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Abstract: An approach to the control of a VTOL vehicle equipped with complementary thrust-
tilting capabilities that nominally yield full actuation of the vehicle’s position and attitude is
developed. The particularity and difficulty of the control problem are epitomized by the existence
of a maximum tilting angle which forbids complete and decoupled control of the vehicle’s position
and attitude in all situations. This problem is here addressed via the formalism of primary and
secondary objectives and by extending a solution previously derived in the fixed thrust-direction
case. The proposed control design is also illustrated by simulation results involving a quadrotor
UAV with all propellers axes pointing in the same monitored tilted direction.

1. INTRODUCTION

Mechanical design and feedback control of small aerial
vehicles possessing thrust vectoring capabilities have re-
ceived an increasing interest in recent years and given rise
to various declinations (Cetinsoy et al. [2012], Kendoul
et al. [2005], Naldi et al. [2008], Notarstefano and Hauser
[2010], Papachristos et al. [2011], Pflimlin et al. [2010],
Russo et al. [2011], Ryll et al. [2012]). For instance, the
concept of twin tilt-rotors (Kendoul et al. [2005], Pa-
pachristos et al. [2011]) is well exemplified by the Bell Ea-
gle Eye and the Bell Boeing V-22 Osprey. Other concepts
such as three-rotors UAVs with one tilting rotor (Salazar-
Cruz et al. [2008]), tilt-wing UAVs (Cetinsoy et al. [2012]),
and quadrotor UAVs with two orthogonal tilting axes (Ryll
et al. [2012]) are also worth mentioning.

Thrust vectoring for an aerial vehicle is the ability to
modify the direction of the propulsion thrust with respect
to (w.r.t.) a body-fixed frame. This feature can be used
either for attitude (i.e., orientation) control, when the
thrust rotation center is located at some distance of the
vehicle’s center of mass (CoM) and thrust vectoring yields
torque creation, as in the case of rocket nozzle tilting
or ducted-fan airflow derivation via the use of rotating
surfaces (Naldi et al. [2008], Pflimlin et al. [2010]), or
for attitude/position control decoupling, when the thrust
rotation center is near the CoM and complementary ac-
tuation for attitude control is available, as in the case of
V/STOL aircraft whose fuselage orientation is controlled
independently of the vehicle’s longitudinal motion (No-
tarstefano and Hauser [2010], Russo et al. [2011]). As a
matter of fact, thrust vectoring can also be used to achieve
a combination of the aforementioned objectives. This mul-
tiple usage renders the term thrust-vectoring somewhat
imprecise. We use here the term thrust-tilting in reference
� This work was supported by the French Agence Nationale de
la Recherche through the ANR ASTRID SCAR project “Sensory
Control of Aerial Robots” (ANR-12-ASTR-0033).

to the second possibility, i.e. attitude and longitudinal
motion control decoupling. In this case, thrust direction
tilting involves two actuated degrees of freedom (d.o.f.)
which complement the conventional four actuated d.o.f.
associated with common aerial vehicles, namely thrust
intensity plus three torque components necessary for com-
plete attitude control. This yields six independent actu-
ated d.o.f. that allow for the complete control of the six
dimensional state associated with the position and atti-
tude of the vehicle’s body. A similar objective is addressed
in Ryll et al. [2012] where the vehicle under consider-
ation is a quadrotor UAV whose propellers axes rotate
two by two about one of the two orthogonal axes of the
quadrotor’s “cross” structure supporting the propellers.
This configuration thus involves four additional motors
(one for each propeller) but yields, at the vehicle’s body
level, only two additional independently actuated d.o.f.
as a result of inevitable actuation coupling when more
than six independent actuators are employed. The control
design proposed in Ryll et al. [2012] basically relies on
exact linearization of the vehicle’s motion equations. This
control strategy, combined with actuation redundancy, in
turn leads to a control calculation based on the use of
pseudo-inverse matrices and on solving a complementary
optimization problem (energy expenditure minimization,
for example, as proposed in the paper). However, thrust-
tilting angle limitations are not taken into account in this
study.

With respect to Ryll et al. [2012], we here address thrust
tilting in the form of a generic problem whose solution
potentially applies to a large panel of aerial vehicles with
extended flight envelopes, including the omnicopter con-
sidered in Ryll et al. [2012] and V/STOL aircraft. Such
a claim of generality imposes to take aerodynamic forces
acting on the vehicle into account. For control design pur-
poses, simplified models of these forces are used. Another
difference with Ryll et al. [2012] is that a non-redundant
thrust tilting actuation –i.e. involving only the two d.o.f.
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associated with the modification of an axis direction in
the three-dimensional Euclidean space– is considered. The
proposed (nonlinear) control design is also different. It is
in fact an extension of the one presented in Hua et al.
[2009], Hua et al. [2013] for reference velocity or position
tracking in the case where the thrust direction is fixed,
and it is based on a Lyapunov-like approach. An important
original outcome of the present study is that vectoring lim-
itations are taken into account explicitly. More precisely,
it is assumed that the thrust tilting angle with respect to
a “neutral” direction, corresponding for instance to the
one associated with the fixed direction of a conventional
quadrotor UAV, cannot exceed a known threshold. Due to
this limitation, independent control of the vehicle’s atti-
tude and position is no longer always possible. This leads
naturally to set priorities between complementary control
objectives. Accordingly, the proposed control methodology
involves a primary objective associated with the refer-
ence velocity or position asymptotic stabilization, and a
secondary objective associated with the asymptotic stabi-
lization of a reference orientation for a body-fixed frame.
Beside provable stability and convergence properties in a
large domain of operation, we believe that the conceptual
simplicity of the solution, the non-requirement of switching
between several control laws, and the ability to monitor
smoothly transition phases (from fully-actuated mode to
underactuated mode and vice versa) constitute valuable
complementary assets. Its geometric nature shows through
its construction in the framework of affine geometry and
its expression, mostly coordinates-free, also distinguishes it
from linear and other nonlinear control methods employed
in the domains of aeronautics and aerial robotics.

The remainder of the paper is organized as follows. Section
2 explains modelling simplifications made at the actuation
and control levels, and specifies the class of considered
aerodynamic forces acting on the vehicle. Section 3 de-
velops the control design in terms of primary and sec-
ondary objectives and shows how to complement feedback
control laws derived in the fixed thrust direction case
with a strategy capable of monitoring thrust tilting angle
saturation efficiently. Section 4 reports simulation results
which illustrate and validate the control approach on a
tilted-quadrotor UAV. Section 5 briefly summarizes the
contributions of the paper.

2. PRELIMINARY MATERIAL

2.1 Notation

The following notation is used throughout the paper.

• E3 is the three-dimensional Euclidean affine space and
E3 the associated Euclidean vector space (its direction),
isomorphic to R

3.

• The scalar product of two vectors x and y in R
3 is

denoted as x · y, and their cross product as x× y.

• Using the isomorphism between E3 and R
3, similar

operations can be defined on E3. The same notation, i.e.
x · y ∈ R and x× y ∈ E3, is used for the scalar and cross
products of two Euclidean vectors x, y.

• With x ∈ R
n, xT stands for the transpose of x.

• The ith component of a vector x ∈ R
n is denoted as xi,

and {e1, . . . , en} is the canonical basis in R
n.

• Given x = (x1, x2, x3)
T ∈ R

3, for the sake of conciseness
(x1ı+ x2j+ x3k) is written as (ı, j,k)x.

• G : vehicle’s center of mass (CoM).

• I = {O; ı0, j0,k0} : inertial frame.

• B = {G; ı, j,k} : body-fixed frame.

• u : unit vector on the thrust axis.

• ωu
I = u × d

dtu|I : angular velocity of u with respect to
the inertial frame.

• ωu
B = u × d

dtu|B : angular velocity of u with respect to
the body-fixed frame.

• ω = (ı, j,k)ω: angular velocity of the body-fixed frame
w.r.t. the inertial frame.

• u: vector of coordinates of u in the basis of B, i.e.
u = (ı, j,k)u.

• u̇: vector of coordinates of d
dtu|B in the basis of B, i.e.

d
dtu|B = (ı, j,k)u̇.

• m : vehicle’s mass.

• F a resultant of aerodynamic forces acting on the vehicle.

• T = −Tu : thrust force, with the minus sign arising
from a convention used for VTOL vehicles.

• v : CoM’s velocity w.r.t. the inertial frame.

• a : CoM’s acceleration w.r.t. the inertial frame.

• g : gravitational acceleration.

G

�T

�u �k

u3

u1 u2

�j

�ı

Fig. 1. Sketch representation of a VTOL vehicle with
thrust tilting capability.

2.2 Modelling Simplifications and Motion Equations

In this section, a generic control model of a VTOL vehicle
evolving in 3D space is proposed. The actuation inputs
used to control the vehicle consist of i) a propulsion thrust
T whose direction with respect to the vehicle’s main
body can be tilted, ii) a torque Γ, independent of the
thrust tilting actuation, used to modify the body’s angular
velocity ω at will, and iii) torques needed to change
the thrust direction. Nominally the resultant thrust force
passes through the center of mass and thus exerts zero
torque. Tilting the thrust direction may however create
a parasitic torque ΓT . The control torque Γ then has to
pre-compensate for this parasitic torque and also ensure
that (almost) any desired angular velocity is physically
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obtained rapidly (instantaneously, in the ideal case). In
practice, this torque is produced in various ways, typically
by using propellers (e.g., VTOL vehicles Hamel et al.
[2002], Ryll et al. [2012]), or rudders and flaps (e.g.,
aeroplanes Abzug and Larrabee [2002], ducted-fans Naldi
et al. [2008]), or control moment gyros (e.g., spacecrafts
Yoon and Tsiotras [2004]), etc. In order to give the
reader an idea of how this torque can be calculated to
ensure the swift convergence of ω to a desired (time-
varying) orientation velocity ω� = (ı, j,k)ω�, let us
consider the classical Euler equation of the orientation
dynamics expressed in the coordinates of body-fixed frame:

Iω̇ = −ω × Iω + Γe + Γ (1)

with I the vehicle’s angular inertia matrix, Γe the vector
of coordinates in the body-fixed frame B of all “parasitic”
torques (including ΓT and aerodynamic effects) acting on
the vehicle. Then, calculating Γ as follows

Γ = −Γe + Iω̇� + ω × Iω� − kωI(ω − ω�) ; kω > 0

and applying this torque to the vehicle yields the closed-
loop equation

I
d

dt
(ω − ω�) = −ω × I(ω − ω�)− kωI(ω − ω�)

and hence the exponential stability of (ω − ω�) = 0 with
a rate of convergence of ω to ω� given by kω. Under
some extra assumptions upon ω� and Γe, one shows that
a simple proportional feedback Γ = −kωI(ω − ω�) with
kω > 0 large enough, suffices to render and maintain
|ω − ω�| smaller than any given small threshold.

The above considerations justify the conceptual “back-
stepping” assumption, commonly made, which consists in
using the angular velocity ω, rather than the torque Γ
which produces this velocity, as a control input. In the
same order of idea, we will assume that the thrust intensity
T , and the thrust-direction tilting angular velocity ωu

B, are
the other control inputs at our disposal. The equations
characterizing the system’s dynamics are then

ma = mg + F a − Tu (2)

d

dt
{ı, j,k}|I = ω × {ı, j,k} (3)

d

dt
u|B = ωu

B × u (4)

with F a representing all forces, other than thrust and
gravitation, applied to the vehicle’s body. This vector is
typically dominated by lift and drag aerodynamic forces
whose intensities depend on the vehicle’s longitudinal
velocity (relatively to the ambient air) and, of particular
importance for control purposes, on the vehicle’s attitude
when lift is not negligible. For the sake of simplification,
and because the focus of the present paper is not to
discuss control design aspects specifically related to the
aerodynamic forces acting on the vehicle, we will here
assume that F a can be decomposed into the sum of two
components as follows

F a = F a
1 + F a

2 (5)

with F a
2 = F a

2 u (F a
2 ∈ R) and F a

1 a vector which, ideally,
does not depend on the vehicle’s orientation. For instance,
in the case of a quadrotor UAV with tilted thrust-direction,
alike the one considered in the simulation Section 4, F a

involves a body-drag force F a
D and an induced-drag force

F a
I generated by the airflow circulation around the rotors

blades. Expressions of these forces are (Mahony et al.
[2012]):

F a
D = −cD|va|va, F a

I = −cIT (v
a − (va · u)u)

with va denoting the apparent air velocity, i.e. the vehicle’s
translational velocity minus the ambient air velocity, and
cD and cI two aerodynamic coefficients. Summing up these
two forces yields

F a = F a
D + F a

I

= (−cD|va|va − cITv
a) + (cIT (v

a · u)u)
= F a

1 + F a
2

with F a
1 := −cD|va|va− cITv

a, F a
2 := cIT (v

a ·u)u. Note
that the direction of the drag component F a

1 is, by defini-
tion, aligned with the air velocity so that it does not de-
pend on the vehicle’s orientation. However, its amplitude
depends on this orientation in the general case where the
coefficients cD and cIT themselves vary with the vehicle’s
orientation. Nevertheless, there are flight domains where
these coefficients can be considered as almost constant. For
instance, in the absence of wind, for small vehicle’s trans-
lational velocities the drag force is dominated by the air-
velocity linearly dependent term −cITv

a. Then, provided
that the vehicle’s translational acceleration intensity stays
smaller than a certain threshold, the thrust T essentially
opposes the vehicle’s weight mg so that the drag force
can, in this domain, be approximated by the orientation
independent term −cImgva (assuming that the coefficient
cI is itself almost constant). For the simulations of Section
4, this approximation is made at the control design level,
whereas the “true” drag term −cITv

a, with the control
thrust T depending on the the vehicle’s orientation, is used
to calculate the vehicle’s motion.

In view of (5), the longitudinal dynamics equation (2) can
be rewritten as

ma = mg + F a
1 − T̄u (6)

with T̄ = T − F a
2 and an external force F a

1 which –in a
certain flight domain and in the first approximation, as
explained previously– does not depend on the vehicle’s
orientation.

3. CONTROL DESIGN

In the previous section we have justified the use of T̄ , ω,
and ωu

B as control inputs. The present section aims at
working out feedback control expressions for these inputs.

3.1 Primary Objective Realization

Using the well known relations

d

dt
x|I =

d

dt
x|B + ω × x

and
x× (y × z) = (x · z)y − (x · y)z

for any triplet (x,y, z) of Euclidean vectors, and using the
definitions of the angular velocities of ω, ωu

I , and ωu
B, it

is simple to show that

ωu
I = ωu

B + ω − (ω · u)u (7)

Typically T̄ and ωu
I are determined in order to achieve

a primary objective related to the vehicle’s longitudinal
motion.
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Reference velocity stabilization: For instance, consider
the case where reference velocity asymptotic stabilization
is the objective. Denoting the velocity error as ṽ = v−vr,
one obtains the following error equation

m
d

dt
ṽ|I = m(a− ar) = −T̄u+ F (8)

with
F := mg + F a

1 −mar (9)

where ar = d
dtvr |I represents the acceleration of the

reference trajectory w.r.t. the inertial frame.

Let T̄r and ur denote the (positively signed) intensity and
direction vector of F respectively, i.e.

(T̄r,ur) ≡
(
|F |, F

|F |
)

(10)

As long as |F | �= 0, defining these terms poses no problem.
We will assume from now on that this condition, which
is automatically satisfied in the case of hovering thanks
to the gravitational acceleration, is satisfied. As explained
in Hua et al. [2009], the satisfaction of this condition is
also necessary to the controllability of the linearized error
system and the existence of conventional, either linear
or nonlinear, control solutions. In view of (8), one must
have T̄u = F at the equilibrium ṽ = 0. Therefore, T̄
must converge to T̄r, whereas the thrust direction u must
converge to ur.

The above considered problem of asymptotic stabilization
of a reference velocity has already received solutions (see
Hua et al. [2009] or Hua et al. [2013]) which, modulo minor
modifications and transposition details, yield the following
control expressions

T̄ = T̄ru · ur + k1mu · ṽ (11)

ωu
I =

k2m

T̄r
u× ṽ +

(k3 + k̄3)

(1 + u · ur)2
u× ur

+ (ωur

I − (ωur

I · u)u) (12)

with ωur

I := ur× d
dtur|I the instantaneous angular velocity

of F , k1,2,3 positive gains, and k̄3 = 2 ˙̄Tr(1+u·ur)/T̄r. This
controller is derived by considering the following (positive)
Lyapunov function candidate:

L =
1

k2

T̄ 2
r

m2
(1− u · ur) +

1

2
|ṽ|2 (13)

whose time-derivative along any solution to the controlled
system is (see the proof in the Appendix A):

L̇ = −k3
k2

T̄ 2
r

m2

|u× ur|2
(1 + u · ur)

2 − k1(u · ṽ)2 (≤ 0) (14)

Provided that |F | �= 0, that the reference velocity and
acceleration are bounded, and that u + ur �= 0 initially,
then (ṽ = 0,u − ur = 0) is asymptotically stable
(see complementary details in Hua et al. [2009]). Control
robustification when F or u+ ur vanishes is discussed in
Hua et al. [2009].

Reference position stabilization: If, instead of reference
velocity stabilization, the primary objective is the tracking
of a reference position trajectory, the same control can be
used modulo minor modifications involving (bounded) in-
tegrals of velocity and position errors. The Lyapunov func-
tion candidate used for convergence and stability analysis
is modified accordingly Hua et al. [2009], Hua et al. [2013].

For the sake of precision, let x := OG and xr respectively
denote the vehicle’s position and reference position w.r.t
an inertial frame, and let x̃ := x− xr denote the position
error vector. The above mentioned modifications consist,
for instance, in replacing the definition (10) of T̄r and ur

by

(T̄r,ur) ≡
(
|F ξ|, F ξ

|F ξ|
)

(15)

where:

• F ξ := mg + F a
1 −mar +mkI

d2

dt2z|I +mσ(ξ̃)

• ξ̃ := x̃+ kIz ; kI > 0

• z is a bounded integral of the position error x̃ defined
as the solution to the following equation

d2

dt2
z|I=− kż

d

dt
z|I + sat

z̈max
2 (kz(−z+satΔz(z+

x̃

kz
)))

with zero initial conditions, i.e. z(0) = d
dtz|I(0) = 0,

positive numbers kz , kż , z̈max and Δz, and satΔ denoting
the classical saturation function defined by satΔ(x) =
min(1,Δ/|x|)x.
• σ is a bounded function satisfying some properties
(detailed in Hua et al. [2009] and Hua et al. [2013]) and
an example of which is the function defined by σ(y) :=

β(β2|y|2/η2 + 1)−
1
2y, with β and η denoting positive

numbers.

The last modification concerns the term ṽ which, in the
control expressions (11) and (12), has to be replaced by
ṽξ := ṽ + kI

d
dtz|I .

3.2 Secondary Objective Realization

The thrust intensity T (or equivalently, T̄ ) has been
determined previously (the relation (11)). It thus remains
to determine ω and ωu

B that satisfy (7), as imposed by the
realization of the primary objective, and also allow for the
realization of a secondary objective.

Let ω� denote the angular velocity control that would
be used for the secondary control objective if the thrust
tilting angle was not limited. For instance, this objective
can be the asymptotic stabilization of the body-fixed frame
vector k at a reference time-varying unit vector kr. Then,
a possible control, whose expression is obtained in the
same way as the control ωu

I in (12) by rendering the time-
derivative of the Lyapunov function candidate (1− k · kr)
negative when k �= kr, is

ω� =
k4

(1 + k · kr)2
k× kr + λk+ (ωkr

I − (ωkr

I · k)k) (16)

with k4 > 0, λ ∈ R and ωkr

I := kr× d
dtkr|I . The indetermi-

nation of λ corresponds to the unused d.o.f associated with
rotations about the k direction. If the secondary objective
is to asymptotically stabilize a reference orientation for the
vehicle’s body, then a possible control is

ω� = −k4 tan(θ/2)ν + ωr; k4 > 0 (17)

with θν the rotation vector associated with the orientation
error between the body-fixed frame and the reference ori-
entation, and ωr the reference angular velocity associated
with the reference orientation.

Let us define

ωu
B
� := ωu

I − (ω� − (ω� · u)u) (18)
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Since ωu
B
� satisfies (7) when ω is equal to the uncon-

strained solutionω�, it is the thrust tilting angular velocity
that would be used in the unconstrained case to achieve
both primary and secondary objectives. However, due to
the thrust tilting angle limitation, modified expressions for
ω and ωu

B have to be worked out. To this aim, let us first
specify the maximum value of the thrust tilting angle and
set

δ = max

(√
u2
1 + u2

2

)
(< 1) (19)

so that the maximum tilting angle is equal to arcsin(δ)
∈ [0, π2 ).

Define
u̇� := ωu

B
� × u (20)

and denote u̇� as the vector of coordinates of u̇� in the
basis of the body-fixed frame B, i.e. u̇� = {ı, j,k}u̇�. Using
x1,2 to denote the vector of first two components of x ∈ R

3,
we propose to modify the tilting angle according to the
following control law:

u̇1,2 = −kuu1,2 + kusat
δ

(
u1,2 +

u̇�
1,2

ku

)
(21)

with ku a positive number (not necessarily constant),
and satδ(.) the classical saturation function defined by
satδ(x) = min(1, δ/|x|)x, with x ∈ R

2 in the present case.
Then, ωu

B is given by

ωu
B = u× d

dt
u|B

with d
dtu|B = {ı, j,k}u̇ and the third component of u̇ given

by u̇3 = −uT
1,2u̇1,2

u3
= − uT

1,2u̇1,2√
1−u2

1−u2
2

, using the fact that u

is a unit vector. One easily verifies from (20) and (21)
that u̇ = u̇� whenever |u1,2 + u̇�

1,2/ku| ≤ δ. This indicates
that, for u1,2 to be dominant in the left-hand side of this
inequality, ku should be chosen large enough. In view of
(21), one also has the relations

1

2

d

dt
|u1,2|2 = −ku|u1,2|2 + kuu

T
1,2sat

δ(u1,2 + u̇�
1,2/ku)

≤ −ku|u1,2|2 + kuδ|u1,2|
from which one deduces that |u1,2| remains smaller or
equal to δ, provided that the initial value of |u1,2| is itself
chosen smaller or equal to δ. Therefore, this control law i)
respects the imposed limitation on the thrust tilting angle,
and ii) allows for the realization of the secondary objective
when |u1,2 + u̇�

1,2/ku| ≤ δ.

It then remains to determine ω. An obvious choice is

ω = ωu
I − ωu

B + (ω� · u)u (22)

Indeed, one deduces from this relation that ω · u = ω� ·u
and, subsequently, that ωu

B = ωu
B
� and ω = ω� when

|u1,2 + u̇�
1,2/ku| ≤ δ. Moreover, the equality (7) is always

satisfied with this choice, in accordance with the priority
given to the realization of the primary objective.

Remark 1. Thrust-tilting may involve only a single rota-
tion about a body-fixed axis (see, e.g., Cetinsoy et al.
[2012], Notarstefano and Hauser [2010], Russo et al. [2011],
Papachristos et al. [2011]) by contrast with the two d.o.f.
rotation case here considered. A straightforward adapta-
tion of the proposed control design for the realization of the
secondary objective then consists in replacing the control
law (21) by

{
u̇1 = −kuu1 + kusat

δ(u1 + u̇�
1/ku)

u̇2 = u2 = 0

4. APPLICATION TO A THRUST-TILTED
QUADROTOR UAV

G

P2

�u

P3

�u

P1

�u

�ı

�j

�k
P4

�u

Fig. 2. Sketch representation of a quadrotor with thrust
tilting capability.

The above control solution has been tested on the model
of a quadrotor UAV sketched on Fig. 2. We assume that
the four rotor axes can be simultaneously tilted and in
the same direction corresponding to the overall thrust
direction u. Let Pi (i = 1, . . . , 4) be the pivoting points
of the four rotors, with their positions in the body frame
defined by

GP 1 = hk + dı, GP 2 = hk − dj

GP 3 = hk − dı, GP 4 = hk + dj

with h ∈ R and d > 0. On Fig. 2, h = 0. Let �i

(i = 1, . . . , 4) denote the angular velocities of the four
rotors. According to Hamel et al. [2002], the i-th rotor
generates a thrust force T i = μ�2

iu and a drag torque
Qi = λiκ�

2
iu, with μ and κ two aerodynamic coefficients

and λi = 1 (resp. −1) if i is odd (resp. even). The thrust
T and the torque vector Γ = (ı, j,k)Γ generated by the
four rotors are thus given by

T =
∑
i

T i = μ

(∑
i

�2
i

)
u

Γ =
∑
i

(GP i × T i +Qi)

= dμ(�2
1 −�2

3)(ı× u)− dμ(�2
2 −�2

4)(j × u)

+ hμ
∑
i

�2
i (k × u) +

∑
i

λiκ�
2
iu

One deduces the following relation between the vector of
rotors angular velocities �i on the one hand, and the
vector composed of the thrust intensity and the control
torque components on the other hand:

[
T
Γ

]
= Amot

⎡
⎢⎢⎣
�2

1

�2
2

�2
3

�2
4

⎤
⎥⎥⎦

with the allocation matrix Amot = [ac1 ac2 ac3 ac4],
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ac1 :=

⎡
⎢⎣

μ
−hμu2+κu1

hμu1−dμu3+κu2

dμu2+κu3

⎤
⎥⎦, ac2 :=

⎡
⎢⎣

μ
−hμu2−dμu3 −κu1

hμu1−κu2

dμu1−κu3

⎤
⎥⎦

ac3 :=

⎡
⎢⎣

μ
−hμu2+κu1

hμu1+dμu3+κu2

−dμu2+κu3

⎤
⎥⎦, ac4 :=

⎡
⎢⎣

μ
−hμu2+dμu3−κu1

hμu1−κu2

−dμu1−κu3

⎤
⎥⎦

Since Amot is invertible (det(Amot) = 8κd2μ3u3 > 0), T
and Γ can be given any desired values –modulo the con-
straint of positivity of the rotors angular velocities and the
limited range of velocities imposed by power limitations of
the rotors– and can thus be used as independent control
variables. The direct application of the proposed control
strategy relies on this actuation property.

4.1 Simulation results

Specifications of the simulated vehicle are given in Tab. 1.

Table 1. Specifications of the simulated UAV.

Specification Numerical Value

Mass m [kg] 1.5
Moment of Inertia I [kg m2] diag(0.028,0.028, 0.06)
Level arm values [h, d] [m] [0.05,0.2]

Thrust angle limitation [rad] π/6
Body drag coefficient cD [kg m−1] 0.0092
Induced drag coefficient cI [kg s−1] 0.025

Concerning the calculation of the torque Γ in charge
of producing the desired body angular velocity defined
by (22), we have used Γ = −kωI(ω − ω�) + ω × Iω�,
with ω denoting the vehicle’s angular velocity obtained
by integration of the Euler equation (1), ω� the vector
of coordinates, expressed in the body-fixed frame B, of
the reference angular velocity defined by (22), and kω a
positive gain. Due to the parasitic torque induced by the
chosen non-zero value of h (one of the parameters char-
acterizing the position of the propellers) and the non pre-
compensation of both this torque and the reference angular
acceleration ω̇� in the expression of Γ, there remains a
residual error between ω and ω� in the general case. We
have made this simplification in the control calculation
in order to test the robustness of the proposed control
design against (inevitable) modelling errors. This explains
residual position tracking errors that are observable in the
reported simulation results.

The primary objective considered for these simulations is
the position tracking of an eight-shaped Lissajous trajec-
tory defined by

xr = 5 sin(art)ı0 + 5 sin(2art)j0 (23)

By changing the parameter ar one modifies the time period
of a complete run, as well as the associated reference
velocity and acceleration. Two values of ar (2π/15 and
π/5) are considered. The first one corresponds to a “slow”
run (Simulation 1) that involves non-saturated thrust-
direction tilt angles, whereas the second one corresponds
to a “fast” run (Simulation 2) along portions of which the
tilt angle attains its maximum value.

The chosen secondary objective is the stabilization of the
vehicle’s attitude about the identity matrix. In particular,
the realization of this objective requires the vehicle’s
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Fig. 3. Reference and vehicle trajectories projected on the
horizontal plane (Simulation 1).

0 5 10 15
−5

0

5

10

15

20

25

30

35

40

1
1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

 

 

t (s)

I
n
c
li
n
a
ti
o
n

a
n
g
le

(d
e
g
)

thrust tilt angle
vehicle’s inclination angle

Fig. 4. Thrust and vehicle inclination angles vs. time
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Fig. 5. Position tracking errors vs. time (Simulation 1).
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plane containing the rotors’ pivot points P1,2,3,4 to remain
horizontal all the time. The associated angular velocity
control ω� is given by (17).
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The control gains and other parameters involved in the
calculation of the control inputs are chosen as follows:

• k1 = 2, k2 = 7.56, k3 = 19.2, kI = 0.4,
• β = 0.81, η = 6,
• kż = 4, kz = 4, Δz = 1, z̈max = 0.5,
• k4 = 10, ku = 20,
• kω = 20.

In the control expression, the aerodynamic force F a
1 is

approximated by F a
1 ≈ −cD|vr|vr − cImgvr which is

obtained by replacing T and va by mg and vr, respec-
tively. The time-derivative of this force, also needed for
the control calculation, is calculated accordingly. Initial
conditions for the vehicle’s configuration are as follows:⎧⎨

⎩
x(0) = 0.8j0, v(0) = 5arı0 + 10arj0,

{ı(0), j(0),k(0)} = {ı0, j0,k0},
u(0) = k(0), ω(0) = ωu

B(0) = 0.

• Simulation 1 (ar = 2π/15): The time period for a
complete run is 15s. The projection on the horizontal plane
of the path followed by the vehicle’s CoM is shown in Fig.
3. Variations w.r.t. time of the vehicle and thrust incli-
nation angles, of the position tracking errors, and of the
thrust magnitude, are shown in Figs. 4–6. In Figs. 3 and
4 the nine highlighted points correspond to time-instants
when the reference trajectory involves large acceleration
variations. From Fig. 3 one can observe that the vehicle
catches up with, and subsequently closely follows, the
reference trajectory. Despite a rather aggressive reference
trajectory, with an average longitudinal velocity of about
4m/s and accelerations sometimes exceeding 3m/s2, the
vehicle’s base remains always horizontal (see Fig. 4). One
can also observe from Fig. 4 that the thrust-direction tilt
angle never reaches its maximum value (equal to π/6rad).
Both goals are thus achieved (almost) perfectly in this
case.

• Simulation 2 (ar = π/5): This simulation is devised
to illustrate the effects of thrust tilting saturation and
the corresponding control monitoring. The time-period
for a complete run is reduced to 10s and the reference
trajectory is more aggressive than the one in Simulation 1.
Results are shown in Figs. 7–11. One can now observe from
Fig. 8 that the vehicle’s inclination periodically departs
from zero when the thrust-direction tilt angle attains its
maximum value. While the primary position tracking task
is again performed perfectly, the secondary objective is, as
expected, imperfectly realized in this case. However, the
body’s inclination returns to the desired zero value as soon
as the thrust tilt angle needed to achieve the secondary
objective re-enters the domain of allowed tilt angles, a
behaviour that we find satisfactory.

5. CONCLUSION

Nonlinear control of VTOL vehicles endowed with thrust
tilting capability has been addressed and a generic con-
trol solution exploiting thrust-tilting augmentation has
been devised. The proposed solution potentially applies
to a large panel of aerial vehicles with extended flight
envelopes. It involves a primary objective consisting in
the asymptotic stabilization of either a reference velocity
or a reference position trajectory, and a secondary objec-
tive consisting in the asymptotic stabilization of either a
reference direction for one of the body-base vectors or a
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Fig. 7. Reference and vehicle trajectories projected on the
horizontal plane (Simulation 2).
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Fig. 8. Thrust and vehicle inclination angles vs. time
(Simulation 2).
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Fig. 9. Position tracking errors vs. time (Simulation 2).

complete reference orientation for the body-fixed frame.
A major original outcome of the present study is the
definition of a control solution that takes thrust-tilting
limitations into account explicitly. We view it also as
new contribution to the ongoing development of a unified
nonlinear approach to the control of aerial vehicles. The
proposed thrust tilting control strategy has so far been
validated only in simulation. Experiments carried out on
physical devices are thus needed to adapt the approach to
the specificities of each flying device and assert its practical
usefulness.
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Appendix A. TIME-DERIVATIVE OF THE
LYAPUNOV FUNCTION (13)

One has
d

dt
(1− u · ur) = − d

dt
u|I · ur − u · d

dt
ur|I

= −(ωu
I × u) · ur − u · (ωur

I × ur)
= (ur × u) · (ωu

I − ωur

I )

so that
d

dt

T̄ 2
r

k2m
(1− u · ur)

=
T̄ 2
r

k2m
((ur × u) · (ωu

I − ωur

I ) +
2 ˙̄Tr

T̄r
(1 − u · ur))

=
T̄ 2
r

k2m
(ur×u) · (ωu

I−ωur

I +
k̄3

(1 + u · ur)2
(ur×u))

(A.1)
where we have used the expression of k̄3 and the identity
1− (u · ur)

2 = |ur × u|2. From (8) one has also

d

dt

1

2
|ṽ|2 =

1

m
ṽ · (−T̄u+ F )

=
1

m
(−T̄ ṽ · u+ T̄rṽ · ur)

=
1

m
(T̄ru· ur−T̄ )ṽ ·u+ T̄r

m
(ur×u)· (ṽ×u)

(A.2)

where we have used the identity ur = u × (ur × u) +
(u · ur)u. The time-derivative of the candidate Lyapunov
function (13) is the sum of the left-hand side terms of (A.1)
and (A.2). Therefore

d

dt
L =

1

m
(T̄ru · ur − T̄ )ṽ +

T̄ 2
r

k2m
(ur × u)·

(ωu
I − ωur

I +
k̄3

(1 + u · ur)2
(ur × u) +

k2m

T̄r
ṽ × u)

It then suffices to replace T̄ and ωu
I by their expressions

(11) and (12) in the right-hand side of the above equality
to obtain (14).
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