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Abstract

We investigate a class of Lagrangians that admit a type of perturbed harmonic

oscillator which occupies a special place in the literature surrounding perturba-

tion theory. We establish explicit and generalized geometric conditions for the

symmetry determining equations. The explicit scheme provided can be followed

and specialized for any concrete perturbed differential equation possessing the

Lagrangian. A systematic solution of the conditions generate nontrivial approx-

imate symmetries and transformations. Detailed cases are discussed to illustrate

the relevance of the conditions, namely (a) G1 as a quadratic polynomial, (b) the

Klein-Gordon equation of a particle in the context of Generalized Uncertainty

Principle and (c) an orbital equation from an embedded Reissner-Nordström

black hole.
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1. Introduction

A Lie symmetry group forms a robust tool in the analysis of differential

equations, primarily because it provides invariant functions which may reduce

the order of the equation and lead to the determination of analytic solutions.

Differential equations which possess a variational principle or Lagrangian, ad-

mit specialized Lie symmetries, called Noether symmetries or divergence sym-

metries, which in addition to the invariant functions, leave the action invari-

ant. Aside from these classical symmetries, there exist approximate symmetries

which are devised from equations, regarded as perturbed equations, that contain

some small parameter ǫ. Within the literature, among several computational

techniques for approximate generators, there are two main formalisms, one pro-

posed by Baikov, Gazizov and Ibragimov [1] and the second was presented

by Fushchich and Shtelen [2]. Thereafter, the concept of approximate Noether

symmetries and conservation laws emerged [3, 4]. Owing to these developments,

many important physical differential equations have been studied successfully,

see for instance [5, 6, 7]. Note that unlike exact symmetries, approximate sym-

metries do not necessarily form a Lie algebra but rather an “approximate Lie

algebra” [8].

Two decades ago, a method was devised whereby a known symmetry and

its corresponding conservation law of a given partial differential equation can

be used to construct a Lagrangian for the equation [9]. However, in the absence

of a Lagrangian, there has been significant developments on the derivation of

approximate conservation laws. For instance in [10], a method based on par-

tial Lagrangians was introduced to construct approximate conservation laws of

approximate Euler-type equations using approximate Noether-type symmetries.

In [11], Zhang considered approximate nonlinear self-adjointness for perturbed

PDEs and showed how approximate conservation laws, which cannot be ob-

tained by the approximate Noether’s theorem, are constructed. Nevertheless,

when a Lagrangian is available, Noether’s work is not only more elegant, but

also highly efficient, and will always be the preferred method. As an example of
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the advantages of approximate Noether symmetries, over other existing methods

previously mentioned, a recent study, by one of the authors, found a geometric

connection between the Homothetic algebra of an underlying geometry and the

approximated Noether symmetries, that is, if the perturbation terms do not

modify the Kinetic energy of regular Lagrangians, approximate symmetries ex-

ist if and only if the metric that defines the Kinetic energy, admits a nontrivial

Homothetic algebra [12].

The purpose of this paper is three-fold. Firstly, in the following work we stip-

ulate the generalized approximate conditions in the case of a class of perturbed

Lagrangians, up to third-order,

L(u, u′, u′′, ǫ) =
1

2

(

−u′2 + u2
)

+ ǫiGi(u, u
′, u′′). (1)

The Lagrangian defined here has the Latin index i that is restricted to the

values 1, 2 and3 and u is a function of φ. The above approximate class of

Lagrangians and its symmetry generators maintain the specified perturbation

order of ǫ. To preserve generality we have not made specific assumptions about

the Gi(u, u
′, u′′). Rather we provide an explicit scheme which can be followed

and specialized for any concrete differential equation possessing the Lagrangian

(1), whereby one may extract further information using a given Gi(u, u
′, u′′).

Our next purpose is to use the generalized conditions to find approximate di-

vergence symmetries for several critical cases of interest. Thirdly, the latter

will be used to establish the associated approximate first integrals by invoking

Noether’s theorem.

Before we begin, it is worth mentioning that there are powerful and fully

automated software routines to obtain symmetries that are not approximate,

commonly referred to as exact symmetries, for example [13, 14, 15]. Eliminating

all the perturbed terms in the Lagrangian (1), leads to the derivation of the

oscillation equation

u′′ + u = 0. (2)

It is easily seen that this unperturbed equation is maximally symmetric and
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admits the 8-dimensional Lie algebra of exact symmetries sl(3, R) given by

X1
0 = ∂φ,

X2
0 = sin(2φ)∂φ + cos(2φ)u∂u,

X3
0 = cos(2φ)∂φ − sin(2φ)u∂u,

X4
0 = sin(φ)∂u,

X5
0 = cos(φ)∂u,

X6
0 = u∂u,

X7
0 = u cos(φ)∂φ − u2 sin(φ)∂u,

X8
0 = u sin(φ)∂φ + u2 cos(φ)∂u.

In a problem with a small perturbation, one may consider the approximate

Lie symmetry approach versus the approximate Noether or variational symme-

try approach. We have chosen here the approximate variational approach since

we shall find, at our disposal, explicit formulae for the approximate symmetry

conditions and conservation laws ensured by Noether’s theorem (see Sections 3),

whose determination is usually sans the use of algebraic and algorithmic soft-

ware. Comparatively, the approximate Lie method is tedious and involves extra

computations. Thus it is immediate and far more efficient to apply the varia-

tional approach. In order to illustrate our main results or derived conditions,

some examples are presented in the text. These examples are appropriately

chosen, for they are novel in the sense that they have not been subjected to

an approximate symmetry investigation. Moreover these examples involve vari-

ational principles in a cosmological and relativistic setting. One case explores

the approximate symmetries of an orbital equation that arises when a Reissner-

Nordström black hole is embedded into a Friedman-Robertson-Walker (FRW)

space [16]. To obtain the equation of motion of a planet, it is the norm to rewrite

a given metric from the cosmic coordinate system to the Schwarzschild or solar

coordinate system and thereafter deduce the geodesic equation. Significantly,

such equations have the propensity to show whether or not the orbit of a planet

is influenced by the evolution of the universe. As a second case, we investigate

the modified Klein-Gordon equation of a spin-0 particle in the Generalized Un-
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certainty Principle (GUP) [17, 18, 19, 20, 21]. In general, as detailed below, the

modified Klein-Gordon equation is a fourth-order partial differential equation,

which we reduce and adapt to possess the perturbed Lagrangian (1). In each

case, we state the approximate first integrals corresponding to the approximate

Noether symmetries obtained.

The plan of the paper is as follows. In the next section we briefly review the

geometric preliminaries surrounding exact and approximate point symmetries of

differential equations, with a focus on generators originating from a variational

principle. This section also introduces the notation and conventions assumed.

The perturbed class of Lagrangians (1) are studied in Section 3, where we show

that the approximate symmetry determining equations are generated by a set

of generic conditions. In Section 4, we apply the general results of the previous

sections to highlight a particular case of G1(u, u
′, u′′) that admits an enlarged

“group” of approximate Noether symmetry generators. Section 5 describes the

case of the modified Klein-Gordon equation of a particle in the GUP while

Section 6 draws attention to several orbital equations of interest where the

generalized conditions are especially useful. Finally, in section 7 we present our

conclusions.

2. Point transformations

Our interest lies in point transformations, and for the convenience of the

reader we insert the necessary theory pertaining to this analysis. The presen-

tation here is for ordinary differential equations, however most of the theory

has been generalized to partial differential equations in the references cited. For

the sake of brevity, the summation convention is adopted in this text, in which

there is summation over all repeated indices. First, consider a system of second-

order ordinary differential equations (unperturbed), where t is the independent

variable and xi denotes the dependent variables

x′′i = ωi
(

t, xj , x′j
)

. (3)
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An one-parameter point transformation in the space
{

t, xj
}

, has the property

of mapping solutions of (3) to itself and satisfies the infinitesimal criterion of

invariance

X [2]
(

x′′i − ωi
)

= 0 mod x′′i − ωi = 0,

where X is defined as

X =
∂t̄

∂ε

∣

∣

∣

∣

∣

ε=0

∂t +
∂x̄i

∂ε

∣

∣

∣

∣

∣

ε=0

∂i (4)

with X [2] as the second prolongation of X in the jet space of variables [22]. X is

the generator of the point transformation called a Lie symmetry for the system

of differential equations.

On the other hand, if the system (3) follows from the variation of the action

integral

S =

∫

Ldt,

then the Noether’s theorem [23] states that when a (finite) group of transfor-

mations leaves the action invariant, i.e.

S
(

t, xj , ...
)

= S
(

t̄
(

t, xj , ε
)

, x̄j
(

t, xj , ε
)

, ...
)

, (5)

then a conserved quantity exists. For an unperturbed Lagrangian up-to first-

order in derivatives (as is the case in this paper), condition (5) yields

X [1]L+ L d

dt

(

∂t̄

∂ε

∣

∣

∣

∣

∣

ε=0

)

= f ′ (6)

and the corresponding first integral is given by

I =

(

x′j ∂L
∂x′j

− L
)

∂t̄

∂ε

∣

∣

∣

∣

∣

ε=0

− ∂L
∂x′j

∂x̄j

∂ε

∣

∣

∣

∣

∣

ε=0

+ f. (7)

In this scenario X would be called a Noether symmetry which is also a Lie

symmetry; however the inverse of this result can be false. We continue with the

review of the techniques of finding approximate variational symmetries. For a

k-th order perturbed system of ordinary differential equations

E = E0 + ǫE1 + ǫ2E2 + . . .+ ǫkEk +O(ǫk+1), (8)
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corresponding to a Lagrangian, which is perturbed in ǫ,

L(t, x, x′j , ǫ) = L0(t, x, x
′j) + ǫL1(t, x, x

′j) + . . .+O(ǫk+1), (9)

the functional
∫

Ldt is invariant under the one-parameter group of transforma-

tions with approximate Lie symmetry generator

X = X0 + ǫX1 + . . .+ ǫkXk, (10)

up to gauge

A = A0 + ǫA1 + . . .+ ǫkAk, (11)

if

XL+

(

Dt

∂t̄

∂ε

∣

∣

∣

∣

∣

ε=0

)

L = DtA, (12)

where Dt is the total derivative operator. In this notation, X0 is the exact

symmetry generator originating from the unperturbed Lagrangian and X1 the

first-order approximate symmetry generator. A perturbed equation always ad-

mits the trivial approximate symmetry generator ǫX0. Also, if X = X0 + ǫX1

exists with X0 6= 0 and X1 6= kX0 (k an arbitrary constant), then it is called

a nontrivial symmetry [24]. These considerations can be generalized to higher-

order approximate symmetry generators. An analogous formula for the first-

order approximate first integrals can be obtained from Eq. (7) bearing in mind

that for first-order, the approximate first integrals are defined by I = I0 + ǫI1,

where I0 is the exact first integral and I1 is the first-order approximate part.

3. Third-Order Geometric Conditions

First we obtain the approximate Noether symmetry conditions for the class

of Lagrangians (1) by applying the approximate symmetry theory. Then we shall

study the approximate Noether symmetries of (1) pertaining to several impor-

tant problems in the literature. The determination of approximate Noether

point symmetries of the Lagrangian (1) consists of two steps: (a) the derivation

of the conditions which provide the symmetry determining equations, and (b)

7



the solution of these determining equations. The first step is precise, however

the symmetry conditions which arise can be quite involved. The key point is to

express conditions for generic forms of Gi(u, u
′, u′′).

As mentioned above, Noether symmetries are just a specialization of Lie

symmetries, and thus the sl(3, R) algebra given above contains the Noether

point symmetry generators. The latter comprises of a 5-dimensional Lie algebra

X1−5
0 with the corresponding gauge term (the cj are constants)

A0 = u2 cos (2φ) c3 + u2 sin (2φ) c2 + sin (φ) c5 u− cos (φ) c4 u+ c6.

The Noether first integrals corresponding to each Xh
0 , h = 1, . . . , 5 are

I10 = 1
2

(

u2 + u′2
)

,

I20 = 1
2

(

u′2 − u2
)

sin(2φ)− uu′ cos(2φ),

I30 = 1
2

(

u′2 − u2
)

cos(2φ) + uu′ sin(2φ),

I40 = −u′ sin(φ) + u cos(φ),

I50 = −u′ cos(φ) − u sin(φ).

If we include a perturbation up to first-order in ǫ, that is, the Lagrangian

(1) omits the terms in G2(u, u
′, u′′) and G3(u, u

′, u′′), the determination of ap-

proximate symmetries takes a particular form. That is, for each term of the

Noether condition (12) for the Lagrangian (1) we have the geometric condition

XL =
(

η1,φ + u′η1,u − u′ξ1,φ − (u′)
2
ξ1,u

)

(−u′) + η1u+
(

−2 sin (φ) cos (φ) c3 u + 2 c2 u (cos (φ))2 + c4 sin (φ) + c5 cos (φ)− c2u
)

G1,u

+
(

−4 c2 u cos (φ) sin (φ) + 2 sin (φ) cos (φ) c3 u
′ − 2 (cos (φ))

2
c2 u

′

)

G1,u′

(

−4 (cos (φ))2 c3 u − c5 sin (φ) + c4 cos (φ) + c2u
′ + 2 c3 u

)

G1,u′

+
(

8 sin (φ) cos (φ) c3 u + 6 sin (φ) cos (φ) c3 u
′′ − 8c2u (cos (φ))

2
)

G1,u′′

−
(

6 (cos (φ))
2
c2 u

′′ − c4 sin (φ)− c5 cos (φ) + 4c2u + 3 c2 u
′′

)

G1,u′′ ,

(13)

(

Dφ

∂φ̄

∂ε

∣

∣

∣

∣

∣

ε=0

)

L = (2c2 cos(2φ)− 2c3 sin(2φ))G1+(ξ1,φ + u′ξ1,u)

(

− (u′)
2

2
+

u2

2

)

,

(14)
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DφA = A1,φ + u′A1,u. (15)

On the other hand, if the perturbation is up to second-order in ǫ, the La-

grangian (1) omits G3(u, u
′, u′′), and in this case the second condition is:

XL = +
(

η2,φ + u′η2,u − u′ξ2,φ − (u′)
2
ξ2,u

)

(−u′) + η2u+ η1G1,u

+
(

−u′2ξ1,u + u′η1,u − u′ξ1,φ + η1,φ

)

G1,u′ +
(

−u′3η1,uu − 2 u′2ξ1,uφ

)

G1,u′′

+
(

η1,uuu
′2 − 3 ξ1,uu

′u′′ + 2 η1,uφu
′

)

G1,u′′

− (ξ1,φφu
′ + η1,uu

′′ − 2 ξ1,φu
′′ + η1,φφ)G1,u′′

+
(

−2 sin (φ) cos (φ) c3 u + 2 c2 u (cos (φ))
2
+ c4 sin (φ) + c5 cos (φ)− c2u

)

G2,u

+
(

−4 c2 u cos (φ) sin (φ) + 2 sin (φ) cos (φ) c3 u
′ − 2 (cos (φ))

2
c2 u

′

)

G2,u′

−
(

4 (cos (φ))
2
c3 u − c5 sin (φ) + c4 cos (φ) + c2u

′ + 2 c3 u
)

G2,u′

+
(

8 sin (φ) cos (φ) c3 u + 6 sin (φ) cos (φ) c3 u
′′ − 8c2u (cos (φ))

2
)

G2,u′′

−
(

6 (cos (φ))2 c2 u
′′ − c4 sin (φ)− c5 cos (φ) + 4c2u + 3 c2 u

′′

)

G2,u′′

(16)
(

Dφ
∂φ̄
∂ε

∣

∣

∣

∣

∣

ε=0

)

L = (ξ1,φ + u′ξ1,u)G1 + (ξ2,φ + u′ξ2,u)

(

− (u′)2

2 + u2

2

)

+(2c2 cos(2φ)− 2c3 sin(2φ))G2,

DφA = A2,φ + u′A2,u. (17)

Last but not least, a third-order perturbation in ǫ results in the third con-
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dition

XL =
(

η3,φ + u′η3,u − u′ξ3,φ − (u′)
2
ξ3,u

)

(−u′) + η3u

+
(

−2 sin (φ) cos (φ) c3 u + 2 c2 u (cos (φ))
2
+ c4 sin (φ) + c5 cos (φ) − c2u

)

G3,u

+
(

−4 c2 u cos (φ) sin (φ) + 2 sin (φ) cos (φ) c3 u
′ − 2 (cos (φ))

2
c2 u

′

)

G3,u′

−4
(

(cos (φ))
2
c3 u − c5 sin (φ) + c4 cos (φ) + c2u

′ + 2 c3 u
)

G3,u′

+
(

8 sin (φ) cos (φ) c3 u + 6 sin (φ) cos (φ) c3 u
′′ − 8c2u (cos (φ))2

)

G3,u′′

−6
(

(cos (φ))
2
c2 u

′′ − c4 sin (φ)− c5 cos (φ) + 4c2u + 3 c2 u
′′

)

G3,u′′

+η1G2,u +
(

−u′2ξ1,u + u′η1,u − u′ξ1,φ + η1,φ

)

G2,u′

+
(

−u′3η1,uu − 2 u′2ξ1,uφ

)

G2,u′′

+
(

η1,uuu
′2 − 3 ξ1,uu

′u′′ + 2 η1,uφu
′

)

G2,u′′−

(ξ1,φφu
′ + η1,uu

′′ − 2 ξ1,φu
′′ + η1,φφ)G2,u′′

+η2G1,u +
(

−u′2ξ2,u + u′η2,u − u′ξ2,φ + η2,φ

)

G1,u′

+
(

−u′3η2,uu − 2 u′2ξ2,uφ

)

G1,u′′

+
(

η2,uuu
′2 − 3 ξ2,uu

′u′′ + 2 η2,uφu
′

)

G1,u′′

− (ξ2,φφu
′ + η2,uu

′′ − 2 ξ2,φu
′′ + η2,φφ)G1,u′′ ,

(18)

(

Dφ
∂φ̄
∂ε

∣

∣

∣

∣

∣

ε=0

)

L = (ξ2,φ + u′ξ2,u)G1 + (2c2 cos(2φ)− 2c3 sin(2φ))G3+

(ξ1,φ + u′ξ1,u)G2 + (ξ3,φ + u′ξ3,u)

(

− (u′)2

2 + u2

2

)

,

(19)

DφA = A3,φ + u′A3,u. (20)

We remark that the above three conditions must be applied sequentially. The

separation and solution of the conditions (13)-(20) gives the approximate coef-

ficients of the Noether point symmetry vectors. To obtain a group classification

involving a generic function, in our case Gi, consists of finding the approximate

point symmetries of the given Lagrangian with arbitrary Gi, and, thereafter to

determine all possible and particular cases of Gi for which the symmetry group

can be expanded. Naturally there should be a geometrical or physical motiva-

10



tion in place for considering such specific cases [25]. In the following sections we

proceed with the applications of conditions (13)-(20) in cases of special inter-

est, that is we deal with some equations admitted by the class of Lagrangians

(1). Specifically, we study the approximate point symmetries of the modified

Klein-Gordon under GUP and secondly, the approximate point symmetries of

an orbital equation arising from an embedded Reissner-Nordström black hole.

The presentation of results is schematic so not to increase the volume of the

paper.

4. A Quadratic Polynomial G1(u, u
′, u′′)

If we allow the conditions (13)-(15) to act as a selection rule for the functional

form of G1(u, u
′, u′′), we find some surprising results. In fact the notion of using

a symmetry as selection criteria for the free functions or recursion operator of

a model, can be traced to many articles (for example [26, 27, 28] or [29, 30],

respectively). The specific case in which

G1(u, u
′, u′′) =

1

2
a0u

2 + a1u+ a2,

we find the exact symmetry algebra X1−5
0 plus the added approximate genera-

tors

X̄ǫ
M = X2

0 + ǫ

[

(

a0φ cos(2φ)− a0 sin(2φ)− 2 cos2(φ)a1 + a1
)

∂φ−
(

1
2a0u cos(2φ) + ua0φ sin(2φ)

)

∂u

]

,

X̄ǫ
N = X3

0 + ǫ
[(

− 1
2a0 cos(2φ)− φa0 sin(2φ)

)

∂φ − (φa0u cos(2φ) + a1 sin(2φ)) ∂u
]

,

X̄ǫ
O = X4

0 + ǫ
(

1
2a0φ cos(φ)− 1

4a0 sin(φ)
)

∂u,

X̄ǫ
P = X5

0 − ǫ
(

1
4a0 cos(φ) +

1
2φa0 sin(φ)

)

∂u.

Clearly, form the arbitrary constants in am, the a0 and a1 should be nonzero

to maximize the number of possible approximate generators. Correspondingly,
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the first-order approximate gauge term in this case is

Ā1 = 1
4

(

((4 c2φ+ 2 c3) c6 − 2 c10)u
2 + 8 c3 c7 u + 4 c3 a2

)

cos (2φ)+

1
4

(

(−4 c3 a0φ+ 2 c9) u
2 + 8 c2 a1 u + 4 c2 a2

)

sin (2φ)+

1
4 (((2 c5φ− c4) a0 − 4 c13)u − 4 c4 a1) cos (φ) +

1
4 (((2 c4φ+ c5) a0 + 4 c12)u + 4 c5 c7) sin (φ) + c14

(21)

The first-order approximate first integrals related to X̄ǫ
M−P are given by

ĪM = I20 + ǫ

(

− 2 sin (φ) cos (φ) a1 u − a0 φ (cos (φ))
2
u2 + a0 φ (cos (φ))

2
u′2 +

1/2 a0 φu
2 − 1/2 a0 φu

′2 − a0 sin (φ) cos (φ) u′2 + u′a0 u (cos (φ))2 − 1/2 u′a0 u +

2 u′ua0 φ sin (φ) cos (φ)− 2 u′ (cos (φ))
2
a1 + u′a1

)

,

ĪN = I30 + ǫ

(

− u′φa0 u + 2 u′a1 sin (φ) cos (φ) +

φa0 sin (φ) cos (φ) u2 − φa0 sin (φ) cos (φ) u′2 + 2 u′φa0 u (cos (φ))2 −

2 (cos (φ))
2
a1 u − 1/2 (cos (φ))

2
a0 u

2 − 1/2 a0 (cos (φ))
2
u′2

+1/4 a0 u
′2 + 1/4 a0 u

2 + a1 u

)

,

ĪO = I40 + ǫ

(

− 1/2 u′a0 φ cos (φ) + 1/4 u′a0 sin (φ) + 1/4 cos (φ) a0 u +

cos (φ) a1 − 1/2 a0 φu sin (φ)

)

,

ĪP = I50 + ǫ

(

1/4 u′a0 cos (φ) + 1/2 u′φa0 sin (φ)− 1/2φa0 u cos (φ)−

1/4 sin (φ) a0 u − sin (φ) a1

)

.

Next, we apply the conditions to some particularly relevant physical choices of

Gi(u, u
′, u′′).

5. The modified Klein-Gordon equation under GUP

The modified Klein-Gordon equation, is a fourth-order partial differential

equation

∆Ψ− 2βh2∆(∆Ψ) + V0Ψ = 0 (22)
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where V0 =
(

mc
h

)2
, ∆ is the Laplace operator and the terms O

(

β2
)

have been

ignored.

The action of the modified Klein-Gordon equation (22) is

S =

∫

dx4√−gLA(Ψ, DσΨ),

where the Lagrangian LA(Ψ, DσΨ) is given by

LA =
1

2

(√
−ggµνDµΨDνΨ−

√
−gV0Ψ

2
)

. (23)

Changing variables Ψ ≡ u and reducing Eq. (22), we have the reduced Klein-

Gordon equation with V0 = 1, ǫ = −2βh2, that is a fourth-order ordinary differ-

ential equation, which then possesses the Lagrangian Eq. (23) rewritten in the

form (1), with

G1(u, u
′, u′′) = −1

2
(u′′)2 and G2(u, u

′, u′′) = G3(u, u
′, u′′) = 0.

After the application of the conditions (13)-(15) we find a system of five

equations after separation of monomials. The resultant symmetries are X1−5
0

and thus the modified Klein-Gordon equation under GUP contains no first-order

nontrivial approximate symmetries.

On a side note, in this case a trivial approximate symmetry Xǫ = ǫ∂t would

give the approximate obvious first-order first integral I = 1
2 ǫ
(

u′2 + u2
)

.

6. The Radial Orbital equation

The orbital equation or motion equation of a planet, from an embedded

Reissner-Nordström black hole is given by

u
′′

+ u =
M

L2
− Q2u

L2
+ 3Mu2 − 2Q2u3 − H2

L2u3
, (24)

where u ≡ 1

r
, the prime denotes differentiation with respect to φ and L is the

angular momentum of the planet. The terms 3Mu2 and H2

L2u3 come from the

general relativity and cosmic expansion effect, respectively. Furthermore, the

13



term Q2u
L2 and −2Q2u2 are related to charge. The ratio between the term in H

and M
L2 is 8× 10−34 for Mecury and 3.6× 10−28 for Neptune. If we choose

ǫ = 2M and κǫ2 = Q2 and ρǫ2 = H2,

the Lagrangian corresponding to Eq.(24) is given by the general Lagrangian (1)

with

G1(u, u
′, u′′) =

(

− u

2L2
− u3

2

)

and G2(u, u
′, u′′) =

(

κu2

2L2
+

2κu4

4
− ρ

2L2
u−2

)

.

(25)

The first step is to retain the term in G1(u, u
′, u′′) from Eq.(24). Conse-

quently, the conditions (13)-(15) provide a system of four equations that solve

to give the first-order approximate Noether symmetry generators given by

Xǫ
1 = X4

0 + ǫ (2 sin(φ)∂φ + u cos(φ)∂u) ,

Xǫ
2 = X5

0 − ǫ (2 cos(φ)∂φ − u sin(φ)∂u) .

Correspondingly, the first-order approximate gauge term in this case is

A1 = 1
2L2

(

− cos (2φ) c7 u
2L2 + sin (2φ) c6 u

2L2

+
((

−c4 u
2 − 2 c9 u

)

L2 + c4
)

cos (φ)
)

+ 1
2L2

(((

c5 u
2 + 2 c10 u

)

L2 − c5
)

sin (φ) + 2 c11L
2
)

The first-order approximate first integrals related to Xǫ
1−2 are given by

I11 = I40 + ǫ
(

sin(φ)u′2 − cos(φ)uu′ + 1
2
(L2u2+1)

L2 sin(φ)
)

,

I21 = I50 − ǫ
(

u′2 cos(φ) + uu′ sin(φ) + 1
2
L2u2+1

L2 cos(φ)
)

.

In the second approximation, we retain the quadratic ǫ terms, that is the

G1(u, u
′, u′′) and G2(u, u

′, u′′) defined for Eq.(24). We proceed with the con-

sideration of the conditions (16)-(17) and observe that Eq.(24) possesses no

nontrivial second-order approximate symmetry generators, but the first-order

approximate symmetry generators are preserved.

7. Discussion and Conclusion

In this work we studied the approximate Noetherian point symmetries and

first integrals of the class of differential equations which follow from a Lagrangian

14



perturbed up-to third-order in ǫ. We presented new examples where the appli-

cation of our conditions can be seen. The knowledge of approximate symmetries

was used to find the approximate first integrals of the corresponding approx-

imate equations. We believe that this work can be very useful in the study

of various differential problems. Indeed numerous equations originate from the

generalized Lagrangian (1), such as the orbital equations of perturbed spaces.

Conditions (13)-(20), applied to the problems studied in [32, 33, 34], immedi-

ately gives the results on approximate symmetries (Table 1), obtained in these

works, for orbital equations. To this end, the same explicit conditions facilitate

Table 1: Approximate generators derived using conditions (13)-(20) for several interesting

equations

Model or G1(u, u
′, u′′) G2(u, u

′, u′′) G3(u, u
′, u′′)

Orbital equation1 & Approx. Symmetry & Approx. Symmetry & Approx. Symmetry

Schwarzschild
(

− u
2L2 − u3

2

)

0 0

Xǫ
1−2

Reissner-Nordström
(

− u
2L2 − u3

2

) (

ku2

2L2 + 2ku4

4

)

0

Xǫ
1−2 ζ

Bardeen
(

− u
2L2 − u3

2

)

0
(

3ku5

4 + 3ku3

4L2

)

Xǫ
1−2 ζ

the identification of approximate symmetry “groups” of other critical orbital

equations. By way of examples, we list the orbital equations of the charged

rotating Bañados, Teitelboim and Zanelli metric or the Kerr, Kerr-Newman or

Kerr-Newman-AdS spaces, all of which can be rewritten with a perturbation.
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