥ j is realized by a nonlinear crystal pumped by a classical
field, and the coupling operator̂L j is realized by imple-
menting an auxiliary cavity. This auxiliary cavity interacts
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with the subsystem via a cascade of a pumped crystal and
a beam splitter. It has a fast mode that can be adiabatically
eliminated.

Auxiliary
 cavity

G1

Auxiliary
 cavity

A(t) Y(t) G2
e

e

a^1 a^2

^ ^

iπ

iπ

Fig. 3. An optical cascade realization of the two-mode linear
quantum system that uniquely generates a two-mode squeezed
state. The square with an arrow represents a pumped crystal.The
symbol eiπ with a square on it represents a phase shiftπ. Solid
(dark) rectangles denote perfectly reflecting mirrors, while unfilled
rectangles denote partially transmitting mirrors. The dark line “�”
represents an optical beam splitter.

Realization 2. The second realization is constructed ac-
cording to the method shown in the proof of Theorem 5.
By direct calculation, the subsystemsG1 = (Ĥ1, L̂1) and
G2 = (Ĥ2, L̂2) are, respectively, given by



























Ĥ1 = 0, L̂1 =

[

cosh(α) i cosh(α)

−sinh(α) i sinh(α)

]

ξ̂1,

Ĥ2 = 0, L̂2 =

[

−sinh(α) i sinh(α)

cosh(α) i cosh(α)

]

ξ̂2.

Using the result in [45], a corresponding quantum optical
realization of such a cascaded quantum systemG=G2✁G1
is provided in Fig. 4. This cascaded systemG has two cru-
cial features. First, becausêH1 = Ĥ2 = 0, implementations
of the Hamiltonians involve no pumped crystals. Second,
the first component of the coupling vectorL̂1 = [ĉ1,1 ĉ1,2]

⊤

is ĉ1,1 =
[

cosh(α) i cosh(α)
]

[

q̂1

p̂1

]

=
√

2cosh(α)â1, where

â1 = (q̂1+ i p̂1)/
√

2 denotes the annihilation operator of the
first mode. This operator ˆc1,1 represents the standard lin-
ear dissipation of a cavity mode into a continuum of field
modes outside of the cavity. A similar case also occurs in the
coupling vectorL̂2. As can be seen in Fig. 4, Realization 2
requires two pumped crystals, in contrast to the case of Re-
alization 1, where four pumped crystals are used. From this
viewpoint, Realization 2, which is constructed based on our
result, has a clear advantage over Realization 1.

4 The locally dissipative realization

In this section, we describe the second realization of linear
quantum systems for covariance assignment corresponding
to pure Gaussian states. Unlike the cascade realization, the

A1(t)

A2(t)
^

^

Auxiliary
 cavity

Auxiliary
 cavity

Y1(t)
^

a^ 2

Y (t)2

^

G1 G2

a^
1

e
iπ

e
iπ

Fig. 4. Another optical cascade realization of the two-modelinear
quantum system that uniquely generates a two-mode squeezed
state.

locally dissipative realization cannot generate all pure Gaus-
sian states, but as shown later the class of stabilizable states
is fairly broad.

4.1 The locally dissipative realization

As we have noted in Section 2, the coupling vectorL̂ is
an operator-valued vector that consists ofK elements, i.e.,
L̂ = [ĉ1 ĉ2 · · · ĉK ]

⊤. Each element ˆc j , j = 1,2, · · · ,K, called
a Lindblad operator, represents an interaction between the
system and its environment. A Lindblad operator ˆc j is said
to be local if it acts only on one system mode. As an ex-
ample, consider the system depicted in Fig. 5. The Lindblad
operator ˆc1 = q̂1+ p̂1 acts only on the first system mode, so
it is a local operator. On the other hand, the Lindblad opera-
tor ĉ2 = q̂1+ q̂2 acts on two system modes, so by definition
it is not a local operator. If all the Lindblad operators inL̂ are
local, then the system is called a locally dissipative quantum
system. A locally dissipative quantum system could be rel-
atively easy to implement in practice. Therefore, we would
like to characterize the class of pure Gaussian states that
can be generated using locally dissipative quantum systems.
The result is given by the following theorem.

c^ 2 

c^
1
q^

1= + p^
1

q^
1= + q^

221

Fig. 5. An illustration of local Lindblad operators. ˆc1 is a local
Lindblad operator, while ˆc2 is not a local one.

Theorem 7. Let V be the covariance matrix corresponding
to a given N-mode pure Gaussian state. Assume that it is
expressed in the factored form(6). Then this pure Gaussian
state can be uniquely generated in an N-mode locally dissi-
pative quantum system if and only if there exists an integer
ℓ, 1≤ ℓ≤ N, such that

Z(ℓ, j) = Z( j ,ℓ) = 0, ∀ j 6= ℓ and 1≤ j ≤ N, (15)

where Z(ℓ, j) denotes the(ℓ, j) element of the graph matrix
Z = X+ iY for the pure Gaussian state.
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Proof. We prove the sufficiency part by construction.
Equation (15) implies that there exists a row vec-

tor ϒ =
[

01×(ℓ−1) τ1 01×(N−ℓ)

]

with τ1 6= 0, such that

ϒZ =
[

01×(ℓ−1) τ2 01×(N−ℓ)

]

, where τ2 = τ1Z(ℓ,ℓ). Using

the Gram-Schmidt method, we can create threeN×N ma-
tricesU1, U2 andΛ, whereU1 is a unitary matrix with the

first column being Y1/2ϒ⊤

‖Y1/2ϒ⊤‖ ; U2 is a unitary matrix with

the first column being 1√
N

[

1 1 · · · 1
]⊤

andΛ is a purely

imaginary matrix Λ = i diag[α1, · · · ,αN], with α j ∈ R,
j = 1, · · · ,N, andα j 6= αk, ∀ j 6= k.

Let P = ϒ⊤, R= −Y−1/2 Im(U1U
†
2 ΛU2U

†
1 )Y

−1/2 and Γ =

Y1/2Re(U1U
†
2 ΛU2U

†
1 )Y

1/2 in (7), (8). Then it can be verified
thatR= R⊤, Γ =−Γ⊤. Moreover, substitutingQ=−iRY+

Y−1Γ =Y−1/2U1U
†
2 ΛU2U

†
1Y1/2 into (9) yields

rank
([

P QP · · · QN−1P
])

= rank
([

U2U
†
1Y1/2ϒ⊤ ΛU2U

†
1Y1/2ϒ⊤ · · ·

ΛN−1U2U
†
1Y1/2ϒ⊤

])

= rank















∥

∥Y1/2ϒ⊤∥
∥

√
N















1 (iα1) · · · (iα1)
N−1

1 (iα2) · · · (iα2)
N−1

...
... · · ·

...

1 (iαN) · · · (iαN)
N−1





























=N.

Here we have used the full rank property of a Vandermonde
matrix. Hence the rank condition (9) is satisfied. Based on
Lemma 1, we now obtain anN-mode locally dissipative
quantum system that is asymptotically stable and achieves
the given covariance matrix. The coupling vectorL̂ of the
system, which consists of only one Lindblad operator, is
given by

C= P⊤ [−Z IN] = [−ϒZ ϒ]

=
[

01×(ℓ−1) −τ2 01×(N−ℓ) 01×(ℓ−1) τ1 01×(N−ℓ)

]

,

L̂ =Cx̂=−τ2q̂ℓ+ τ1p̂ℓ.

We see that̂L acts only on theℓth mode, and hence it is
local. The HamiltonianĤ of the system can also be obtained
by directly substituting the matricesR andΓ above into (7).
This completes the sufficiency part of the proof.

Next we prove the necessity part. Suppose anN-mode pure
Gaussian state can be uniquely generated in anN-mode lo-
cally dissipative quantum system. Based on Lemma 1, there
exists aP ∈ CN×K , P 6= 0, such that the coupling vector
L̂ = P⊤ [−Z IN] x̂ is local. LetPk, 1≤ k ≤ K, be a nonzero
column in the matrixP. Then the corresponding Lindblad

operator ˆck = P⊤
k [−Z IN] x̂ is local. Suppose that ˆck acts on

theℓth mode of the system. Then we have

P⊤
k [−Z IN]

=
[

01×(ℓ−1) τ3 01×(N−ℓ) 01×(ℓ−1) τ4 01×(N−ℓ)

]

,

whereτ3 andτ4 are complex numbers. It follows that

P⊤
k Z =

[

01×(ℓ−1) −τ3 01×(N−ℓ)

]

, (16)

P⊤
k =

[

01×(ℓ−1) τ4 01×(N−ℓ)

]

, τ4 6= 0. (17)

Substituting (17) into (16) gives

P⊤
k Z =τ4

[

Z(ℓ,1) Z(ℓ,2) · · · Z(ℓ,N)

]

=
[

01×(ℓ−1) −τ3 01×(N−ℓ)

]

.

Sinceτ4 6= 0, we haveZ(ℓ, j) = 0, ∀ j 6= ℓ. SinceZ = Z⊤, we
haveZ(ℓ, j) = Z( j ,ℓ) = 0,∀ j 6= ℓ. That is, Equation (15) holds.
This completes the proof.

Remark 8. The basic idea of Theorem 7 is that for any
choice ofP 6= 0, there always exist matricesR= R⊤ and
Γ =−Γ⊤ such that the rank condition (9) is satisfied. So we
can first specify a matrixP such that the coupling matrixC
in (8) has a local structure. After obtainingP, we determine
the other two matricesRandΓ to get a system Hamiltonian,
under the rank constraint (9). Generally, for a given nonzero
matrix P, we have infinite solutions(R, Γ) that satisfy the
rank condition (9). Different choices of(R, Γ) lead to dif-
ferent system Hamiltonians. The optimization problem over
these Hamiltonians is beyond the scope of this paper and is
not considered, but in the next subsection we will show a
specific recipe for determining those matrices(R, Γ).

Remark 9. Suppose anN-mode pure Gaussian state is gen-
erated in anN-mode dissipative quantum system and the
ℓth mode is locally coupled to the environment. Then from
Equation (15), it is straightforward to see that theℓth mode
is not entangled with the rest of the system modes when the
system achieves the steady state.

4.2 Examples

Example 10. We consider the generation ofcanoni-
cal Gaussian cluster states, which serve as an essential
resource in quantum computation with continuous vari-
ables [4,11,12]. We mention that an interesting class of clus-
ter states, calledbilayer square-lattice continuous–variable
cluster states, has been proposed recently in [46]. This class
of cluster states has some practical advantages over canon-
ical Gaussian cluster states for quantum computation [46].
For the sake of simplicity, we use canonical Gaussian clus-
ter states to illustrate the developed theory. The covariance
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matrix V corresponding to anN-mode canonical Gaussian

cluster state is given byV = 1
2

[

e2α IN e2αB

e2αB e−2α IN +e2αB2

]

,

whereB = B⊤ ∈ RN×N and α is the squeezing parameter.
Note that in the limitα → ∞, the canonical Gaussian clus-
ter state approximates the corresponding ideal cluster state.
Using (6), we obtainX = B and Y = e−2α IN. The graph
corresponding to a canonical Gaussian cluster state is given
by Z = X+ iY = B+ ie−2αIN.

Let us consider a simple case where

X =















0 1 0 0

1 0 1 0

0 1 0 0

0 0 0
√

2















, Y = e−2α I4. (18)

These matrices satisfyX4 j = 0 andY4 j = 0 for all j 6= 4. Thus
by Theorem 7, the corresponding canonical Gaussian clus-
ter state can be generated in af our-mode locally dissipative
system. To construct such a system, let us takeP= [0 0 0 1]⊤

in Lemma 1. The next step is to determine the other system
parametersR andΓ. For a practical implementation, one of
the basic requirements on the system is that, as mentioned
before, the system has as few pumped crystals as possible.
Motivated by the structure of the passive quantum systems
described in Remark 3, we chooseR= 04×4. As a result, the

Hamiltonian matrix isM =

[

−e2α(ΓX+XΓ⊤) e2αΓ

e2α Γ⊤ 04×4

]

. The

(1,2) block in M is a skew matrixe2αΓ. So if we can addi-
tionally take the(1,1) block to be a diagonal matrix, then
the interaction Hamiltonian between the modes is passive
and can be simply realized by beam splitters. According to
this guideline, we now seekΓ such that−e2α(ΓX+XΓ⊤)
is a diagonal matrix. By direct calculation, we obtain

Γ =















0 γ1 0 γ2

−γ1 0 γ1
√

2γ2

0 −γ1 0 γ2

−γ2 −
√

2γ2 −γ2 0















,

whereγ1 ∈R andγ2 ∈R. Substituting the matricesP, Rand
Γ above into the rank condition (9), we obtain that ifγ1γ2 6=0,
the resulting linear quantum system is asymptotically stable
and achieves the covariance matrix corresponding to (18).

The Hamiltonian of this linear quantum system is now de-
termined as

Ĥ =−γ1e2α q̂2
1+ γ1e2α q̂2

3+e2αγ1(Ĥ
(BS)
12 + Ĥ(BS)

23 )

+e2αγ2(Ĥ
(BS)
14 +

√
2Ĥ(BS)

24 + Ĥ(BS)
34 ),

whereĤ(BS)
jk = (q̂ j p̂k− p̂ j q̂k) = i(â j â∗k − â∗j âk), whereâ j =

(q̂ j + i p̂ j)/
√

2 andâ∗j = (q̂ j − i p̂ j)/
√

2, is the Hamiltonian
representing the coupling between thejth andkth optical
modes at a beam splitter. Also the coupling vector is given
by

L̂ =−(
√

2+e−2α i)q̂4+ p̂4,

which acts only on the fourth mode and hence it is local.
Finally, using the result in [45], a corresponding optical re-
alization of this linear quantum system is shown in Fig. 6.
Note that three pumped crystals are used; we conjecture that
this is the minimum number required for constructing a de-
sired locally dissipative system.

a^
a^

1

3

Auxiliary
 cavity

A(t)

Y (t)

a^ 4

a^ 2

^

^

e
iπ

Fig. 6. The optical dissipative system that uniquely generates the
canonical Gaussian cluster state (18). The coupling vectorL̂ acts
only on the fourth mode, and hence it is local.

Example 11. We next consider a canonical Gaussian cluster
state specified by the following matricesX andY:

X =















0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0















, Y = e−2α I4. (19)

The strength of Theorem 7 is that it readily tells us that this
canonical Gaussian cluster state cannot be generated inany
four-mode locally dissipative system. Nonetheless let us take
the same matrixP as before, i.e.,P= [0 0 0 1]⊤, and follow
the same guideline as discussed in Example 10. That is, we
setR= 04×4 and seekΓ such thatΓX+XΓ⊤ is a diagonal
matrix. Then, again by direct calculation, we find

Γ =















0 γ1 0 γ2

−γ1 0 γ1+ γ2 0

0 −(γ1+ γ2) 0 γ1

−γ2 0 −γ1 0















.
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Let us takeγ1 = 1 andγ2 = 0. Then the corresponding system
Hamiltonian is given by

Ĥ =−e2α(q̂2
1− q̂2

4)+e2α(Ĥ(BS)
12 + Ĥ(BS)

23 + Ĥ(BS)
34 ). (20)

It can be verified that the rank condition (9) is satisfied,
hence the system constructed here is asymptotically stable
and achieves the desired covariance matrix corresponding
to (19), though in this case the system needs to have the
following non-local interaction with its environment:

L̂ =
[

0 0 −1 −e−2α i 0 0 0 1
]

x̂=−q̂3− ie−2α q̂4+ p̂4.

An optical realization, which yet contains an abstract compo-
nent corresponding to this non-local interaction, is depicted
in Fig. 7. A practical implementation of the non-local inter-

a^ a^

a^a^

1

2

3

4

A(t)

Y (t)

^

^

Fig. 7. The optical linear quantum system that uniquely generates
the canonical Gaussian cluster state (19). The coupling vector L̂
acts on the third and fourth modes, and hence it is not local.

action depicted in Fig. 7 could be experimentally difficult.
Nonetheless this issue can be resolved by taking the fol-
lowing method: add an auxiliary system with a single mode
x̂A = [q̂A p̂A]

⊤ , and specify the target canonical Gaussian
cluster state as

X̃ =



















0 1 0 0 0

1 0 1 0 0

0 1 0 1 0

0 0 1 0 0

0 0 0 0 λ



















, Ỹ = e−2α I5. (21)

Since X̃5 j = 0 and Ỹ5 j = 0 for all j 6= 5, by Theorem 7,
we can construct a five-mode locally dissipative system that
uniquely generates the above canonical Gaussian cluster
state (21). By choosingP = [0 0 0 0 1]⊤ and then taking a
similar procedure as in the case of Example 10, we can ob-
tain such a desired locally dissipative quantum system. Now
we obtain an important observation: for anN-mode canon-
ical Gaussian cluster state with the graph matrixX = B and
the squeezing matrixY = e−2α IN, it is alwayspossible to
generate this state in a locally dissipative quantum system
by adding a single-mode auxiliary system and specifying the
target state as̃X = diag[B,λ ] andỸ = e−2α IN+1.

Remark 12. The method in [9] is based on essentially
the same idea; given anN-mode pure Gaussian state with
graphZ = X+ iY, instead of generating it directly, we en-
large the system by adding a single-mode auxiliary sys-
tem and then specify the target state asX̃ = diag[X,λ ] and
Ỹ = diag[Y,1]. By Theorem 7, this(N+1)-mode target state
can be uniquely generated in an(N+1)-mode locally dissi-
pative system. The originalN-mode pure Gaussian state is
then obtained as a reduced state of the target state.

5 Conclusion

In this paper, we have provided two feasible realizations
of linear quantum systems for covariance assignment cor-
responding to pure Gaussian states: a cascade realization
and a locally dissipative realization. First, we have shown
that given any covariance matrix corresponding to a pure
Gaussian state, we can construct a cascaded quantum sys-
tem that achieves the assigned covariance matrix. This cas-
caded quantum system is constructed as a cascade connec-
tion of several one-dimensional harmonic oscillators, with-
out any direct interaction Hamiltonians between these oscil-
lators. Second, we have given a complete characterization of
the class of pure Gaussian states that can be generated using
locally dissipative quantum systems. In particular, we have
shown a specific recipe for constructing a system having a
relatively simple Hamiltonian coupling between the system
modes. The results developed in this paper are potentially
useful for the preparation of pure Gaussian states. In the ex-
amples, we have provided realizations of(Ĥ, L̂) in quantum
optics using the result in [45]. The circuit figures shown in
the examples are not necessarily the simplest realizationsin
quantum optics. Also, a system with(Ĥ, L̂) could be real-
ized by other instances of linear quantum systems such as
atomic ensembles and optomechanical systems [18,47].

Appendix

Here we briefly review the synthesis theory of linear quan-
tum systems in quantum optics developed in [45].

1. Realization of a quadratic Hamiltonian

Suppose a quadratic Hamiltonian is given byĤd =
1
2ξ̂⊤Mdξ̂ ,

whereξ̂ = [q̂ p̂]⊤ andMd = M⊤
d ∈R2×2. This Hamiltonian

can be realized by placing a crystal with a classical pump
inside an optical cavity, as shown in Fig. 8. Working in the
frame rotating at half the pump frequency, the Hamiltonian
is written as

Ĥr =△â∗â+
i
2

(

ε(â∗)2− ε∗â2)

=
1
2

ξ̂⊤
[

△− Im(ε) Re(ε)
Re(ε) △+ Im(ε)

]

ξ̂ − △
2
, (22)
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where△= ωcav−ωp/2 is the detuning between the cavity
mode frequency and the half pump frequency.ε is a measure
of the effective pump intensity [34]. From (22), we see that
by choosing the values of△ and ε, one can makeĤr =

Ĥd − △
2 . Note that the constant term−△

2 does not affect
the dynamics of a linear quantum system, and hence can
be ignored. Therefore, the desired HamiltonianĤd can be
realized in this scheme.

a^ Â(  t )

Ŷ(t)

Fig. 8. A quadratic Hamiltonian can be realized by placing a
crystal with a classical pump inside an optical cavity.

2. Realization of a beam-splitter-like interaction Hamilto-
nian

Suppose a Hamiltonian is given bŷHd = hdâ∗1â2+h∗dâ∗2â1,
wherehd ∈ C. This Hamiltonian can be realized by imple-
menting a beam splitter for the two incoming modes ˆa1 and
â2, as shown in Fig. 9. At the beam splitter, we have the
following transformations

[

â3

â4

]

=

[

t2 r1

r2 t1

][

â1

â2

]

,

whereâ3 andâ4 denote the outgoing modes, andr1, t1 ∈C
denote the (complex) reflectance and transmittance of the
beam splitter, respectively. Note thatr1, t1, r2 andt2 satisfy
the following relations:|r2|= |r1|, |t2|= |t1|, |r1|2+ |t1|2 = 1,
r∗1t2+ r2t∗1 = 0, andr∗1t1+ r2t∗2 = 0 [48]. Let us parametrize
them asr1 = e−iφ sinθ , r2 = −eiφ sinθ , andt1 = t2 = cosθ .
Then the interaction Hamiltonian̂H(BS) for this beam splitter
is given by

Ĥ(BS) = iθe−iφ â∗1â2− iθeiφ â∗2â1. (23)

From (23), we see that by choosing the values ofθ andφ , one
can makeĤ(BS) = Ĥd. That is, the desired beam-splitter-like
interaction HamiltonianĤd can be realized in this scheme.

3. Realization of a dissipative couplingL̂

To realize a coupling operatorL̂d = c1q̂+c2p̂=
(

c1−ic2√
2

)

â+
(

c1+ic2√
2

)

â∗, we consider the configuration shown in Fig. 10.

The configuration consists of a ring cavity with mode ˆa and
an auxiliary ring cavity with modêb. The cavity modes ˆa
andb̂ interact through a crystal pumped by a classical beam,
and a beam splitter. The frequency of the auxiliary cavity
modeb̂ is matched to half the pump frequency. Working in

a^

a^

2

1

a^ 3

a^ 4

r1 t1(         )

r2 t2(      )

,

,

Fig. 9. A beam-splitter-like interaction Hamiltonian can be realized
by placing a beam splitter for the two incoming modes ˆa1 andâ2.

the frame rotating at half the pump frequency, the interaction
Hamiltonian is written as

Ĥab =
i
2

(

ε1â∗b̂∗− ε∗1âb̂
)

+
i
2

(

ε2â∗b̂− ε∗2 âb̂∗
)

,

where ε1 determines the effective pump intensity andε2
determines the parameters of the beam splitter. Assume that
the coupling coefficientγ of the partially transmitting mirror
is large so that the modêb is heavily damped and can be
adiabatically eliminated. Then after elimination ofb̂, the
resulting coupling operator is given by

L̂r =
1√γ

(−ε∗2 â+ ε1â∗). (24)

From (24), we see that by choosing the values ofε1, ε2,
andγ with γ being large, we can makêLr = L̂d. That is, the
desired coupling operatorL̂d can be realized in this scheme.
See [45] for details.

e

a^
b
^

Â(t)

A��������
c�	
��

πi



Y (t)
^

Fig. 10. Realization of a dissipative coupling operatorL̂.
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