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Abstract. In this paper, the local convergence of Iteratively regularized Landweber iteration

method is investigated for solving non-linear inverse problems in Banach spaces. Our analysis

mainly relies on the assumption that the inverse mapping satisfies the Hölder stability estimate

locally. We consider both noisy as well as non-noisy data in our analysis. Under the a-priori

choice of stopping index for noisy data, we show that the iterates remain in a certain ball around

exact solution and obtain the convergence rates. The convergence of the Iteratively regularized

Landweber iterates to the exact solution is shown under certain assumptions in the case of

non-noisy data and as a by-product, under different conditions, two different convergence rates

are obtained.
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1. Introduction

Let F : D(F ) ⊂ U → V : F (u) = v be a non-linear forward operator between the Banach

spaces U and V . The classical meaning of an inverse problem is the determination of u ∈ U ,

provided v or some approximation of v is given. For further details on inverse problems, see

[16] for Hilbert spaces settings, and [33] for Banach space settings. In general, due to the lack

of continuous dependence on the data, almost all the inverse problems are ill-posed in nature.

Thus, regularization methods are needed to find the stable approximate solutions of the ill-posed

inverse problems. Variational regularization methods are well known regularization methods for

finding the stable approximate solutions and are well studied, see, for instance, [16, 26]. Never-

theless, iterative methods are often an appealing alternative to variational methods (specifically

for large-scale problems). Among all the iterative methods, Landweber iteration method is

one of the well known classical methods. For the convergence results of Landweber iteration

and its modifications in Hilbert spaces, an extensive research has been done in [21, 23]. In the

case of monotone operators, there is an important role of duality mappings in iterative meth-

ods (see [5, 8, 9, 36]). Using the duality mapping, non-linear generalization of the Landweber

method is given in [10] for Banach spaces. Scherzer, in [25], gave the modification of Landweber

iteration method and coined it as iteratively regularized Landweber iteration method. This

method is highly motivated from the iteratively regularized Gauss-Newton method introduced
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by Bakushinskii in [1]. In our study, the data space V can be any arbitrary Banach space

but the model space U needs to be uniformly convex and smooth (see next section for their

formal definitions). In the theory of Banach spaces, Bregman distances play an important role

because of their rich geometrical properties and are more convenient to employ rather than

Ljapunov functionals to prove the convergence of regularization schemes [31]. And hence, it is

more appropriate to derive the convergence rates with the help of Bregman distances.

Conceptually, convergence rates can be derived with two different approaches for non-linear

problems. First one is on the basis of source and non-linearity conditions, see, for instance,

[16, 26, 27, 33] for variational regularization, and [2, 3, 4, 30, 33] for iterative regularization. The

second approach relies on the stability estimates which has been derived in [18] for Tikhonov’s

regularization method and in [24] for iterative regularization (Landweber iteration method) in

Banach spaces. The results regarding the rates of convergence using Hölder stability estimates

and logarithmic stability estimates can also be found in [12, 15] and [34, 35] respectively.

In our analysis, we consider the iteratively regularized Landweber iteration scheme which is

taken from [33]. The motivation for this paper comes from [24] in which the convergence rates for

Landweber iteration method have been obtained via Hölder stability estimates, however, only

non-noisy data is considered there. The prime motive of this work is to study the convergence

of the iterates of Iteratively regularized Landweber iteration method (2.1)-(2.2) provided the

inverse mapping satisfies the Hölder stability estimate (3.2) and hence find the convergence rates.

Since non-noisy data is taken in [24] for Landweber iteration method, we want to emphasize

that from our results, one can also deduce the convergence rates in the presence of noisy data

for Landweber iteration method. Novelty of this work is to determine the convergence rates for

both the noisy as well as non-noisy data without using the classical approach based on source

conditions as well as the contemporary smoothness concept known as variational inequalities.

The plan of this paper is the following: All the basic results and definitions required in our

framework are recapitulated in Section 2. In the third section, the main result on the convergence

and its rates is stated and proved in Theorem 3.1 along with the necessary assumptions. In

addition, a convergence rate is also established in Theorem 3.2 for the special case of Hölder

stability estimates. In Section 4, we give an example where our results on the convergence can

be applied. At the end, a few conclusions are made.

2. Preliminaries

Definition 2.1. Duality map: Let U be a Banach space and U∗ be its dual space. The mapping

Jp : U → 2U
∗

of the convex functional u → 1
p‖u‖p defined by

Jp(u) = {u∗ ∈ U∗ | 〈u, u∗〉 = ‖u‖‖u∗‖, ‖u∗‖ = ‖u‖p−1}

is known as the duality mapping of U with the gauge function t → tp−1, where p > 1.
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Example 2.1. Let a > 1. Then, for U = La(Rn) (the space of measurable functions for which

the a-th power of the absolute value is Lebesgue integrable), we have

Jp : La(Rn) → Lb(Rn) defined by u(x) 7→ ‖u‖p−a
U |u(x)|a−2u(x),

where a and b are conjugate indices.

In general, Jp is a set valued mapping but we need it to be single-valued in the further

analysis. In order to fulfil this condition, we introduce the notions of uniform convexity and

uniform smoothness of Banach spaces.

Definition 2.2. Convexity modulus of U : It is a function δ : [0, 2] → [0, 1] defined by

δU (ǫ) = inf

{

1

2

(

2− ‖u1 + u2‖
)

: u1, u2 ∈ S, ‖u1 − u2‖ ≥ ǫ

}

,

where S is the boundary of unit sphere in the Banach space U . Further, if δU (ǫ) > 0 for any

ǫ ∈ (0, 2], then U is uniformly convex.

Definition 2.3. Smoothness modulus of U : It is a function ρ : [0,∞) → [0,∞) defined by

ρU (τ) = sup

{

1

2

(

‖u1 + τu2‖+ ‖u1 − τu2‖ − 2

)

: u1, u2 ∈ S

}

,

where S is the boundary of unit sphere in the Banach space U . Further, if limτ→0
ρU (τ)

τ
= 0,

then U is uniformly smooth.

Definition 2.4. A Banach space U is

(1) p convex or convex of power type p if δU (ǫ) ≥ Y ǫp, where Y > 0 is a constant.

(2) q smooth if ρU (τ) ≤ Zτ q, where Z > 0 is a constant.

Example 2.2. The Banach space U = Lp(Σ), where p > 1 and Σ ⊂ R
n be an open domain, is

uniformly convex as well as uniformly smooth and

δU (ǫ) =







ǫ2, 1 < p < 2

ǫp, 2 ≤ p < ∞
and ρU (τ) =







τp, 1 < p < 2

τ2, 2 ≤ p < ∞.

Next, we recall the definition of Bregman distance, see [33, Definition 2.56].

Definition 2.5. Bregman distance: Let U be a uniformly smooth Banach space and Jp is the

duality mapping from U to U∗ with the gauge function t → tp−1. Then the functional

∆p(u1, u2) =
1

p
‖u1‖p −

1

p
‖u2‖p − 〈Jp(u2), u1 − u2〉, u1 ∈ U,

is the Bregman distance of the convex functional u → 1
p‖u‖p at u2 ∈ U .

The following identity in Lemma 2.1 is known as three point identity for Bregman distances,

for proof see [33, Lemma 2.62].
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Lemma 2.1. For u1, u2 and u3 in the Banach space U , we have

∆p(u1, u2) = ∆p(u1, u3) + ∆p(u3, u2) + 〈Jp(u3)− Jp(u2), u1 − u3〉.

2.1. Iteratively Regularized Landweber Iteration Method. In Banach spaces, we con-

sider the following iteratively regularized Landweber iteration method given in [33]:

Jp(u
δ
k+1 − u0) = (1− βk)Jp(u

δ
k − u0)− µF ′(uδk)

∗jp(F (uδk)− vδ), (2.1)

uδk+1 = u0 + J∗
q (Jp(u

δ
k+1 − u0)), where 0 < βk ≤ βmax < 1, k = 0, 1, 2, · · · (2.2)

Here Jp : U → U∗, J∗
q : U∗ → U , jp : V → V ∗ are duality mappings, µ is a positive constant,

u0 = uδ0 is the initial guess of the solution, vδ ∈ V be such that ‖vδ − v‖ ≤ δ and p, q > 1 are

conjugate indices. This iterative scheme is a Gradient type method resulting from the application

of gradient descent to the misfit ‖F (u)− v‖p.

Remark 2.1. For Hilbert space settings, convergence of Iteratively regularized Landweber iter-

ation scheme (2.1)-(2.2) has been shown in [25] for the noisy data and the appropriate choice of

βi’s in [0, 1]. Also convergence rates have been obtained in [15] provided the exact solution sat-

isfies the source conditions [16]. In [33,Theorem 7.5], convergence rates have been obtained for

the method (2.1)-(2.2) in Banach spaces by incorporating the following variational inequalities

|〈Jp(u† − u0), u− u†〉| ≤ β∆u0
p (u†, u)

1−ν
2 ‖F ′(u†)(u− u†)‖ν ,

and the non-linearity estimate

‖(F ′(u† + v)− F ′(u†))v‖ ≤ K‖F ′(u†)v‖c1 ∆u0
p (u†, v + u†)c2 ,

where v ∈ U and u, u† + v are in some ball of positive radius around the exact solution u†,

ν ∈ (0, 1], β > 0,K > 0, ∆u0
p (u†, u) = ∆p(u

† − u0, u − u0) and c1, c2 are properly chosen

constants. Here, we study both the convergence and convergence rates by incorporating an al-

ternative condition, namely Hölder type stability (3.2) replacing the variational inequalities and

the non-linearity estimate.

Remark 2.2. For solving F (u) = v, suppose vδ is known to us such that ‖vδ − v‖ ≤ δ for some

δ > 0. Then, consider the following iteration scheme:

Jp(u
δ
k+1) = Jp(u

δ
k)− µF ′(uδk)

∗jp(F (uδk)− vδ) + βkJp(u0 − uδk),

uδk+1 = J∗
q (Jp(u

δ
k+1)), where 0 < βk ≤ βmax <

1

2
.

This is another version of Iteratively regularized Landweber Iteration method. In Hilbert spaces,

this method reduces to the method discussed in [4] with µ = 1.

Remark 2.3. If βk = 0 for each k in (2.1), then the resulting method is nothing but the

Landweber iteration method discussed in [24] with u0 = δ = 0.

4



G. Mittal and A. K. Giri Iteratively Regularized Landweber Method

Now, we recall the properties of duality mappings through which one get to know about the

conditions under which the duality mapping Jp is single valued, invertible etc., see [10, 17].

Theorem 2.1. For p > 1, the following holds:

(1) For every u ∈ U , the set Jp(u) is non empty.

(2) The set Jp(u) is single valued for each u ∈ U provided the Banach space U is uniformly

smooth.

(3) If a Banach space is uniformly convex and uniformly smooth, then Jp(u) is one-one and

onto and its inverse is J−1
p = J∗

q , with J∗
q is the duality mapping of U∗, where p, q > 1

with 1
p + 1

q = 1 and the associated gauge function is t → tq−1.

(4) Uniform smoothness (uniform convexity) of a Banach space U is equivalent to the uni-

form convexity (uniform smoothness) of the dual space U∗.

Next result recapitulates the main facts of Bregman distance and its relationship with the

norm. See [33, Theorem 2.60] for proof of parts (1) and (4) in the following theorem.

Theorem 2.2. Let U be a uniformly convex and uniformly smooth Banach space. Then, for all

u1, u2 ∈ U , following result holds:

(1) ∆p(u1, u2) ≥ 0 and ∆p(u1, u2) = 0 if and only if u1 = u2.

(2) If U is p convex, then we have

∆p(u1, u2) ≥
Cp

p
‖u1 − u2‖p, (2.3)

where Cp > 0 is some constant.

(3) If U∗ is q smooth, then we have

∆q(u
∗
1, u

∗
2) ≤

Gq

q
‖u∗1 − u∗2‖q, ∀ u∗1, u

∗
2 ∈ U∗, (2.4)

where Gq > 0 is some constant.

(4) Following are equivalent:

(a) limn→∞ ‖un − u‖ = 0,

(b) limn→∞∆p(un, u) = 0 and

(c) limn→∞ ‖un‖ = ‖u‖ and limn→∞〈Jp(un), u〉 = 〈Jp(u), u〉.

Proof of parts (2) and (3) of Theorem 2.2 are discussed after the Remark 2.4. In [24,Theorem 2.5],

results of the type (2) and (3) are discussed with the following Bregman distance

∆′
p(u1, u2) =

1

p
‖u2‖p −

1

p
‖u1‖p − 〈Jp(u1), u2 − u1〉, u1, u2 ∈ U.

Note that the definitions of Bregman distance employed in [24] and in this paper are different,

because of the interchange of arguments.
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Remark 2.4. [38,Theorem 1] Let δX(ǫ) represents the convexity modulus of a uniformly convex

real Banach space X. Then, there exists a function φp ∈ A such that

‖x1 + x2‖p ≥ ‖x1‖p + p〈Jp(x1), x2〉+ σp(x1, x2), x1, x2 ∈ X, (2.5)

where

σp(x1, x2) = p

∫ 1

0

(

‖x1 + tx2‖ ∨ ‖x1‖)p
t

φp

(

t‖x2‖
‖x1 + tx2‖ ∨ ‖x1‖

)

dt, (2.6)

(see Remark 2.5) and

A =
{

φ : R+ → R
+ : φ(0) = 0, φ(t) is strictly increasing and K is a positive

constant such that φ(t) ≥ KδX(t/2)
}

.

Here x ∧ y = min(x, y) and x ∨ y = max(x, y) for arbitrarily real numbers x and y. Since,

φp ∈ A, (2.6) can be written as

σp(x1, x2) ≥ pKp

∫ 1

0

(

‖x1 + tx2‖ ∨ ‖x1‖)p
t

δX

(

t‖x2‖
2(‖x1 + tx2‖ ∨ ‖x1‖)

)

dt,

with

Kp = 4(2 +
√
3)min

{

1

2
p(p − 1) ∧ 1,

(

1

2
p ∧ 1

)

(p− 1),

(p− 1)[1 − (
√
3− 1)q), 1 −

[

1 +
(2−

√
3)p

p− 1

]1−p}

, (2.7)

where the value of Kp is obtained from Lemma 3 in [38]. Also if X is p convex, then last

inequality can be written as

σp(x1, x2) ≥ pY Kp

∫ 1

0

(

‖x1 + tx2‖ ∨ ‖x1‖)p
t

(

t‖x2‖
2(‖x1 + tx2‖ ∨ ‖x1‖)

)p

dt

= p

(

Y Kp

2p

)

‖x2‖p
∫ 1

0
tp−1 dt = Cp‖x2‖p,

for some positive constants Y and Cp =
Y Kp

2p . Above inequality and (2.5) imply that

1

p
‖x1 + x2‖p −

1

p
‖x1‖p − 〈Jp(x1), x2〉 ≥

1

p
σp(x1, x2) ≥

Cp

p
‖x2‖p. (2.8)

Now we come to the proof of part (2) of Theorem 2.2. In our notations, if we consider X = U ,

x1 = u2 and x2 = u1 − u2, then (2.8) implies that

∆p(u1, u2) =
1

p
‖u1‖p −

1

p
‖u2‖p − 〈Jp(u2), u1 − u2〉 ≥

Cp

p
‖u1 − u2‖p,

which is the desired inequality. Here Cp is a constant depending on p. Part (3) can be proved

similarly by using Theorem 2 in [38].

6
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Remark 2.5. In [38, equation 2.2], value of σp given in the statement is

σp(x, y) = p

∫ 1

0

(

‖x+ ty‖ ∨ ‖x‖)p
t

φp

(

t‖y‖
(‖x+ ty‖ ∨ ‖y‖)

)

dt.

But the actual value is

σp(x, y) = p

∫ 1

0

(

‖x+ ty‖ ∨ ‖x‖)p
t

φp

(

t‖y‖
(‖x+ ty‖ ∨ ‖x‖)

)

dt,

which can be easily verified from the proof given there.

3. Convergence and convergence rates

In the present section, we analyze the convergence and its rates for the iteratively regularized

Landweber iteration method (2.1)-(2.2). Here, we consider the notation

B = B∆
ρ (u†) := {u ∈ U : ∆u0

p (u†, u) ≤ ρ2},

where ∆u0
p (u†, u) = ∆p(u

†−u0, u−u0), ρ > 0 is some constant and u† is the solution of F (u) = v

which may not be unique. We assume B ⊂ D(F ). To prove the main results of the paper, we

need to have certain assumptions accumulated below.

Assumption 3.1.

(1) U is q smooth and p convex with 1
p +

1
q = 1, where p, q > 1.

(2) F has a Fréchet derivative F ′(·) and it satisfies the following local estimate

‖F ′(u1)− F ′(u2)‖ ≤ L‖u1 − u2‖, ∀ u1, u2 ∈ B, (3.1)

where L > 0 is a constant.

(3) F ′(·) satisfies the boundedness condition, i.e. ‖F ′(u)‖ ≤ L̂ for all u ∈ B for some positive

constant L̂.

(4) F is weakly sequentially closed.

(5) Elements in B satisfy the following Hölder stability estimate

∆u0
p (u1, u2) ≤ Cp

F ‖F (u1)− F (u2)‖
1+ǫ
2

p, u1, u2 ∈ B, ǫ ∈ (0, 1], (3.2)

where CF > 0 is a constant.

(6) u0 lies in B and there exists a sequence {rk}k∈N∪{0} such that ∆u0
p (uδk, u

†) ≥ rk(∆
u0
p (u†, uδk))

for each k. For example in Hilbert spaces, we have

∆u0
2 (u†, uδk) =

1

2
‖u† − uδk‖2 = ∆u0

2 (uδk, u
†),

which means rk = 1 for each k.

(7) The sequence {βk} satisfies (2.2),
∑

k βk < ∞ and βmax is sufficiently small.

(8) µ is chosen such that

µq−1 <
q

2qL̂qGq

. (3.3)

7
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(9) ρ2 satisfies

ρ2 = L̂−p(LC2
F )

−p
ǫ

(

Cp

p

)1+ 2
ǫ

. (3.4)

(10) a-priori choice of the stopping index k⋆ is

k⋆(δ) = min{k ∈ N : βk ≤ τδ},

with τ > 0 sufficiently large.

Remark 3.1. The Hölder type stability estimate (3.2) for the special case p = 2 can be obtained

by a lower bound on the Fréchet derivative F ′. Let there exists a constant K > 0 such that
∥

∥

∥

∥

F ′(u)

(

u− u†

‖u− u†‖

)
∥

∥

∥

∥

≥ K‖u− u†‖1−ǫ1 ∀u ∈ D(F ) ∩Br(u
†),

where Br(u
†) is some ball of radius r (sufficiently small) around u† and ǫ1 ∈ (0, 1]. The last

inequality and the estimate

‖F (u′)− F (u) − F ′(u)(u′ − u)‖ ≤ L

2
‖u′ − u‖2 ∀ u, u′ ∈ D(F ),

imply that

K‖u− u†‖2−ǫ1 ≤ ‖F (u) − F (u†)− F ′(u)(u − u†)‖+ ‖F (u) − F (u†)‖

≤ L

2
‖u− u†‖2 + ‖F (u) − F (u†)‖, ∀u ∈ D(F ) ∩Br(u

†).

Since r is small, last inequality can also be written as

K‖u− u†‖2−ǫ1 ≤ L

2
‖u− u†‖2−ǫ1 + ‖F (u) − F (u†)‖

which immediately leads to the estimate

‖u− u†‖ ≤ C ′‖F (u)− F (u†)‖
1

2−ǫ1 ∀u ∈ D(F ) ∩Br(u
†),

where C ′ is a constant depending on K and L. Since, in the case of Hilbert spaces, p = 2

and ∆u0
2 (u, u†) = 1

2‖u − u†‖2 where u ∈ U , an estimate of the type (3.2) can be obtained. In

general, it is impossible to obtain a lower bound for F ′ due to ill-posedness of almost all the

inverse problems. This lower bound has been studied for many inverse problems under various

assumptions, see, for instance, [7, 13]. The key fact used in [7, 13] to obtain the lower bounds is

that the forward operator has been projected properly.

Remark 3.2. For ǫ = 1 and u0 = 0 in (3.2) (observe that (3.2) with ǫ = 1 is the Lipschitz-type

stability estimate), we have

〈Jp(u†), u− u†〉 ≤ ‖u†‖p−1‖u− u†‖ ≤
(

p

Cp

)
1
p

‖u†‖p−1∆p(u, u
†)

1
p

≤ K‖F (u)− F (u†)‖ ∀u ∈ B,

where above holds by using (2.3) and K = CF ‖u†‖p−1
( p
Cp

)
1
p . In [26], it is shown that the last

inequality implies the source condition Jp(u
†) = F ′(u†)∗v for some v such that ‖v‖ ≤ 1.

8
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Now, we are ready to state our main result in which we obtain the convergence and its rates

with some additional assumptions on the sequence {βk}.

Theorem 3.1. Let F be a non-linear operator between the Banach spaces U , V and the operator

equation F (u) = v, v ∈ V , has a solution u†. Suppose that the Assumption 3.1 holds, vδ ∈ V be

such that ‖vδ − v‖ ≤ δ. Then all the iterates uδk+1 of iteratively regularized Landweber iteration

method (2.1)-(2.2) remain in B for all k ≤ k⋆(δ) − 1 provided βmax is sufficiently small (see

Lemma 3.2 for exact estimate of βmax). Moreover, iterates satisfy the recurrence relation

γδk+1 ≤ γδk +K1δ
p +K2δ

ǫ +K3δ
p+ǫ +K4δ −K6ρ

2,

for some constants Ki, 1 ≤ i ≤ 4, and K6 > 0, where γk = ∆u0
p (u†, uδk). We also obtain the

convergence rates

∆u0
p (u†, uk⋆)− (1−K6)ρ

2 = O(δǫ), as δ → 0.

For δ = 0, iterates uk+1 of iteratively regularized Landweber iteration method (2.1)-(2.2) not

only remain in B but also converge to the solution u†. Further, we get the following rates:

(1) Iterates γk = ∆u0
p (u†, uk) satisfy the recursion formula

γk+1 ≤ −K8γ
2

1+ǫ

k + αkγk +K11βk, (3.5)

for some positive constants K8,K11 and {αk} is a sequence converges to 1. Further,

if {βk} satisfies βk ≤ Cγk (smoothness condition) for some constant C > 0, then the

convergence rate, for ǫ ∈ (0, 1), is given by

∆u0
p (u†, uk) ≤

(

(

gkρ
2
)− 1−ǫ

1+ǫ + hk

)− 1+ǫ
1−ǫ

, k = 1, 2, . . .

where

gk =

k−1
∏

i=0

di, k ≥ 1, and hk =

k−1
∑

j=1

(

djdj+1 . . . dk−1

)− 1+ǫ
1−ǫ

fj−1 + fk−1, k ≥ 2, h1 = f0,

with fk = tekd
−t
k , dk = αk + CK11, ek = K8

dk
and t = 1−ǫ

1+ǫ .

For ǫ = 1, we get

∆u0
p (u†, uk) ≤

k−1
∏

i=0

(−K8 + αi +K11C)ρ2, k = 1, 2, . . .

(2) we also obtain the rate

∆u0
p (u†, uk) = O(βq−1

k ), as k → ∞,

provided

K12 + ηβ−1
k

[

αk −
(

βk+1

βk

)q−1]

≤ 0,

for some constants η,K12, and a sequence {αk} converging to 1.

9
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Instead of giving a single proof of Theorem 3.1, we discuss it in parts in the form of a

series of lemmas to have a better understanding. In the first lemma, we obtain an estimate of

∆u0
p (u†, uδk+1)−∆u0

p (u†, uδk).

Lemma 3.1. Let F be a non-linear operator between the Banach spaces U , V and the operator

equation F (u) = v, v ∈ V , has a solution u†. Suppose that Assumption 3.1 holds and vδ ∈ V

be such that ‖vδ − v‖ ≤ δ. Then the iterates uδk+1 of iteratively regularized Landweber iteration

method (2.1)-(2.2) satisfy the following inequality

∆u0
p (u†, uδk+1)−∆u0

p (u†, uδk) ≤
(

2q−1Gq

q
µqL̂q−µ

)

‖F (uδk)−vδ‖p+µ

2
LC2

F

(

p

Cp

)2/p

‖F (uδk)−vδ‖p+ǫ

+

(

2p+q−2Gq

q
βq
k + βk

(p − 1)ǫ
p

p−1

2

p

)

‖u† − u0‖p + µ‖F (uδk)− vδ‖p−1δ +

(

βkǫ
−p
2

Cp
−

(1 + rk)βk + 2p+q−2βq
k

Gq

q

p

Cp

)

γδk, where ǫ2 > 0.

Proof. From Lemma 2.1 and (2.1), we can write

∆u0
p (u†, uδk+1)−∆u0

p (u†, uδk) = ∆u0
p (uδk, u

δ
k+1) + 〈Jp(uδk − u0)− Jp(u

δ
k+1 − u0), u

† − uδk〉

= ∆u0
p (uδk, u

δ
k+1)− µ〈jp(F (uδk)− vδ), F ′(uδk)(u

δ
k − u†)〉+ βk〈Jp(u† − u0), u

† − uδk〉

−βk〈Jp(u† − u0)− Jp(u
δ
k − u0), u

† − uδk〉.
(3.6)

Now, we estimate each of the four terms of the right side to (3.6) individually. For the first

term, using Definitions 2.5 and 2.1, we have

∆u0
p (uδk, u

δ
k+1) =

1

p
‖uδk − u0‖p −

1

p
‖uδk+1 − u0‖p − 〈Jp(uδk+1 − u0), u

δ
k − uδk+1〉

=
1

q
‖uδk+1 − u0‖p −

1

q
‖uδk − u0‖p − 〈Jp(uδk+1 − u0), u

δ
k − uδk+1〉+ ‖uδk − u0‖p − ‖uδk+1 − u0‖p

=
1

q
‖uδk+1 − u0‖p −

1

q
‖uδk − u0‖p − 〈Jp(uδk+1 − u0), (u

δ
k − u0)− (uδk+1 − u0)〉

+〈uδk − u0, Jp(u
δ
k − u0)〉 − 〈uδk+1 − u0, Jp(u

δ
k+1 − u0)〉

=
1

q
‖uδk+1 − u0‖p −

1

q
‖uδk − u0‖p + 〈uδk − u0, Jp(u

δ
k − u0)− Jp(u

δ
k+1 − u0)〉

=
1

q
‖Jp(uδk+1 − u0)‖q −

1

q
‖Jp(uδk − u0)‖q − 〈uδk − u0, Jp(u

δ
k+1 − u0)− Jp(u

δ
k − u0)〉

= ∆q(Jp(u
δ
k+1 − u0), Jp(u

δ
k − u0)).

Use (2.4) and then (2.1) in above to obtain

∆u0
p (uδk, u

δ
k+1) ≤

Gq

q
‖Jp(uδk+1 − u0)− Jp(u

δ
k − u0)‖q

=
Gq

q
‖βkJp(uδk − u0) + µF ′(uδk)

∗jp(F (uδk)− vδ)‖q.
(3.7)

10
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Now using the estimate

‖u1 + u2‖r ≤ 2r−1(‖u1‖r + ‖u2‖r), r ≥ 1, u1, u2 ∈ U,

see [26,Lemma 3.20], twice into (3.7), we have

∆u0
p (uδk, u

δ
k+1) ≤ 2q−1Gq

q

(

βq
k‖Jp(uδk − u0)‖q + µq‖F ′(uδk)

∗jp(F (uδk)− vδ)‖q
)

= 2q−1Gq

q

(

βq
k‖uδk − u0‖p + µq‖F ′(uδk)

∗jp(F (uδk)− vδ)‖q
)

≤ 2q−1Gq

q

(

2p−1βq
k

(

‖u† − u0‖p + ‖u† − uδk‖p
)

+ µq‖F ′(uδk)
∗jp(F (uδk)− vδ)‖q

)

≤ 2q−1Gq

q

(

2p−1βq
k

(

‖u† − u0‖p +
p

Cp
∆u0

p (u†, uδk)
)

+ µqL̂q‖F (uδk)− vδ‖p
)

, (3.8)

where the last inequality is obtained by incorporating (2.3) and (3) of Assumption 3.1 provided

uδk satisfies the estimate (3.2) which will be shown later.

Next, let us estimate the second term on the right side to (3.6) as

−µ〈jp(F (uδk)− vδ), F ′(uδk)(u
δ
k − u†)〉

= −µ〈jp(F (uδk)− vδ), F (uδk)− vδ〉+ µ〈jp(F (uδk)− vδ), F (uδk)− vδ − F ′(uδk)(u
δ
k − u†)〉

= −µ‖F (uδk)− vδ‖p + µ〈jp(F (uδk)− vδ), F (uδk)− vδ − F ′(uδk)(u
δ
k − u†)〉.

By employing fundamental theorem of calculus for F ′(·), i.e.

‖F (uδk)− vδ − F ′(uδk)(u
δ
k − u†)‖ ≤ L

2
‖uδk − u†‖2 + δ,

and (3.1) in the last equality to obtain

−µ〈jp(F (uδk)− vδ), F ′(uδk)(u
δ
k − u†)〉

≤ −µ‖F (uδk)− vδ‖p + µL

2
‖F (uδk)− vδ‖p−1‖uδk − u†‖2 + µ‖F (uδk)− vδ‖p−1δ.

Using (2.3) and then (3.2), we further estimate

−µ〈jp(F (uδk)− vδ), F ′(uδk)(u
δ
k − u†)〉

≤ −µ‖F (uδk)− vδ‖p + µ

2
LC2

F

(

p

Cp

)2/p

‖F (uδk)− vδ‖p+ǫ + µ‖F (uδk)− vδ‖p−1δ. (3.9)

Now, let us turn to estimate the third term of the right side to (3.6) as

βk〈Jp(u† − u0), u
† − uδk〉 ≤ βk|〈Jp(u† − u0), u

† − uδk〉|

≤ βk‖Jp(u† − u0)‖‖u† − uδk‖

= βk‖u† − u0‖p−1‖u† − uδk‖.

11
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Thanks to Young’s inequality ab ≤ ar

r + bs

s with Hölder conjugates r, s for a = ǫ2‖u† − u0‖p−1,

b = ǫ−1
2 ‖u† − uδk‖, r = p

p−1 , s = p, ǫ2 > 0, and (2.3) to further yield

βk〈Jp(u† − u0), u
† − uδk〉 ≤ βk

(

(p − 1)ǫ
p

p−1

2

p
‖u† − u0‖p +

ǫ−p
2

p
‖u† − uδk‖p

)

≤ βk

(

(p− 1)ǫ
p

p−1

2

p
‖u† − u0‖p +

ǫ−p
2

Cp
∆u0

p (u†, uδk)

)

.

(3.10)

Finally, using Lemma 2.1 in the fourth term on the right hand side to (3.6) to obtain

−βk〈Jp(u† − u0)− Jp(u
δ
k − u0), u

† − uδk〉 = −βk∆
u0
p (u†, uδk)− βk∆

u0
p (uδk, u

†) + βk∆
u0
p (uδk, u

δ
k)

≤ −βk∆
u0
p (u†, uδk)− βk∆

u0
p (uδk, u

†) ≤ −βk(1 + rk)∆
u0
p (u†, uδk), (3.11)

where the last inequality holds because of (6) of Assumption 3.1. Inserting all the estimates

(3.8)-(3.11) into (3.6) and use the notation γδk = ∆u0
p (u†, uδk), we have

γδk+1 − γδk ≤ 2q−1Gq

q

(

2p−1βq
k

(

‖u† − u0‖p +
p

Cp
γδk
)

+ µqL̂q‖F (uδk)− vδ‖p
)

− µ‖F (uδk)− vδ‖p

+
µ

2
LC2

F

(

p

Cp

)2/p

‖F (uδk)− vδ‖p+ǫ + βk

(

(p− 1)ǫ
p

p−1

2

p
‖u† − u0‖p

)

+
βkǫ

−p
2

Cp
γδk

−βk(1 + rk)γ
δ
k + µ‖F (uδk)− vδ‖p−1δ

=

(

2q−1Gq

q
µqL̂q−µ

)

‖F (uδk)−vδ‖p+
(

2p+q−2Gq

q
βq
k+βk

(p− 1)ǫ
p

p−1

2

p

)

‖u†−u0‖p+
µ

2
LC2

F

(

p

Cp

)2/p

× ‖F (uδk)− vδ‖p+ǫ +

(

βkǫ
−p
2

Cp
− (1 + rk)βk + 2p+q−2βq

k

Gq

q

p

Cp

)

γδk + µ‖F (uδk)− vδ‖p−1δ. (3.12)

�

Remark 3.3. We have intentionally introduced the parameter ǫ2 in (3.10). Rationale behind

the introduction of this ǫ2 is discussed in Remark 3.5.

In the next lemma, we show that all the iterates of our iteration scheme remain in B using

Lemma 3.1 under certain assumptions.

Lemma 3.2. Suppose that all the assumptions of Lemma 3.1 hold. Then, all the iterates of

(2.1)-(2.2) remain in B for all k ≤ k∗(δ) − 1 provided τ defined in (10) of Assumption 3.1 is

sufficiently large and βmax is such that

βmax <
q−1

√

√

√

√
1

2p+q−1

Cp

p

q

Gq

(

1 + rk −
(p− 1)ǫ

p
p−1

2

Cp
− ǫ−p

2

Cp

)

.
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Proof. Let us assume that uδk ∈ B, and then applying (3.3) in the first term on the right side to

(3.12), we get

γδk+1−γδk ≤ −µ

2
‖F (uδk)−vδ‖p+

(

2p+q−2Gq

q
βq
k+βk

(p− 1)ǫ
p

p−1

2

p

)

‖u†−u0‖p+µ‖F (uδk)−vδ‖p−1δ

+
µ

2
LC2

F

(

p

Cp

)2/p

‖F (uδk)− vδ‖p+ǫ +

(

βkǫ
−p
2

Cp
− βk(1 + rk) + 2p+q−2βq

k

Gq

q

p

Cp

)

γδk. (3.13)

From the mean value inequality, (3) of Assumption 3.1, (2.3) and (3.4), we get

‖F (uδk)− vδ‖ = ‖F (uδk)− F (u†)‖+ δ ≤ L̂‖uδk − u†‖+ δ ≤ L̂

(

p

Cp

)1/p

∆u0
p (u†, uδk)

1/p + δ

≤ L̂

(

p

Cp

)1/p

ρ
2
p + δ ≤

(

Cp

p

)
2
pǫ

(LC2
F )

−1
ǫ + δ. (3.14)

Above with the inequality

(r + s)ǫ ≤ rǫ + sǫ for r, s ≥ 0, ǫ ∈ [0, 1],

implies that

‖F (uδk)− vδ‖ǫ ≤
[(

Cp

p

)
2
pǫ

(LC2
F )

−1
ǫ + δ

]ǫ

≤
(

Cp

p

)
2
p

(LC2
F )

−1 + δǫ.

This inequality further leads to the estimate

−µ

2
‖F (uδk)− vδ‖p + µ

2
LC2

F

(

p

Cp

)2/p

‖F (uδk)− vδ‖p+ǫ

= ‖F (uδk)− vδ‖p
[

− µ

2
+

µ

2
LC2

F

(

p

Cp

)2/p

‖F (uδk)− vδ‖ǫ
]

≤ µ

2
LC2

F

(

p

Cp

)2/p

δǫ‖F (uδk)− vδ‖p.
(3.15)

Employing the estimate

(r1 + s1)
λ ≤ 2λ−1(rλ1 + sλ1) for r1, s1 ≥ 0, λ ≥ 1,

in (3.15) after incorporating (3.14) in it to obtain

−µ

2
‖F (uδk)− vδ‖p + µ

2
LC2

F

(

p

Cp

)2/p

‖F (uδk)− vδ‖p+ǫ

≤ 2p−1µ

2

(

δǫ
)

(

Cp

p

)

2(p−ǫ)
pǫ

(LC2
F )

−(p−ǫ)
ǫ + 2p−1µ

2
LC2

F

(

p

Cp

)2/p

δp+ǫ. (3.16)

Thus, (3.13) and (3.16) imply that

γδk+1 − γδk ≤
(

2p+q−2Gq

q
βq
k + βk

(p − 1)ǫ
p

p−1

2

p

)

‖u† − u0‖p + 2p−1µ

2
δǫ
(

Cp

p

)

2(p−ǫ)
pǫ

(LC2
F )

−(p−ǫ)
ǫ +

(

βkǫ
−p
2

Cp
− βk(1 + rk) + 2p+q−2βq

k

Gq

q

p

Cp

)

γδk + µ‖F (uδk)− vδ‖p−1δ + 2p−1µ

2
LC2

F

(

p

Cp

)2/p

δp+ǫ.

(3.17)
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Because of the assumption u0 ∈ B and (2.3), estimate (3.17) can be rewritten as

γδk+1 − γδk ≤
[

p

Cp

(

2p+q−2Gq

q
βq
k + βk

(p− 1)ǫ
p

p−1

2

p

)

+

(

βkǫ
−p
2

Cp
− βk(1 + rk) + 2p+q−2βq

k

Gq

q

p

Cp

)]

ρ2

+µ‖F (uδk)− vδ‖p−1δ + 2p−1µ

2
δǫ
(

Cp

p

)

2(p−ǫ)
pǫ

(LC2
F )

−(p−ǫ)
ǫ + 2p−1µ

2
LC2

F

(

p

Cp

)2/p

δp+ǫ

=

[

2p+q−1βq
k

Gq

q

p

Cp
+ βk

(

(p − 1)ǫ
p

p−1

2

Cp
+

ǫ−p
2

Cp
− (1 + rk)

)]

ρ2 + 2p−1µ

2
δǫ
(

Cp

p

)

2(p−ǫ)
pǫ

(LC2
F )

−(p−ǫ)
ǫ

+µ‖F (uδk)− vδ‖p−1δ + 2p−1µ

2
LC2

F

(

p

Cp

)2/p

δp+ǫ.

(3.18)

Now we know that p > 1 which means either 0 < p − 1 ≤ 1 or p − 1 > 1. If p − 1 ≤ 1, then

employ the estimate (r + s)p−1 ≤ rp−1 + sp−1 for r, s ≥ 0, otherwise estimate (r + s)p−1 ≤
2p−2(rp−1 + sp−1) for r, s ≥ 0 in (3.14) to obtain (we find a single estimate for both the cases)

‖F (uδk)− vδ‖p−1 ≤ max{2p−2, 1}
[(

Cp

p

)

2(p−1)
pǫ

(LC2
F )

−(p−1)
ǫ + δp−1

]

.

Employing this estimate in (3.18) to get

γδk+1 − γδk ≤
[

2p+q−1βq
k

Gq

q

p

Cp
+ βk

(

(p − 1)ǫ
p

p−1

2

Cp
+

ǫ−p
2

Cp
− (1 + rk)

)]

ρ2 + 2p−1µ

2
δǫ
(

Cp

p

)

2(p−ǫ)
pǫ

×

(LC2
F )

−(p−ǫ)
ǫ +K1δ

(

Cp

p

)

2(p−1)
pǫ

(LC2
F )

−(p−1)
ǫ +K1δ

p + 2p−1µ

2
LC2

F

(

p

Cp

)2/p

δp+ǫ, (3.19)

where K1 = µmax{2p−2, 1}. Using the stopping rule discussed in (10) of Assumption 3.1 in

(3.19) to obtain

γδk+1 − γδk ≤
[

2p+q−1βq
k

Gq

q

p

Cp
+ βk

(

(p− 1)ǫ
p

p−1

2

Cp
+

ǫ−p
2

Cp
− (1 + rk)

)]

ρ2 +K1τ
−pβp

k

+K2τ
−ǫβǫ

k +K3τ
−(p+ǫ)βp+ǫ

k +K4τ
−1βk,

(3.20)

where the constants K2,K3 and K4 are as follows:

K2 = 2p−1µ

2

(

Cp

p

)

2(p−ǫ)
pǫ

(K5)
−(p−ǫ)

ǫ , K3 = 2p−1µ

2
K5

(

p

Cp

)2/p

, K5 = LC2
F ,

and K4 = K1

(

Cp

p

)

2(p−1)
pǫ

(K5)
−(p−1)

ǫ .

Observe that under the conditions, 2p+q−1βq
k
Gq

q
p
Cp

+ βk
( (p−1)ǫ

p
p−1
2

Cp
+

ǫ−p
2
Cp

− (1 + rk)
)

< 0, βmax

sufficiently small and τ sufficiently large, right side of (3.20) can be less than 0 (see Remark

3.5). Since τ can be taken arbitrary large, for right side of (3.20) to be negative, we must have

βq−1
k <

1

2p+q−1

Cp

p

q

Gq

(

1 + rk −
(p− 1)ǫ

p
p−1

2

Cp
− ǫ−p

2

Cp

)

. (3.21)

14
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Therefore, by taking βk’s sufficiently smaller than the one’s satisfying (3.21), we get

γδk+1 − γδk ≤ 0 =⇒ γδk+1 ≤ γδk ≤ ρ2 =⇒ uδk+1 ∈ B.

�

Deducing the negativity of the right side of (3.20) is not an easy task because of the involve-

ment of so many constants. We will analyze this condition in a better way by computing some of

the constants appearing in it for Banach spaces such as Lp(Σ) (Lebesgue integrable functions),

ℓp spaces for p ≥ 2 etc. in Remark 3.5. In the next lemma, we obtain the convergence rates for

the iterates of (2.1)-(2.2).

Lemma 3.3. Let the assumptions of Lemma 3.2 hold. Then, we have the following convergence

rates for the iterates of (2.1)-(2.2):

∆u0
p (u†, uδk⋆)− (1−K6)ρ

2 = O(δǫ), as δ → 0.

Proof. From (3.20) and (3.21), we get the estimate

γδk+1 ≤ γδk +K1δ
p +K2δ

ǫ +K3δ
p+ǫ +K4δ −K6ρ

2

with K6 = −2p+q−1βq
k
Gq

q
p
Cp

− βk
( (p−1)ǫ

p
p−1
2

Cp
+

ǫ−p
2
Cp

− (1 + rk)
)

> 0. Therefore, for 0 < ǫ ≤ 1, we

have

∆u0
p (u†, uδk⋆)− (1−K6)ρ

2 = O(δǫ), as δ → 0.

�

Till now, we have proved the results of Theorem 3.1 for noisy data. Now, in the coming

lemmas we discuss results for non-noisy data.

Lemma 3.4. Suppose that δ = 0 and the assumptions of Lemma 3.2 are satisfied. Then, all

the iterates of (2.1)-(2.2) remain in B and converge to the exact solution u†. Moreover, iterates

satisfy the recurrence relation

γk+1 ≤ −K8γ
2

1+ǫ

k + αkγk +K11βk,

where K8,K11 are positive constants and {αk} is a sequence converging to 1.

Proof. From Lemma 3.2 via (3.19) and (3.21), it is easy to see that all the iterates of (2.1)-(2.2)

remain in B, sequence {γk} is monotonically decreasing and bounded below by 0 for δ = 0,

where ∆u0
p (u†, uk) = γk for each k. This means that the limit of the sequence {γk} exists. Let

lim
k→∞

γk = a. We show that the sequence {γk} converges to 0. Putting (3.16) with δ = 0 into

(3.12) yields

γk+1 − γk ≤
(

2q−1Gq

q
µqL̂q − µ

2

)

‖F (uk)− v‖p +
(

2p+q−2Gq

q
βq
k + βk

(p− 1)ǫ
p

p−1

2

p

)

‖u† − u0‖p

+

(

βkǫ
−p
2

Cp
− (1 + rk)βk + 2p+q−2βq

k

Gq

q

p

Cp

)

γk.

15
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We rewrite the above equation as

γk+1 − γk ≤ −K7‖F (uk)− v‖p +
(

2p+q−2Gq

q
βq
k + βk

(p − 1)ǫ
p

p−1

2

p

)

‖u† − u0‖p

+

(

βkǫ
−p
2

Cp
− (1 + rk)βk + 2p+q−2βq

k

Gq

q

p

Cp

)

γk,

(3.22)

where K7 = −2q−1Gq

q µqL̂q+ µ
2 > 0 because of (3.3). Taking limit k → ∞ and then incorporating

∑

k βk < ∞ and (3.2) in (3.22), we get

a− a ≤ −K7 lim
k→∞

‖F (uk)− v‖p + 0 ≤ − K7

(CF )
2p
1+ǫ

lim
k→∞

γ
2

1+ǫ

k = −K8 lim
k→∞

γ
2

1+ǫ

k , (3.23)

where K8 = K7

(CF )
2p
1+ǫ

is a positive constant. Now, using the continuity of the function x → xa

for any a > 1, (3.23) implies that

0 ≤ −K8a
2

1+ǫ =⇒ a
2

1+ǫ ≤ 0.

But as γk ≥ 0, we must have a ≥ 0 and thus above implies that a = 0. Hence, by (4) in Theorem

2.2, uk → u†, i.e. iterates of (2.1)-(2.2) converges to the exact solution for non-noisy data. Next,

we find the recursion formula satisfied by the sequence {γk}. Using (3.2) and u0 ∈ B in (3.22)

to reach at

γk+1 ≤ −K8γ
2

1+ǫ

k +

(

2p+q−2Gq

q
βq
k + βk

(p− 1)ǫ
p

p−1

2

p

)

p

Cp
ρ2+

(

1 +
βkǫ

−p
2

Cp
− (1 + rk)βk + 2p+q−2βq

k

Gq

q

p

Cp

)

γk

= −K8γ
2

1+ǫ

k + αkγk +K9β
q
k +K10βk ≤ −K8γ

2
1+ǫ

k + αkγk +K11βk, (3.24)

where constants K9,K10 and αk are as follows:

K9 = 2p+q−2Gq

q

p

Cp
ρ2, K10 =

(p− 1)ǫ
p

p−1

2

Cp
ρ2, αk = 1+

βkǫ
−p
2

Cp
−βk(1+ rk)+ 2p+q−2βq

k

Gq

q

p

Cp
,

and the last term in (3.24) is written because βk < 1 and q > 1, where K11 = K9 + K10. We

can easily see that αk → 1. So, (3.24) is the required recurrence relation. �

In the next lemma, we obtain the convergence rates for noise-free iterates in terms of radius

ρ of B.

Lemma 3.5. Let the assumptions of Lemma 3.4 hold and there exists a constant C ≥ 0 such

that βk ≤ Cγk for each k. Then, for ǫ ∈ (0, 1) we have the following convergence rate

∆u0
p (u†, uk) ≤

(

(

gkρ
2
)− 1−ǫ

1+ǫ + hk

)− 1+ǫ
1−ǫ

, k = 1, 2, . . .

For ǫ = 1, we have

∆u0
p (u†, uk) ≤

k−1
∏

i=0

(−K8 + αi +K11C)ρ2, k = 1, 2, . . .

16
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(see proof for the meaning of constants gk, hk for k ≥ 1).

Proof. With the given condition βk ≤ Cγk, (3.24) can be written as

γk+1 ≤ −K8γ
2

1+ǫ

k + αkγk +K11βk ≤ −K8γ
2

1+ǫ

k + dkγk

= dkγk

(

1− ekγ
1−ǫ
1+ǫ

k

)

,
(3.25)

where dk = αk + CK11 and ek = K8
dk

for every k. Let t = 1−ǫ
1+ǫ . Then, (3.25) yields

(γk+1)
−t ≥ (dkγk)

−t
(

1− ekγ
t
k

)−t
. (3.26)

Applying the estimate (1− y)−t ≥ 1 + ty, ∀y ∈ (0, 1) into (3.26) for k ≥ 0, we get

(γk+1)
−t ≥ (dkγk)

−t + fk,

where fk = tekd
−t
k . Thus, we have

∆u0
p (u†, uk) ≤

(

(

gkρ
2
)− 1−ǫ

1+ǫ + hk

)− 1+ǫ
1−ǫ

, k = 1, 2, . . .

where

gk =

k−1
∏

i=0

di, for k ≥ 1,

and

hk =
k−1
∑

j=1

(

djdj+1 . . . dk−1

)− 1+ǫ
1−ǫ

fj−1 + fk−1, k ≥ 2, h1 = f0.

For ǫ = 1, (3.25) with βk ≤ Cγk implies that

γk ≤
k−1
∏

i=0

(−K8 + αi +K11C)ρ2, k = 1, 2, . . .

So, we get the convergence rates via in terms of radius ρ of B. �

Remark 3.4. The condition βk ≤ Cγk assumed in Lemma 3.5 is an abstract smoothness con-

dition for obtaining the convergence rates and is similar to other smoothness concepts (e.g.

source conditions, variational inequalities) already available in the literature [4, 16, 26, 27, 33] in

the sense that all these incorporate some a-priori knowledge of the exact solution.

For the noise free iterates of (2.1)-(2.2), we also obtain convergence rates in terms of βk’s

where βk satisfy (2.2) for each k.

Lemma 3.6. In addition to the rates obtained in Lemma 3.5, we also obtain the rates

∆u0
p (u†, uk) = O(βq−1

k ) as k → ∞,

provided the assumptions of Lemma 3.4 hold and

K12 + ηβ−1
k

[

αk −
(

βk+1

βk

)q−1]

≤ 0,

17
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where η,K12 are positive constants and {αk} is a sequence converging to 1.

Proof. The inequality (3.24) leads to the estimate

γk+1 ≤ −K8γ
2

1+ǫ

k + αkγk +K12β
q
k, (3.27)

where K12 is such that K12β
q
k > K11βk for every k (such a condition is possible as βmax < ∞).

Now, let us define ηk =
γk

βq−1
k

. Then from (3.27), we have

ηk+1 ≤
(

βk
βk+1

)q−1[

−K8η
1+t
k β

(q−1)t
k + αkηk +K12βk

]

≤
(

βk
βk+1

)q−1
[

αkηk +K12βk
]

,

where t = 1−ǫ
1+ǫ . For the uniform boundedness of {ηk} by some η, sufficient condition is

αkη +K12βk ≤ η

(

βk+1

βk

)q−1

=⇒ K12 + ηβ−1
k

[

αk −
(

βk+1

βk

)q−1]

≤ 0.

Thus, we have ∆u0
p (u†, uk) = γk = O(βq−1

k ) as k → ∞. �

On combining Lemmata 3.1-3.6, one can see that proof of the Theorem 3.1 is complete.

Observe that, for 0 < ǫ < 1, in the case of non-noisy data we have obtained the sub-linear

convergence rates in Lemma 3.5 and as ǫ → 1, speed of the convergence increases because it

switches to the linear convergence. Further, in Lemma 3.6 we have obtained the rates in terms

of βi’s and rates are sub-linear or super-linear accordingly as 1 < q < 2 or q > 2 respectively.

For proving Theorem 3.1 (especially Lemma 3.2), we require the condition 2p+q−1βq
k
Gq

q
p
Cp

+

βk
( (p−1)ǫ

p
p−1
2

Cp
+

ǫ−p
2
Cp

− (1 + rk)
)

< 0. We discuss about this condition in the following remark.

Remark 3.5. For (3.21) to be satisfied, we must have the following:

(i) 2p+q−1βq−1
k

Gq

q
p
Cp

< 1 + rk − (p−1)ǫ
p

p−1
2

Cp
− ǫ−p

2
Cp

, for each k.

(ii)
(p−1)ǫ

p
p−1
2

Cp
+

ǫ−p
2
Cp

< 1 + rk, for each k.

Observe that (i) can be easily handled by taking βmax sufficiently small provided (ii) holds. For

(ii), first, we find the values of Cp for different p. Using (2.7), we get the following table (values

of Kp can be obtained by writing a simple program in MATLAB, C++ etc.):

Value of p Value of Kp (approx.)

1.5 3.8132

2 5.2086

3 7.3326

4 8.9576

5 10.2274

· · · · · ·
10 13.4980
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Table 1. Relationship between p and Kp

From Remark 2.4, we know that Cp =
Y Kp

2p , where the constant Y is same as appearing in the

Definition 2.4. Now, if U = Lp(Σ), where p ≥ 2 and Σ ⊂ R
n is an open domain, then from

Example 2.2 we know that δU (ǫ) = ǫp for any ǫ ∈ (0, 2]. In other words, U is p convex for any

p ≥ 2 with Y = 1. Therefore,

Cp =
Kp

2p
, for U = Lp(Σ).

So, (ii) holds provided

(p− 1)ǫ
p

p−1

2 + ǫ−p
2 <

(1 + rk)Kp

2p
.

For instance, take p = 2 and ǫ2 = 1. Then the last inequality becomes

ǫ22 + ǫ−2
2 = 2 <

(1 + 1)(5.2086)

4
,

which is true since rk = 1 for each k (see (6) of Assumption 3.1). This means our assumption

of Lemma 3.2 related to βk is satisfied. The rationale behind introducing ǫ2 in (3.10) is to make

the estimate (ii) more flexible so that it holds for a range of values of rk or ǫ2. In other words

one can see that (ii) also holds for p = 2 and ǫ2 = 0.9. Further, from [38, Equation 1.2] we can

see that the Banach spaces ℓp,W p
m (Sobolev space) are max{2, p} convex and one can verify the

condition (ii) provided exact bound for Y is known as in the case of Lp spaces.

Next result is for the crucial case when ǫ = 0 in (3.2). We need to do this case separately as

we can not take ǫ = 0 in the proof of Theorem 3.1 (see (3.16), which contains a term having ǫ

in the denominator). For the case ǫ = 0, we need to have a different bound on µ than what is

assumed in Theorem 3.1 ((8) of Assumption 3.1).

Theorem 3.2. Let F be a non-linear operator between the Banach spaces U , V and the operator

equation F (u) = v, v ∈ V , has a solution u†. Let the conditions (1)-(7), (10) of Assumption 3.1

hold with ǫ = 0 in (5), and µ satisfies

µq−1 <
q

2q−1GqL̂q

[

1− 1

2
LC2

F

(

p

Cp

)2/p]

. (3.28)

Suppose that vδ ∈ V be such that ‖vδ−v‖ ≤ δ. Then all the iterates uδk+1 of iteratively regularized

Landweber iteration method (2.1)-(2.2) remain in B for all k ≤ k⋆(δ)− 1 provided (3.21) holds.

Moreover, iterates satisfy the following recurrence relation

γδk+1 ≤ γδk +M1δ +M2δ
p −K6ρ

2,

and we obtain the following convergence rate

∆u0
p (u†, uk⋆)− (1−K6)ρ

2 = O(δ), as δ → 0,

for some constants Mi, 1 ≤ i ≤ 2, where γk = ∆u0
p (u†, uδk) and constant K6 has same meaning

as in Theorem 3.1.
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Proof. It can be observed that Lemma 3.1 is valid with our assumptions. So, put ǫ = 0 in (3.12)

and employ the condition (3.28) in it to obtain

γδk+1 − γδk ≤ µδ‖F (uδk)− vδ‖p−1 +

(

2p+q−2Gq

q
βq
k + βk

(p − 1)ǫ
p

p−1

2

p

)

‖u† − u0‖p

+

(

βkǫ
−p
2

Cp
− (1 + rk)βk + 2p+q−2βq

k

Gq

q

p

Cp

)

γδk.

(3.29)

Let us assume that uδk ∈ B, then (3.29) with (2.3) leads to

γδk+1 − γδk ≤ µδ‖F (uδk)− vδ‖p−1 +

[

2p+q−1βq
k

Gq

q

p

Cp
+ βk

(

(p− 1)ǫ
p

p−1

2

Cp
+

ǫ−p
2

Cp
− (1 + rk)

)]

ρ2.

(3.30)

From (3.14) we know that

‖F (uδk)− vδ‖ ≤ L̂

(

p

Cp

)1/p

ρ
2
p + δ.

As p− 1 is either ≤ 1 or > 1, above with the estimate

(r1 + s1)
λ ≤ 2λ−1(rλ1 + sλ1) for r1, s1 ≥ 0 and λ ≥ 1,

or

(r1 + s1)
λ ≤ rλ1 + sλ1 for r1, s1 ≥ 0 and 0 ≤ λ ≤ 1,

accordingly as p− 1 ≤ 1 or p− 1 ≥ 1 with (3.30) imply that

γδk+1 − γδk ≤
[

2p+q−1βq
k

Gq

q

p

Cp
+ βk

(

(p− 1)ǫ
p

p−1

2

Cp
+

ǫ−p
2

Cp
− (1 + rk)

)]

ρ2 +K1µδ
p

+K1µδL̂
p−1

(

p

Cp

)
p−1
p

ρ
2(p−1)

p ,

where K1 = max{1, 2p−2}. Use the stopping rule discussed in (10) of Assumption 3.1 in above

to obtain

γδk+1 − γδk ≤
[

2p+q−1βq
k

Gq

q

p

Cp
+ βk

(

(p − 1)ǫ
p

p−1

2

Cp
+

ǫ−p
2

Cp
− (1 + rk)

)]

ρ2 +M1δ +M2δ
p

≤
[

2p+q−1βq
k

Gq

q

p

Cp
+ βk

(

(p− 1)ǫ
p

p−1

2

Cp
+

ǫ−p
2

Cp
− (1 + rk)

)]

ρ2 +M1βkτ
−1 +M2β

p
kτ

−p,

where M1 = K1µL̂
p−1

( p
Cp

)
p−1
p ρ

2(p−1)
p and M2 = K1µ. Now if (3.21) holds and τ is sufficiently

large, then we can see that uδk+1 ∈ B as in Lemma 3.2. Rest part of the proof follows on the

lines of Lemma 3.3. �

Remark 3.6. In Theorem 3.2, we have obtained the convergence rates only for noisy data.

However, convergence rates can also be obtained for non-noisy data, in the case when ǫ = 0 in

(3.2), exactly on the lines of Lemmata 3.4-3.6 as in Theorem 3.1.
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In the following remark, we discuss about the special case when {βk} = {0}. Observe that in

this case, (2.1)-(2.2) reduces to Landweber iteration method (non-noisy version) as discussed in

Remark 2.3.

Remark 3.7. (i) If βk = 0 for each k, then one can reproduce Lemmata 3.1, 3.2, 3.3 to obtain

the convergence rates for Landweber iteration method in the case of noisy data which are

missing from [24].

(ii) If βk = 0 for each k and δ = 0, then observe that the right hand side of (3.19) is trivially

satisfied and αk = 0 (see Lemma 3.4). Also, take C = 0 in Lemma 3.5 which means dk = 1,

ek = K8 and fk = tK8 for each k. Therefore, one can see that the rates obtained in Lemma

3.5 and the rates obtained in [24] for Landweber iteration method are of the same order.

Hence, we can say that the results of [24] can be deduced from our results in a special case.

4. Electrical Impedance Tomography (EIT)

In this section, we discuss an example related to Calderón’s inverse problem which satisfies

the Hölder stability estimate (3.2) under some assumptions on the electrical conductivity. This

problem has been also considered in [24] to obtain the convergence and convergence rates of non-

linear Landweber iteration scheme in Banach spaces. Our results on covergence can be applied

on the Calderón’s inverse problem which is the mathematical bedrock of EIT. It is well known

that this Calderón’s inverse problem is severely ill-posed [11]. Ulhmann, in [14] has recently

studied the EIT and Calderón’s problem and further, we refer to [19, 20, 28, 29] for some of the

literature in this context. In [6, 11], two results on the Lipschitz-type stability estimates have

been obtained for the Calderón’s inverse conductivity problem provided the a-priori information

about the conductivity is known, i.e. it is piecewise constant with a bounded number of unknown

values. The difference between these two results is that, in [11] a real valued case is discussed

whereas a complex valued case is discussed in [6]. In our work, we consider the real valued case

which involves the determination of v ∈ H1(Ω) where v satisfies







div(γ∇v) = 0, in Ω

v = g, on ∂Ω.
(4.1)

Here g ∈ H1/2(∂Ω), Ω ⊂ R
n, n ≥ 2 is a bounded domain having smooth boundary and γ

is the positive and bounded function representing the electrical conductivity of Ω. If γ is a

complex valued function in (4.1), then on subjecting to Dirichlet boundary conditions, (4.1) also

appears as the asymptotic limit of an elliptic equation with memory in the study of electrical

conduction in biological tissues [6]. Further, Calderón’s inverse problem has many applications,

for instance, in the fields of nondestructive testing of materials, medical imaging, and therefore,

it is an important problem to study.
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The inverse problem associated with EIT is the determination of electrical conductivity γ

from the information of Λγ , i.e. the Dirichlet to Neumann map which is defined as

Λγ : H1/2(∂Ω) → H−1/2(∂Ω) : g →
(

γ
∂v

∂ν

)
∣

∣

∣

∣

∂Ω

,

where the vector ν is the outward normal to ∂Ω. The operator F associated with the inverse

problem is defined by

F : U ⊂ L∞
+ (Ω) → L(H1/2(∂Ω),H−1/2(∂Ω)) : F (γ) = Λγ , (4.2)

where L(H1/2(∂Ω),H−1/2(∂Ω)) is the space of all bounded linear operators from H1/2(∂Ω) to

H−1/2(∂Ω). Further, F ′, the Fréchet derivative of F at γ = γ′ is given by

F ′(γ′) : U ⊂ L∞(Ω) → L(H1/2(∂Ω),H−1/2(∂Ω)) : δγ → F ′(γ′)(δγ),

where F ′(γ′)(δγ) is defined by the sesquilinear form

〈F ′(γ′)(δγ)g1, g2〉 =
∫

Ω
δγ∇v1 · ∇v2dx, g1, g2 ∈ H1/2(∂Ω),

where v1 and v2 are the weak solutions of






div(γ′∇v1) = 0 = div(γ′∇v2), in Ω

v1 = g1, v2 = g2 on ∂Ω.

Under the assumption that γ ∈ L∞(Ω), for the case n = 2, uniqueness of the solution to the

inverse problem (4.2) is discussed in [20] and for n ≥ 3, it is considered in [22] provided γ is in

the Sobolev space W 3/2,∞(Ω).

Remaining discussion of this section is mainly based on the results of [11]. So, we refer this

article whenever needed instead of recalling all the results. Next theorem presents the Lipschitz

estimate established in [11].

Theorem 4.1. Let γ1, γ2 be two real piecewise constant functions such that

γi(x) =

N
∑

j=1

γij(x)χDj (x), x ∈ Ω, λ ≤ γi(x) ≤ λ, i = 1, 2,

where λ ∈ (0, 1], γij is an unknown real number for each i, j, Dj ’s are known open sets, χDj is

characteristics function of the set Dj and N ∈ N. Then under some assumptions on Ω, Dj’s

(see section 2.2 in [11]), we have

‖γ1 − γ2‖L∞(Ω) ≤ C‖Λγ1 − Λγ2‖L(H1/2(∂Ω),H−1/2(∂Ω)),

where C is a constant.

Now, we verify that the assumptions of Theorem 3.1 are satisfied. Before that, observe that

the Banach space L∞(Ω) is not a uniformly convex space, so defining the space U in accodance

with Theorem 4.1 as

U = span{χD1 , χD2 , . . . , χDN
}
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fitted with Lp norm where p > 1, Di’s, χ
′
Di
s are same as in Theorem 4.1. Then, with the help

of basis {χD1 , χD2 , . . . , χDN
}, one can show the Lipschitz continuity of F ′ and its boundedness

[24, subsection 5.3], i.e. (2), (3) in Assumption 3.1.

Further, assume that v = F (γ†) where γ† ∈ U . Then (5) of Assumption 3.1 holds (see

Theorem 4.1). As the notion of weak and strong topology is equivalent for the finite dimensional

spaces, F defined in (4.2) is weakly sequentially closed which means (4) of Assumption 3.1 holds.

And let u0, {βk}, µ, ρ2 and k∗ are chosen in accordance with Theorem 3.1, then iteratively

regularized Landweber iteration method converges in accordance with Theorem 3.1 and we also

get the said convergence rates.

Remark 4.1. It is of possible impression that the inverse problem (4.2) becomes well posed by

considering the unknown conductivities in a finite dimensional space in Theorem 4.1. However,

a counter example to discomfort such an impression is discussed in [11]. We recall that example

in our work for the sake of completeness. Let F : R → R
3 be such that

F (t) =
(

(2 + cos 3παt) cos 2πt, (2 + cos 3παt) sin 2πt, sin 2παt
)

, t ∈ R,

where α is a parameter. It can be shown that F is smoothly locally invertible. For α rational, F

is periodic whereas for α irrational, it is globally one-to-one but F−1 is discontinuous at every

point. Further, if α is irrational and F is restricted to interval [−I, I] for some I > 0, then F−1

is globally Lipschitz, but Lipschitz constant may blow up as α tends to any rational number.

5. Conclusion

We have implemented the iteratively regularized Landweber iteration scheme for non-linear

inverse problems in Banach spaces to obtain the convergence rates. Under the condition that

non-linear operator satisfies Hölder stability estimate, we proved the convergence for non-noisy

iterates and obtained the sublinear convergence rates under some additional assumptions. To

the best of our knowledge, this paper is the first advancement to find the explicit reconstruc-

tions for Iteratively regularized landweber iteration method by employing the Hölder stability

estimates after the reconstructions in [24]. An important thing to note is that while obtaining

the convergence rates for iteratively regularized Landweber iteration method (2.1)-(2.2), com-

plementary, we also get the convergence rates for Landweber scheme (see Remark 3.7) in the

presence of noisy data which are missing from the literature.

An important future work in this direction is to come up with a situation where the assump-

tions of Theorem 3.1 are satisfied in an infinite dimensional Banach space, for instance, one can

think of fitting L∞(Ω) in some infinite dimensional space in Example 4.1. Further, one can also

think about the application of results of Theorem 3.1 in option pricing theory (OPT), see e.g.

[37]. The inverse problem associated with OPT is addressed in [32].
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