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ON A SUPERQUADRATIC ELLIPTIC SYSTEM WITH

STRONGLY INDEFINITE STRUCTURE

CYRIL JOEL BATKAM

Abstract. In this paper, we consider the elliptic system
$
&
%

´∆u “ gpx, vq in Ω,

´∆v “ fpx, uq in Ω,

u “ v “ 0 on BΩ,

where Ω is a bounded smooth domain in R
N , and f and g satisfy a general su-

perquadratic condition. By using variational methods, we prove the existence
of infinitely many solutions. Our argument relies on the application of a gen-
eralized variant fountain theorem for strongly indefinite functionals. Previous
results in the topic are improved.

1. Introduction

In this article, we study the existence of multiple solutions of certain superquadratic
elliptic systems of the form

$
&
%

´∆u “ gpx, vq in Ω,
´∆v “ fpx, uq in Ω,
u “ v “ 0 on BΩ,

(S)

where Ω is a bounded smooth domain in R
N , N ě 3, and the functions f, g :

Ω ˆ R Ñ R are continuous and superlinear. Such systems describe steady state
solutions of reaction-diffusion and hydrodynamical problems. The difficulties in
studying (S) originate mainly in two facts. First, the associated energy functional
is strongly indefinite, in the sense that it is neither bounded from above nor from
below, even on subspaces of finite dimension or codimension. Therefore, the usual
critical point theorems cannot be applied. Second, due to the growth conditions
on f and g below, the energy functional associated with (S) is not defined on the
Sobolev space H1

0 pΩq ˆ H1
0 pΩq. We will use fractional Sobolev spaces in order to

apply variational methods.
Elliptic systems leading to strongly indefinite functionals have been studied by

many authors. See, for instance [1, 7, 6, 17, 3, 12, 5] and the references therein. In
a recent paper [17], Szulkin and Weth considered (S) with f and g both subcritical
and odd, and they assumed among others that the mappings u ÞÑ fpx, uq{|u| and
u ÞÑ gpx, uq{|u| are strictly increasing in p´8, 0qYp0,`8q. By developing a Nehari
manifold method for strongly indefinite functionals, they obtained the existence of
infinitely many solutions. We recall that if both f and g are subcritical, then the
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2 C. J. BATKAM

energy functional associated to (S) is well defined on the space E “ H1
0 pΩqˆH1

0 pΩq,
and has the form

Jpuq “ 1

2
}u`}2 ´ 1

2
}u´}2 ´

ż

Ω

´
F px, u1q ` Gpx, u2q

¯
dx,

where

E “ E` ‘ E´ Q u “ pu1, u2q “ u` ` u´, u˘ P E˘ “ tu P E ; u2 “ ˘u1u.
Let the following set introduced by Pankov in [13].

M “
 
w P EzE´ |

〈

J 1pwq, w
〉

“ 0 and
〈

J 1pwq, z “ 0
〉

“ 0 @z P E´
(
.

The argument in [17] relies on the observation that for every u P EzE´, the set
E´ ‘R

`u intersects M at exactly one point, namely pmpuq. This allows the authors
to reduce the problem on the manifold M, and then on the unit sphere S` of E`,
where they can applied a classical multiplicity critical point theorem. If u ÞÑ
fpx, uq{|u| or u ÞÑ gpx, uq{|u| is not strictly increasing in p´8, 0q Y p0,`8q, then
pmpuq need not be unique, and their argument collapses.

The main goal of this paper is to extend the result of [17] by considering more
general growth conditions on f and g, and by only requiring the above mappings
to be increasing. Our precise assumptions on f and g are the following.

pH1q f, g P CpΩ ˆ Rq and there is a constant C ą 0 such that

|fpx, uq| ď Cp1 ` |u|p´1q and |gpx, uq| ď Cp1 ` |u|q´1q,
for all px, uq, where p, q ą 2 satisfy

1

p
` 1

q
ą 1 ´ 2

N
.

Furthermore, in case N ě 5 we impose

1

p
ą 1

2
´ 2

N
and

1

q
ą 1

2
´ 2

N
.

pH2q 1
2
ufpx, uq ě F px, uq ě 0 and 1

2
ugpx, uq ě Gpx, uq ě 0, @px, uq.

pH3q F px, uq{u2 Ñ 8 and Gpx, uq{u2 Ñ 8 uniformly in x as |u| Ñ 8.

pH4q u ÞÑ fpx, uq{|u| and u ÞÑ gpx, uq{|u| are increasing in p´8, 0q Y p0,`8q.

pH5q fpx,´uq “ ´fpx, uq and gpx,´uq “ ´gpx, uq for all px, uq.
Before we state our main result, we recall the following definition.

Definition 1. We say that pu, vq is a strong solution of (S) if u P W 2,p{pp´1qpΩq X
W

1,p{pp´1q
0 pΩq, v P W 2,q{pq´1qpΩq X W

1,q{pq´1q
0 pΩq and pu, vq satisfies

"
´∆u “ gpx, vq a.e. in Ω,
´∆v “ fpx, uq a.e. in Ω.

The main result of the paper is the following.

Theorem 2. Under assumptions pH1q ´ pH5q, (S) has infinitely many pairs of

strong solutions ˘puk, vkq such that }uk}L8pΩq Ñ 8 or }vk}L8pΩq Ñ 8, as k Ñ 8.
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As far as we know, Theorem 2 is new under assumptions pH1q ´ pH5q. In [4],
Felmer and Wang obtained the same result by using the Ambrosetti-Rabinowitz
superquadratic condition: Dγ1, γ2 ą 2 and DR ą 0 such that

0 ă γ1F px, uq ď ufpx, uq and 0 ă γ2Gpx, uq ď ugpx, uq for |u| ą R. (AR)

They reduced the problem to a semi-finite situation, and used condition pARq
to verify that the energy functional satisfies a strong version of the usual Palais-
Smale condition, which was crucial for their argument. We recall that (AR) implies
fpx, uq ě c|u|γ1 and gpx, uq ě c|u|γ2 for |u| large, hence it is stronger than pH3q.
We point out that without (AR) we do not know if any Palais-Smale sequence
of the energy functional is bounded. In this paper we do not use any reduction
method. Our approach relies on a generalized variant fountain theorem for strongly
indefinite functionals, established by the author and Colin in [2], which combines
the τ -topology introduced by Kryszewski and Szulkin [9], with the idea of the
monotonicity trick developed by Jeanjean [8]. It also has the advantage that it
produces bounded Palais-Smale sequences of the energy functional.

In [7], Hulshof and van der Vorst obtained the existence of at least one nontrivial
solution of (S) under condition (AR), which was mainly used to verify that the
energy functional has a linking geometry in the sense of Benci and Rabinowitz
[3], and also satisfies the Palais-Smale condition. A similar result was obtained
independently by de Figueiredo and Felmer in [6].

The paper is organized as follows. Section 2 contained the variational framework
for the study of (S). The proof of Theorem 2 will be given in section 3. In section
4, we state a similar result concerning an indefinite semilinear elliptic equation.

Through the paper, | ¨ |r denotes the usual norm of the Lebesgue space LrpΩq.

2. Variational setting

Consider the Laplacian as the operator

´∆ : H2pΩq X H1
0 pΩq Ă L2pΩq Ñ L2pΩq,

and let pϕjqjě1 a corresponding system of orthogonal and L2pΩq-normalized eigen-
functions, with eigenvalues pλjqjě1. Then, writing

u “
8ÿ

j“1

ajϕj , with aj “
ż

Ω

uϕjdx,

we set, for 0 ď s ď 2

Es :“
 
u P L2pΩq

ˇ̌ 8ÿ

j“1

λs
j |aj |2 ă 8

(

and

Aspuq :“
8ÿ

j“1

λ
s{2
j ajϕj , @u P DpAsq “ Es.

One can verify easily that As is an isomorphism onto L2pΩq. We denote A´s :“
pAsq´1. It is well known (see Lions-Magenes [10]) that the space Es is a fractional
Sobolev space with the inner product

〈

u, v
〉

s
“

ż

Ω

AsuAsvdx.



4 C. J. BATKAM

We refer to the paper of Persson [14] for the proof of the following lemma.

Lemma 3. Es embeds continuously in LrpΩq for s ą 0 and r ě 1 satisfying
1
r

ě 1
2

´ s
N
. Moreover, the embedding is compact in the case of strict inequality.

By assumption pH1q, there exist s, t ą 0 such that s ` t “ 2 and

1

p
ą 1

2
´ s

N
and

1

q
ą 1

2
´ t

N
. (1)

We consider the functional

Φpu, vq :“
ż

Ω

AsuAtvdx ´
ż

Ω

´
F px, uq ` Gpx, vq

¯
dx, pu, vq P Es ˆ Et.

It follows from Lemma 3 that the inclusions Es
ãÑ LppΩq and Et

ãÑ LqpΩq are
continuous. This, together with the estimate

ˇ̌
ˇ
ż

Ω

AsuAtvdx
ˇ̌
ˇ ď |Asu|2|Atu|2 “ }u}s}v}t,

imply that the functional Φ above is well defined on E :“ Es ˆ Et.
Now a standard argument shows that if assumption pH1q holds, then the functional
Φ is of class C1 on E.
We say that pu, vq P Es ˆ Et is a weak solution of (S) if

ż

Ω

`
AsuAtk`AshAtv

˘
dx´

ż

Ω

´
hfpx, uq`kgpx, vq

¯
dx “ 0, @ph, kq P EsˆEt.

In order to recuperate from the critical points of the functional Φ (strong) solutions
of (S), we need the following regularity result due to de Figueiredo and Felmer [6].

Lemma 4. If pu, vq P Es ˆ Et is a weak solution of (S), then pu, vq is a strong

solution of (S).

We endow E “ Es ˆ Et with the inner product
〈

pu, vq, pφ, ϕq
〉

sˆt
“

〈

u, φ
〉

s
`
〈

v, ϕ
〉

t
, pu, vq, pφ, ϕq P E,

and the associated norm }pu, vq}2sˆt “
〈

pu, vq, pu, vq
〉

sˆt
.

In the following we assume without loss of generality that s ě t. One can
easily verify that E has the orthogonal decomposition

`
with respect to

〈

¨, ¨
〉

sˆt

˘

E “ E` ‘ E´, where

E` :“
 

pu,As´tuq |u P Es
(

and E´ :“
 

pu,´As´tuq |u P Es
(
. (2)

If we denote by P˘ : E Ñ E˘ the orthogonal projections, then a direct calculation
yields

P˘pu, vq “ 1

2

`
u ˘ At´sv, v ˘ As´tu

˘
, @pu, vq P E, (3)

and

Φpu, vq “ 1

2
}P`pu, vq}2sˆt ´ 1

2
}P´pu, vq}2sˆt ´

ż

Ω

´
F px, uq ` Gpx, vq

¯
dx. (4)

Since both E´ and E` are infinite-dimensional, the functional Φ is strongly indef-
inite, in the sense that it is neither bounded below nor above, even on subspaces of
finite-dimension or finite-codimension. The study of Φ is therefore quite difficult,
because the usual critical point theorems in [15, 18] cannot be applied directly.
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Now we present the generalized variant fountain theorem we will apply in order
to prove our main result.

Let Y be a closed subspace of a separable Hilbert space X endowed with the
inner product

〈

¨, ¨
〉

and the associated norm } ¨ }. We denote by P : X Ñ Y and

Q : X Ñ Z :“ Y K the orthogonal projections.
We fix an orthonormal basis pajqjě0 of Y , and we consider on X “ Y ‘ Z the
τ -topology introduced by Kryszewski and Szulkin in [9], that is, the topology asso-
ciated with the norm

~u~ :“ max
´ 8ÿ

j“0

1

2j`1
|
〈

Pu, aj
〉

|, }Qu}
¯
, u P X.

Clearly we have }Qu} ď ~u~ ď }u}. Moreover, τ has the property that
`
see [9] or

[18]
˘
: If punq Ă X is a bounded sequence, then

un
τÑ u ðñ Pun á Pu and Qun Ñ Qu.

Let pejqjě0 be an orthonormal basis of Z. We adopt the following notations.

Yk :“ Y ‘ p‘k
j“0Rejq, Zk :“ ‘8

j“kRej,

Bk :“ tu P Yk

ˇ̌
||u|| ď ρku, with ρk ą 0, k ě 2.

Theorem 5 (Variant fountain theorem, Batkam-Colin [2]). Let the family of C1-

functionals

Φλ : X Ñ R, Φλpuq :“ Lpuq ´ λJpuq, λ P r1, 2s,

such that

pA1q Φλ maps bounded sets to bounded sets uniformly for λ P r1, 2s, and Φλp´uq “
Φλpuq for every pλ, uq P r1, 2s ˆ X.

pA2q Jpuq ě 0 for every u P X; Lpuq Ñ 8 or Jpuq Ñ 8 as }u} Ñ 8.

pA3q For every λ P r1, 2s, Φλ is τ-upper semicontinuous and Φ1
λ is weakly se-

quentially continuous.

Let Γkpλq be the class of maps γ : Bk Ñ X such that

(a) γ is odd and τ´continuous, and γ|BBk
“ id,

(b) every u P intpBkq has a τ´neighborhood Nu in Yk such that pid ´ γqpNu X
intpBkqq is contained in a finite-dimensional subspace of X,

(c) Φλpγpuqq ď Φλpuq @u P Bk.

If there are 0 ă rk ă ρk such that

bkpλq :“ inf
uPZk

}u}“rk

Φλpuq ě akpλq :“ sup
uPYk

}u}“ρk

Φλpuq, @λ P r1, 2s,

then

ckpλq :“ inf
γPΓkpλq

sup
uPBk

Φλ

`
γpuq

˘
ě bkpλq, @λ P r1, 2s.

Moreover, for a.e λ P r1, 2s there exists a sequence pun
k pλqqn Ă X such that

sup
n

}un
kpλq} ă 8, Φ1

λpun
k pλqq Ñ 0 and Φλpun

k pλqq Ñ ckpλq as n Ñ 8.
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3. Proof of the main result

Throughout this section we assume that pH1q ´ pH5q hold.
We define

X “ E, Y “ E´ Z “ E`, P “ P´ and Q “ P`,

where E “ Es ˆ Et, E˘ and P˘ are define in section 2 above. The functional Φ
in (4) then reads

Φpu, vq “ 1

2
}Qpu, vq}2sˆt ´ 1

2
}P pu, vq}2sˆt ´

ż

Ω

´
F px, uq ` Gpx, vq

¯
dx, (5)

@pu, vq P X.

Let the family of functionals
 
Φλ : X Ñ R ; λ P r1, 2s

(
defined by

Φλpu, vq “ 1

2
}Qpu, vq}2sˆt ´ λ

”1
2

}P pu, vq}2sˆt `
ż

Ω

´
F px, uq ` Gpx, vq

¯
dx

ı
. (6)

A standard argument shows that:

Lemma 6. The conditions pA1q and pA2q of Theorem 5 are satisfied, with

Lpu, vq “ 1

2
}Qpu, vq}2sˆt, Jpu, vq “ 1

2
}P pu, vq}2sˆt `

ż

Ω

´
F px, uq ` Gpx, vq

¯
dx.

Moreover, Φ1
λ is given by

〈

Φ1
λpu, vq, ph, kq

〉

“
〈

Qpu, vq, ph, kq
〉

sˆt

´ λ
”
〈

P pu, vq, ph, kq
〉

sˆt
`
ż

Ω

´
hfpx, uq ` kgpx, vq

¯
dx

ı
, (7)

@pu, vq, ph, kq P X.

We first show that condition pA3q of Theorem 5 is satisfied.

Lemma 7. For every λ P r1, 2s, Φλ is τ´upper semicontinous and Φ1
λ is weakly

sequentially continuous.

Proof. (1) Let pun, vnq τÑ pu, vq in X and Φλpun, vnq ě C P R. It follows from
the definition of τ that pQpun, vnqqn is bounded. Since F,G ě 0, we deduce
from the inequality Φλpun, vnq ě C that pP pun, vnqqn is also bounded.
Hence, up to a subsequence pun, vnq á pu, vq in X and pun, vnq Ñ pu, vq
a.e. in Ω. It follows from Fatou’s lemma and the weakly semicontinuity of
the norm that C ď Φλpu, vq. Hence, Φλ is τ´upper semicontinous.

(2) Assume that pun, vnq á pu, vq in X “ Es ˆ Et. By (1) and Lemma 3, the
inclusion X ãÑ LppΩq ˆ LqpΩq is compact. Therefore, pun, vnq á pu, vq in
LppΩq ˆ LqpΩq. A standard argument based on the Hölder inequality and
Theorem A.2 in [18] shows that

〈

Φ1
λpun, vnq, ph, kq

〉

Ñ
〈

Φ1
λpu, vq, ph, kq

〉

for
all ph, kq P X . Hence, Φ1

λ is weakly sequentially continuous.
�

We recall that

Y “
 

pu,´As´tuq
ˇ̌
u P Es

(
and Z “

 
pu,As´tuq

ˇ̌
u P Es

(
.
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Let pajqjě0 be an orthonormal basis of Es. Then pAs´tajqjě0 is an orthonormal
basis of Et. We define an orthonormal basis pejqjě0 of Z by setting

ej :“
1?
2

`
aj , A

s´taj
˘
.

Let
Yk “ Y ‘

`
‘k

j“0 Rej
˘

and Zk “ ‘8
j“kRej .

Lemma 8. There exist pλnqně0 Ă r1, 2s and pun
k , v

n
k qně0 Ă Xzt0u such that

λn Ñ 1, Φ1
λn

pun
k , v

n
k q “ 0 and Φλn

pun
k , v

n
k q “ ckpλnq

for k big enough.

Proof. pH3q implies that for every δ ą 0 there is Cδ ą 0 such that

F px, uq ě δ|u|2 ´ Cδ and Gpx, uq ě δ|u|2 ´ Cδ, @px, uq. (8)

Let z P Yk. Then z “
`
u,As´tu

˘
`
`
v,´As´tv

˘
, where v P Es and u P Es

k :“
‘k

j“0Raj . By (6) we have

Φλpzq “ }u}2s ´ λ}v}2s ´ λ

ż

Ω

´
F px, u ` vq ` Gpx,As´tpu ´ vqq

¯
dx

ď }u}2s ´ }v}2s ´
ż

Ω

´
F px, u ` vq ` Gpx,As´tpu ´ vqq

¯
dx psince λ ě 1q

ď }u}2s ´ }v}2s ´ δ
`
|u ` v|22 ` |As´tpu ´ vq|22

˘
` 2Cδ|Ω| pin view of (8)q

ď }u}2s ´ }v}2s ´ Cδ
`
|u ` v|22 ` |u ´ v|22

˘
` 2Cδ|Ω| psince Es´t

ãÑ L2pΩqq
“ }u}2s ´ }v}2s ´ 2Cδ

`
|u|22 ` |v|22

˘
` 2Cδ|Ω| pby the parallelogram identityq.

Since all the norms are equivalent on the finite-dimensional subspace Es
k, there is

a constant c1 ą 0 such that c1}u}s ď |u|2. Hence
Φλpzq ď p1 ´ c2δq}u}2s ´ }v}2s ´ 2Cδ|Ω|.

Choose δ ą 1
c2
. Hence Φλpzq Ñ ´8 uniformly in λ P r1, 2s as }z}sˆt Ñ 8, and

consequently akpλq ă 0 for ρk big enough.

Let z P Zk. Then z “ pu,As´tuq with u P ‘8
j“kRaj , and

Φλpzq “ 1

2
}z}2sˆt ´ λ

ż

Ω

´
F px, uq ` Gpx,As´tuq

¯
dx

ě 1

2
}z}2sˆt ´ 2

ż

Ω

´
F px, uq ` Gpx,As´tuq

¯
dx psince λ ď 2q.

By pH1q there is a constant C1 ą 0 such that

|F px, uq| ď C1p1 ` |u|pq and |Gpx,As´tuq| ď C1p1 ` |As´tu|qq.
Hence

Φλpzq ě }u}2s ´ 2C1|u|pp ´ 2C1|As´tu|qq ´ 4C1|Ω|.
We define

β1,k :“ sup
uP‘8

j“k
Raj

}u}s“1

|u|p, β2,k :“ sup
vP‘8

j“k
RpAs´tajq

}v}t“1

|v|q,

and βk “ max
 
β1,k;β2,k

(
.

Then
Φλpzq ě }u}2s ´ 2C1β

p
k}u}ps ´ 2C1β

q
k}u}qs ´ 4C1|Ω|.
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We assume without loss of generality that q ď p and we set

rk :“
`
C1pβ

p
k

˘ 1

2´p .

Then for }z}sˆt “
?
2}u}s “ rk we have

Φλpzq ě rbk :“ Kβ
2p

2´p

k

”´1
4

´ 1

pp
?
2qp

¯
´ Aβ

2pq´pq
2´p

k

ı
´ 4C1|Ω|, (9)

where K,A ą 0 are constant.
By using the argument in the proof of Lemma 3.8 in [18], we easily show that

β1,k Ñ 0 and β2,k Ñ 0 as k Ñ 8. This implies that rbk Ñ 8 and Φλpzq Ñ 8
uniformly in λ P r1, 2s, as k Ñ 8, whenever }z}sˆt “ rk. Hence bkpλq ě rbk ą 0 for
k big enough.

By Theorem 5, ckpλq ě bkpλq and for a.e. λ P r1, 2s there exists znk pλq “
pun

k pλq, vnk pλqq P X such that

sup
n

}znk pλq}sˆt ă 8, Φλpznk pλqq Ñ ckpλq and Φ1
λpznk pλqq Ñ 0, as n Ñ 8,

for k big enough.
Now a standard argument shows that pznk pλqqn has a convergent subsequence.
Therefore, there exists pukpλq, vkpλqq P X such that Φ1

λpukpλq, vkpλqq “ 0 and
Φλpukpλq, vkpλqq “ ckpλq. It is then easy to conclude. �

Next we will show that the sequence pun
k , v

n
k qn above is bounded. The following

technical lemma will be very helpful.

Lemma 9. Let λ P r1, 2s. if zλ ‰ 0 and Φ1
λpzλq “ 0, then Φλpzλ ` wq ď Φλpzλq

for every w P Zλ :“
 
rzλ ` θ | r ě ´1, θ P Y

(
.

Proof. Let zλ “ puλ, vλq and w “ rzλ ` θ, where r ě ´1 and θ “ pθ1, θ2q P Y .
A direct calculation gives

Φλpzλ ` wq ´ Φpzλq “ ´λ

2
}θ}2sˆt ` r

` r
2

` 1
˘
}Qzλ}2sˆt

´ λ
”
r
`r
2

` 1
˘
}Pzλ}2sˆt ` p1 ` rq

〈

Pzλ, θ
〉

sˆt

ı

´ λ

ż

Ω

´
F
`
x, p1 ` rquλ ` θ1

˘
´ F px, uλq

¯
dx

´ λ

ż

Ω

´
G
`
x, p1 ` rqvλ ` θ2

˘
´ Gpx, vλq

¯
dx.

Now
〈

φ1
λpzλq, r

`
r
2

` 1
˘
zλ ` p1 ` rqθ

〉

“ 0 implies

r
` r
2

` 1
˘
}Qzλ}2sˆt ´ λ

”
r
`r
2

` 1
˘
}Pzλ}2sˆt ` p1 ` rq

〈

Pzλ, θ
〉

sˆt

ı
“

λ

ż

Ω

”`
p1 ` rquλ ` θ1

˘
fpx, uλq `

`
p1 ` rqvλ ` θ2

˘
gpx, vλq

ı
dx.
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Hence

Φλpzλ ` wq ´ Φpλq “ ´λ

2
}θ}2sˆt

` λ

ż

Ω

”`
p1 ` rquλ ` θ1

˘
fpx, uλq ` F px, uλq ´ F

`
x, p1 ` rquλ ` θ1

˘ı
dx

` λ

ż

Ω

”`
p1 ` rqvλ ` θ2

˘
gpx, vλq ` Gpx, vλq ´ G

`
x, p1 ` rqvλ ` θ2

˘ı
dx.

Following Liu [11], we define for an arbitrary ε ą 0,

fεpx, uq “ fpx, uq ` εu3 and gεpx, uq “ gpx, uq ` εu3, @px, uq P Ω ˆ R.

Using pH4q, one easily verifies that the mappings u ÞÑ fεpx, uq{|u| and u ÞÑ
gεpx, uq{|u| are strictly increasing in Rzt0u. It then follows from Lemma 2.2 in
[16] that

`
p1 ` rquλ ` θ1

˘
fεpx, uλq ` Fεpx, uλq ´ Fε

`
x, p1 ` rquλ ` θ1

˘
ă 0,

`
p1 ` rqvλ ` θ2

˘
gεpx, vλq ` Gεpx, vλq ´ Gε

`
x, p1 ` rqvλ ` θ2

˘
ă 0,

where Fε and Gε are the primitives of fε and gε respectively.
Letting ε Ñ 0, we get

`
p1 ` rquλ ` θ1

˘
fpx, uλq ` F px, uλq ´ F

`
x, p1 ` rquλ ` θ1

˘
ď 0,

`
p1 ` rqvλ ` θ2

˘
gpx, vλq ` Gpx, vλq ´ G

`
x, p1 ` rqvλ ` θ2

˘
ď 0.

This completes the proof of the lemma. �

Lemma 10. The sequence
`
znk “ pun

k , v
n
k q
˘
n
obtained in Lemma 8 is bounded.

Proof. We argue by contradiction.
Assume that pznk qn is unbounded. Then, up to a subsequence }znk }sˆt Ñ 8, as
n Ñ 8. Let wn

k “ psnk , tnk q “ znk {}znk }sˆt. Up to a subsequence we may suppose
that wn

k á wk “ psk, tkq in X and wn
k Ñ wk “ psk, tkq a.e..

If wk ‰ 0, that is, if sk ‰ 0 or tk ‰ 0, then |snk |}znk }sˆt Ñ 8 or |tnk |}znk }sˆt Ñ 8 as
n Ñ 8. Now for k large enough we have

0 ă ckpλnq
}znk }2sˆt

“ Φλn
pznk q

}znk }2sˆt

ď 1

2
}Qwn

k }2sˆt ´ 1

2
}Pwn

k }2sˆt

´
ż

Ω

F px, }znk }sˆtq
|snk }znk }sˆt|2

|snk |2dx ´
ż

Ω

Gpx, }znk }sˆtq
|tnk }znk }sˆt|2

|tnk |2dx.

We then obtain, by using pH3q and Fatou’s lemma the contradiction 0 ď ´8.
Hence wk “ 0. Since Φλn

pznk q ą 0 and F,G ě 0, we have that }Qwn
k }sˆt ě

}Pwn
k }sˆt. It is then clear by definition of wn

k that we cannot have }Qwn
k }sˆt Ñ 0,

as n Ñ 8. Hence, there is a constant α ą 0 such that }Qwn
k }sˆt ě α up to a

subsequence. By Lemma 9, we have for every r ą 0

ckp2q ě ckpλnq “ Φλn
pznk q ě Φλn

prQwn
k q ě 1

2
α2r2

´ λn

ż

Ω

´
F px, rQ1w

n
k q ` Gpx, rQ2w

n
k q
¯
dx, p‹q

where Qwn
k “

`
Q1w

n
k , Q2w

n
k

˘
.

Now, by Lemma 3, Qwn
k Ñ 0 in LppΩq ˆ LqpΩq, as n Ñ 8. It follows from pH1q
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and Theorem A.2 in [18] that F px, rQ1w
n
k q Ñ 0 and Gpx, rQ2w

n
k q Ñ 0 in L1pΩq.

By taking the limit n Ñ 8 in p‹q we obtain

ckp2q ě 1

2
α2r2, @r ą 0.

This gives a contradiction if we fix k and let r Ñ 8.
Consequently, the sequence pzknqn is bounded. �

We can now prove Theorem 2.

Proof of Theorem 2. We consider the sequence pzkn “ puk
n, v

k
nqqn above. The rela-

tion
〈

Φ1pun
k , v

n
k q ´ Φ1

λn
pun

k , v
n
k q, ph, kq

〉

“ pλn ´ 1q
“〈
P pun

k , v
n
k q, ph, kq

〉

sˆt

`
ż

Ω

`
hfpx, un

kq ` kgpx, vnk q
˘
dx

‰

implies that
lim
nÑ8

Φ1pun
k , v

n
k q “ lim

nÑ8
Φ1

λn
pun

k , v
n
k q “ 0.

Now, since pckpλnqqn is nondecreasing and bounded from above, there exists αk ě
ckp2q such that ckpλnq Ñ αk as n Ñ 8. It follows from the equality

Φpun
k , v

n
k q ´ Φλn

pun
k , v

n
k q “ pλn ´ 1q

”1
2

}P pun
k , v

n
k q}2sˆt `

ż

Ω

`
F px, un

k q ` Gpx, vnk q
˘
dx

ı

that
lim
nÑ8

Φpun
k , v

n
k q “ lim

nÑ8
Φλn

pun
k , v

n
k q “ lim

nÑ8
ckpλnq “ αk.

By repeating the argument in the proof of Lemma 8, we see that there exists
puk, vkq P X such that Φ1puk, vkq “ 0 and Φpuk, vkq “ αk. But since αk ě ckp2q ě
bkp2q ě rbk Ñ 8, as k Ñ 8

`
where rbk is defined in (9)

˘
, the proof is completed. �

4. A semilinear elliptic problem

In this section, we consider the semilinear elliptic problem"
´∆u ´ µu “ fpx, uq, x P Ω,
u “ 0, on BΩ (10)

where µ is a real parameter. Let 0 ă µ1 ă µ2 ă µ3 ă ¨ ¨ ¨ be the eigenvalues of the
problem "

´∆u “ µu, in Ω,
u “ 0, on BΩ.

We have the following result.

Theorem 11. Assume that the following conditions are satisfied.

pf1q f P CpΩ ˆ Rq and there is a constant C ą 0 such that |fpx, uq| ď Cp1 `
|u|p´1q, for some 2 ă p ă 2‹, where 2‹ “ `8 if N “ 1, 2 and 2‹ “
2N{pN ´ 2q if N ě 3.

pf2q 1
2
ufpx, uq ě F px, uq ě 0, @px, uq.

pf3q F px, uq{u2 Ñ 8 uniformly in x as |u| Ñ 8.

pf4q u ÞÑ fpx, uq{|u| is increasing in p´8, 0q Y p0,`8q.
pf5q fpx,´uq “ ´fpx, uq for all px, uq.

If µk ă µ ă µk`1 for some k ě 1, then (10) has infinitely many pairs of solutions

˘uk such that |uk|8 Ñ 8 as k Ñ 8.
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Proof. By pf1q, the energy functional associated with (10) is defined on the Sobolev
space H1

0 pΩq by

Ψpuq “ 1

2

ż

Ω

`
|∇u|2 ´ µu2

˘
dx ´

ż

Ω

F px, uqdx.

By the Poincaré inequality, H1
0 pΩq is equipped with the inner product

〈

u, v
〉

0
“
ż

Ω

∇u∇vdx,

and the associated norm }u}20 “
〈

u, u
〉

0
.

Let e1, e2, e3, ¨ ¨ ¨ be the orthogonal eigenfunctions inH1
0 pΩq corresponding to µ1, µ2, µ3, ¨ ¨ ¨ .

If µk ă µ ă µk`1 for some k ě 1, then X “ H1
0 pΩq has the orthogonal decomposi-

tion X “ Y ‘ Z, where

Y “ spante1, e2, ¨ ¨ ¨ , eku and Z “ Y K.

Clearly, we can define an equivalent inner product in X with associated norm } ¨ }
such that ż

Ω

`
|∇u|2 ´ µu2

˘
dx “ 1

2
}Qu}2 ´ 1

2
}Pu}2,

where P : X Ñ Y and Q : X Ñ Z are the orthogonal projections.
The functional Ψ above then reads

Ψpuq “ 1

2
}Qu}2 ´ 1

2
}Pu}2 ´

ż

Ω

F px, uqdx.

Let

Ψλpuq “ 1

2
}Qu}2 ´ λ

”1
2

}Pu}2 `
ż

Ω

F px, uqdx
ı
, λ P r1, 2s.

Evidently, we can equipped pX, } ¨ }q with the τ´topology, and it is easy to check
that Ψλ is τ´upper semicontinuous and that Ψ1

λ is weakly sequentially continuous.
The rest of the proof uses an argument similar to that in the proof of Theorem 2,
which is now simplified since dimY ă 8. �

Remark 12. Theorem 11 extends Theorem 3.2 in [16], where the mapping u ÞÑ
fpx, uq{|u| was supposed to be strictly increasing in Rzt0u.
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