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Abstract

This paper presents two realizations of linear quantumesystfor covariance assignment corresponding to pure Geussates. The
first one is called a cascade realization; given any covegiamatrix corresponding to a pure Gaussian state, we carrgoina cascaded
guantum system generating that state. The second one ésl @lbcally dissipative realization; given a covariancdrimaorresponding
to a pure Gaussian state, if it satisfies certain conditiamscan construct a linear quantum system that has only latalactions with
its environment and achieves the assigned covariancexnBoth realizations are illustrated by examples from quanbptics.
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1 Introduction covariance matrix plays an essential role as well in the field
of quantum information. In particular forlaear quantum

For stochastic systems, many of the performance objectivessystemthe importance of a covariance matrix stands out,
are expressed in terms of the variances (or covariances) ofPecause it can fully characterize taetanglemenproperty,

the system states. In a large space structure, for exampIeYVh'Ch |s_|ndeed crucial forcpnductmg guantum mformatlon
the vibration at certain points on the structure must be re- Processing [4,5]. Therefore it should be of great use tosnve
duced to an acceptable level. This objective in fact invelve tigate the covariance assignment problem for linear guantu
keeping the variances of some variables such as deflection$ystems. In fact, there are several such proposals; [6fstud
within prescribed bounds. One way to achieve this is to as- & quantum feedback control problem for covariance assign-
sign an appropriate matrix value to the covariance of the Ment, and [7-10] analyze systems that generpte@Gaus-
state vector. This method, referred tocawariance assign- ~ Sian state. Note that, since a Gaussian state (with zero)mean
ment has been extensively studied in a series of papers byis uniquely determined by its covariance matrix, the afore-
Skelton and colleagues, e.g., in [1-3]. For linear stochas- mentioned covariance assignment problem is also known as
tic systems with white noises, the covariance matrix can be the Gaussian state generation problem; thus, if a linear-qua
Computed by 50|Ving the Lyapunov equation for the System_ tum SyStem a.ChleVes a covariance maitrix Correspondlng to a
In this case, the covariance assignment problem reduces tdarget Gaussian state, we call that the system generases thi
designing system matrices such that the corresponding Lya-Gaussian state.

punov equation has a prescribed solution.

Let us especially focus on Refs. [7-10], which provide the
basis of this paper. As mentioned before, in those papers
pure Gaussian states are examined, which are a particularly
important subclass of Gaussian states such that the highest
performance of Gaussian quantum information processing

Turning our attention to the quantum case, we find that a
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tum information processing tasks. Of course in the litera- the cubic-phase gate or photon counting on that extracted
ture several methods for generating various pure entangledGaussian state, we can realize, e.g., entanglementatisiil
Gaussian states have been proposed. For instance, [18] giveand universal quantum computation [5]. On the other hand, a
a systematic method to generate an arbitrary pure entangledjenerated internal Gaussian state is not necessarilyctedra
Gaussian state; the idea is to construocbherenprocess by  to outside for the purpose of precision measurement in the
applying a sequence of prescribed unitary operations (com-scenario of quantum metrology; for instance a spin squeezed
posed of beam splitters and squeezers in optics case) to astate of an atomic ensemble can be directly used for ultra-
initial state. Thus this method is essentiallglasedsystem precise magnetometry [30].

approach. In contrast, the approach we take here @pan

system one; that is, we aim to constrditsipativeprocesses  Notation. For a matrix A — [Aj] whose entriesAj are
such that the system is stable and uniquely driven mtoade-Complex numbers or operators, we defiAé — A,

sired target pure Gaussian state. This strategy is cagagbri + . : .
into the so-calledeservoir engineeringnethod [14-18]:in A = Ak, where the superscript denotes either the

general, this approach has a clear advantage that the systerfflomplex conjugate of a complex number or the adjoint

has good robustness properties with respect to initiabstat of an operator. didg,---,T,] denotes ann x n diago-
and evolution time. nal matrix with tj, j =1,2,---,n, on its main diago-

nal. #y is a N x 2N permutation matrix defined by

Now we describe the problem considered in this paper. The &N X1 X2 X Xa - Yon] | = [X1 X3 - Xon_1 X2 Xq ++- Xon]
methods developed in [7-10] lead to infinitely many linear for any column vectofx; xa X3 X4 - -- xon] "

guantum systems that uniquely generate a target pure Gaus-

sian state. Some of these systems are easy to implement,

while others are not. Then a natural question is how to find 2 Preliminaries

a linear quantum system that is simple to implement, while

still uniquely generates the desired pure Gaussian state. We consider a linear quantum syst@rof N modes. Each

mode is characterized by a pair of quadrature operators
n{qj, Pi}. i =1,2,---,N. Collecting them into an operator-

T we write the

In this paper, we provide two convenient realizations of a
linear quantum system generating a target pure Gaussia A A R
state. The first one is@ascade realizatioowhich is atypical ~ valued vectorx™= (g --- Gy P1 -+~ Pn]
system structure found in the literature [19-21]. We show ¢anonical commutation relations as
that, given any covariance matrix corresponding to a pure

Gaussian state, we can constructa cascaded quantumsystem . =~ \T A1 0 In
uniquely generating that state. This cascaded system is a [XX | =X — (XX ) =iz, = @
series connection of several subsystems in which the output —In 0

of one is fed as the input to the next. A clear advantage of the

cascade realization is that those subsystems can be placed a&{ere we emphasize that the transpose operatiamhen ap-
remote sites. Note that the cascade structure has also beeplied to an operator-valued matrix (sag, ), only exchanges
widely studied in the classical control literature [22—-24] the indices of the matrix and leaves the entries unchanged.

Therefore(>2>“<T)T £ $X". LetH be the Hamiltonian of the
system, and lef¢;}, j =1,2,--- K, be Lindblad operators
that represent the interactions between the system and its
environment. For convenience, we collect all the Lindblad

The second one is mcally dissipative realizationwhich

is motivated by the specific system structure found in, e.g.
[9,25-27]. Note that in these references the notioguafsi-
locality has been studied, but in this paper we focus on a . T
stronger notionjocality. Here “locally dissipative” means Operators as an operator-valued vetter {61 Co CK}

that all the system-environment interactions act only og on 5 calli the coupling vector Supposéd is quadratic i,
system component. Implementations of locally dissipative ie. H=1gTMg with M =MT € R2N*2N and{ is linear
systems should be considerably easier than that of systems ", 4~ > Kx2N '

which have non-local interactions [28]. In this paper, we In % ie,L=Cx W!th ceC ' th?” the quantum sys- .
show that, given a covariance matrix corresponding to a [€MG can be described by the following quantum stochastic
pure Gaussian state, if it satisfies certain conditions,ave ¢ differential equations (QSDEs)

construct a locally dissipative quantum system generating

that state. di(t) = FX(t)dt+ 2 [dAT (t) dAT(t)} ! ;

Lastly we remark that the state generated by our method is dY(t) = %ﬁ(t)dt+d,&(t),
aninternal one confined in the system (e.g. an intra-cavity
state in optics), rather than an external optical field sttes

means that, if we aim to perform some quantum information - N R
processing with that Gaussian state, it must be extracted to[31, Chapter 6]. The inputiA(t) = [dAq(t) --- dAk(t)
outside by for instance the method developed in [29]. In representsK independent quantum stochastic processes,
particular by acting some non-Gaussian operations such aswith dA(t), j =1,2,--- K, satisfying the following quan-

)

wheres7 = (M +Im(C'C)), #=iz[-C' CT],¢ =C [8],
]T



tum It'o rules: corresponding to a given pure Gaussian state. Since a pure
Gaussian state (with zero mean) is uniquely specified by its
{ dA; (t)dA;(t) = Syt 3 covariance matrix, so if a Iinz@r quantum SC);/stem_ achieves a
A A (Y AR IYAA* (1) — AR F\AA (1) covariance matrix corresponding to a pure Gaussian state, w
dA;} (1)dA(t) = dAj(1)dA(t) = dAj(t)dA(t) =0, can simply say that such a linear quantum system uniquely
i i generates the pure Gaussian state. The problem can be ex-
where gy is the Kronecker d-function. The output  pressed mathematically as:

dY(t) = [d¥a(t) - d¥% ()] satisfies quantum ItG rules

similar to (3) [8, 31-35]. The quantum expectation of the find M=M"eRN*N gndc e cKk*N
vectorXis denoted byX) and the covariance matrix is given subjectto o7 is Hurwitz,

byV = 2(ARAR" + (ARAR")T), whereAR =R — (R); see, 1

e.g., [7,8,11]. The time evolutions of the mean vecit)) N AV T+ 5%%” =0,

and the covariance matri(t) can be derived from (2) by

using the quantum Ito rule. They are given by whereV is the covariance matrix corresponding to the de-

sired target pure Gaussian state. Here a maifiis said to

= (X)), (4) be Hurwitz if all its eigenvalues have strictly negative real
dVd(t) L parts. A system described by (2) is said to dsymptoti-
t) T T cally stableif the matrix.o7 is a Hurwitz matrix. Recently, a
dt NO+HVO S + 555 ) necessary and sufficient condition has been developed in [7]

_ _ _ _ for solving the pure Gaussian state covariance assignment
As in the classical case, a Gaussian state is completely charproblem. The result is summarized as follows.
acterized by the mean vectd®) and the covariance ma-

trix V. Since the mean vectdik) contains no information | emma 1 ( [7,8]). Let V be the covariance matrix corre-
tion to zero-mean Gaussian states (i®.~0). A Gaussian  thatV is expressed in the factored fo(6). Then this pure

state is pure if and only if its covariance matiixsatisfies  Gaussian state is uniquely generated by the linear quantum
detV) = 27" In fact, when a Gaussian state is pure, its system(2) if and only if

covariance matri¥/ can always be factored as
1 XRX+YRY-TY"IX - XY T —XR+TY™?
Y72 O M=
, (6) —RX+Y-1rT R

)

()

V:}SST, S=

2 XY~2 Y3

whereX = XT e RNy = YT ¢ RNN andY > 0 [11, and

36]. For example, théN-mode vacuum state is a special

pure Gaussian state with =0 andY = Iy. It can be seen C— PT[_Z In] 8)
from (6) that a pure Gaussian state is uniquely specified by ’
a complex, symmetric matriX = X +iY, which is referred

to as thegraphcorresponding to a pure Gaussian state [11].
Note also that the matri® satisfiesS>S" = 3, which means
that Sis a symplectic matrix. The symplectic nature ®f
guarantees that the mappimg—> & £ X preserves the rank([P QP.-. QNflPD =N, Q2 —iRY+Y 1. (9)
canonical commutation relations (1), that is

where R=R"T ¢ RN 7 = T ¢ RN*N "and pe CN*K
are free matrices satisfying the following rank condition

Remark 2. From (8), we see that the resulting coupling vec-
[)‘(’,)A(’T} = [S?, (SA()T} = S{)?,)‘(T} ST =5(iz)s" =ix. tor L of the engineered system lis=CX = P' [-Z Iy|X =

PT([p1 - Pn] —Z[61 - Gn]'). Therefore, all the com-
Note that if the systenG is initially in a Gaussian state, ponents ol arenullifiers for the desired target pure Gaus-
then the systen® will always be Gaussian, with the mean sian state [11]. As a special example, one can engineer a
vector (X(t)) and the covariance matri¥(t) obeying (4) purely dissipative system (withl = 0) to generate a pure
and (5), respectively. We shall be particularly interested  Gaussian state. In this case, one could tBke " = Oyxn
the steady-state covariance mawig»). andP = Iy in Lemma 1. Then the resulting coupling vector

L is the so-calledhullifier vectorfor the desired target pure
Assume that the systef is initially in a Gaussian state. ~ Gaussian state.
The problem of pure Gaussian state covariance assignment
is to find a HamiltoniarH and a coupling vectdr such that Remark 3. Lemma 1 has a simple interpretation in terms
the corresponding linear quantum system described by (2)of symplectic transformations [8,37]. As mentioned before
is asymptotically stable and achieves the covariance xatri vacuum states are a special class of pure Gaussian states.



The covariance matrix corresponding to teénode vacuum
state isV = %IN. By using physical realizability conditions,

it can be proved that thd-mode vacuum state can only be
generated by aN-mode passive linear quantum system [37].
The converse is also true. That is, l[drmode passive linear
guantum system, if it is asymptotically stable, must evolve
toward theN-mode vacuum state [38]. Recall that for a
passive linear quantum system, the Hamiltonian is always of
NR r JR=RT c RNxN
MR

the formH = 3%" Mg, with M =

andi” = —'T ¢ RN*N, and the coupling vector is always of
the formL = Cx, withC=PT [—ily In], P e CN*K [21,39-
41]. Now we apply a symplectic transformation¢ahat is,
we definex"= Sk. Then, in terms oK’ the Hamiltonian is
rewritten asH = 1% 7S-TMS~1% and the coupling vector
is rewritten ad. = CS 1%'. We also observe that the relation
between the covariance math& of X and the covariance
matrixV of X is given as follows:

%<A>mﬂ (ARARTYTY
% SIARART + (ARART)TYST
=SVS.

If the passive linear quantum system is asymptoticallylstab
then based on the result in [38], we have- %IN, ast —

~+o0. As a resultV’ — %SST, which gives the desired pure

guantum systems that uniquely generate a given pure Gaus-
sian state. Based on this fact, we provide two feasible re-
alizations of linear quantum systems for covariance assign
ment corresponding to pure Gaussian states, and thisisectio
is devoted to the first one, the cascade realization.

3.1 The cascade realization

For convenience, we denote a linear quantum sys€iemith

the HamiltoniarH and the coupling vectdr asG = (H, L).
Suppose we have two linear quantum syst&ns- (Hy, L)

and G, = (Hp, Ly). If we feed the output of the system
G; into the input of the systern®,, we will obtain a cas-
caded quantum systefd = G, <1 G4, as shown in Fig. 1.
Based on the quantum theory of cascaded linear quantum

Fig. 1. The cascade connection of two linear quantum systems
G=Gy<Gy.

systems [43], the Hamiltoniad and the coupling vectdr
of the cascaded syste@ are, respectively, given by

LTLZ) (12)

Gaussian state. Combining the results above, we concludeThis result can be extended to the cascade connectibh of

that for a given pure Gaussian stafe= %SST, a com-
plete parametrization of the linear quantum systérthat
uniguely generates this pure Gaussian state is given by

{

where (I\7I,C) form an asymptotically stable passive lin-

M=STMS?,
c=Cs?,

(10)
(11)

- R T <
ear quantum system. Substitutihg = L:T ﬁ] andC =

PT [—ily, IN] into (10), (11) and using some additional ma-
trix transformations, we will obtain the formulas (7), (8),
respectively. This is the idea behind Lemma 1. The rank

one-dimensional harmonic oscillators. Suppose we Nave
one-dimensional harmonic oscillata® with the Hamilto-
nianHj = 1 M;&j, Mj =M e R¥>2, & 2 [§; p;]T, and

the coupling vectot ; = C; EJ, CjeCX? j=12--- N,

The systenG is obtained by a cascade connectlon of these
harmonic oscillators, that iS5 = Gy <--- <1Gy <1 Gy, as
shown in Fig. 2. By repeatedly using (12) the Hamiltonian
H and the coupling vectdt of the cascaded syste are
given by the following lemma.

Fig. 2. The cascade connection Nfone-dimensional harmonic

constraint (9) indeed gives a sufficient and necessary sta-0scillators:G =Gy <--- 1G2 1 Gy.

bility condition for the original passive linear quanturrssy
tem [40,41]. As a result, it also guarantees the stability of
the linear quantum syste@ based on the linear transfor-
mation theory in the control field [42].

3 The cascade realization

As we have seen in Lemma 1, the matridgsl and P
are free matrices, although they must satisfy the rank con-
dition (9). By varying them we can obtain different linear

Lemma 4 ( [20]). Suppose that the system G is obtained
via a cascade connection of the aforementioned N one-
dimensional harmonic oscillators jGj = 1,2,--- N, that
is, G= Gy <I--- <IG < Gy. Then the Hamiltoniadl and the
coupling vectolL of the system G are, respectively, given by

H 1 MR, M= 2yMP2y

C=[C1 C --- CN] P\,

L =cx,



whereM = [M ] k=1,.- N IS @ symmetric block matrix with  The stability of.e7 and the Lyapunov equation (13) guaran-

Mjj =Mj, Mj = lm(CJTCk) whenever j> k andM j = Mij tee that the cascaded syst@wonstructed above is asymp-
whenever i k totically stable and achieves the covariance malfixin
' other words, the cascaded syst@uniquely generates the

It can be seen from Lemma 4 that due to the cascade fea-deSIred target pure Gaussian state. =

ture, the Hamiltonian matris and the coupling matri

of the cascaded syste@depend on each other in a compli- 3.2 Example

cated way. Nevertheless, given any pure Gaussian state, we

can always construct a cascade connection of several oneExample 6. We consider the generation divo-mode

dimensional harmonic oscillators such that this cascadedsqueezed statg$1]. Two-mode squeezed states are highly

quantum system is asymptotically stable and achieves thesymmetric entangled states, which are very useful in severa

covariance matrix corresponding to the desired target purequantum information protocols such as quantum telepor-

Gaussian state. The result is stated as follows. tation [44]. The covariance matri¥ corresponding to a
two-mode squeezed state is

Theorem 5. Any N-mode pure Gaussian state can be

uniquely generated by constructing a cascade of N one- cosh2a) sinh(2a) 0 0
dimensional harmonic oscillators. )
V_ 1 | sinh(2a) cosh2a) 0 0
2 0 0 costi2a) —sinh(2a)
Proof. We prove this result by construction. Recall that for .
an arbitraryN-mode pure Gaussian state, the corresponding 0 0  —sinh2a) cosh2a)
covariance matri¥ has the factorization shown in (6). Us- (14)
ing the matrices< andY obtained from (6), we construct a
cascaded systef@ = Gy < --- << Gp <1 G; with the Hamilto- where a is the squeezing parameter. Using the factoriza-
nianH; and the coupling vectdr;, j =1,2,---,N, given by cosh2a) —sinh(2cx)_
tion (6), we haveX = 0 andY = ) .
H—o —sinh(2a) cosh2a) |
=% Therefore, the graph corresponding to a two-mode squeezed
O2j-2)x2 icosH2a) —isinh(2a)]
N 2 1 state is given by = X +iY = .
Lj =Cj&j, Cj=IY 2 [-Z IN] PN I2 —isinh(2a) icosk2a) |
Oon—2j)x2

Next we provide two different cascade realizations. The firs

. . - one, Realization 1, is constructed based on a heuristicaderi

liJﬂngALemma 4, we can calculate the Hamiltonidn= tion, while the second one, Realization 2, is constructed

53X MX and the coupling vectok = CX for the cascaded pased on the proof of Theorem 5.

systemG. We find thatMl = 0 andC = iY ~%/2[—Z Iy]. Then

it follows from the QSDE (2) that Realization 1. In this cascade realization, the subsystems
Gi1 = (H1, L) andG, = (Hy, L,) are, respectively, given by

o =3(M+Im(C'C))

Ay — : v A~ 1012 Q1 2 N : :
:ZIm( (X=IV)YHX+iY) —(X—iY)y~* leéflT lQ 2] &1, Li=[iQz1]éy,
Y L(X 1Y) y-1 !
=55 =-| 7 1er |2 Q) o :
o Hy=—-2¢& HE, L= 1&,
92 %%@T —3ReCC)zT 27 Qi 2
— SRe (X =IY)Y X +iY) —(X—iY)y~? ST where Q; £ Scigj((zzg)) —sinh(2a) and Q, £ sinh(2a) —
~Y (X H+iY) y-1 cosh2a). It can be proved that the cascaded system
vt v-1x G = G, < G is asymptotically stable and achieves the

covariance matrix (14). The proof is similar to that of The-
orem 5, and hence is omitted. Using the result in [45], a
corresponding quantum optical realization is provided in
Fig. 3. For each subsyste@;, j =1, 2, the Hamiltonian
I3|j is realized by a nonlinear crystal pumped by a classical
field, and the coupling operat(frj is realized by imple-
menting an auxiliary cavity. This auxiliary cavity intetac

XYL XY"IX4Y
Clearly, & is Hurwitz. Furthermore, it can be verified that

NV +2=0. (13)



with the subsystem via a cascade of a pumped crystal and fh(t) G
a beam splitter. It has a fast mode that can be adiabatically ya —i—{ YT 2
eliminated. Q < Ax(D) caity |

o G p— S— )

; G G2 N g

A AiTary Auiliary f R

o] @ity cavity 2 AalD) Qs

Y ) D >

N Q(t)
Y A : E
NE— Y N A

Fig. 4. Another optical cascade realization of the two-miiakear
guantum system that uniquely generates a two-mode squeezed
Fig. 3. An optical cascade realization of the two-mode linea State.

guantum system that uniquely generates a two-mode squeezed

state. The square with an arrow represents a pumped crysel. Ic_>ca||y dissipative realization cannot generate al! puselsS
symbol €™ with a square on it represents a phase shifSolid sian states, but as shown later the class of stabilizalessta
(dark) rectangles denote perfectly reflecting mirrors,levbifilled is fairly broad.

rectangles denote partially transmitting mirrors. Thekdare “\”

represents an optical beam splitter. o o
4.1 The locally dissipative realization

Realization 2. The second realization is constructed ac-

cording to the method shown in the proof of Theorem 5. As we have noted in Section 2, the coupling vedtois
By direct calculation, the subsysten® = (Hi, L1) and  an operator-valued vector that consistskotlements, i.e.,

Gz = (Hg, L2) are, respectively, given by L=[616 - &]'. Each element;; j=1,2,--- K, called
a Lindblad operator, represents an interaction between the
. . cosha) icosha)| - system and its environment. A Lindblad operatpis™said
Hi=0, Li= _ . 1, to be local if it acts only on one system mode. As an ex-
—sinh(a) isinh(a) ample, consider the system depicted in Fig. 5. The Lindblad
A A _sinh(@) isinh(a)] - operatorc; = §; + P1 acts only on the first system mode, so
Hy=0, Ly= &. it is a local operator. On the other hand, the Lindblad opera-
[ cosha) icosf{a)} tor &; = 1 + G2 acts on two system modes, so by definition

itis not a local operator. If all the Lindblad operatordiare

local, then the system is called a locally dissipative quamt
Using the result in [45], a corresponding quantum optical system. A Iocallly d|53|pat|\_/e quantum system could be rel-
realization of such a cascaded quantum sysBemG, <I Gy a_1t|vely easy to |mplement in practice. Therefo_re, we would
is provided in Fig. 4. This cascaded systéas two cru- like to characterize the class of pure Gaussian states that
cial features. First, becausty — Ho = 0, implementations ~ an be gen.eraf[ed using locally d.|53|pat|ve guantum systems
of the Hamiltonians involve no pumped crystals. Second, The result is given by the following theorem.
the first component of the coupling vector = [€11 él,z]T

is 61!1 — COS?‘(C() icos},(a):| l?1‘| = \/ECOS"(G)&]_, Where CA'IZ él+ﬁ1
P1

a; = (Q1+iﬁl)/\/§ denotes the annihilation operator of the Fig 5. An illustration of local Lindblad operators; is a local
first mode. This operator; ) represents the standard lin-  Lindblad operator, while,'is not a local one.

ear dissipation of a cavity mode into a continuum of field
modes outside of the cavity. A similar case also occurs in the

coupling vector,. As can be seen in Fig. 4, Realization 2 Theorem 7. LetV be the covariance matrix corresponding
requires two pumped crystals, in contrast to the case of Re-tg 3 given N-mode pure Gaussian state. Assume that it is
alization 1, where four pumped crystals are used. From this expressed in the factored forf@). Then this pure Gaussian
VieWpoint, Realization 2, which is ConStI’_UCt_ed based on our state can be uniquely generated in an N-mode |Oca”y dissi-
result, has a clear advantage over Realization 1. pative quantum system if and only if there exists an integer
?, 1</ <N, such that

4 Thelocally dissipative realization ) _

Z(“):Z(M):O, V] #é and 1§ J SN, (15)
In this section, we describe the second realization of tinea . ]
quantum systems for covariance assignment correspondin%’here Z,j) denotes the/, j) element of the graph matrix
to pure Gaussian states. Unlike the cascade realizatien, th £=X+1Y for the pure Gaussian state.



Proof. We prove the sufficiency part by construction.
Equation (15) implies that there exists a row vec-

tor Y = [le(zfn el le(NJ)} with 11 # 0, such that

YZ = [le(g,n T2 le(fo)}, where 1, = le(g,g). Using
the Gram-Schmidt method, we can create thdeeN ma-
tricesUs, U, and A, whereUs is a unitary matrix with the

. . 1/2T . . . .
first column bemg%; U, is a unitary matrix with

-
the first column being\/l—N [1 1-.- 1| andAis a purely

imaginary matrix A = idiagay,---,an], with aj € R,
j=1,---,N,anda; # oy, Vj #k.

Let P=YT, R=—Y Y2Im(UUJAUU) )Y~ ¥/2 andT =
YY2Re(U1UJAUUNYY2in (7), (8). Then it can be verified
thatR=R", I = —I'T. Moreover, substitutin@ = —iRY +
Y-Ir = Y-120,UlAULU, Y2 into (9) yields

rank([P QP - QN*1PD
= rank( [Uzule/zYT AULUIYY2YT .

/\N71U2U]1-“Y1/2YT} )

1 (iaz) - (i)t
=rank _HYl/ZYTH 1 (iag) -+ (iax)"

1 (iaN) (iaN)N*
=N.

operatorci = B [~Z In]X is local. Suppose thaj acts on
the ¢th mode of the system. Then we have

R [-Z IN]

= [01x(571> T3 O (N—¢) O1x(r—1) Ta le(N—E)} ;
wheretz and14 are complex numbers. It follows that

RZ= {On(ul) K le(N—E)} ; (16)

PJ = {01x(€71) T4 le(Nfz)} , T4#0. 17)

Substituting (17) into (16) gives

R(Z=Ts {Z(m) Zyp) - Z(Z,N)}

- [lew—l) —T3 01x(NJ>} '

Sincety # 0, we haveZ(, j) =0, V] # (. SinceZ = Z", we
haveZ jy =Z ¢ =0,V] # ¢. Thatis, Equation (15) holds.
This completes the proof. O

Remark 8. The basic idea of Theorem 7 is that for any
choice of P # 0, there always exist matricd/8= R" and

I = —I' T such that the rank condition (9) is satisfied. So we
can first specify a matrif such that the coupling matri@

in (8) has a local structure. After obtainifg we determine
the other two matriceR andl” to get a system Hamiltonian,
under the rank constraint (9). Generally, for a given nomzer
matrix P, we have infinite solutionéR, I') that satisfy the
rank condition (9). Different choices ¢R, I') lead to dif-

Here we have used the full rank property of a Vandermonde ferent system Hamiltonians. The optimization problem over
matrix. Hence the rank condition (9) is satisfied. Based on these Hamiltonians is beyond the scope of this paper and is

Lemma 1, we now obtain ahN-mode locally dissipative

not considered, but in the next subsection we will show a

quantum system that is asymptotically stable and achievesspecific recipe for determining those matri¢&s ).

the given covariance matrix. The coupling vectoof the

system, which consists of only one Lindblad operator, is Remark 9. Suppose aiN-mode pure Gaussian state is gen-

given by
C=P'[-Z N =[-YZ V]

= [le(ﬁfl) =12 O (N—p) O1x(r-1) T1 le(Nfé)} ;

L=CR=—12G,+ 11 -

We see that acts only on the/th mode, and hence it is
local. The Hamiltoniatd of the system can also be obtained
by directly substituting the matricésandl" above into (7).
This completes the sufficiency part of the proof.

Next we prove the necessity part. SupposéNamode pure
Gaussian state can be uniquely generated iN-amode lo-

erated in anN-mode dissipative quantum system and the
(th mode is locally coupled to the environment. Then from
Equation (15), it is straightforward to see that thle mode

is not entangled with the rest of the system modes when the
system achieves the steady state.

4.2 Examples

Example 10. We consider the generation afanoni-
cal Gaussian cluster statesvhich serve as an essential
resource in quantum computation with continuous vari-
ables [4,11,12]. We mention that an interesting class &-clu
ter states, calletlilayer square-lattice continuous—variable
cluster stateshas been proposed recently in [46]. This class

cally dissipative quantum system. Based on Lemma 1, thereof cluster states has some practical advantages over canon-

exists aP € CN*K, P £ 0, such that the coupling vector
L=PT[-Z Iy]Xis local. LetR, 1< k<K, be a nonzero
column in the matrixP. Then the corresponding Lindblad

ical Gaussian cluster states for quantum computation [46].
For the sake of simplicity, we use canonical Gaussian clus-
ter states to illustrate the developed theory. The coveeian



matrix V corresponding to ail-mode canonical Gaussian WhereHJ(k = (GjPx — PjGk) = 1(8ja; — &; ak) whereaj =

e2“| e’B =
cluster state is given by = N (@ +'p1)/.\/— andaj = (; iBj)/v2, is the Hamiltonian
9B g 20| 4+ 20B2|’ representing the coupling between tfth andkth optical
modes at a beam splitter. Also the coupling vector is given

whereB =B € RN*N and a is the squeezing parameter. by
Note that in the limita — o, the canonical Gaussian clus-
ter state approximates the corresponding ideal clustt.sta _ (\/—+ o2

Using (6), we obtainX = B andY = e ?Iy. The graph -

corresponding to a canonical Gaussian cluster state is give . o
byZ:pX—HYg: B+ie 291y. g which acts only on the fourth mode and hence it is local.

Finally, using the result in [45], a corresponding optica r

alization of this linear quantum system is shown in Fig. 6.

Note that three pumped crystals are used; we conjecture that

this is the minimum number required for constructing a de-
0100 sired locally dissipative system.

X = 1010 . Y=e%,. (18)
010 O

0002

)qll + p4a

Let us consider a simple case where

These matrices satiskyj = 0 andYs; =0 forall j # 4. Thus

by Theorem 7, the corresponding canonical Gaussian clus-
ter state can be generated ifi@ir-mode locally dissipative
system. To construct such a system, let us Rkel000 1"

in Lemma 1. The next step is to determine the other system
parameter& andl". For a practical implementation, one of
the basic requirements on the system is that, as mentioned
before, the system has as few pumped crystals as possible.
Motivated by the structure of the passive quantum systems
described in Remark 3, we chod?e- 04.4. As a result, the

—A(MX+XI'") eor
efar’ O4x4
(1,2) block in M is a skew matri>e®®T". So if we can addi- . _ .
tionally take the(1,1) block to be a diagonal matrix, then ~Example11. We next consider a canonical Gaussian cluster
the interaction Hamiltonian between the modes is passive state specified by the following matricsandY:
and can be simply realized by beam splitters. According to
this guideline, we now seek such that—e*(FX +Xr ") 0100
is a diagonal matrix. By direct calculation, we obtain 1010
X = . Y=e2,, (19)

- 0 v oV2p 0010

0 —»n 0 ¥ The strength of Theorem 7 is that it readily tells us that this
—v —V2p —p 0 canonical Gaussian cluster state cannot be generatat/in
four-mode locally dissipative system. Nonetheless letks t

wherey; € R andys € R. Substituting the matrice®, Rand ~ the same matri as before, i.e?=[0001", and follow

I above into the rank condition (9), we obtain thagifs # 0, the same guideline as discussed in ExarrT1p_Ie 10. That is, we
the resulting linear quantum system is asymptoticallylstab S€tR= 04,4 and seek” such thaf”X + XI" " is a diagonal

and achieves the covariance matrix corresponding to (18). Matrix. Then, again by direct calculation, we find

Fig. 6. The optical dissipative system that uniquely getesréhe
canonical Gaussian cluster state (18). The coupling vectacts

- The only on the fourth mode, and hence it is local.

Hamiltonian matrix igvl =

r:

The Hamiltonian of this linear quantum system is now de- 0 Vi 0 ¥
termined as

r— A 0 vi+y 0

A= e @+ e @+ y(A5Y +A5Y) 0 —(nty) 0 wn

+ (RS +V2ASY +ARY), - 0  -n 0



Letustakgs = 1 andy, = 0. Then the corresponding system Remark 12. The method in [9] is based on essentially
Hamiltonian is given by the same idea; given ad-mode pure Gaussian state with
graphZ = X +1iY, instead of generating it directly, we en-

q_ o (a2 A2 o (BS) (BS) large the system by adding a single-mode auxiliary sys-
H=-e9(6 -6+ ( ¥+ Hos” +H3 ). (20) tem and then specify the target state¥Xas: diagX,A] and

Y = diag, 1]. By Theorem 7, thigN + 1)-mode target state

can be uniquely generated in 84+ 1)-mode locally dissi-
ative system. The origind®-mode pure Gaussian state is

hen obtained as a reduced state of the target state.

It can be verified that the rank condition (9) is satisfied,
hence the system constructed here is asymptotically stabl
and achieves the desired covariance matrix correspondin
to (19), though in this case the system needs to have the
following non-local interaction with its environment:

5 Conclusion
L=[00-1-e2i|000 1}>“<= —G3—ie 29G4+ Pa.
In this paper, we have provided two feasible realizations
of linear quantum systems for covariance assignment cor-
responding to pure Gaussian states: a cascade realization
and a locally dissipative realization. First, we have shown
that given any covariance matrix corresponding to a pure
Y(t) Gaussian state, we can construct a cascaded quantum sys-
tem that achieves the assigned covariance matrix. This cas-
caded quantum system is constructed as a cascade connec-

An optical realization, which yet contains an abstract comp
nent corresponding to this non-local interaction, is diggic
in Fig. 7. A practical implementation of the non-local inter

N . tion of several one-dimensional harmonic oscillatorshwit
a, y + as out any direct interaction Hamiltonians between thesd-osci
A\ . . lators. Second, we have given a complete characterization o
) . the class of pure Gaussian states that can be generated using
[ @ 1 locally dissipative quantum systems. In particular, weehav
> shown a specific recipe for constructing a system having a

relatively simple Hamiltonian coupling between the system

Fig. 7. The optical linear quantum system that uniquely getes modes. The results dgveloped in this paper are potentially
the canonical Gaussian cluster state (19). The couplingvéc ~ useful for the preparation of pure Gaussian states. In the ex
acts on the third and fourth modes, and hence it is not local. ~ amples, we have provided realizationg i, L) in quantum

optics using the result in [45]. The circuit figures shown in
action depicted in Fig. 7 could be experimentally difficult. - the examples are not necessarily the simplest realizations
Nonetheless this issue can be resolved by taking the fol- quantum optics. Also, a system witki, L) could be real-
lowing method: add an auxiliary system with a single mode ized by other instances of linear quantum systems such as
%a = [6a Pa] ", and specify the target canonical Gaussian atomic ensembles and optomechanical systems [18, 47].
cluster state as

0100 0l Appendix
10100 Here we briefly review the synthesis theory of linear quan-
X=101010/, Y=€2%s. (21) tum systems in quantum optics developed in [45].
00100 L . I
1. Realization of a quadratic Hamiltonian
|0000A |

- - Suppose a quadratic Hamiltonian is giverthy—= & TM A,
Since Xs; = 0 andYs; =0 for all j # 5, by Theorem 7, PP au I ltonianis giverthy=5¢ Mq¢

A T 2 R2x2 Thi e
we can construct a five-mode locally dissipative system that where§ = [q " andMg = M{ € R**2 This Hamiltonian

uniquely generates the above canonical Gaussian cluste@n be realized by placing a crystal with a classical pump
state (21). By choosing = [0000 17 and then taking a inside an optical cavity, as shown in Fig. 8. Working in the

similar procedure as in the case of Example 10, we can ob- frame rotating at half the pump frequency, the Hamiltonian
tain such a desired locally dissipative quantum system. Now IS Written as
we obtain an important observation: for Bhmode canon-

ical Gaussian cluster state with the graph maXix B and Hy = A&*a+ ! (e(@)%— g*éz)

the squeezing matrix¥ = e 2%y, it is alwayspossible to 2

generate this state in a locally dissipative quantum system 1.1 |A—-Im(e) Ree) 2 A (22)
by adding a single-mode auxiliary system and specifying the =2 Re(e) A +Im(e) 2

target state aX = diagB,A] andY = e 2%1y,1.



whereA = weav— Wp/2 is the detuning between the cavity a,
mode frequency and the half pump frequerzdg a measure
of the effective pump intensity [34]. From (22), we see that (T2, t2)
by choosing the values of\ and &, one can makéd, =
Hq — %. Note that the constant term% does not affect N A
the dynamics of a linear quantum system, and hence can
be ignored. Therefore, the desired Hamiltonkq can be /
realized in this scheme. (1, t1)

/\ ~
A(t) A
|—<i /—»—H«—g— as
Y(t)
Fig. 9. A beam-splitter-like interaction Hamiltonian camfealized

Fig. 8. A quadratic Hamiltonian can be realized by placing a by placing a beam splitter for the two incoming modgsandaj.
crystal with a classical pump inside an optical cavity.

the frame rotating at half the pump frequency, the inteoacti
Hamiltonian is written as

o : oo . . R i R L - R
ﬁiaﬁeahzatlon of a beam-splitter-like interaction Hamilt Hap = 3 (€1é*b* _ féb) 4 5 (ezé*b— egéb*) 7
o - L . where g1 determines the effective pump intensity aad
Suppose a Hamiltonian is given by = hgaja; + h3asa;, determines the parameters of the beam splitter. Assume that
wherehy € C. This Hamiltonian can be realized by imple-  the coupling coefficieny of the partially transmitting mirror
menting a beam splitter for the two incoming modgsnd is large so that the modeis heavily damped and can be

?ZI'I as shown ifn Fig..9. At the beam splitter, we have the adiabatically eliminated. Then after elimination bf the
ollowing transformations resulting coupling operator is given by

lﬂ _ [tz fl] lﬂ L= L (Cgat aa). (24)
aq r2 t1] | vy

. A _ From (24), we see that by choosing the valuesgfe,,
whereaz andéy denote the outgoing modes, andt; € C andy with y being large, we can make = L4. That is, the

denote the (complex) reflectance and transmittance of thedesired coupling operatdg can be realized in this scheme.
beam splitter, respectively. Note that t;, r, andt, satisfy See [45] for details.
the following relationsira| = |r1|, [tz| = [ta], [r1|2+ |t1]2 =1,

ritz+rot; =0, andrjt; +rat; = 0 [48]. Let us parametrize A
them asry = e7'?sing, r, = —€9sind, andt; =t = cosh.
Then the interaction Hamiltonia(®S) for this beam splitter V ()
is given by 7/ Auxiliary
J 4 ca&ity
H(BS) —ige194:a, — 069434, (23) & N
VAN
dyvy

From (23), we see that by choosing the value® ahdg, one \
can makeH (8S) = Hy. That s, the desired beam-splitter-like
interaction HamiltoniarHy can be realized in this scheme.

Y

Fig. 10. Realization of a dissipative coupling operator

3. Realization of a dissipative couplifg
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