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Abstract. This paper discusses the infinite horizon stochastic Nash games with state-dependent noise. After establishing
the asymptotic structure along with the positive semidefiniteness for the solutions of the cross-coupled stochastic algebraic
Riccati equations (CSARESs), a new algorithm that combines Newton’s method with two fixed point algorithms for solving the
CSARES is derived. As a result, it is shown that the proposed algorithm attains quadratic convergence and the reduced-order
computations for sufficiently small parameter €. As another important feature, the high-order approximate strategy that is
based on the iterative solutions is proposed. Using such strategy, the degradation of the cost functional is investigated. Finally,
in order to demonstrate the efficiency of the proposed algorithms, computational examples are provided.
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1 Introduction

The stochastic control problems governed by Itd’s differential equation have become a popular research topic
in a past decade. Recently, stochastic H,, control problem with state- and control-dependent noise was
considered [1, 2]. It has attracted much attention and has been widely applied to various fields. Particularly,
the stochastic Ha/H, control with state-dependent noise has been addressed [3].

Recently, linear quadratic Nash games and their applications have been widely investigated in many
literatures. Particularly, the linear quadratic Nash games and related topics for weakly coupled large-scale
systems have been discussed in [6, 7, 8, 9]. These results are based on the deterministic systems. However,
to the best of our knowledge, no results have been obtained for stochastic Nash games with state-dependent
noise.

In this paper, the stochastic Nash games for weakly coupled large-scale systems governed by It6 differential
equations with state-dependent noise are addressed as an extension of the existing result of [6, 7]. Specifically,
this paper focuses on the development of the numerical algorithm for solving the cross-coupled stochastic
algebraic Riccati equations (CSAREs). First, 2-player stochastic Nash games are formulated by applying
the results of stochastic linear quadratic control problems [3, 4] for the first time. It should be noted that
although the stochastic games for weakly coupled large-scale systems have been studied in [5], the state-
dependent noise has not been considered. Moreover, it may be noted that the considered CSAREs is quite
different from the existing results in [6, 7] in the sense that the CSAREs have the additional linear equations.
Thus, these terms would result in the complication for the analysis of the existence of the solutions. Second,
in order to choose the appropriate initial conditions, the uniqueness and boundedness of the solution to the
CSARESs and their asymptotic structure are investigated. After establishing these properties of the solutions,
the numerical algorithm that is based on Newton’s method is considered. The quadratic convergence and the
local uniqueness of the solutions are proved for sufficiently small parameter ¢ via the Newton-Kantorovich
theorem [10]. Additionally, in order to overcome the computation of large dimensional matrix that arises
in Newton’s method, two fixed point algorithms are combined. As another important feature, the high-
order approximate strategy set that is based on the iterative solutions is proposed. As a result, the better
performance is attained. Finally, in order to demonstrate the efficiency of the algorithm, computational
examples are included.

This work was supported in part by the Research Foundation for the Electrotechnology of Chubu (REFEC) and a Grant-
in-Aid for Young Scientists Research (B)-18700013 from the Ministry of Education, Culture, Sports, Science and Technology of
Japan.



Notation: The notations used in this paper are fairly standard. The superscript 7' denotes the matrix
transpose. I, denotes the n x n identity matrix. block diag denotes the block diagonal matrix. |- | denotes
its Euclidean norm for a matrix. F denotes the expectation. ® denotes the Kronecker product. vecM
denotes the column vector of the matrix M.

2 Stochastic Nash Games

Consider stochastic linear time-invariant weakly coupled large-scale systems.

N
d(t) = [Acx(t) + Brou (t) + Bacun(t)]dt + Y Ape(t)dwy(t), 2(0) = 2°, (1)

p=1

where

2(t) = [ z1(t) ], A= [ A €A } LAy = { Apin - €Apio ]’ By, = [ Bn ] By = [ eBi2 } '

wo(t) gAa A eApar  Apzo €Ba1 B2
x;(t) € R™ are the state vectors, u;(t) € R™, i =1, 2 are the control inputs. w,(t) € R, p=1, ... ,N to
be one-dimensional standard Wiener process is defined on the filtered probability space [1, 2, 3, 4]. Without
loss of generality, it is assumed that w;(t), w;(t) are mutually independent for all 4, j = 1, ... ,N and
Elw(t)w? (t)] = Iy, where w(t) := [ wi(t) - wn(t) ]T. ¢ denotes a relatively small positive coupling

parameter that connects the linear system with other subsystems.
The cost functional for each strategy subset is defined by

Ji(ur, us, 2(0)) = E / h [xT(t)QiEx(t) + ol (t)Riiui(t)+5u;‘-F(t)Rijuj(t)}dt, 2)
0
where i, j =1, 2, i #j,

0. = QT = [ Qi1 Q2 } >0, Qo = QL — [ eQo11 Q212 } >0,

ool eQl, €Qia22 eQly  Qa22

Ry = RZ; >0e R™XMi Rij = RZ; >0e€ R™XMi,
The stabilizability, which is an essential assumption in this paper is introduced [3, 4].

Definition 1 The stochastic controlled system governed by Ité equation is called stabilizable, if there exist the
feedback laws such that the closed-loop system is asymptotically mean square stable, i.e., lim; o, Ex? (t)x(t) =
0.

For the matrices A., Bi., @ = 1, ... ,M, Ay, p = 1, ... N, the set Fps is defined by Fp :=

{(Fla, . yFre) | The closed-loop system dxz(t) = [Ac + Zf\il B Ficlz(t)dt + Z;V:l Apex(t)dw,y(t) is

asymptotically mean square stable.

In the sequel, the following assumption is introduced [1].

Assumption 1 There ezists a matriz Fy, € R™X", i 1= ny +ng such that A, + B1.Fi. + Ba. Fo. is a stable
matriz with | exp[(Ae + BiFie + Bo.Fo )t]| < ae P, 3 o, >0 and o?/3 Z;V:l |Ape]® < v < 2/(N+1).

Assumption 1 implies that the system

N
dr(t) = [Ac + BicFic + Bac Facla(t)dt + ) Apex(t)duwy(t) (3)

p=1



is exponentially mean square stable. Indeed, using the representation of the solution of equation (3) in the
form

z(t) = exp[(Aec + BicFie + Bac I )(t — 5)]x(0)

N t
=+ Zl‘/6 exp[(Ag + Bi.Fie + BQSFQS)(t — T)]Apex(T)dwp(T) (4)

and the independence of the Wiener processes wj(t) results in
Elz(t)[* < (N + 1) exp[(Ac + BicFic + BocFac)(t — s)]|*E|2(0)[

N t
+HN+DY / lexp[(Az + BieFie + BocFao)(t — D)2 Ape|Ela(r) . (5)
p=17%

Thus, the conditions | exp[(Ac + BicFic + Boc Fo)t]| < ae P, I o, 3> 0 and o2/ 25:1 |4pe|? < v imply
that

t
I Bla(t)]? < (N + 1)a” Bz (0)]* + (N + 1)6@/ 2T Bla(r)|dr. (6)

S

From the Bellman-Gronwall inequality [11], it follows that
Elz(t)]* < 207 E|a(0) |2 (VFo—20=), (7)

Since v has been chosen such that v < 2/(N 4+ 1), then equation (3) is exponentially mean square stable.
The stochastic Nash equilibrium strategy pair (Fy., F3.) is defined as satisfying the following condi-
tions.

Ji(Frea(t), Fox(t), x(0)) < Ji(Fiea(t), Fooa(t), 2(0)), (8a)
Jo(Fiea(t), Fox(t), x(0)) < Jo(Froa(t), Faex(t), z(0)), (8b)

where
'U/Z(t) = Figx(t)7 1= 1, 2, (9)

for all 2(0) and for all (Fi., Fa.) that satisfy (F}., Fa.) € Fa, (Fie, Fy.) € Fo, and (Fy., Fy.) € Fo.
It should be noted that the systems governed by It6 differential equations are disturbed by deterministic
noise and the strategy spaces are of the static linear feedback form.

2.1 One-Player Case

First, one-player case is discussed. The result obtained for that particular case will be the basis for the
derivation of results for 2-player case.
Consider a linear time-invariant stochastic stabilizable system

N
dx(t) = [Aca(t) + Breus ()]dt + Y Apea(t)dwy(t), 2(0) = 2°, (10)

p=1

where uq(t) := Fiex(t), F1. € F1. The cost functional is given below.

J(uy, 2(0)) —E/OOO [xT(t)lex(t) +u1T(t)R11u1(t)]dt. (11)



Theorem 1 Assume that for any uy(t), the closed-loop system is asymptotically mean square stable. Suppose
that the following stochastic algebraic Riccati equation (SARE) has a solution P. > 0.

N
P.A. + AZPS + ZAZ; PSA;DS — P.S1. P+ Q1 =0, (12)

15
p=1

where Sz 1= BlsRﬁlBﬂ.
The strategy that minimizes the cost functional (11) is given below.

ui(t) = Fi.a(t) = —Ryy Bi_Pa(t). (13)

Proof : Since the assumption that for any u;(¢), the closed-loop system is asymptotically mean square stable,
lim; o, Bz (t)x(t) = 0. Thus, applying It6’s formula to (10) and considering (12) results in

J(uy, 2(0)) = 27 (0)P.z(0) + E/OOo [ (t) — uf(t)”%lldt > 27(0)P.x(0). (14)
Hence,

J(uy, x(0)) > J(u}, x(0)) =z (0)P.x(0). (15)
This is the desired result. B

2.2 Stochastic Nash Equilibrium Strategies
The solution of the stochastic Nash games is given below.

Theorem 2 Suppose that there exist the real symmetric matrices P;c such that

N
gi(sy P157 PQE) = P)z (As - Sjepj ) + (AE - SjerE)T Pia + ZAZEPiEApe

p=1
—PicSic Pie + P Sije Pie + Qic =0, (16)
where i, j =1, 2,i #j, Sic := BieR;;' BL, Sije := Bje R ' Rij R} ' B
Define the strategy pair (Fy., Fy.) by
ui(t) := Fjix(t) = —R;;' BLPx(t), i =1, 2. (17)

Then, (Fy., F5.) € Fy and this strategy set is a stochastic Nash equilibrium. Furthermore, the minimal value
of cost functional satisfies J;(Fy., Fs., z(0)) = 2T (0)P;z(0).

Proof : Now let us consider the following problem that the cost functional (18) is minimal at F;. = F}t.

p(F.):=F / 2" (t)(Qic + FiLRiiFic + ePLSi; Pjc)x(t)dt, (18)
0
where z(t) follows from
N
dz(t) = (Ae — SjePje + BiFic)x(t)dt + ZApgx(t)dwp(t), x(0)=2% 4, j=1, 2, i #j. (19)
p=1

Note that the function ¢ coincides with the cost functional J(uy, 2(0)) in Theorem 1. Applying Theorem 1
to this minimization problem as

A — Sjspjs = A, Bic = By, Qis +5Pj7;5ijpjs = lev Ry = R
yields the fact that the function ¢ is minimal at

Fj. = —R;'BLP. = —R;'BLP,. = F}

(25N

(20)

Moreover, the minimal value is equal to 27 (0)P;.z(0). W



3 Asymptotic Structure of the CSAREs

Firstly, in order to obtain the strategy set that is based on the numerical solutions, the asymptotic structure

of the CSAREs (16) is established. Since A., A,., Sic and S;;c include the term of the parameter ¢, the

solution P;. of the CSAREs (16), if it exists, must contain the parameter e. Taking this fact into account,

the solution P;. of the CSAREs (16) with the following structure is considered.
P11 ePiia ePo11 P12

P = . Py = . 21

le |: EPEQ EP122 2 EPQ’IiQ P222 ( )

Substituting the matrices A., Ai., Sic, Sije, Qic and P, into the CSARESs (16), letting e = 0, and partitioning
the CSARESs (16), the following reduced-order stochastic algebraic Riccati equation (SARE) are obtained,
where P;;;, i =1, 2 be the 0-order solutions of the CSAREs (16) as ¢ = 0.

N
PiiiAii + Al Pysi + Z AL Piii Apii — Pii Sii Pisi + Qi = 0, i =1, 2, (22)
p=1

where S“ = B”R,ZlB;l;
The following condition is assumed.

Assumption 2 (A;;, B;;) is stabilizable, (\/Q,;;, Ai;) is observable, and

inf < 1.

it

oo N
/ exp[(Ai; — BiiKii) " 1] (Z A;iApii> exp[(Ai — Bii Ki)t]dt
0

p=1

If the above assumption holds, there exists the unique positive definite stabilizing solution P;;; > 0 of the
SARE (22) such that D” = A“ - S”B“ is stable.
The asymptotic expansion of the CSAREs (16) at £ = 0 is described by the following theorem.

Theorem 3 Under Assumption 2, there exists the small constant o* such that for all e € (0, o*) the
CSARFEs (16) admits a positive semidefinite solution P that can be written as

where
P, =block diag ( P O ) , P,=block diag( 0 P ) .

Proof : The proof can be done by using the implicit function theorem to the CSAREs (16). To do so, it
is enough to show that the corresponding Jacobian is nonsingular at € = 0. The derivative of the function
Gi(e, Pic, P5.) at the matrix P;. is given by

0
Jii = mVngi(& Plev PQs)T
N
= (Ag - Slspls - 526P26)T @ In+ I ® (As - Slspls - S25P2E)T + ZAZ; ® Ag‘w (2484)
p=1
0
Jij = OvecP; Vngi(E’ Plsa PQs)T = _(Sjspis - €Sijspj5)T ® Iﬁ - Iﬁ & (Sjst’s — ESijEPjE)T.(24b)
je

Using the fact that S;.P;. = O(e), after some algebra, the Jacobian of the CSAREs (16) in the limit as
€ — 40 is given by

Jitle=0  Ji2]e=0 } [ Jo 0 ]
J= = , 25
Jotle=0  Ja2|c=0 0 Jo (25)



where

N
Jo=D"® L + D" + Y Al  © AL,
p=1
D := block diag( D11 D22 ) y ApO := block diag ( Apll Apgg ) .
Obviously, D1; and Dss are nonsingular under Assumption 2. Thus, detJ # 0, i.e., J is nonsingular at
€ = 0. The conclusion of Theorem 3 is obtained directly by using the implicit function theorem. On the

other hand, taking into account the fact that Pj; is the positive semidefinite matrix, for sufficiently small
parameter €, P;. is also the positive semidefinite solution. l

4 Newton’s Method

In order to obtain the solution of CSAREs (16), the following useful algorithm is given.

€

T
PED (4, = 51PE — 50 PP) + (A = 51 P - 8,.PP) " P

N
Y A P A PSP PSP P Sy Y 1 P S P
p=1

+P 8, PP 4 PR g, PH) 4 PW g, P®) _ cpP 5, P 4 Q). =0, (26a)
T
P2(§+1) (As - Slspl(g) - 526P2(§)) + (As - Slspl(f) - SQEP2(5)> P2(f+1)

N
+ > Ape Py Ay — PV SLPY - PSP 4+ ePET S P+ P S PETY
p=1

+P0 81 P + PSP + PRS0 PY — ePD S PLY + Qe = 0, (26D)

with the initial conditions
o _
PO =P, (27)

The following theorem indicates that the proposed algorithm (26) that is based on the Newton’s method
attains the quadratic convergence.

Theorem 4 Under Assumption 2, there exists the small constant & such that for alle € (0, &), & < o*, the

iterative algorithm (26) converges to the exact solution of P with the rate of the quadratic convergence, where
Pi(sk) is positive semidefinite matriz. Moreover, the convergence solutions attain a local unique solution P

of the CSAREs (16) in the neighborhood of the initial condition Pi(go) = P;. That is, the following conditions
are satisfied.

HPi(sk) - P = O(EQk)7 t=1,2, k=0,1, ... (28)

Proof. The proof is given directly by applying the Newton-Kantorovich theorem [10] for the CSAREs (16).
It is immediately obtained from the CSAREs (16) that there exists a positive scalar  such that for any P2
and P’
||Vg(6, Plaav P2ae) - Vg(zf, P1bs7 Pga)”
< 7”([VeCP1a€}T7 [VeCPQGE]T)_([VeCPIbE]T7 [VeCPQbE]T)H’
T
where G:=[ Gi G2 | and v := 6(|S1c]| + |S2c]) + 2e(| S12¢] + [ S21c])-
Moreover, it is easy to verify that VG(e, Pl(g), Pz(g)) =VG(0, P, P,)=J+0(e) is nonsingular because
for small €, using (23) and J is also nonsingular. Therefore, there exists 3 such that 8 = |[[VG (e, P1, P2)]71|.



On the other hand, since |G(e, P, P,)| = O(e), there exists 7 such that n = |[VG(e, P, P»)]7} -
IG(e, P1, P2)| = O(¢). Thus, there exists 6 such that § = Bny < 27! because = O(g). Finally, the
Newton-Kantorovich theorem results in the desired results (28).

Second, the local uniqueness of the solution is discussed. Now, let us define t* = [1 — /1 — 20]/(~f).

Clearly, S ={ Pi. : |Pi —Pi(so) | <t*}isin the certain convex set D. In the sequel, since | P, —Pi(so) | =0(e)

holds for a small €, the local uniqueness of P;. is guaranteed in the neighbourhood of ¢ = 0 for a subset S

by applying the Newton-Kantorovich theorem. H

5 A Numerical Algorithm for Solving the CSALE

When the cross-coupled stochastic algebraic Lyapunov equation (CSALE) (26) is solved, the existence of the
cross-coupled term in CSALE (26) makes it difficult to solve this equation directly. Thus, in order to avoid
the cross-coupled term, a new decoupling algorithm that is based on the fixed-point algorithm is established.
Taking into account the fact that SjEPi(Ek) = O(e), i # j, let us consider CSALE (29) in its general form.

N
XisAis + A;J;Xzs + ZAstisAps + E(stq)je + (I)]Tngs) + Uis = 07 i, ] = 17 27 { 7& jv (29)

p=1
where

Xy = X111 €Xq1o Xy, = eXo11 €Xor2
e €X1T12 eX129 |’ € €X§12 X222

A — N1 elMire . D11 ePin
L eNior Moo |7 T [ €D Pioo

Ur Ui eUri2 Uy el U2
le - (:?UﬂQ 5U122 ’ 2e €U2712 U222 ’

It should be noted that

]Di(gk+1) = Xisa As - Slspl(f) - SQEPQ(S) + Mispi(gk) = Aisa
—Sing(:) + ESjigpiEk) = E‘I)is,
B(sk)sjfpj(:) + Pj(f)SjEPi(sk) + Pz‘(sk)sispi(sk) o EPJ‘(;C)SMEPJ'(:) o ‘Pi(sk)MiEPi(sk) + Qic = Use,

where = represents the replacement.
Without loss of generality, the following condition is assumed for CSALE (29).

Assumption 3 (A, A1), i =1, 2 are stable.

Algorithm (30) for solving CSALE (29) is given as follows:

N
XU + AZXTD 457 A, X Ape 4 e(X0 @5 + @LX ) + Ui = 0, (30)
p=1
i, j=12i#j,n=01, ..,
where Xi(g) =0.
It should be noted that the numerical computation of (30) can be carried out independently for each
solution. The following theorem indicates the convergence of algorithm (30).

Theorem 5 Under Assumption 3, the fized-point algorithm (30) converges to an exact solution X;. with a
rate of

”Xz(en) —Xie|=0(e"), n=1, 2, ... (31)



In order to prove Theorem 5, the following Lemma will be used.

Lemma 1 If dz(t ) Az( )dt + ZN Apz(t)dw,(t) is exponentially mean-square stable and Q = QT > 0,
2T( f z(t)dt, where P satisfies the stochastic algebraic Lyapunov equation (SALE) :
ATP + PA + Zp:l AEPAp +Q=0.

Proof : The proof of Theorem 5 can be derived by using mathematical induction. When n = 0 for algorithm
(30), it is easy to verify that the first order approximations X;. corresponding to ¢ are X (a ). When n =
h, h > 2, it is assumed that

XM — X = 0. (32)

By subtracting (29) from (30) and substituting A into n, the following equations hold:
(Xz'(:+1) — Xio)Aie _,’_AT( (h+1) ZA h+1 )Ape

h h
e [(X - X;0)®;. + (X - Xja)] : (33)

Using the assumption (32), the following equations are satisfied:
(XD XA+ AT(XIY Z X)) Z AL (XIHY — X Ape = O(MHY). (34)

Hence, using Lemma 1, it is easy to verify that
(h+1
[X 2D = Xic] = 0(" ). (35)

Consequently, error equations (31) hold for all n € N. This completes the proof of Theorem 5. B

When CSALE (30) is solved, a large computational dimension 71 := n; + ng is required to be compared
with the small computational dimensions n;. Thus, in order to reduce the computational dimension, a
fixed-point algorithm can be applied again.

Let us consider the SALE (36) in the following general form.

Y.E. + ETY, +ZATYA,,6+HE:O, (36)
p=1

where

L By eEs L H,y eHys o Yi €Yo
EE._[EEgl E22:|7H€'_|:€H1T2 HQ :|7YE_[EY1€ YQ ]7

By, Ay € R Y, =Y >0 R" ™, H, = H ¢ R"*™ =1, 2.
It should be noted that for the SALE (36),
A, — S.PM = B, Ape = Ape, PSP 4+ Q= H, P = Y,

where = stands for the replacement.
Substituting Y; into the SALE (36), the following set of three linear equations (37) is satisfied.

E,1111Y1 —+ Y1E11 —+ 62 (Eglylg + Y12E21)

N
+ Z |:A;‘,;11Y1Ap11 + 62(A521Y2Ap21 + A§21Y1€Ap11 + A§11Y12Ap21) + H, = 0, (37&)
p=1
ET Y12+ Y1E2 + EJ\Ys + Yi2E5



N r
+ Z Al Y1 Apis + Al Yo Apoo + €2 Al Vi Apro + A§11Y12Ap22} + Hiz =0, (37b)
p=1"=
E3Ys + YaEs + €(Ey Y12 + Yi5 Erp)
N -
+ Z Ao Y2 Apaz + €% (A1 Y1 Ap1a + Al Y5 Apra + A§12Y12Ap22)] + Hy = 0. (37¢)
p=1*-

First, in order to guarantee the existence of the unique solution of the set of the SALE (37), the following
assumption is supposed.

Assumption 4 detF;; # 0, detFio # 0, where

pit

N
. T T T T .
Fi=Ef @I, +I,, @ Ef +> AL, ® AL, i=1, 2,
p=1

N
Fio:=Ep®In, + 1, @B, + > AL, ® AL,
p=1

It should be noted that the Assumption 4 is satisfied automatically for sufficiently small € because of
Assumption 2.

By considering the form of equation (37), the following algorithm in equation (38) to solve the SALE
(36) is given.

N
Ellel(mH) +Y1(m+1)E11 +ZAZ11Y1(W+1)AP11
p=1

N
e [EQTlY1(2m)T + Y1(2m)E21 + Z(Agmyé(m)Ap?l + A521Y1(2m)TAp11 + A511Y1(2m)Ap21)} + Hy = 0,(38a)

p=1

N
E§2Y2(m+1) + Y2(m+1)E22 + Z AZ22Y2(m+1)Ap22

p=1

N
+e? [Eszyl(gm) + YT B+ (ALY Ayis + ALY Ay + Agl2}q(27n)Ap22>:| + Hy = 0438Db)

p=1

N
ELYS Y 4 Y5 By + > AT Y Aoy + V"V By + By
p=1

N
+> [AZMYl(m“’Aplz + AT YD Apas + 2 AL YT Ao | + Hip = 0, (38¢)
p=1

v\ =0,i=1,2 v =0
The following theorem indicates the convergence of the algorithm in equation (38).

Theorem 6 Suppose that Assumption 4 is satisfied. There exists a small & such that for alle € (0, §), 0 <
&, the iterative algorithm in equation (38) converges to the exact solutions of Y; and Y1 with a rate equal to
that of linear convergence. Subsequently, the following equations hold.
[, —vi| = 0™, i=1, 2, (39a)
V™ — Vs = O(e¥™), m=1, 2, ... (39b)
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Proof: The proof of Theorem 6 can be done by mathematical induction. Subtracting equation (37) from
equation (38), the following equations (40) are obtained.

ET ™) 4yt 4 Z ATV 4,0,
p=1

+e [E21Y1(2m) ‘|‘Y( ' +Z Ajo Yy " )Ap21 +A§211~/1(2m)TAp11 +A$115~/1(2m)14p21>] =0, (40a)
p=1

EQQY(m+1) + Y(m+1)E + ZA£22Y m+1)A

p=1

N
+e [ET Yl(zm) + Y(M)TEH + Z(Agmf/l(m)Apm + A1{22Y1(2m) Ap1a + Ap12Y1(27n)Ap22)] =0, (40b)
p=1

Elly(m+1) Y(m+1)E2 +ZA1011 m+1)Ap22+}71(m+1)E12+E§~1}72(m+1)
p=1

N
+ [ TaV ) Ay + AT VD Ay + 2 AT, VST 41| =0, (40c)
p=1
where
v =y oy =1, 2, Y5 = v — v,
Setting k = 0, the following equations (41) hold.
N
EEY D 4 VB + 3 ALYV A+ 0(?) =0, i =1, 2. (41)
p=1
Hence, taking into account the nonsingularity of F;, ¢ =1, 2 and Fj2 and Lemma 1, ||Yi(1) —Y| =0(?) is
satisfied. Moreover, substituting these equations into equation (40c), ||Y1(21 ) Yi2| = O(e?) is also satisfied.
Thus, the relation holds true for & = 1. Assume that the relation is true for k = [ for some [ > 2.
X —vi| =0(*), i=1, 2, (42a)
|13 ~ Yia] = O(e™). (42b)
Using the above assumptions, it is not difficult to obtain (43).
N
ELVY 4 v E, 4 3 ALY A + 0 =0, i= 1, 2. (43)
After simplification, since Fj;, i = 1, 2 are nonsingular, HYi(lH) —Yi| = O(¢%+2) holds by using Lemma 1.
Similarly, substituting these equations into equation (40c), ||Y1(2l+1) —Yi2| = O(%%2) is also obtained. Thus,
the relation is also true for k = [ 4+ 1. Consequently, the error equation (39) holds for all k£ € N by using

mathematical induction. l
An algorithm which solves the CSAREs (16) with the small positive parameter ¢ is given below.

Step 1. Solve the SAREs (22) that is given as the initial conditions of the Newton’s method (26). It should
also be noted that the solutions of SAREs (22) can be obtained by applying the Newton’ method.

Step 2. In order to carry out the Newton’s method (26), apply the new proposed algorithm (30).

Step 3. In order to reduce the dimension of the workspace for solving the CSALFE (30), apply the new
proposed algorithm (38). As a result, the sequence of solution of the Newton’s method (26) is obtained.

Step 4. If the new combined algorithm converges, then Pj. is the solution of the CSAREs (16), STOP.
Otherwise, increment n — n + 1 and go to Step 2.



11

6 High-Order Approximate Stochastic Nash Strategies

The attention is focused on the design of the high-order approximate stochastic Nash strategies. Such
strategy is obtained by using the iterative solution (26).

WMty = —R;*BEPM (1), i =1, 2. (44)

€T 1€

The degradation of the cost functional via new high-order approximate stochastic Nash strategies (44) is
given as follows.

Theorem 7 Under Assumption 2, the use of the high-order approzimate stochastic Nash strategies (44)
results in (45)

T " 2(0) = Ji(uy, uh, 2(0) + 02, i=1, 2. (45)
Proof. When ugk)*(t) is used, the equilibrium values of the cost functional are
T, uf?”, 2(0) = 27 (0)Ziew(0), (46)
where Z;. is a positive semidefinite solution of the following SALE

N
Lie ( Sls 15 525 ) (A — Sla 15 525 25))T Zie + ZA;EZiEApg
p=1

+PP 5, PF 4 ePP 5 PP 4 Qi =0, 1, j=1,2 i# (47)

Subtracting (16) from (47), V. = Z;. — P;. satisfies the following SALE
Vi (4. — S — Sy PV A~ $.PW — g, pM) v, ALV Ape
i€ 15 15 2el9¢ + £ led ¢ 25 25 i€ +Z

+stSJs ( je — P(k)) + (Pjs - P(:)> Sjslgis
v (a@ —Pia) S, (P(k) ja )+ap Sije P —ePy. S, Py = 0. (48)

23

By using the result of (28), it is easy to verify that
Ve (Ac = 81 P = . PP + (A = $1.PY 525P2<§>) Vie + ZAT VieAye + O(e2+1) = 0. (49)

Therefore, Vi = 0(52k+1) because of Lemma 1. Hence

2(0)"Viex(0) = 2(0)7 Zicw(0) — 27 (0) Pex(0)
= Jiw", ", 2(0) — Jiup, uh, 2(0) = 0¥ H) (50)

results in (45). W

7 Computational Example

In order to demonstrate the efficiency of the proposed hybrid algorithm, a computational example is given.
The system matrices are given as follows.

0 1 —0.266 —0.009 0.0024 0 —0.087 0.002
275 —2.78 —1.36 —0.037 ~0.185 0 1.11 —0.011
N=1 4n = 0 0 0 1 » Arz = 0 0 0 0 '

—495 0 —55.5 —0.039 0.222 0 817 0.004
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1.7123¢ — 01 4.3365¢ — 03 7.1775¢ — 01  —1.7063e — 02
_ . _ __— 4.3365¢ — 03 2.6823¢ — 03  1.8830e — 02  4.3122¢ — 05
P1 = block diag ( P 0 ) v o= 7.1775¢ — 01  1.8830e — 02 8.0187 —4.4513e —02 |~
—1.7063¢ — 02 4.3122¢ — 05 —4.4513¢ — 02  1.4427e — 01
1.2736e — 01 1.5610e — 03  6.6965¢ — 01 —1.7821e — 02
- . - _—_— 1.5610e — 03  1.2588¢ — 03  8.5483¢ — 03 —1.170le — 04
Py = block diag ( 0 Py ), Pa = 6.6965¢ — 01  8.5483¢ — 03  1.2265e +01 —5.7345¢ — 02 |°
~1.7821e — 02 —1.170le — 04 —5.7345¢ —02  2.2051le — 01
1.7116e — 01  4.3347¢ — 03 7.1692¢ — 01 —1.6549¢ — 02  3.0879¢ — 04 —8.7559¢ — 07
4.3347¢ — 03 2.6822¢ — 03  1.8789¢ — 02  5.5618¢ — 05  2.7774e — 05  2.2816e — 07
7.1692¢ — 01  1.8789¢ — 02 7.9996 —4.4580e — 02  8.0812¢ — 03  4.9144e — 05
p) _ | —1.6549¢ =02  55618¢ — 05 —4.4580c —02  1.439le—01 58779 — 03  7.3899¢ — 05
e = 3.0879¢ — 04  2.7774e — 05  8.0812¢ — 03  5.8779% — 03  5.1657¢ — 04  6.3888¢ — 06
—8.7559¢ — 07 2.2816¢ — 07  4.9144e — 05  7.3899¢ — 05  6.3888¢ — 06  7.9906e — 08
~1.0598¢ — 02 1.1305¢ — 04 —2.0946e —02  1.0910e —01  9.1598¢ — 03  1.1510e — 04
~1.0024e — 02 —2.6288¢ — 04 —1.0992¢ —01  T7.9670c — 04 —1.9330c — 04 —9.4303e — 07
~1.0598¢ — 02 —1.0024¢ — 02
1.1305¢ — 04 —2.6288¢ — 04
—2.0946¢ — 02 —1.0992¢ — 01
1.0910e — 01 7.9670e — 04
9.1598¢ — 03 —1.9330e — 04 | °
1.1510e — 04  —9.4303e — 07
1.6808¢ — 01  3.1479¢ — 04
3.1479¢ — 04  3.0621e — 03
4.7354¢ — 04 1.2072¢ — 05  3.9670c — 03 —2.1963¢ — 04  1.4892¢ — 03  1.7818e — 05
1.2072¢ — 05  3.1989e — 07  1.0766e — 04 —2.8842¢ — 06  3.3793¢ — 05  4.3778e — 07
3.9670¢ — 03 1.0766e — 04  6.537le — 02 —4.8525¢ — 04 —2.3526e — 02 —2.8743¢ — 04
p&) _ | —21963¢—04 —2.8842¢—06 —4.8525¢—04  1.1785¢— 03 —8.691le—04 —1.4425¢ — 05
2 = 1.4892¢ — 03  3.3793¢ — 05 —2.3526e — 02 —8.691le — 04  1.2729¢ —01  1.5602e — 03
1.7818¢ — 05  4.3778¢ — 07 —2.8743¢ — 04 —1.4425¢ — 05  1.5602¢ —03  1.2588¢ — 03
2.1774¢ — 02 4.9125¢ — 04 —4.0432¢ — 01 —2.2283¢ — 02  6.6862¢ — 01  8.5352¢ — 03
1.4953¢ — 03 5.2797¢ — 05  2.3162e — 02 —7.0029¢ — 03 —1.7798¢ — 02 —1.1687¢ — 04
2.1774¢ — 02 1.4953¢ — 03
4.9125¢ — 04 5.2797¢ — 05
~4.0432¢ — 01 2.3162¢ — 02
~2.2283¢ — 02 —7.0029¢ — 03
6.6862¢ — 01 —1.7798¢ — 02
8.5352¢ — 03 —1.1687¢ — 04
1.2249¢ + 01  —5.7512e — 02
~5.7512¢ — 02 2.2015¢ — 01
Table 1: Error per iterations.
k] 16®(Loe — oDl | 16 (1.0e —02)] | 167 (1.0c —03)] | 97 (1.0¢ — 04)]
0 1.8875¢ — 01 1.8875¢ — 02 1.8875¢ — 03 1.8875¢ — 04
1 1.3163e — 02 7.7570e — 05 7.7732¢ — 07 7.777Te — 09
2 4.1112e — 04 1.0296¢ — 08 1.0965¢ — 12 4.0055¢ — 14
3 3.2712¢ — 09 1.3893¢ — 13
4 2.0230¢ — 13
0.021 0 0.121 0.003 —-0.21 1 —1.6 —0.005
Ay — —-1.1 0 —-1.62 —-0.015 Ay — -19 —-18 93 -0.12
2 0 0 0 0 22 0 0 0 1 '
—243 0 1.37 —-0.034 —3.1 0 —56 0.032
0.06 0 0.46 0.002 —0.002 0 0.83 0
-1 0 1.49 -0.04 —6.78 0 —-10.1 0.09
A =1.0e — 02 x A =1.0e — 02 x
111 0 0 0 0 , A112 0 0 0 0 )
0.12 0 29.8 —0.028 —1.24 0 0.498 —-0.017
0.011 0 0.22 0 —0.197 1 —1.2 —0.003
-21 0 1.7 —-0.123 -54.5 —-20 70.1 —2.37
Ajp; = 1.0e — 02 x Aj9o = 1.0e — 02 x
2 0 0 0 0 22 0 0 0 1
—0.07 0 6.38 —0.011 —3.4 0 —-21.0 —0.017
0 0
36.1 78.9 ) .
By = , Bog = , Bij =0, i#j,
0 0
0 0
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@1 = block diag( 0.114 O4xa ) , Q2 = block diag( Ouxs 0.114 ) ,

First, the initial conditions (27) of Newton’s method (26) are given in the top of this page.
The small parameter is chosen as ¢ = 0.1. It should be noted that the algorithm (26) converges
to the exact solution with accuracy of |GF)(g)| < 1.0e — 10 after four iterations, where |G*)(¢)| :=

21‘2:1 |Gi(e, p® Péf))ﬂ The convergence solutions pW

O -~ are given in the top of this page.

In order to verify the exactitude of the solution, the remainder per iteration by substituting Pi(gk) into the
CSAREs (16) is computed. In Table 1, the results of the error |G(*)(£)| per iterations are given for several
values €. As a result, it can be seen that the algorithm (26) has the quadratic convergence.

Finally, the convergence of the fixed point algorithm in equation (38) is demonstrated. For ¢ = 0.1,
Table 2 shows the errors per iteration for the algorithm for the first iteration of Newton’s method, where

the convergence condition is given by HH(YE(m))H = ||Y5(m)EE + Egl@(m) + AT.Y. Ay + H.| < 1.0e — 10.

Table 2.

m GICAR]

1 1.79755e — 01
2 1.30085e — 03
3 1.75259¢ — 05
4 1.89520e — 07
5 2.19458e — 09
6 2.48513e — 11

From Table 2, it can be verified that the proposed algorithm satisfies equation (39). That is, the proposed
algorithm (38) has a linear rate of convergence. Hence, the combined algorithms in equations (26), (30) and
(38) of this paper are very attractive. Furthermore, even if the weakly coupled large-scale systems (1) are
composed of two four-dimensional subsystems, the required workspace is four. This feature is very useful
from the practical viewpoint.

8 Conclusion

The infinite horizon stochastic Nash games have been discussed. First, the conditions for existence of Nash
equilibria by utilizing the CSAREs have been established. Second, a numerical algorithm for solving the
CSARES that arose in the stochastic Nash games for weakly coupled large-scale systems has been studied. In
order to solve CSARE, Newton’s method and two fixed point algorithms have been combined. Using a new
hybrid algorithm, it has been shown that the quadratic convergence and the reduced-order computation are
both attained. Moreover, the local uniqueness of the solution has been proved for the first time. Thus, the
proposed algorithm is expected to be very useful and reliable for a sufficiently small e. As another important
feature, the high-order approximate strategy such that the better cost performance is attained has been
established. In fact, the cost degradation for using the proposed approximate strategy has been proved
for the first time. Finally, the computational examples have shown excellent results that the quadratic
convergence has been verified and the proposed algorithm has succeeded in reducing the computational
workspace.
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