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a b s t r a c t

The 2019 novel coronavirus (COVID-19) emerged at the end of 2019 has a great
influence on the health and lives of people all over the world. The spread principle
is still unclear. This paper considers a novel evolution model of COVID-19 in
terms of an integral–differential equation, involving vaccination effect and the
incubation of COVID-19. The proposed mathematical model is rigorously analyzed
on its asymptotic behavior with new probability functions, showing the final
spread tendency. Moreover, our model is also verified numerically by the practical
epidemic data of COVID-19 in Yangzhou from July to August 2021.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

In March 2020, the World Health Organization declared the COVID-19 outbreak to be a global pandemic.
With the active cooperations of countries around the world, the epidemic is under control temporarily,
especially due to the invention of 2019-nCoV vaccine. However, a new round of epidemic of the Delta COVID-
19 variants broke out again in Nanjing on July 20, 2021, caused by the external input from a Russian flight.
Then the epidemic spread out quickly, leading to three serious epidemic sites in China: Nanjing, Zhangjiajie
and Yangzhou. Noticing that the 2019-nCoV vaccine has been injected to most of the people in China and
some serious measurements have been taken to control the disease, it is necessary to restudy the COVID-19
virus, including the vaccination effect and its propagation mechanism.

Except for some well-known models on general epidemic diseases such as Logistic model, SIS model,
SIR model and SEIR model [1,2], there already have been extensive works on the propagation models for
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COVID-19 epidemic, with the aim to overcome the shortcomings of these classical models ignoring either the
human mobility or the lag effect of the virus incubation. In fact, it is reported that the epidemic outbreak in
Yangzhou in July 2021 comes from the turnover of an “old lady” within the city who traveled to Yangzhou
from Nanjing.

Some existing studies have carefully considered the influence of imported patients, isolation of infected
patients, incubation period of the disease, cure ratio and cure time of patients, as well as mortality
of patients. Especially some dynamic models of COVID-19 considering the time-delay effect have been
derived, see [3–6]. However, these models do not consider the impact of vaccination. On the other hand,
in the evolution models involving the time-delay effects of epidemic infections, the probability functions
for incubation period should be assumed artificially, we also need to consider other probability functions
theoretically and numerically.

As a new but typical epidemic disease, the spread of COVID-19 depends on:

• The harmful nature of the viruses themselves, such as the incubation period, infection ratio and recovery
ratio;

• The cognition and therapeutic effects of contemporary medicine on viruses, including the cure period,
cure time of patients and the effectiveness of vaccine;

• Measures to control the viruses spread, such as travel restrictions, isolating patients, controlling the
imported cases and vaccination ratios.

In this paper, we consider the interactions of isolation effect, external input, recovery ratio and vaccination
on the spread of the epidemic comprehensively. Different from the existing model proposed in [3], we consider
new density functions obeyed by the incubation period and cure period, together with the vaccination effects
in the infection model. We theoretically proved that, for this novel model, the epidemic can be finally
controlled, i.e., the infected patients will eventually disappear by adequate isolation and high vaccination
ratio. Our work shows that the model can effectively describe the propagation mechanism of infectious
diseases with long latency, and the numerical results reflect the characteristics of viruses and vaccines in
predicting the epidemic tendency in different periods.

This paper is organized as follows. In Section 2, we establish a novel model for COVID-19 introducing
new probability functions and the vaccination effect comprehensively. Then the asymptotic behavior of the
number of the infected people is rigorously proved, together with the numerical verifications of the proposed
model in terms of the real epidemic data of Yangzhou in July 2021 in Section 3, showing the validity of the
proposed model.

2. Transmission model with vaccination effects

Suppose there exist some infected patients at initial time. Then all the infected patients, assumed to be
of either mild symptoms or severe ones, are generated by the spread of local patients and external input
cases. However, we should consider vaccination effects decreasing the infection ratio. Denote by Is(t) the
umulative number of the infected persons at time interval [0, t]. Similarly to the model proposed in [3], we
ntroduce the following quantities:

• s(t): imported cases at time t (suppose they are just infected);
• i(t): newly infected people due to internal infection at time t;
• j(t): newly confirmed people at time t;
• c(t): cured persons with mild symptoms at time t, including people being vaccinated c1(t) and those not

being vaccinated c2(t);
• d(t): cured or died persons with severe symptoms at time t, including people being vaccinated d1(t) and
those not being vaccinated d2(t).
2
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Our preliminary aim is to propose a novel nonlocal model with rigorous asymptotic analysis, and to show
the validity of this model if the parameters such as d(t) in this model can be specified appropriately. However,
he influence of the parameters cannot be verified numerically if the epidemic period is short such as the
angzhou cases.
Such a new configuration is more complicated, since even if for people who have been vaccinated, they

an still be the sources of infections due to the possible invalidity of the vaccines for special individuals. To
stablish the propagation law of epidemic by infection process and medical treatments, we assume that the
atent period, cure period of the diseases are random variables represented by some density functions. More
recisely, we assume

• All the random variables τ describing the propagation indices of COVID-19 in our model are indepen-
dently and identically distributed (IID) for different individuals, with the probability density function
hs(τ ; τs) and average value τs;

• The infection ratio β > 0 of the disease is a constant;
• The patients are no longer of infectivity once they are isolated, cured or died.

The vaccination plays an important role in two ways. Firstly, the vaccinated persons have less proportion
to be infected compared with the non-vaccinated ones. Secondly, the vaccinated people, even if they get
infected, will be of lower death ratio compared with the non-vaccinated ones. For time t > 0, introduce

1(t) ∈ (0, 1) the isolation ratio for the infected people, κ2(t) ∈ (0, 1) the vaccination ratio of the population,
nd κ3(t) ∈ (0, 1) the ratio of effectiveness of vaccination. Then the newly infected people i(t) fall into two
arts: persons who have been vaccinated but ineffective and those who have not been vaccinated, i.e., we
ave the representation

i(t) = i1(t) + i2(t) = β(1 − κ1(t))κ2(t)(1 − κ3(t))Is(t) + β(1 − κ1(t))(1 − κ2(t))Is(t). (2.1)

To describe the infection propagation from the infected people at initial time, namely, Is(0) = I0
s , we

onsider it equivalently as a continuous and uniform input s0(t) in the time interval [0, ϵ0] for small ϵ0 > 0.
hen the infection source S(t) = s(t) + s0(t), where

s0(t) =
{ 2

ϵ2
0
I0

s (ϵ0 − t), t ∈ [0, ϵ0],

0, t > ϵ0
(2.2)

satisfying
∫ ϵ0

0 s0(t)dt = I0
s . We also decompose

S(t) ≡ κ2(t)(1 − κ3(t))
1 − κ2(t)κ3(t) S(t) + 1 − κ2(t)

1 − κ2(t)κ3(t)S(t) := S1(t) + S2(t),

here S1(t) is those who have been vaccinated but non-effective, while S2(t) is those who have not been
accinated.

All the newly infected people i(t)+S(t) at time t will get confirmed once they have passed the incubation
eriod τ with average τj , which is a random variable with the density function hj(τ ; τj). Similarly to
he classification of newly infected people, the newly confirmed cases j(t) can also be divided into two
omponents, i.e.,

j(t) =
∫ t

0
hj(t − τ ; τj)

2∑
k=1

[ik(τ) + Sk(τ)]dτ := j1(t) + j2(t). (2.3)

Let p1, p2 ∈ (0, 1) be the ratios of patients with mild symptoms for vaccinated patients and non-vaccinated
nes, respectively. Corresponding to jk(t) with k = 1, 2, we describe the cured effects for patients with
ild symptoms by the kernel functions h (τ ; τ ), while the cured and dead effects for patients with severe
ck ck

3
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symptoms are described by kernel functions hdk
(τ ; τdk

), where τ is the random variable with average τck
, τdk

for the performances of medical treatments. Then we have

c(t) =
2∑

k=1
ck(t) = p1

∫ t

0
hc1(τ ; τc1)j1(t − τ)dτ + p2

∫ t

0
hc2(τ ; τc2)j2(t − τ)dτ, (2.4)

d(t) =
2∑

k=1
dk(t) = (1 − p1)

∫ t

0
hd1(τ ; τd1)j1(t − τ)dτ + (1 − p2)

∫ t

0
hd2(τ ; τd2)j2(t − τ)dτ. (2.5)

Obviously, there should be the relations τc1 ≤ τc2 , p1 ≥ p2, revealing the effect of vaccination. Using the
alance equation

I ′
s(t) = s(t) + i(t) − c(t) − d(t) (2.6)

nd the above analysis, we obtain an integral–differential system with respect to Is(t):

I ′
s(t) = s(t) + β(1 − κ1(t))κ2(t)(1 − κ3(t))Is(t) + β(1 − κ1(t))(1 − κ2(t))Is(t) −∫ t

0
β(1 − κ1(z))κ2(z)(1 − κ3(z))Is(z)∫ t

z

[p1hc1(t − τ ; τc1) + (1 − p1)hd1(t − τ ; τd1)] hj(τ − z; τj)dτdz −∫ t

0
β(1 − κ1(z))(1 − κ2(z))Is(z)∫ t

z

[p2hc2(t − τ ; τc2) + (1 − p2)hd2(t − τ ; τd2)] hj(τ − z; τj)dτdz −∫ t

0
S1(z)

∫ t

z

[p1hc1(t − τ ; τc1) + (1 − p1)hd1(t − τ ; τd1)] hj(τ − z; τj)dτdz −∫ t

0
S2(z)

∫ t

z

[p2hc2(t − τ ; τc2) + (1 − p2)hd2(t − τ ; τd2)] hj(τ − z; τj)dτdz, (2.7)

ogether with the initial value
Is(0) = I0

s . (2.8)

Once we solve Is(t) from (2.7)–(2.8), (i(t), j(t), c(t), d(t)) can then be determined, which means that all
he relevant quantities describing the spread of COVID-19 can be obtained.

emark 2.1. Different from our model in [3], where we remove the infected people in terms of the cured
ersons c(t) and died persons d(t), here we establish the relation (2.6), where c(t) represents the number of
ured persons of mild symptoms, while d(t) is the number of cured and died persons of severe symptoms.

. Asymptotic behavior of the dynamical model

Instead of the Gaussian and Weibull distributions for random variables in our previous work [3], here we
ssume that all the above random variables are of the Gamma distributions, i.e., for the Gamma function

f(t; α, λ) =
{

λα

Γ(α) tα−1e−λt, t ≥ 0,

0, t < 0
(3.1)

with α, λ > 0 the shape parameters, we take

h(t; τ, λ) = f(t; τλ, λ) (3.2)

4
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for different values (τ, λ) as the density functions in our model. It is easy to see that the random variable
t obeying the density function h(t; τ, λ) is of the average τ for any λ > 0. The mathematical models and
he numerical simulations with other density functions are the same, but the theoretical analysis depends
n the form of density function and then needs to be carried out separately.

Since the specification of the distribution function is artificial, the purpose we take Gamma distribution
ere is to show the model is stable with respect to the forms of distribution functions. We would like to
mphasize that the Gamma distribution is also applied to recover the reproduction number for COVID-19,
ee [7].

In general, the epidemic situation should tend to some stable status after a long time. Any reasonable
athematical model describing the spread of COVID-19 should satisfy such a requirement. We will show

his feature for our proposed model, provided that some a-priori assumptions on isolation ratio, imported
ases and the vaccination effect be specified.

heorem 3.1. For any T > 0, there exists a unique solution Is(t) ∈ C[0, T ] to (2.7)–(2.8). Assume that all
the random variables describing the disease properties obey the Gamma distribution (3.2), and the imported
cases s(t) satisfies the growing condition ∫ ∞

0
s(t)e λ

2 tdt ≤ s∗ < ∞. (3.3)

hen for βκ0 ∈ (0, 1) small enough with κ0 := max[0,∞)(1 − κ1(t))(1 − κ2(t)κ3(t)), we have

lim
t→∞

Is(t) = 0, lim
t→∞

c(t) = 0, lim
t→∞

d(t) = 0. (3.4)

roof. The unique existence of Is(t) to (2.7)–(2.8) comes from the solvability of the linear Volterra integral
quation of the second kind with continuous kernel. For k = 1, 2, define

Mk(t) :=
[
pkhck

(t; τck
) + (1 − pk)hdk

(t; τdk
)
]

∗ hj(t; τj) := pkhjck
(t) + (1 − pk)hjdk

(t).

By integrating (2.7) in [0, T ] and exchanging the order of integrations, we get

Is(t) = I0
s +

∫ t

0
S(z)MS(t − z, z)dz + β

∫ t

0
(1 − κ1(z))Is(z)MI(t − z, z)dz −

∫ t

0
s0(z)dz, (3.5)

here {
MS(y, z) := 1 − κ2(z)(1−κ3(z))

1−κ2(z)κ3(z)
∫ y

0 M1(τ)dτ − 1−κ2(z)
1−κ2(z)κ3(z)

∫ y

0 M2(τ)dτ,

MI(y, z) := 1 − κ2(z)κ3(z) − κ2(z)(1 − κ3(z))
∫ y

0 M1(τ)dτ − (1 − κ2(z))
∫ y

0 M2(τ)dτ.

Since {hi(t; τi), i = j, c1, c2, d1, d2} are of the form of Gamma function (3.2) of (τi, λ), (i = j, c1, c2, d1, d2)
or any specified λ > 0, we have from the straightforward computations that∫ t−z

0
Mk(τ)dτ =

∫ t−z

0
[pkhjck

(τ) + (1 − pk)hjdk
(τ)]dτ

= 1 − pk

∫ +∞

t−z

γjck
τλτjck

−1e−λτ dτ − (1 − pk)
∫ +∞

t−z

γjdk
τλτjdk

−1e−λτ dτ,

here τjm = τj + τm, γjm = λ
λτjm

Γ(λτjm) for m = ck, dk and k = 1, 2. For λτjm − 1 > 0, there exists some
onstant c(τjm, λ) > 0 such that γjmτλτjm−1 ≤ c(τjm, λ)e λ

2 τ for τ ∈ [0, +∞) with m = ck, dk and k = 1, 2.
So we have∫ +∞

γjmτλτjm−1e−λτ dτ ≤
∫ +∞

c(τjm, λ)e− λ
2 τ dτ = 2c(τjm, λ)

e− λ
2 (t−z) ≤ 2c0

e− λ
2 (t−z)
t−z t−z λ λ

5
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Table 1
Comparisons between real and simulant data in Yangzhou by our model.

date 07/28 07/29 07/30 07/31 08/01 08/02 08/03

je(t)(jt(t)) 2(2) 4(0) 10(2) 12(9) 26(20) 40(33) 32(45)
Je(t)(Jt(t)) 2(2) 6(2) 16(4) 28(13) 54(33) 94(66) 126(111)

date 08/04 08/05 08/06 08/07 08/08 08/09 08/10

je(t)(jt(t)) 36(53) 58(57) 52(56) 36(52) 38(47) 48(40) 54(33)
Je(t)(Jt(t)) 162(164) 220(221) 272(277) 308(329) 346(376) 394(416) 448(449)

date 08/11 08/12 08/13 08/14 08/15 08/16 08/17

je(t)(jt(t)) 37(27) 25(21) 18(17) 18(13) 6(9) 3(7) 6(5)
Je(t)(Jt(t)) 485(476) 510(497) 528(514) 546(527) 552(536) 555(543) 561(548)

date 08/18 08/19 08/20 08/21 08/22 08/23

je(t)(jt(t)) 3(4) 2(3) 1(2) 1(1) 0(1) 0(1)
Je(t)(Jt(t)) 564(552) 566(555) 567(557) 568(558) 568(559) 568(560)

with c0 := max{c(τjm, λ), m = c1, c2, d1, d2}. This uniform bound says

0 < MS(t − z, z) ≤ 2c0

λ
e− λ

2 (t−z), 0 < MI(t − z, z) ≤ (1 − κ2(z)κ3(z))2c0

λ
e− λ

2 (t−z). (3.6)

By (3.6), we can estimate the integrals in (3.5). Since supps0(t) = [0, ϵ0] and
∫ ϵ0

0 s0(z)dz = I0
s , (3.5) finally

generates

Is(t)e λt
2 ≤ 2c0

λ

∫ ϵ0

0
s0(z)e λz

2 dz + 2c0

λ

∫ t

0
s(z)e λz

2 dz + 2βκ0c0

λ

∫ t

0
Is(z)e λz

2 dz

≤ C∗(I0
s , s(·), λ, c0) + 2βκ0c0

λ

∫ t

0
Is(z)e λz

2 dz, t > ϵ0 (3.7)

rom Is(0) ≥ 0 and (3.3). Finally the Gronwall inequality yields

0 ≤ Is(t) ≤ C∗e
−

(
λ
2 − 2βκ0c0

λ

)
t
, t > ϵ0.

hus, for (β, κ1(t), κ2(t), κ3(t)) satisfying 0 < βκ0 < min{ λ2

4c0
, 1}, we have limt→∞ Is(t) = 0. Then

imt→∞ c(t) = limt→∞ d(t) = 0 follows immediately. The proof is complete. □

emark 3.2. This result ensures that, if the external input cases are limited in the sense of (3.3) and
κ0 ∈ (0, 1) is small enough, all the infected patients will eventually disappear in terms of our dynamical
ystem. It is easy to understand the smallness of βκ0, that is, low infection ratio, or high isolation ratio, or
atisfactory performance of both vaccination ratio and vaccines. Since the patient’s infection ratio β is not
lear at present stage, the efficient actions of increasing κi(t) for i = 1, 2, 3 are crucial to the elimination of
isease finally.

Now we verify our model in terms of the epidemic data in Yangzhou from July 28 to August 23, 2021
umerically. From news report, we know the daily number of the confirmed patients j(t) and then the
umulative number J(t) in the interval [0, t]. In our simulations, we take the parameters in our model as

I0
s = 554, β = 0.864, κ1 = 0.998, κ2 = 0.5, κ3 = 0.92, p1 = 0.9, p2 = 0.6,

τj = 9.8, τc1 = 12, τc2 = 17, τd1 = 22, τd2 = 30

nd λ = 0.55 in the Gamma functions, then compute the numerical values jt(t) and Jt(t) from our model,
hich simulate the practical data je(t), Je(t) in Yangzhou. The results are given in Table 1, while the
ehavior of real data (j (t), J (t)) and the simulant data (j (t), J (t)) are shown in Fig. 1.
e e t t
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Fig. 1. The simulation behavior with Gamma distribution for Yangzhou epidemic data: daily confirmed patients (je, jt)(left) and
umulative confirmed patients (Je, Jt)(right).

These numerical results verify the validity of the proposed model rigorously, if we have appropriate initial
alue I0

s . Moreover, it is also found in our simulation process that the numerical performances are not
sensitive for the parameters in the distribution functions, which shows the robustness of our proposed model.
However, it is still an open problem for getting suitable values of I0

s and κi for i = 1, 2, 3. Mathematically,
hese values can be identified from extensive measurements by solving some inverse problems, which should
e further studied in the future.
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