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Abstract

In this paper, the stability of parallel-operated inverters in the sense of boundedness is investigated. At first, the non-linear
model of paralleled inverters with a generic linear or non-linear load is obtained by using the generalised dissipative Hamiltonian
structure and then the robust droop controller, recently proposed in the literature for parallel operation of inverters, is
implemented in a way to produce a bounded control output. The proposed controller is called the bounded droop controller
(BDC). It introduces a zero-gain property and can guarantee the boundedness of the closed-loop system solution. Therefore,
for the first time, the closed-loop stability in the sense of boundedness is guaranteed for paralleled inverters feeding generic
non-linear/linear loads. The controller structure is further improved to increase its robustness with respect to initial conditions,
numerical errors or external disturbances while maintaining the stability property. Moreover, the controller is tuned to avoid
any possible limit cycles in the voltage dynamics. Real-time simulation results for two single-phase inverters operated in
parallel loaded with a non-linear load are presented to verify the effectiveness of the proposed BDC.

Key words: Droop control; non-linear systems; stability; parallel operation of inverters; proportional load sharing.

1 Introduction

The penetration of renewable energy sources into elec-
trical networks has increased in the last decades due to
environmental, technical and economical reasons. Their
integration is accomplished by using suitable power elec-
tronic devices (inverters), thus forming distributed gen-
eration units. The integration of renewable sources along
with energy storage devices and local loads form a mi-
crogrid, which has been extensively studied in the liter-
ature [27], [5], [6], [25], [11], [12]. In microgrids, due to
the limited availability of high current power electronic
devices, inverters are often operated in parallel. In or-
der to avoid circulating currents among the inverters,
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the droop control method [5], [6], [2], [9], which does not
require external communication mechanism among the
inverters [24], [3], is often adopted. However, secondary
control is often used to restore the microgrid voltage and
frequency to the desired level [5], [11], [9].

One of the main issues in microgrid operation is the
accurate power sharing among the paralleled inverters
in accordance to their power ratings, which should be
maintained in both grid-connected and stand-alone op-
eration. Especially in the stand-alone mode, load shar-
ing according to each inverter capacity under different
operating conditions is a challenging task [21], which is
usually achieved using droop control techniques. How-
ever, conventional droop controllers introduce inherent
limitations in accurate real and reactive power sharing as
noted in [27], [26]. Additionally, the inverter output im-
pedance plays a key role in accurate load sharing, since
inverters equipped with the conventional droop control
are required to have the same per-unit output imped-
ance [7]. Therefore, recently, several control designs have
been proposed in order to achieve accurate power shar-
ing among the inverters [10], [8], [19], [17], [16], [26].
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Among these techniques, the robust droop controller
(RDC) proposed in [26] has been proven to achieve ac-
curate load sharing even if numerical computational er-
rors, disturbances, noises, parameter drifts and compon-
ent mismatches occur.

Although a lot of research has been done in the field
of load sharing, the stability properties of the proposed
techniques have not been adequately exploited. Most of
the stability analysis has been focused on small-signal
modelling and linearisation methods [19], [17], [4], [18],
which are only valid around a specific equilibrium point
(local stability). Several conditions of the local exponen-
tial stability for frequency droop control are exploited
in [23], where however fixed or bounded voltage mag-
nitudes and a purely inductive network are considered.
Due to the non-linear structure of the droop controller,
it becomes obvious that the non-linear stability analysis
is essential for investigating the behaviour of parallel in-
verters. Recently the L∞ stability of the conventional
droop control has been proven in [22] where asymptotic
stability of lossless microgrids is also achieved. In this
work, the Kron-reduced network is considered and in-
stantaneous frequency regulation is assumed for the ana-
lysis. It should be noted that the Kron-reduced network
approach considers all loads in the linear form. Non-
linear load dynamics can be suitably investigated only
using the inverter currents model.

To the best of the authors’ knowledge, the non-linear sta-
bility of a robust droop control technique, which achieves
accurate load sharing, independently from the type of
the load (linear or non-linear) has not been solved yet.
In this paper, two parallel single-phase inverters feeding
a local load are considered. The load is given in the gen-
eralised dissipative Hamiltonian form, which represents
the general case of a power electronic driven dynamic
system [20], [15]. For this system, the robust droop con-
troller proposed in [26] can be considered, since it is
proven to achieve the most robust performance and in-
troduces a dynamic voltage droop opposed to the con-
ventional droop controllers. Particularly, in the present
work, in order to analyse the stability of inverters op-
erated in parallel, the RDC is implemented in a way to
ensure that the control input stays within a predefined
range, without changing the main concept of the ini-
tial control design. The controller performance is ex-
tensively analysed using non-linear Lyapunov methods
and is proven to achieve a bounded performance. Using
L∞ stability analysis and the small-gain theorem [14],
the first proof of stability in the sense of boundedness
is presented for the non-linear closed-loop system using
the important zero-gain property of the proposed con-
troller. Further investigation of the controller structure
leads to the final form of the proposed bounded droop
controller (BDC) which is robust to external disturb-
ances and guarantees the desired performance. This rep-
resents a significant superiority with respect to the ex-
isting techniques since robust accurate load sharing is

achieved with a guaranteed stability for a general load
case using a dynamic droop controller. Extensive real-
time simulation results for two inverters in parallel op-
eration with a non-linear load are illustrated to verify
the effectiveness of the proposed BDC compared to the
RDC using an OPAL-RT real-time digital simulator.

The paper is organized as follows. In Section 2, the dy-
namic model of the system consisting of two single-phase
inverters and a load is obtained along with its properties
and an overview of the robust droop controller is presen-
ted. In Section 3, the bounded droop controller is pro-
posed and its performance is investigated. Furthermore,
the boundedness of the closed-loop system is proven us-
ing non-linear analysis. The controller structure is fur-
ther improved to increase its robustness with respect to
computational errors or disturbances and guarantee a
desired operation. In Section 4, extensive real-time sim-
ulation results are provided to certify the effectiveness
of the proposed bounded control scheme and, finally, in
Section 5, some conclusions are drawn.

2 Parallel operation of inverters

2.1 System modelling

Figure 1 represents the schematic diagram of two single-
phase inverters connected in parallel feeding a common
load. An LC filter is assumed at the output of each in-
verter where L1, L2 and C1, C2 are the filter induct-
ances and capacitances respectively for each inverter. In
practice, each inductor and capacitor introduces para-
sitic resistances represented as R1 and R2 in series with
the inductors (typically very small) and rC1 and rC2 in
parallel with the capacitors (typically very large). Vari-
ables vr1, vr2 and i1, i2 are the inverter output voltages
and currents, respectively, while vo and iL are the load
voltage and current, respectively. The filter capacitors
along with the parasitic resistances can be regarded as a
part of the load and therefore, C1, C2, rC1 and rC2 can
represent some of the load characteristics as well [27],
[26]. The dynamic equations of the system are

L1
di1

dt
= −R1i1 − vo + vr1,

L2
di2

dt
= −R2i2 − vo + vr2, (1)

(C1 + C2)
dvo

dt
= i1 + i2 −

rC1 + rC2

rC1rC2
vo − iL.

Although a lot of research has been done for linear loads
(resistive, resistive-inductive), in a typical application
the load is usually non-linear. This increases the diffi-
culty of the control design and the analysis. However,
sincemost of the loads are fed by power electronic devices
(power converters), then by using average analysis [20],
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Figure 1. Schematic diagram of parallel-operated inverters

the load can be represented by the generalised dissipat-
ive Hamiltonian form [20], [15]

Mẇ = (J (w, µ)−R)w +Gvo, (2)

where w =
[

iL w1 w2... wm−1

]T

∈ Rm represents the

states of the load and µ is a bounded vector in a closed
set which describes the duty-ratio signals of the con-
verters. Matrix M is constant and positive definite, J is
skew-symmetric, R is constant and positive definite and

G =
[

1 01×(m−1)

]T

. For the load equation (2), the load

voltage can be considered as an input to the load sys-
tem (in fact this is usually the case when for example a
voltage source device is connected at the inverter’s out-
put). It should be also noted that all non-linearities of
the load and the bounded duty-ratio signals µ are restric-
ted into the skew-symmetric matrix J . This is a common
issue in power systems, especially for power converter-
fed loads [20], [15], [13]. As a result, the complete plant
system can be written into the generalised dissipative
Hamiltonian form

M̃ ˙̃x =
(

J̃ (x̃, µ)− R̃
)

x̃+ G̃u, (3)

where the state vector is x̃ =
[

i1 i2 vo wT

]T

, the input

vector is u =
[

vr1 vr2

]T

and matrices M̃ , J̃ and R̃ as

defined below retain the properties already mentioned:

M̃ =















L1 0 0 01×m

0 L2 0 01×m

0 0 C1 + C2 01×m

0m×1 0m×1 0m×1 M















,

J̃ =



















0 0 −1 0 01×(m−1)

0 0 −1 0 01×(m−1)

1 1 0 −1 01×(m−1)

0 0 1 0 J12

0(m−1)×1 0(m−1)×1 0(m−1)×1 −JT
12 J22


















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Figure 2. Robust droop controller (RDC) [27]

R̃ =















R1 0 0 01×m

0 R2 0 01×m

0 0 rC1+rC2

rC1rC2

01×m

0m×1 0m×1 0m×1 R















,

G̃ =

[

1 0 01×(m+1)

0 1 01×(m+1)

]T

,

where J =

[

0 J12

−JT
12 J22

]

with J12 and J22 being 1×(m−

1) and (m− 1)× (m− 1) matrices, respectively.

It should be noted that the plant system (3) is a non-
linear bounded input bounded output (BIBO) system,
which accurately describes a generic non-linear load. The
output vector can be the whole state vector or part of it.

2.2 Accurate power sharing

The main issue in parallel operation of inverters is to
achieve accurate power sharing of the inverters according
to their power ratings. This can be solved by using the
robust droop control (RDC) technique proposed in [26],
which, as shown in Figure 2 for each inverter i ∈ {1, 2},
takes the form

Ėi = Ke (E
∗ − Vo)− niQi (4)

θ̇i = ω∗ −miPi (5)

where Ei and θi are the RMS value and the phase angle
of the i-th inverter output voltage; E∗ and ω∗ are the
rated voltage and angular frequency, respectively; Vo

represents the RMS voltage of the load and Pi, Qi are
the real and reactive power delivered at the load by the
i-th inverter. Control parametersKe, ni andmi are suit-
ably determined by the desired voltage and frequency
droop ratio [26]. Thus, the control input (inverter out-
put voltage) is given in the form

vri =
√
2Ei sin (θi) . (6)
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Figure 3. Controller states of the voltage dynamics

The controller and the dynamics are non-linear, since
the RMS load voltage is a non-linear function of vo, i.e
Vo (vo), and the real and reactive powers are also non-
linear functions of vo and ii, i.e. Pi (vo, ii), Qi (vo, ii).
This makes it very difficult to directly investigate the
stability of the closed-loop system. Several researchers
have recently proved the stability of the inverter-based
systems but only when the conventional droop control-
ler is used and under the assumption of a linear load
[23], [22]. However, the conventional droop controller is
static while the voltage droop of the RDC given in (4)
is dynamic. This significantly increases the difficulty of
proving stability. To the best of the authors’ knowledge,
the stability analysis using the robust droop controller
which achieves accurate power sharing for a general type
of load has not yet been exploited.

3 Controller design and analysis

3.1 Bounded droop controller (BDC)

As shown in the previous section, the robust droop con-
troller (4)-(5) contains two parts: controlling the RMS

voltage Ei and the angular frequency θ̇i. Then a sinus-
oidal signal with the angle θi is created and combined
with Ei in order to finally form the control law (6).

In this paper, to facilitate the stability analysis of the
inverter-based system using the robust droop control-
ler, (4)-(6) are implemented in the following form, while
keeping the main idea intact:

vri =
√
2Eizi (7)

with the dynamics for the RMS voltage given as

Ėi = (Ke (E
∗ − Vo)− niQi) cEqi, (8)

Ėqi = − (Ke (E
∗ − Vo)− niQi) cEi, (9)

where c is a positive constant, and the dynamics of the
angular frequency given as

żi = (ω∗ −miPi) zqi, (10)

żqi = − (ω∗ −miPi) zi. (11)

�
j* a-��

starting 
point

rotating with 
angular velocity 

equal to

iz

qiz

iθ
iθɺ

1

Figure 4. Controller states of the frequency dynamics

It should be mentioned that two extra state variables,
Eqi and zqi, are added to represent the dynamics of the
RMS voltage and the angular frequency respectively,
while the initial theory of the robust droop controller is
maintained. It becomes clear from (8)-(9) and (10)-(11)
that the controller is represented by a non-linear double
integrator scheme, thus acting as an oscillator.

In order to understand the control performance, the
RMS voltage dynamics (8)-(9) are investigated at first,
by considering the Lyapunov function candidate

Wi(t) = E2
i + E2

qi. (12)

Then, taking into account (8)-(9), it results that

Wi(t) = Wi0 = E2
i0 + E2

qi0, ∀t ≥ 0 (13)

whereEi0 andEqi0 are the initial values of the controller
states. Equation (13) implies that Ei and Eqi will move
on the circumference of a circle at the origin O and ra-

dius Vi =
√

E2
i0 + E2

qi0 for all t ≥ 0. Since in a typical

load sharing application, it is desirable that each inverter
starts operating from a zero output voltage, the initial
conditions of the controller states can be chosen with
Ei0 = 0 andEqi0 > 0 in order for the states to start from
a point on the Eqi-axis and move clockwise; see Figure
3. The circle can be described by the transformation

Ei = Vi sinφi and Eqi = Vi cosφi. (14)

Because of (8) and (9), there is

φ̇i = (Ke (E
∗ − Vo)− niQi) c, (15)

which is the angular velocity of the movement of the
controller states Ei and Eqi on the circumference of the
circle. Also note that the controller state variables Ei

and Eqi will be bounded in the set [−Vi, Vi] defined by
their initial conditions, independently from the angular
velocity (15). In practice, Vi can be chosen as the max-
imum allowed voltage Vi = (1 + p)E∗, where p is the
allowed percentage over the rated voltage E∗. At the
desired steady-state equilibrium, corresponding to the

4
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(
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i , E

∗
qi

)

shown on the circle in Figure 3, it holds

true that [26]:

Ke (E
∗ − Vo)− niQi = 0. (16)

As a result, the angular velocity φ̇i becomes zero at the
steady-state equilibrium and Ei and Eqi will eventually
stop changing and converge to the desired equilibrium.

The frequency dynamics, which represent the angular
frequency of the robust droop controller (10)-(11), can be
handled in the same manner. A similar transformation,
with the state zi representing the sinusoidal function
sin (θi) and θ̇i being the angular frequency (5) of the
system, can be defined. Therefore, by considering initial
conditions zi0 = 0 and zqi0 = 1, a similar analysis will
show that zi and zqi move on a circle at the origin with
radius equal to 1 (as implied by the initial conditions,

see Figure 4) with angular velocity θ̇i.

At the desired steady-state equilibrium it holds that θ̇i 6=
0, since it represents the frequency of the system [26],
the state variables zi and zqi will continuously move on
their circle forming two functions sin (θi) and cos (θi)
respectively. In fact, this is the purpose of the design if
one directly compares (6) and (7).

It becomes obvious that since Ei and Eqi are bounded in
the interval [−Vi, Vi] and zi and zqi are also bounded in
the interval [−1, 1], then the inverter output voltage vri,

given by (7), is bounded in the interval
[

−
√
2Vi,

√
2Vi

]

,
thus forming a bounded droop controller (BDC).

As a result, the closed-loop system becomes

˙̄x =



























































−

R1

L1

i1 −
1
L1

vo +
√

2E1z1
L1

−

R2

L2

i2 −
1
L2

vo +
√

2E2z2
L2

1
C1+C2

i1 +
1

C1+C2

i2 −
rC1+rC2

(C1+C2)rC1rC2

vo −
1

C1+C2

iL

M−1Gvo +M−1 (J (w, µ)−R)w

(Ke (E
∗
− Vo (vo))− n1Q1 (vo, i1)) cEq1

− (Ke (E
∗
− Vo (vo))− n1Q1 (vo, i1)) cE1

(ω∗
−m1P1 (vo, i1)) zq1

− (ω∗
−m1P1 (vo, i1)) z1

(Ke (E
∗
− Vo (vo))− n2Q2 (vo, i2)) cEq2

− (Ke (E
∗
− Vo (vo))− n2Q2 (vo, i2)) cE2

(ω∗
−m2P2 (vo, i2)) zq2

− (ω∗
−m2P2 (vo, i2)) z2



























































(17)

where x̄ =
[

i1 i2 vo wT E1 Eq1 z1 zq1 E2 Eq2 z2 zq2

]T

is the closed-loop state vector.

Plant system

Controller 

system

1y

2
y

Figure 5. Closed-loop system in feedback interconnection

3.2 Boundedness of the system

From the closed-loop system described in (17), it be-
comes obvious that the closed-loop system can be invest-
igated as a feedback interconnection of the plant system
and the controller system shown in Figure 5.

Following (3), the plant system is given in the form

M̃ ˙̃x =
(

J̃ (x̃, µ)− R̃
)

x̃+ G̃y2 (18)

y1 =
[

i1 i2 vo

]T

, (19)

while the controller system is given in the form

d

dt





































E1

Eq1

z1

zq1

E2

Eq2

z2

zq2





































=















A1 (y1) 02×2 02×2 02×2

02×2 A2 (y1) 02×2 02×2

02×2 02×2 A3 (y1) 02×2

02×2 02×2 02×2 A4 (y1)



















































E1

Eq1

z1

zq1

E2

Eq2

z2

zq2





































,

(20)

y2 =

[√
2E1z1√
2E2z2

]

, (21)

with

A1 (y1) =

[

0 φ̇1

−φ̇1 0

]

, A2 (y1) =

[

0 θ̇1

−θ̇1 0

]

,

A3 (y1) =

[

0 φ̇2

−φ̇2 0

]

, A4 (y1) =

[

0 θ̇2

−θ̇2 0

]

.

In the feedback interconnection shown in Figure 5, even
if the plant system is BIBO, it is not guaranteed that
the controller output will be bounded. This makes the
stability analysis of the closed-loop system very com-
plicated and represents the reason why the conventional
droop control cannot guarantee global bounded results.
This problem can now be solved using the BDC.
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Proposition 1 The closed-loop system of Figure 5 with
the plant system given by (18)-(19) and the controller sys-
tem given by (20)-(21) is stable in the sense of bounded-
ness, i.e., the closed-loop system solution x̄ (t) is bounded
for all t ≥ 0.

PROOF. The main purpose is to prove boundedness
of the closed-loop system solution, thus the analysis will
be conducted in the L∞ space. Investigate initially the
plant system dynamics given by (18) or equivalently (3)
by considering the Lyapunov function

V (x̃) =
1

2
x̃T M̃x̃. (22)

The time derivative of V is

V̇ = −x̃T R̃x̃+ x̃T G̃u

= −R1i
2
1 −R2i

2
2 −

rC1 + rC2

rC1rC2
v2o − wTRw + x̃T G̃u

≤ −(1− a)λmin

(

R̃
)

‖x̃‖22 ,

∀ ‖x̃‖2 ≥ 1

min
{

R1, R2,
rC1+rC2

rC1rC2

, λmin (R)
}

a
‖u‖2(23)

where 0 < a < 1 and λmin(R) is the minimum eigenvalue
of the constant positive definite matrixR. Since the Lya-
punov function V is radially unbounded, the inequal-
ity (23) implies that the plant system is input-to-state
stable (ISS) [14]. Since the bounded vector µ does not
affect the analysis, there exist non-negative constants
γplant and βplant such that

‖y1τ‖L∞

≤ γplant ‖y2τ‖L∞

+ βplant (24)

for all y2 ∈ L2 and τ ∈ [0,∞) and as a result the plant
system is finite-gain L∞ stable with gain γplant [14],
which actually means that the plant system is BIBO.

Now, by investigating the controller system (20)-(21),
due to the matrix diagonal structure, one can investigate
every controller subsystem (E1−Eq1, z1−zq1, E2−Eq2,
z2 − zq2) separately where it is considered that y1 ∈ L3.

According to the analysis described in Subsection 3.1,Ei

and Eqi are bounded in the set [−Vi, Vi] and zi and zqi
are bounded in the set [−1, 1] for every bounded input
y1, i.e. it can be easily proven that there exists a non-
negative constant βcontrol such that:

‖y2τ‖L∞

=
√
2

∥

∥

∥

∥

∥

E1τz1τ

E2τz2τ

∥

∥

∥

∥

∥

L∞

≤ βcontrol. (25)

The controller system (20)-(21) is also finite-gain L∞

stable with gain γcontrol = 0, because (25) holds

true independently from the input y1. Then, accord-
ing to the small-gain theorem [14], it holds true that
γplantγcontrol < 1. Since no other external inputs are
applied to the system, as shown in Figure 5, the closed-
loop system solution is bounded. 2

As a result, the zero-gain property of the BDC guaran-
tees boundedness of the closed-loop system solution in-
dependently from the plant parameters. This provides a
generic solution for controlling inverters operated in par-
allel. Additionally, the BDC can also guarantee a max-
imum bound for the inverter output voltage as proven
in the previous subsection, thus protecting each inverter
from violating its technical limits.

In practice, the measuring and processing of the real and
reactive powers Pi and Qi are obtained through low-
pass filters [4]. Low-pass filters are always finite-gainL∞

stable with a finite gain γfilter and they can be repres-
ented as a series connection of the controller system in
the feedback loop in Figure 5. Since the series connec-
tion of two L∞ stable systems is also L∞ stable with fi-
nite gain γfilterγcontrol and the controller has zero gain,
then obviously the stability analysis is not affected by
these filters.

Remark 2 Since the closed-loop system is now bounded,
the currents of the inverters are bounded. Moreover, the
real power and the reactive power are bounded as well,
which means the frequencies are bounded as well.

3.3 Improvement of the controller robustness

The BDC dynamics given in (8)-(9) and (10)-(11) can
be re-written in the following matrix forms:

[

Ėi

Ėqi

]

=

[

0 φ̇i

−φ̇i 0

][

Ei

Eqi

]

(26)

[

żi

żqi

]

=

[

0 θ̇i

−θ̇i 0

][

zi

zqi

]

(27)

with φ̇i and θ̇i given in (15) and (5) respectively. This
forms two non-linear oscillators.

From the analysis presented in Subsection 3.1, it is clear
that the proposed scheme depends on the initial con-
ditions. The question is whether the controller can be
effective if an error/noise that changes the initial con-
ditions occurs, or during the application the states are
disturbed from the desired circle due to numerical errors
etc. To overcome these problems, the zero diagonal terms
of (26) and (27) can be replaced with suitable terms to
increase the robustness of the BDC, without changing
the purpose of the design or the stability analysis. The
new voltage dynamics is designed as
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



Ėi

Ėqi



 =





−kE
(

E2
i + E2

qi − V 2
i

)

φ̇i

−φ̇i −kE
(

E2
i + E2

qi − V 2
i

)









Ei

Eqi





(28)
with kE being a positive constant and Vi representing the
radius of the desired circle as already imposed in (14).
In the same manner, the angular frequency dynamics is
designed as

[

żi

żqi

]

=

[

−kz
(

z2i + z2qi − 1
)

θ̇i

−θ̇i −kz
(

z2i + z2qi − 1
)

][

zi

zqi

]

(29)
with kz being again a positive constant.

In order to understand the importance of the terms ad-
ded, the voltage dynamics (28) can be investigated by
considering the same Lyapunov function as given in (12),
of which the time derivative is

Ẇi (t) = −2kE
(

E2
i + E2

qi − V 2
i

) (

E2
i + E2

qi

)

. (30)

It makes the desired circle with radius equal to Vi as
an attractive circle.When Ei and Eqi are outside of the
circle, the derivative of the Lyapunov function is neg-
ative and when they are inside the circle the derivative
is positive. This means that even if Ei and Eqi are dis-
turbed at any time (and for any reason) from moving
on the circumference of the circle, they will eventually
return to their desired trajectory, as shown in Figure 6.
The initial conditions Ei0 and Eqi0 can now be any val-
ues other than 0 simultaneously. A similar analysis holds
true for the frequency dynamics (29) as well. The para-
meters kE and kz determine the rate of attractiveness
and can be chosen as reasonably large values. As a res-
ult, (28) and (29) each represent an attractive oscillator
and can be implemented as shown in Figure 7. The res-
ulting BDC is shown in Figure 8.

It is worth noting that, after adding the extra terms,
the proposed controller is still finite-gain L∞ stable with
zero gain. This can be easily seen from (30), which im-
plies that Ei and Eqi are bounded independently from
the input of the system (it can be proven by contradic-
tion). Therefore, the stability analysis described in the
previous section still holds true in this case as well. The
same analysis holds for zi and zqi. It should be noted
that in order to avoid large transient performance, the
initial conditions should be chosen as discussed in Sub-
section 3.1. The addition of the diagonal terms just in-
creases the robustness to measuring and computational
errors in order to guarantee that the controller states
will definitely move on the desired circle.

μj* a-γΟ

possible 

starting points

desired steady-state 

equilibrium point

i
E

qiE

i
V

*

i
E

Figure 6. Attractiveness of the controller states to the desired
circle
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Figure 8. Bounded droop controller (BDC)

3.4 Excluding possible limit cycles in the voltage dy-
namics

Although the boundedness of the voltage is guaranteed
for any positive c, it is possible during the transient pro-
cess or due to external disturbances for the voltage tra-
jectory to pass the equilibrium point and force Ei and
Eqi to continuously move around Wi0, which results in
a limit cycle behaviour. To overcome this problem, the
parameter c can be tuned according to the controller
state variable Eqi as

c =
Eqi

(

E∗
qi

)2 =
Eqi

V 2
i − (E∗

i )
2 =

Eqi

(1 + p)
2
(E∗)

2 − (E∗
i )

2 .

(31)
In this case, c is time-varying and is a linear function of
the stateEqi, which means it does not affect the stability
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analysis. With this c, it is clear that cE∗
qi = 1 near the

steady state and that the BDC approximates the beha-
viour of the RDC by comparing equation (4) of the RDC
with the first dynamic equation (8) of the BDC during
the steady state. IfEi andEqi pass the equilibrium point
and try to reach the horizontal axis, i.e., Ei → Vi and
Eqi → 0, then

φ̇i → 0

independently from the value of Ke (E
∗ − Vo) − niQi,

according to (15) and (31). Therefore, Ei and Eqi will
slow down until the system reacts, increases the power
and changes the sign of φ̇i, which forces the states to
eventually converge to the desired equilibrium. In the
worst case, if there is no voltage equilibrium between 0
and Vi, thenEi andEqi would stop atEi = Vi andEqi =
0, respectively. This avoids any limit-cycle behaviour.
As a result, a voltage value between 0 and Vi is the only
positive limit set for the voltage dynamics inside the
bounded range and the system will eventually converge
to it [14].

In practice, since at the beginning Eqi is initially large
and starts decreasing as Ei and Eqi move on the circle,
then c is initially large and the BDC acts faster than
the RDC. Hence, the BDC would improve the transi-
ent performance of the system, resulting in a faster con-
vergence to the desired equilibrium. Moreover, as noted
in [26], for a suitable Ke, the load voltage drop can be
very small and therefore Vo ≈ E∗. As a result, it can be
assumed that E∗

i ≈ E∗ and the parameter c from (31)
can be simplified and tuned as

c =
Eqi

p (p+ 2) (E∗)
2 . (32)

4 Validation with Real-Time Simulations

In order to verify the BDC operation, two single-phase
inverters operated in parallel are considered and real-
time simulation results for both the BDC and the RDC,
as proposed in [26], are provided for comparison us-
ing the real-time digital simulation (RTDS) system of
OPAL-RT. Each inverter is powered by a 400V DC
voltage source and the power ratings are S1 = 1kV A
and S2 = 2kV A for inverters 1 and 2 respectively. It is
expected that P2 = 2P1 and Q2 = 2Q1. Both invert-
ers operate with a switching frequency of 15kHz and
the line frequency of the system is 50Hz. The rated
voltage of the inverters is E∗ = 230V and Ke = 10.
The filter inductors are L1 = L2 = 2.35mH with a
parasitic resistance R1 = R2 = 0.9Ω and the filter ca-
pacitors are C1 = C2 = 28µF with parasitic resistance
rC1 = rC2 = 100MΩ. According to [1], the desired

voltage drop ratio is chosen as
niS

∗

i

KeE∗
= 0.25% and the

frequency drop ratio is chosen
miS

∗

i

ω∗
= 0.1%. Therefore,

the droop coefficients are calculated as n1 = 0.0058,

n2 = 0.0029,m1 = 3.1416 ·10−4 andm2 = 1.5708 ·10−4.
Assume the parameter p is chosen as 0.2. The parameter
c is determined according to (32) and the rest of the
controller parameters are chosen as kE = kz = 10.

The load considered is a non-linear load, as shown in
Figure 9, with CL = 330µF , RL = 50Ω, LL = 2.35mH
and a parasitic resistance rL = 0.9Ω, where the load
resistanceRL changes to 100Ω at the time instant t = 8s.
This nonlinear load is commonly used in industry and
is a special case of a controlled rectifier as noted in [13],
with the dynamic load equations satisfying (2).

ov

Lr LL
Li

LC LR

+
+

−
−

Figure 9. Non-linear load

Figures 10 and 11 illustrate the time response of the
paralleled inverters for the BDC and the RDC case re-
spectively. Comparing Figure 10(a) with Figure 11(a),
it is clear that both controllers achieve accurate sharing
of the real and the reactive power respectively, propor-
tional to the inverter ratings. This underlines their ad-
vantage over the conventional droop control techniques.
Additionally, as it can be observed, the BDC achieves
faster regulation at the desired steady-state values. This
is due to the tuning of the parameter c which is larger at
the beginning and reduces as the system approaches the
desired equilibrium point. At the time instant t = 8s, the
load resistanceRL at the output of the load changes from
50Ω to 100Ω which forces both the real and the reactive
power of each inverter to change. However,P2 = 2P1 and
Q2 = 2Q1 are still maintained at the steady state. Note
that, at the steady state, the BDC performance coincides
with the RDC as it can be verified from the steady-state
responses of the load voltage vo and the inverter currents
i1, i2 given in Figure 10(b) and Figure 11(b) respect-
ively. This verifies the fact that the proposed method
keeps the RDC theory intact. For the BDC, Figure 10(c)
shows that the controller states E1 and Eq1 travel along
the circle on the E1−Eq1 plane at the origin with radius
equal to V1 = (1 + p)E∗ = 276V . The controller states
stay always in the first quadrant and they converge to
the desired steady-state values corresponding to the spe-
cific equilibrium point on the circle. In the same figure,
the response of the controller states z1 and zq1 on the
z1−zq1 plane is also presented. They travel clockwise on
a circle at the origin with radius equal to 1 with angular
velocity θ̇. This verifies the controller operation as de-
scribed in Subsection 3.1 and consequently the stability
analysis presented in Subsection 3.2.
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Figure 10. Real-time simulation results using the BDC

5 Conclusions

In this paper, a bounded droop controller has been pro-
posed to guarantee the stability of parallel-operated in-
verter systems in the sense of boundedness, while achiev-
ing accurate load sharing. In addition to maintaining the
theory of the RDC, the BDC also introduces a bounded
characteristic for the control output. An extended ana-
lysis using the small-gain theorem has been presented to
certify that the proposed bounded control scheme guar-
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P1: [400W/div] 

Q1: [400Var/div] 

Q2: [400Var/div] 

(a) real and reactive power

 

 

 

 

vo: [200V/div] 

i1: [10A/div] 

i2: [10A/div] 

(b) load voltage and inverter currents

Figure 11. Real-time simulation results using the RDC

antees the stability of the closed-loop system in the sense
of boundedness independently from the type of the load
(linear or non-linear). The controller structure has been
further modified to increase its robustness to numerical
errors and external disturbances by forming an attract-
ive oscillator scheme. Real-time simulation results of two
parallel single-phase inverters feeding a non-linear load
have verified the proposed BDC.

An important issue in parallel operated inverters is the
existence of the desired equilibrium point. Several re-
searchers have provided conditions of existence of this
equilibrium [23], [22] under the assumption of lossless
microgrids and linear load description. The conditions of
existence of the desired equilibrium in the general plant
description described in this paper and the droop con-
troller operation under undesired phenomena that may
affect the equilibrium point are left for future research.

References

[1] The grid code. Technical report, National Grid Electricity
Transmission PLC, Dec. 2010.

[2] E. Barklund, N. Pogaku, M. Prodanovic, C. Hernandez-
Aramburo, and T.C. Green. Energy management in
autonomous microgrid using stability-constrained droop

9



control of inverters. IEEE Trans. Power Electron.,
23(5):2346–2352, Sept. 2008.

[3] M.C. Chandorkar, D.M. Divan, and R. Adapa. Control of
parallel connected inverters in standalone AC supply systems.
IEEE Trans. Ind. Appl., 29(1):136–143, Jan./Feb. 1993.

[4] E.A.A. Coelho, P.C. Cortizo, and P.F.D. Garcia. Small-signal
stability for parallel-connected inverters in stand-alone AC
supply systems. IEEE Trans. Ind. Appl., 38(2):533–542, Oct.
2002.

[5] J. Guerrero, Mukul Chandorkar, T. Lee, and P. Loh.
Advanced Control Architectures for Intelligent MicroGrids-
Part I: Decentralized and Hierarchical Control. IEEE Trans.

Ind. Electron., 60(4):1254–1262, Apr. 2013.

[6] J. Guerrero, P. Loh, T. Lee, and Mukul Chandorkar.
Advanced Control Architectures for Intelligent Microgrids-
Part II: Power Quality, Energy Storage, and AC/DC
Microgrids. IEEE Trans. Ind. Electron., 60(4):1263–1270,
Apr. 2013.

[7] J. M. Guerrero, L. G. de Vicuna, J. Matas, M. Castilla, and
J. Miret. Output impedance design of parallel-connected UPS
inverters with wireless load-sharing control. IEEE Trans.

Ind. Electron., 52(4):1126–1135, May. 2005.

[8] J. M. Guerrero, J. Matas, L. G. de Vicuna, M. Castilla,
and J. Miret. Decentralized control for parallel operation
of distributed generation inverters using resistive output
impedance. IEEE Trans. Ind. Electron., 54(2):994–1004,
Nov. 2007.

[9] J. M. Guerrero, J. C. Vasquez, J. matas, L. Garcia de
Vicuna, and M. Castilla. Hierarchical control of droop-
controlled AC and DC microgrids- a general approach
towards standardization. IEEE Trans. Ind. Electron.,
58(1):158–172, Jan. 2011.

[10] J.M. Guerrero, N. Berbel, L.G. de Vicuna, J. Matas, J. Miret,
and M. Castilla. Droop control method for the parallel
operation of online uninterruptible power systems using
resistive output impedance. In Proc. of the 21st IEEE Applied

Power Electronics Conference and Exposition, pages 1716–
1722, 2006.

[11] J.M. Guerrero, J.C. Vasquez, J. Matas, M. Castilla, and L.G.
de Vicuna. Control strategy for flexible microgrid based
on parallel line-interactive UPS systems. IEEE Trans. Ind.

Electron., 56(3):726–736, Mar. 2009.

[12] S. V. Iyer, M. N. Belur, and M. C. Chandorkar. A
generalized computational method to determine stability of
a multi-inverter microgrid. IEEE Trans. Power Electron.,
25(9):2420–2432, Sept. 2010.

[13] D. Karagiannis, E. Mendes, A. Astolfi, and R. Ortega. An
experimental comparison of several PWM controllers for a
single-phase AC-DC converter. IEEE Trans. Control Syst.

Technol., 11(6):940–947, 2003.

[14] Hassan K. Khalil. Nonlinear Systems. Prentice Hall, 2001.

[15] G. C. Konstantopoulos and A. T. Alexandridis. Generalized
Nonlinear Stabilizing Controllers for Hamiltonian-Passive
Systems With Switching Devices. IEEE Trans. Control Syst.

Technol., 21(4):1479–1488, 2013.

[16] Y.W. Li and C.-N. Kao. An accurate power control strategy
for power-electronics-interfaced distributed generation units
operating in a low-voltage multibus microgrid. IEEE Trans.

Power Electron., 24(12):2977–2988, Dec. 2009.

[17] R. Majumder, B. Chaudhuri, A. Ghosh, G. Ledwich, and
F. Zare. Improvement of stability and load sharing in an
autonomous microgrid using supplementary droop control
loop. IEEE Trans. Power Syst., 25(2):796–808, May 2010.

[18] M. N. Marwali, J.-W. Jung, and A. Keyhani. Stability
analysis of load sharing control for distributed generation
systems. IEEE Trans. Energy Convers., 22(3):737–745, 2007.

[19] Y. Mohamed and E.F. El-Saadany. Adaptive decentralized
droop controller to preserve power sharing stability of
paralleled inverters in distributed generation microgrids.
IEEE Trans. Power Electron., 23(6):2806–2816, Nov. 2008.

[20] R. Ortega, Antonio Loria, Per Johan Nicklasson, and Hebertt
Sira-Ramirez. Passivity-based Control of Euler-Lagrange

Systems, Mechanical, Electrical and Electromechanical

Applications. Springer-Verlag. Great Britain, 1998.

[21] C.K. Sao and P.W. Lehn. Autonomous load sharing of voltage
source converters. IEEE Trans. Power Del., 20(2):1009–1016,
Apr. 2005.

[22] J. Schiffer, R. Ortega, A. Astolfi, J. Raisch, and T. Sezi.
Conditions for stability of droop-controlled inverter-based
microgrids. Automatica, 50(10):2457–2469, 2014.

[23] J. W. Simpson-Porco, F. Dörfler, and F. Bullo.
Synchronization and power sharing for droop-controlled
inverters in islanded microgrids. Automatica, 49(9):2603–
2611, 2013.

[24] A. Tuladhar, H. Jin, T. Unger, and K. Mauch. Parallel
operation of single phase inverter modules with no control
interconnections. In Proc. of the 12th IEEE Applied Power

Electronics Conference and Exposition, pages 94–100, 1997.

[25] G. Weiss, Q.-C. Zhong, T. Green, and J. Liang. H
∞

repetitive control of DC-AC converters in micro-grids. IEEE
Trans. Power Electron., 19(1):219–230, Jan. 2004.

[26] Q.-C. Zhong. Robust droop controller for accurate
proportional load sharing among inverters operated in
parallel. IEEE Trans. Ind. Electron., 60(4):1281–1290, Apr.
2013.

[27] Q.-C. Zhong and T. Hornik. Control of Power Inverters in

Renewable Energy and Smart Grid Integration. Wiley-IEEE
Press, 2013.

10


