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ON A SUPERQUADRATIC ELLIPTIC SYSTEM WITH
STRONGLY INDEFINITE STRUCTURE

CYRIL JOEL BATKAM

ABSTRACT. In this paper, we consider the elliptic system

—Au = g(z,v) in Q,

—Av = f(z,u) in Q,

u=1v =0 on 01,
where € is a bounded smooth domain in RY, and f and g satisfy a general su-
perquadratic condition. By using variational methods, we prove the existence
of infinitely many solutions. Our argument relies on the application of a gen-
eralized variant fountain theorem for strongly indefinite functionals. Previous
results in the topic are improved.

1. INTRODUCTION

In this article, we study the existence of multiple solutions of certain superquadratic
elliptic systems of the form

—Au = g(z,v) in Q,
—Av = f(z,u) in Q, (S)
u=v =0 on 0f,

where Q is a bounded smooth domain in RN, N > 3, and the functions f,g :
2 x R — R are continuous and superlinear. Such systems describe steady state
solutions of reaction-diffusion and hydrodynamical problems. The difficulties in
studying () originate mainly in two facts. First, the associated energy functional
is strongly indefinite, in the sense that it is neither bounded from above nor from
below, even on subspaces of finite dimension or codimension. Therefore, the usual
critical point theorems cannot be applied. Second, due to the growth conditions
on f and g below, the energy functional associated with ([§) is not defined on the
Sobolev space Hg () x H(2). We will use fractional Sobolev spaces in order to
apply variational methods.

Elliptic systems leading to strongly indefinite functionals have been studied by
many authors. See, for instance [I1 [7} [0 17, Bl 12} 5] and the references therein. In
a recent paper [17], Szulkin and Weth considered (S)) with f and g both subcritical
and odd, and they assumed among others that the mappings u — f(z,u)/|u| and
u— g(x,u)/|u| are strictly increasing in (—o0,0) U (0, 4+00). By developing a Nehari
manifold method for strongly indefinite functionals, they obtained the existence of
infinitely many solutions. We recall that if both f and ¢ are subcritical, then the
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energy functional associated to (S)) is well defined on the space E = H{(Q2) x H}(Q),
and has the form

1 1, _
T = 5l =5l 2= | (Faw) + o) )da,

where
E=E"®@E su= (u,up) =u’ +u-, ureFE*={uekFE;u =+u}.
Let the following set introduced by Pankov in [13].
M ={we E\E™|{(J'(w),w) =0and (J'(w),z=0) =0Vze E™}.

The argument in [I7] relies on the observation that for every u € E\E~, the set
E~@®R"u intersects M at exactly one point, namely m(u). This allows the authors
to reduce the problem on the manifold M, and then on the unit sphere St of ET,
where they can applied a classical multiplicity critical point theorem. If u —
f(z,u)/|u| or u — g(x,u)/|u| is not strictly increasing in (—o0,0) U (0, 400), then
m(u) need not be unique, and their argument collapses.

The main goal of this paper is to extend the result of [I7] by considering more
general growth conditions on f and g, and by only requiring the above mappings
to be increasing. Our precise assumptions on f and g are the following.

(H1) f,9€C(Q x R) and there is a constant C' > 0 such that
[f(z,u)] < C(1+ [ulP™") and [g(z, )| < C(1 + [ul™"),

for all (x,u), where p,q > 2 satisfy

l + 1 >1-— 3
P g N
Furthermore, in case N > 5 we impose
1ol 2 g 112
p 2 N q 2 N
(Hz) uf(z,u) > F(z,u) >0 and Jug(z,u) > G(z,u) =0, V(z,u).

(H3) F(x,u)/u? — o0 and G(w,u)/u? — oo uniformly in = as |u| — oo.
(Hy) u— f(z,u)/|u] and u — g(x,u)/|u| are increasing in (—o0,0) U (0, +0).
(H5) f(xv _u) = —f((E,U) and g(l', _u) = —g(w,u) for all (ZC,U)

Before we state our main result, we recall the following definition.

Definition 1. We say that (u,v) is a strong solution of @) if ue W2P/P=1(Q) A
Wol’p/(p_l)(Q), ve W24 (Q) A Wol"J/(q_l)(Q) and (u,v) satisfies

—Au = g(z,v) a.e. in Q,
—Av = f(x,u) a.e. in Q.

The main result of the paper is the following.

Theorem 2. Under assumptions (Hy) — (Hs), Q) has infinitely many pairs of
strong solutions +(uy,vy) such that |uy| po) — 0 or |vg| =) — ©, as k — .
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As far as we know, Theorem [2] is new under assumptions (H;) — (Hs). In [4],
Felmer and Wang obtained the same result by using the Ambrosetti-Rabinowitz
superquadratic condition: 371,79 > 2 and IR > 0 such that

0<mF(z,u) <uf(z,u) and 0 < 2G(z,u) < ug(z,u) for |u| > R. (AR)

They reduced the problem to a semi-finite situation, and used condition (AR)
to verify that the energy functional satisfies a strong version of the usual Palais-
Smale condition, which was crucial for their argument. We recall that (AR]) implies
f(z,u) = cul™ and g(x,u) > clu|” for |u| large, hence it is stronger than (Hs).
We point out that without (AR) we do not know if any Palais-Smale sequence
of the energy functional is bounded. In this paper we do not use any reduction
method. Our approach relies on a generalized variant fountain theorem for strongly
indefinite functionals, established by the author and Colin in [2], which combines
the 7-topology introduced by Kryszewski and Szulkin [9], with the idea of the
monotonicity trick developed by Jeanjean [8]. It also has the advantage that it
produces bounded Palais-Smale sequences of the energy functional.

In [7], Hulshof and van der Vorst obtained the existence of at least one nontrivial
solution of (§) under condition (AR, which was mainly used to verify that the
energy functional has a linking geometry in the sense of Benci and Rabinowitz
[B], and also satisfies the Palais-Smale condition. A similar result was obtained
independently by de Figueiredo and Felmer in [6].

The paper is organized as follows. Section[2 contained the variational framework
for the study of (8). The proof of Theorem 2l will be given in section 8l In section
[ we state a similar result concerning an indefinite semilinear elliptic equation.

Through the paper, | - | denotes the usual norm of the Lebesgue space L (2).

2. VARIATIONAL SETTING
Consider the Laplacian as the operator
—A: H*(Q) n HY Q) c LA(Q) — L*(Q),

and let (¢;);>1 a corresponding system of orthogonal and L?(Q2)-normalized eigen-
functions, with eigenvalues (A;);>1. Then, writing

a0
U = Z ajpj, with a; = J up;dz,
Q

j=1

we set, for 0 < s < 2
[e0]
E* = {ue L*(Q)] ) Nla;|* < o0}
j=1

and
[e¢]
A®(u) = Z )\j/zajcpj, Yu e D(A®) = E°.
j=1
One can verify easily that A® is an isomorphism onto L?(€2). We denote A% :=

(A%)~1. Tt is well known (see Lions-Magenes [10]) that the space E* is a fractional
Sobolev space with the inner product

<u,v>s = f A’uA’vdzx.
Q
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We refer to the paper of Persson [I4] for the proof of the following lemma.

Lemma 3. E* embeds continuously in L"(Q) for s > 0 and r > 1 satisfying
% > % — %+ Moreover, the embedding is compact in the case of strict inequality.
By assumption (H;), there exist s,t > 0 such that s + ¢ = 2 and
1 1 s 1 1 ¢
— and —->—-— —. 1
p 2 N n q 2 N (1)

We consider the functional

D(u,v) := LZ AsuAlvdr — L (F(x,u) + G(x, v))daj, (u,v) € E* x E".

It follows from Lemma [3] that the inclusions E* < LP(Q) and E* — L4(Q) are
continuous. This, together with the estimate

| J Atudtvdz] < | A%uls| Aluly = [ul o]
Q

imply that the functional ® above is well defined on F := E* x Et.

Now a standard argument shows that if assumption (H;) holds, then the functional
® is of class C! on E.

We say that (u,v) € E* x E' is a weak solution of (3] if

J (ASuAtk—i-AS hAtv) dx —f
Q

(hf(w,u)—i—kg(x,v))dw =0, VY(h,k)e E*xE".
Q

In order to recuperate from the critical points of the functional ® (strong) solutions
of (§)), we need the following regularity result due to de Figueiredo and Felmer [6].

Lemma 4. If (u,v) € E¥ x E' is a weak solution of (S, then (u,v) is a strong

solution of ([©).
We endow E = E* x E! with the inner product

((u,0),(0,0)),, ., = (u, 0), + (v,0),, (u,v),(d,¢) € E,

and the associated norm [[(u, v)[2,, = ((u,v), (u,v)),_,-

In the following we assume without loss of generality that s > ¢. One can
easily verify that E has the orthogonal decomposition (With respect to <-, ->SX t)
E=FE*®E", where

E+ — {(u, As—tu) | u€E ES} and FE~ = {(’u,7 —As_t’u,) |u € Es} (2)

If we denote by P* : E — ET the orthogonal projections, then a direct calculation
yields

P*(u,v) = (u + A%, 0 + As_tu), V(u,v) € E, (3)

N | =

and
Bu,0) = 5IP* (0 = 5IP (w0 = | (P + 6e0)de. @)

Since both E~ and E™T are infinite-dimensional, the functional ® is strongly indef-
inite, in the sense that it is neither bounded below nor above, even on subspaces of
finite-dimension or finite-codimension. The study of ® is therefore quite difficult,
because the usual critical point theorems in [I5] [I8] cannot be applied directly.
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Now we present the generalized variant fountain theorem we will apply in order
to prove our main result.

Let Y be a closed subspace of a separable Hilbert space X endowed with the
inner product (-,-) and the associated norm || - |. We denote by P : X — Y and
Q: X — Z := Y the orthogonal projections.

We fix an orthonormal basis (a;);=0 of ¥, and we consider on X = Y @ Z the
7-topology introduced by Kryszewski and Szulkin in [9], that is, the topology asso-
ciated with the norm

o¢]
1
Jfull := max ()] 57 (Pusag)l. |Qul). we X.
j=0

Clearly we have |Qu| < ||u]| < |u[. Moreover, 7 has the property that (see [9] or
[18]): If (un) = X is a bounded sequence, then

Up > u == Pu, — Pu and Qu,, — Qu.
Let (e;)j=0 be an orthonormal basis of Z. We adopt the following notations.
Yy, =Y @ (@®F_gRe;), Zy = @7 Re;,
Bi = {ueYy|||lu|]| < pr}, with pp >0, k=>2.

Theorem 5 (Variant fountain theorem, Batkam-Colin [2]). Let the family of C*-
functionals

Dy : X >R, Dy(u):=Lu) — AJ(u), Ae[1,2],
such that

(A1) @y maps bounded sets to bounded sets uniformly for X € [1,2], and ®y(—u) =
D (u) for every (A, u) € [1,2] x X.
(A2) J(u) =0 for every ue X; L(u) — o0 or J(u) — o as |u| — co.
(As) For every A € [1,2], @ is T-upper semicontinuous and ®', is weakly se-
quentially continuous.
Let T, (X\) be the class of maps v : By, — X such that
(a) v is odd and T—continuous, and v, = id,
(b) every u € int(By) has a T—neighborhood N,, in Yy, such that (id —~)(Ny N
int(By)) is contained in a finite-dimensional subspace of X,
(c) Da(y(u)) < Px(u) Yu € By.
If there are 0 < 1y < pi such that
bi(A) = ian Dyr(u) = ap(N) = sup Pr(u), VAe][l,2],
UEL

ueYy
lul=rs Jul=pi

then

cr(A) := inf sup @x(y(w)) = be(N), VYAe[L,2].
velk () ue By,

Moreover, for a.e A € [1,2] there exists a sequence (uf(N\))n < X such that

sup [up(\)| < o0, @4\ (up(N)) = 0 and ®x(u () — cx(N) as n — 0.
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3. PROOF OF THE MAIN RESULT

Throughout this section we assume that (H;) — (Hs) hold.
We define

X=E Y=E Z=FE', P=P andQ=P",

where E = E° x Et, ET and P* are define in section @] above. The functional ®
in (@) then reads

Bu,0) = 51000 = 51 P o) = [ (Pl + Go0)) o, 6)

V(u,v) € X.
Let the family of functionals {®) : X — R; X € [1,2]} defined by

1 1
Ba(u,0) = 51Q( 0 = A3 IP@ R + | (Pl + Glae))do]. (0)
Q
A standard argument shows that:

Lemma 6. The conditions (A1) and (A3) of Theorem [ are satisfied, with

D) = 510U e Tu,0) = 5IP 0B+ | (Flau) + Glavo))da.

Moreover, ® is given by
(D (u,v), (h,k)) = {Q(u,v), (h, k)>sxt
— )\[<P(u,v), (h,k)>sxt + JQ (hf(x,u) + kg(m,v))dw], (7)
V(u,v), (h, k) € X.
We first show that condition (As) of Theorem [l is satisfied.

Lemma 7. For every X\ € [1,2], ®x is T—upper semicontinous and ®', is weakly
sequentially continuous.

Proof. (1) Let (un,vn) > (u,v) in X and @y (up,v,) = C € R. Tt follows from
the definition of 7 that (Q(uy,v,)), is bounded. Since F, G = 0, we deduce
from the inequality ®(un,v,) = C that (P(un,v,)), is also bounded.
Hence, up to a subsequence (un,v,) — (u,v) in X and (un,v,) — (u,v)
a.e. in Q. It follows from Fatou’s lemma and the weakly semicontinuity of
the norm that C < ®(u,v). Hence, @) is 7—upper semicontinous.

(2) Assume that (u,,v,) — (u,v) in X = B x E*. By ([ and Lemma [3] the
inclusion X — LP(Q) x L%(Q) is compact. Therefore, (un,v,) — (u,v) in
LP(Q) x L1(f). A standard argument based on the Holder inequality and
Theorem A.2 in [I8] shows that (@) (tn, vn), (b, k)) — (@ (u,v), (h, k)) for
all (h, k) € X. Hence, ®) is weakly sequentially continuous.

O

We recall that
Y ={(u,—A* ") |ue B°} and Z = {(u,A* "u)|ue E°}.
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Let (a;)j=0 be an orthonormal basis of E*. Then (A% 'a;);j>0 is an orthonormal
basis of E*. We define an orthonormal basis (e;),>0 of Z by setting

€j = %(aj,Asftaj).
Let
Vi =Y ®(®)_yRe;) and Zi = @7, Re;.
Lemma 8. There exist (An)n=0 € [1,2] and (u}}, v])n=0 < X\{0} such that
A — 1, @)\ (ug,vp) =0 and @y, (up,vp) = ce(An)
for k big enough.
Proof. (H3) implies that for every § > 0 there is C5 > 0 such that
F(z,u) = 6lul* = C; and G(z,u) = Slul* — Cs, V(z,u). ()

Let z € Y;,. Then z = (u, A°"'u) + (v, —A*"'v), where v € E* and u € E} :=

@?:ORCLJ'. By (@) we have

By (2) = Jul? — AJo]? )\JQ (Pleut )+ Gl A~ ) )da

< Jul? = Jv]? - jﬂ (Fla,u+v) + Gz, A" (u—v)) )z (since A > 1)

< Jul2 = Jol2 = 6(ju+ vf3 + A4 (u = v)[3) +2C5]Q|  (in view of (8))
< ull2 = |lv)2 = C8(Ju + v]3 + [u—v]3) +2Cs|Q|  (since E*" — L*(Q))
= [[u|2 = |v|2 = 2C§(Jul3 + |[v]3) + 2C5|Q|  (by the parallelogram identity).

Since all the norms are equivalent on the finite-dimensional subspace Ej}, there is
a constant ¢; > 0 such that ¢1]ufs < |u|2. Hence

OA(2) < (1= c20)[ull? — |JvlZ — 2C5192.
Choose § > é Hence ®5(z) — —oo uniformly in A € [1,2] as |z||sx¢t — 00, and

consequently ag(\) < 0 for py big enough.
Let 2z € Zg. Then z = (u, A5 'u) with u € @72 Ra;, and

D, (2) = %Hz“?xt — AJ;) (F(:E, u) + G(z, As_tu))d:t

> %Hz”?xt -2 J;Z (F(w,u) + G(z, As_tu)>dx (since A < 2).

By (H1) there is a constant C; > 0 such that
|F(z,u)] < Cy(1+|ulP) and |G(z, A% ‘u)| < Oy(1 + |AS tul?).

Hence
Dy(2) = HuH? — 201|u|g — 201|A57tu|g —4C419|.
We define
Bik:i= sup |ulp, Pog:= sup [v]g5
uedL  Ra; ve@FL  R(A*ta;)
[[w]s=1 [v]e=1
and fBj, = max {B1 x; B,k }-
Then

Oa(2) = [[ulZ = 2615 |ulf - 2C1 8 [lul? — 4C1191].
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We assume without loss of generality that ¢ < p and we set

1
TR 1= (Clpﬂg) 2o
Then for |z]|lsxt = V2||uls = 7% we have

By(2) = by = Kﬁ,{ip[(i—m) —ABZ(%)] — 4049, 9)

where K, A > 0 are constant.
By using the argument in the proof of Lemma 3.8 in [I§], we easily show that
Bikx — 0 and B2 — 0 as k — co. This implies that ka — 0 and ®y(z) > o
uniformly in A € [1,2], as k — 0, whenever ||z]sx; = r. Hence by(\) = by, > 0 for
k big enough.

By Theorem Bl c;x(A\) = bi(A) and for a.e. A € [1,2] there exists zp(\) =
(U (A),v7 (X)) € X such that

sup |2 (V) ||sxt < 00,  ®A(zF(N) = cx(N) and @\ (zp(N\) =0, as n— o,

for k big enough.

Now a standard argument shows that (z}’(\)), has a convergent subsequence.
Therefore, there exists (ug(A),vk(A)) € X such that @) (ug(N),vx(A)) = 0 and
D (ug(N), vk (M) = ci(N). Tt is then easy to conclude. O

Next we will show that the sequence (u},v})), above is bounded. The following
technical lemma will be very helpful.

Lemma 9. Let A € [1,2]. if zx # 0 and @\ (21) = 0, then ®x(zx + w) < Pa(2n)
for every w e Zy := {rzx +0|r> -1, e Y}.

Proof. Let z) = (ux,vy) and w = rz) + 60, where r = —1 and 0 = (61,62) €
A direct calculation gives

Dr(an +w) = 0(2n) = H9Hm + 7‘( D 1Qzxl2

(
)\[r(g F1)IP2lZe + (14 7)(P2as) |
- )\L (F(a:, (1+r)ux + 61) — F(a, uA))da:
- )\L (G(x, (1+r)os + 62) — G, m))dx.
Now (¢4 (2x),7(5 + 1)z + (1 +)8) = 0 implies
r(5 DR = A[r (5 + DIPa + (1 +1)(P20) | -

/\LZ [((1 +r)u + 91)f(33,u)\) + ((1 +r)vy + 92)9(:17, vA)]dx.
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Hence

(N = H9stt

(Z)\er)
+ Af [ (L +7)ur+601) flz,un) + Fz,uy) — F(z, (14 r)us + 91)]d:10
Q
1

J; [ +7)us + 92) (z,u2) + G(x,v)\) — G(w, (1+r)oy + 92)]dx

Following Liu [I1], we define for an arbitrary € > 0,
fe(z,u) = f(z,u) +ev® and  g.(z,u) = g(z,u) +eu®, V(z,u)eQ xR.

Using (Hy4), one easily verifies that the mappings v — f.(x,u)/|u] and v —
ge(x,u)/|u| are strictly increasing in R\{0}. It then follows from Lemma 2.2 in
[16] that

(1 +7)us + 601) fo(z,un) + Fe(z,un) — Fo(z, (1 + 7)uy +61) <0,
(1 +7)vr + 62)ge(z,07) + Ge(2,07) — Ge (2, (1 + 7)oy + 62) <0,

where F. and G, are the primitives of f. and g. respectively.
Letting € — 0, we get
((1 +r)uy + 91)f(:1c, uy) + F(z,uy) — F(;v, (14 r)uy + 91) <0,

(14 r)on + 62)g(z,vr) + G(z,vr) — G(z, (1 4+ r)os + 62) < 0.
This completes the proof of the lemma. O

Lemma 10. The sequence (2} = (uf, v’kl))n obtained in Lemma[8d is bounded.

Proof. We argue by contradiction.

Assume that (2}'), is unbounded. Then, up to a subsequence [z}!||sx¢ — 0, as
n — . Let w} = (sP,t7) = z1/|27|sxe- Up to a subsequence we may suppose
that wy — wi = (sg,tx) in X and wp — wi = (sg, tx) a.e..

If wy # 0, that is, if s # 0 or ty # 0, then |s}|||z][sxt — o0 or [t}]| 20 ]lsxt — o0 as
n — o0. Now for k large enough we have

ck(An) Py, (2 n)

I E

0< —I\ka e — prk oxe

_fﬂ (xv H:kHS><t |Sz|2d$ JQ ( sz HSXt)|t"|2d

|5k 2 e ]? %12 st ?

We then obtain, by using (H3) and Fatou’s lemma the contradiction 0 < —oo.
Hence wy = 0. Since @y, (2f) > 0 and F,G > 0, we have that |Qu}|sx: =
| Pw}||sx¢- It is then clear by definition of w} that we cannot have |Quw}|sx¢ — 0,
as n — oo. Hence, there is a constant o > 0 such that |Quw}|sx+ = o up to a
subsequence. By Lemma [0 we have for every r > 0

1
ck(2) = ck(An) = @i, (21) = @y, (rQuy) = 50427“2

D L l (F(a:,rQle) + G(x,ngwZ))daz, (+)

where Quy = (Qlwg, szg).
Now, by Lemma Bl Qwj — 0 in L?(Q) x L(Q), as n — co. It follows from (H;)
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and Theorem A.2 in [I§] that F(z,rQiw}) — 0 and G(z,rQ2w}) — 0 in L'().
By taking the limit n — oo in () we obtain
1
cx(2) = 50427“2, Vr > 0.

This gives a contradiction if we fix k£ and let r — o0.
Consequently, the sequence (z¥),, is bounded. (Il

We can now prove Theorem

Proof of Theorem[3. We consider the sequence (zF = (uf,vF)),, above. The rela-

n? n
tion

<(I),(’LLZ, ’Ul?) - (I)I)\n (u;clv ’Ul?)v (ha k)> = (/\n - 1)[<P(u27 ’Ul?)a (h7 k)>5><t
+ JQ (hf (@, up) + kg(z,v}))dz]
implies that
. re,omo o mN 1 / n o ny _
nh_I}C}O‘I) (ur,vp) = nh_fgoq’,\n(ukavk) =0.
Now, since (¢x(An))n is nondecreasing and bounded from above, there exists ay, >
¢x(2) such that cx(\,) — ax as n — co. It follows from the equality

n n n n 1 n n n n
Bl of) = B, (0} 1) = O = D[P o) B+ | (Pl + Glasoi)) o]

that
. noomy _ 1: nony _ ;i —
Jim ®(u, o) = lim @y (u, o) = lm e (An) = .
By repeating the argument in the proof of Lemma [, we see that there exists
(uk, vr) € X such that & (ug,vr) = 0 and ®(ug,vE) = ag. But since ag = ¢k (2) =
bi(2) = by, — 0, as k — © (where by, is defined in (IEI)), the proof is completed. [
4. A SEMILINEAR ELLIPTIC PROBLEM

In this section, we consider the semilinear elliptic problem

—Au—pu = f(z,u), xe€q,
{ u=0, ondQ) (10)
where p is a real parameter. Let 0 < u; < po < u3 < --- be the eigenvalues of the

problem
—Au = pu, in Q,
u =0, on 0f.

We have the following result.

Theorem 11. Assume that the following conditions are satisfied.

(f1) f € C(Q x R) and there is a constant C > 0 such that |f(z,u)] < C(1 +
|ulP~1), for some 2 < p < 2*, where 2* = + if N = 1,2 and 2* =
ON/(N —2) if N = 3.
(f2) suf(z,u) = F(z,u) =0, ¥(z,u).
(f3) F(x,u)/u? — oo uniformly in x as |u| — 0.
(fa) u— f(x,u)/|u| is increasing in (—o0,0) U (0, +0).

(fs) flz,—u) = —f(z,u) for all (z,u).
If up < p < pigg1 for some k =1, then [IQ) has infinitely many pairs of solutions
tuy, such that |ug|e — 00 as k — oo.
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Proof. By (f1), the energy functional associated with (IQ) is defined on the Sobolev
space H}(Q) by
1
W) = 3 [ (V- o = [ Pl
2 Jo Q

By the Poincaré inequality, H{(£2) is equipped with the inner product

<u,v>0 = J VuVudz,
Q

and the associated norm [ul§ = (u, u),.

Let e1, e, €3, - - - be the orthogonal eigenfunctions in H} () corresponding to pu1, i, pi3, - - - -

If pp < pt < pig41 for some k > 1, then X = HJ(2) has the orthogonal decomposi-
tion X =Y @ Z, where

Y = spanf{ei, ez, - ,ex} and Z =YY"

Clearly, we can define an equivalent inner product in X with associated norm || - |
such that

1 1
| 0vul? =y = G1Qui? = 51Pul?,
Q

where P: X — Y and @ : X — Z are the orthogonal projections.
The functional ¥ above then reads

1 1
V(W) = 51Qul = 5IPul} - | Fleu)da,
Q

Let
1 1
Wa(u) = 1Qui = A[1Pul + [ Fle,wds], e 1,2)
Q

Evidently, we can equipped (X, | - |) with the 7—topology, and it is easy to check
that ¥y is 7—upper semicontinuous and that ¥, is weakly sequentially continuous.
The rest of the proof uses an argument similar to that in the proof of Theorem [2]
which is now simplified since dimY < oo. (Il

Remark 12. Theorem [[1 extends Theorem 3.2 in [10], where the mapping u —
f(z,u)/|u| was supposed to be strictly increasing in R\{0}.
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