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Abstract. This paper discusses the infinite horizon stochastic Nash games with state-dependent noise. After establishing
the asymptotic structure along with the positive semidefiniteness for the solutions of the cross-coupled stochastic algebraic
Riccati equations (CSAREs), a new algorithm that combines Newton’s method with two fixed point algorithms for solving the
CSAREs is derived. As a result, it is shown that the proposed algorithm attains quadratic convergence and the reduced-order
computations for sufficiently small parameter ε. As another important feature, the high-order approximate strategy that is
based on the iterative solutions is proposed. Using such strategy, the degradation of the cost functional is investigated. Finally,
in order to demonstrate the efficiency of the proposed algorithms, computational examples are provided.
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1 Introduction

The stochastic control problems governed by Itô’s differential equation have become a popular research topic
in a past decade. Recently, stochastic H∞ control problem with state- and control-dependent noise was
considered [1, 2]. It has attracted much attention and has been widely applied to various fields. Particularly,
the stochastic H2/H∞ control with state-dependent noise has been addressed [3].

Recently, linear quadratic Nash games and their applications have been widely investigated in many
literatures. Particularly, the linear quadratic Nash games and related topics for weakly coupled large-scale
systems have been discussed in [6, 7, 8, 9]. These results are based on the deterministic systems. However,
to the best of our knowledge, no results have been obtained for stochastic Nash games with state-dependent
noise.

In this paper, the stochastic Nash games for weakly coupled large-scale systems governed by Itô differential
equations with state-dependent noise are addressed as an extension of the existing result of [6, 7]. Specifically,
this paper focuses on the development of the numerical algorithm for solving the cross-coupled stochastic
algebraic Riccati equations (CSAREs). First, 2-player stochastic Nash games are formulated by applying
the results of stochastic linear quadratic control problems [3, 4] for the first time. It should be noted that
although the stochastic games for weakly coupled large-scale systems have been studied in [5], the state-
dependent noise has not been considered. Moreover, it may be noted that the considered CSAREs is quite
different from the existing results in [6, 7] in the sense that the CSAREs have the additional linear equations.
Thus, these terms would result in the complication for the analysis of the existence of the solutions. Second,
in order to choose the appropriate initial conditions, the uniqueness and boundedness of the solution to the
CSAREs and their asymptotic structure are investigated. After establishing these properties of the solutions,
the numerical algorithm that is based on Newton’s method is considered. The quadratic convergence and the
local uniqueness of the solutions are proved for sufficiently small parameter ε via the Newton-Kantorovich
theorem [10]. Additionally, in order to overcome the computation of large dimensional matrix that arises
in Newton’s method, two fixed point algorithms are combined. As another important feature, the high-
order approximate strategy set that is based on the iterative solutions is proposed. As a result, the better
performance is attained. Finally, in order to demonstrate the efficiency of the algorithm, computational
examples are included.

This work was supported in part by the Research Foundation for the Electrotechnology of Chubu (REFEC) and a Grant-
in-Aid for Young Scientists Research (B)-18700013 from the Ministry of Education, Culture, Sports, Science and Technology of
Japan.
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Notation: The notations used in this paper are fairly standard. The superscript T denotes the matrix
transpose. In denotes the n×n identity matrix. block diag denotes the block diagonal matrix. || · || denotes
its Euclidean norm for a matrix. E denotes the expectation. ⊗ denotes the Kronecker product. vecM
denotes the column vector of the matrix M .

2 Stochastic Nash Games

Consider stochastic linear time-invariant weakly coupled large-scale systems.

dx(t) = [Aεx(t) + B1εu1(t) + B2εu2(t)]dt +
N∑

p=1

Apεx(t)dwp(t), x(0) = x0, (1)

where

x(t) :=
[

x1(t)
x2(t)

]
, Aε :=

[
A11 εA12

εA21 A22

]
, Apε :=

[
Ap11 εAp12

εAp21 Ap22

]
, B1ε :=

[
B11

εB21

]
, B2ε :=

[
εB12

B22

]
.

xi(t) ∈ Rni are the state vectors, ui(t) ∈ Rmi , i = 1, 2 are the control inputs. wp(t) ∈ R, p = 1, ... , N to
be one-dimensional standard Wiener process is defined on the filtered probability space [1, 2, 3, 4]. Without
loss of generality, it is assumed that wi(t), wj(t) are mutually independent for all i, j = 1, ... , N and
E[w(t)wT (t)] = IN , where w(t) :=

[
w1(t) · · · wN (t)

]T . ε denotes a relatively small positive coupling
parameter that connects the linear system with other subsystems.

The cost functional for each strategy subset is defined by

Ji(u1, u2, x(0)) = E

∫ ∞

0

[
xT (t)Qiεx(t) + uT

i (t)Riiui(t) + εuT
j (t)Rijuj(t)

]
dt, (2)

where i, j = 1, 2, i 6= j,

Q1ε = QT
1ε =

[
Q111 εQ112

εQT
112 εQ122

]
≥ 0, Q2ε = QT

2ε =
[

εQ211 εQ212

εQT
212 Q222

]
≥ 0,

Rii = RT
ii > 0 ∈ Rmi×mi , Rij = RT

ij ≥ 0 ∈ Rmj×mj .

The stabilizability, which is an essential assumption in this paper is introduced [3, 4].

Definition 1 The stochastic controlled system governed by Itô equation is called stabilizable, if there exist the
feedback laws such that the closed-loop system is asymptotically mean square stable, i.e., limt→∞ ExT (t)x(t) =
0.

For the matrices Aε, Biε, i = 1, ... ,M , Apε, p = 1, ... , N , the set FM is defined by FM :={
(F1ε, ... , FMε) | The closed-loop system dx(t) = [Aε +

∑M
i=1 BiεFiε]x(t)dt +

∑N
p=1 Apεx(t)dwp(t) is

asymptotically mean square stable.

}
.

In the sequel, the following assumption is introduced [1].

Assumption 1 There exists a matrix Fiε ∈ <mi×n̄, n̄ := n1 +n2 such that Aε +B1εF1ε +B2εF2ε is a stable
matrix with || exp[(Aε + B1εF1ε + B2εF2ε)t]|| ≤ αe−βt, ∃ α, β > 0 and α2/β

∑N
p=1 ||Apε||2 ≤ v < 2/(N + 1).

Assumption 1 implies that the system

dx(t) = [Aε + B1εF1ε + B2εF2ε]x(t)dt +
N∑

p=1

Apεx(t)dwp(t) (3)
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is exponentially mean square stable. Indeed, using the representation of the solution of equation (3) in the
form

x(t) = exp[(Aε + B1εF1ε + B2εF2ε)(t − s)]x(0)

+
N∑

p=1

∫ t

s

exp[(Aε + B1εF1ε + B2εF2ε)(t − τ)]Apεx(τ)dwp(τ) (4)

and the independence of the Wiener processes wi(t) results in

E||x(t)||2 ≤ (N + 1)|| exp[(Aε + B1εF1ε + B2εF2ε)(t − s)]||2E||x(0)||2

+(N + 1)
N∑

p=1

∫ t

s

|| exp[(Aε + B1εF1ε + B2εF2ε)(t − τ)]||2||Apε||2E||x(τ)||2dτ. (5)

Thus, the conditions || exp[(Aε + B1εF1ε + B2εF2ε)t]|| ≤ αe−βt, ∃ α, β > 0 and α2/β
∑N

p=1 ||Apε||2 ≤ v imply
that

e2β(t−s)E||x(t)||2 ≤ (N + 1)α2E||x(0)||2 + (N + 1)βv

∫ t

s

e2β(τ−s)E||x(τ)||2dτ. (6)

From the Bellman-Gronwall inequality [11], it follows that

E||x(t)||2 ≤ 2α2E||x(0)||2eβ[(N+1)v−2](t−s). (7)

Since v has been chosen such that v < 2/(N + 1), then equation (3) is exponentially mean square stable.
The stochastic Nash equilibrium strategy pair (F ∗

1ε, F ∗
2ε) is defined as satisfying the following condi-

tions.

J1(F ∗
1εx(t), F ∗

2εx(t), x(0)) ≤ J1(F1εx(t), F ∗
2εx(t), x(0)), (8a)

J2(F ∗
1εx(t), F ∗

2εx(t), x(0)) ≤ J2(F ∗
1εx(t), F2εx(t), x(0)), (8b)

where

ui(t) := Fiεx(t), i = 1, 2, (9)

for all x(0) and for all (F1ε, F2ε) that satisfy (F ∗
1ε, F2ε) ∈ F2, (F1ε, F ∗

2ε) ∈ F2, and (F ∗
1ε, F ∗

2ε) ∈ F2.
It should be noted that the systems governed by Itô differential equations are disturbed by deterministic

noise and the strategy spaces are of the static linear feedback form.

2.1 One-Player Case

First, one-player case is discussed. The result obtained for that particular case will be the basis for the
derivation of results for 2-player case.

Consider a linear time-invariant stochastic stabilizable system

dx(t) = [Aεx(t) + B1εu1(t)]dt +
N∑

p=1

Apεx(t)dwp(t), x(0) = x0, (10)

where u1(t) := F1εx(t), F1ε ∈ F1. The cost functional is given below.

J(u1, x(0)) = E

∫ ∞

0

[
xT (t)Q1εx(t) + uT

1 (t)R11u1(t)
]
dt. (11)
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Theorem 1 Assume that for any u1(t), the closed-loop system is asymptotically mean square stable. Suppose
that the following stochastic algebraic Riccati equation (SARE) has a solution Pε > 0.

PεAε + AT
ε Pε +

N∑
p=1

AT
pεPεApε − PεS1εPε + Q1ε = 0, (12)

where S1ε := B1εR
−1
11 BT

1ε.
The strategy that minimizes the cost functional (11) is given below.

u∗
1(t) = F ∗

1εx(t) = −R−1
11 BT

1εPεx(t). (13)

Proof : Since the assumption that for any u1(t), the closed-loop system is asymptotically mean square stable,
limt→∞ ExT (t)x(t) = 0. Thus, applying Itô’s formula to (10) and considering (12) results in

J(u1, x(0)) = xT (0)Pεx(0) + E

∫ ∞

0

||u1(t) − u∗
1(t)||2R11

dt ≥ xT (0)Pεx(0). (14)

Hence,

J(u1, x(0)) ≥ J(u∗
1, x(0)) = xT (0)Pεx(0). (15)

This is the desired result.

2.2 Stochastic Nash Equilibrium Strategies

The solution of the stochastic Nash games is given below.

Theorem 2 Suppose that there exist the real symmetric matrices Piε such that

Gi(ε, P1ε, P2ε) = Piε (Aε − SjεPjε) + (Aε − SjεPjε)
T

Piε +
N∑

p=1

AT
pεPiεApε

−PiεSiεPiε + εPjεSijεPjε + Qiε = 0, (16)

where i, j = 1, 2, i 6= j, Siε := BiεR
−1
ii BT

iε, Sijε := BjεR
−1
jj RijR

−1
jj BT

jε.
Define the strategy pair (F ∗

1ε, F ∗
2ε) by

u∗
i (t) := F ∗

iεx(t) = −R−1
ii BT

iεPiεx(t), i = 1, 2. (17)

Then, (F ∗
1ε, F ∗

2ε) ∈ F2 and this strategy set is a stochastic Nash equilibrium. Furthermore, the minimal value
of cost functional satisfies Ji(F ∗

1ε, F ∗
2ε, x(0)) = xT (0)Piεx(0).

Proof : Now let us consider the following problem that the cost functional (18) is minimal at Fiε = F ∗
iε.

φ(Fε) := E

∫ ∞

0

xT (t)(Qiε + FT
iεRiiFiε + εPT

jεSijPjε)x(t)dt, (18)

where x(t) follows from

dx(t) = (Aε − SjεPjε + BiεFiε)x(t)dt +
N∑

p=1

Apεx(t)dwp(t), x(0) = x0, i, j = 1, 2, i 6= j. (19)

Note that the function φ coincides with the cost functional J(u1, x(0)) in Theorem 1. Applying Theorem 1
to this minimization problem as

Aε − SjεPjε ⇒ Aε, Biε ⇒ B1ε, Qiε + εPT
jεSijPjε ⇒ Q1ε, Rii ⇒ R11

yields the fact that the function φ is minimal at

F ∗
1ε = −R−1

11 BT
1εPε = −R−1

ii BT
iεPiε = F ∗

iε. (20)

Moreover, the minimal value is equal to xT (0)Piεx(0).
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3 Asymptotic Structure of the CSAREs

Firstly, in order to obtain the strategy set that is based on the numerical solutions, the asymptotic structure
of the CSAREs (16) is established. Since Aε, Apε, Siε and Sijε include the term of the parameter ε, the
solution Piε of the CSAREs (16), if it exists, must contain the parameter ε. Taking this fact into account,
the solution Piε of the CSAREs (16) with the following structure is considered.

P1ε =
[

P111 εP112

εPT
112 εP122

]
, P2ε =

[
εP211 εP212

εPT
212 P222

]
. (21)

Substituting the matrices Aε, A1ε, Siε, Sijε, Qiε and Piε into the CSAREs (16), letting ε = 0, and partitioning
the CSAREs (16), the following reduced-order stochastic algebraic Riccati equation (SARE) are obtained,
where P̄iii, i = 1, 2 be the 0-order solutions of the CSAREs (16) as ε = 0.

P̄iiiAii + AT
iiP̄iii +

N∑
p=1

AT
piiP̄iiiApii − P̄iiiSiiP̄iii + Qiii = 0, i = 1, 2, (22)

where Sii := BiiR
−1
ii BT

ii .
The following condition is assumed.

Assumption 2 (Aii, Bii) is stabilizable, (
√

Qiii, Aii) is observable, and

inf
Kii

∣∣∣∣∣
∣∣∣∣∣
∫ ∞

0

exp[(Aii − BiiKii)T t]

(
N∑

p=1

AT
piiApii

)
exp[(Aii − BiiKii)t]dt

∣∣∣∣∣
∣∣∣∣∣ < 1.

If the above assumption holds, there exists the unique positive definite stabilizing solution P̄iii > 0 of the
SARE (22) such that Dii := Aii − SiiP̄iii is stable.

The asymptotic expansion of the CSAREs (16) at ε = 0 is described by the following theorem.

Theorem 3 Under Assumption 2, there exists the small constant σ∗ such that for all ε ∈ (0, σ∗) the
CSAREs (16) admits a positive semidefinite solution P ∗

iε that can be written as

Piε := P ∗
iε = P̄i + O(ε), (23)

where

P̄1 =block diag
(

P̄111 0
)
, P̄2 =block diag

(
0 P̄222

)
.

Proof : The proof can be done by using the implicit function theorem to the CSAREs (16). To do so, it
is enough to show that the corresponding Jacobian is nonsingular at ε = 0. The derivative of the function
Gi(ε, P1ε, P2ε) at the matrix Piε is given by

Jii :=
∂

∂vecPiε
vecGi(ε, P1ε, P2ε)T

= (Aε − S1εP1ε − S2εP2ε)
T ⊗ In̄ + In̄ ⊗ (Aε − S1εP1ε − S2εP2ε)

T +
N∑

p=1

AT
pε ⊗ AT

pε, (24a)

Jij :=
∂

∂vecPjε
vecGi(ε, P1ε, P2ε)T = −(SjεPiε − εSijεPjε)T ⊗ In̄ − In̄ ⊗ (SjεPiε − εSijεPjε)T .(24b)

Using the fact that SjεPiε = O(ε), after some algebra, the Jacobian of the CSAREs (16) in the limit as
ε → +0 is given by

J =
[

J11|ε=0 J12|ε=0

J21|ε=0 J22|ε=0

]
=
[

J0 0
0 J0

]
, (25)
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where

J0 = DT ⊗ In̄ + In̄ ⊗ DT +
N∑

p=1

AT
p0 ⊗ AT

p0,

D := block diag
(

D11 D22

)
, Ap0 := block diag

(
Ap11 Ap22

)
.

Obviously, D11 and D22 are nonsingular under Assumption 2. Thus, detJ 6= 0, i.e., J is nonsingular at
ε = 0. The conclusion of Theorem 3 is obtained directly by using the implicit function theorem. On the
other hand, taking into account the fact that P̄ii is the positive semidefinite matrix, for sufficiently small
parameter ε, Piε is also the positive semidefinite solution.

4 Newton’s Method

In order to obtain the solution of CSAREs (16), the following useful algorithm is given.

P
(k+1)
1ε

(
Aε − S1εP

(k)
1ε − S2εP

(k)
2ε

)
+
(
Aε − S1εP

(k)
1ε − S2εP

(k)
2ε

)T

P
(k+1)
1ε

+
N∑

p=1

ApεP
(k+1)
1ε Apε − P

(k+1)
2ε S2εP

(k)
1ε − P

(k)
1ε S2εP

(k+1)
2ε + εP

(k+1)
2ε S12εP

(k)
2ε + εP

(k)
2ε S12εP

(k+1)
2ε

+P
(k)
1ε S2εP

(k)
2ε + P

(k)
2ε S2εP

(k)
1ε + P

(k)
1ε S1εP

(k)
1ε − εP

(k)
2ε S12εP

(k)
2ε + Q1ε = 0, (26a)

P
(k+1)
2ε

(
Aε − S1εP

(k)
1ε − S2εP

(k)
2ε

)
+
(
Aε − S1εP

(k)
1ε − S2εP

(k)
2ε

)T

P
(k+1)
2ε

+
N∑

p=1

ApεP
(k+1)
2ε Apε − P

(k+1)
1ε S1εP

(k)
2ε − P

(k)
2ε S1εP

(k+1)
1ε + εP

(k+1)
1ε S21εP

(k)
1ε + εP

(k)
1ε S21εP

(k+1)
1ε

+P
(k)
2ε S1εP

(k)
1ε + P

(k)
1ε S1εP

(k)
2ε + P

(k)
2ε S2εP

(k)
2ε − εP

(k)
1ε S21εP

(k)
1ε + Q2ε = 0, (26b)

with the initial conditions

P
(0)
iε = P̄i. (27)

The following theorem indicates that the proposed algorithm (26) that is based on the Newton’s method
attains the quadratic convergence.

Theorem 4 Under Assumption 2, there exists the small constant σ̄ such that for all ε ∈ (0, σ̄), σ̄ ≤ σ∗, the
iterative algorithm (26) converges to the exact solution of P ∗

iε with the rate of the quadratic convergence, where
P

(k)
iε is positive semidefinite matrix. Moreover, the convergence solutions attain a local unique solution P ∗

iε

of the CSAREs (16) in the neighborhood of the initial condition P
(0)
iε = P̄i. That is, the following conditions

are satisfied.

||P (k)
iε − P ∗

iε|| = O(ε2k

), i = 1, 2, k = 0, 1, ... . (28)

Proof: The proof is given directly by applying the Newton-Kantorovich theorem [10] for the CSAREs (16).
It is immediately obtained from the CSAREs (16) that there exists a positive scalar γ such that for any P a

iε

and P b
iε

||∇G(ε, P a
1ε, P a

2ε) −∇G(ε, P b
1ε, P b

2ε)||
≤ γ||([vecP a

1ε]
T , [vecP a

2ε]
T )−([vecP b

1ε]
T , [vecP b

2ε]
T )||,

where G :=
[
G1 G2

]T and γ := 6(||S1ε|| + ||S2ε||) + 2ε(||S12ε|| + ||S21ε||).
Moreover, it is easy to verify that ∇G(ε, P

(0)
1ε , P

(0)
2ε ) = ∇G(0, P̄1, P̄2) = J+O(ε) is nonsingular because

for small ε, using (23) and J is also nonsingular. Therefore, there exists β such that β = ||[∇G(ε, P̄1, P̄2)]−1||.
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On the other hand, since ||G(ε, P̄1, P̄2)|| = O(ε), there exists η such that η = ||[∇G(ε, P̄1, P̄2)]−1|| ·
||G(ε, P̄1, P̄2)|| = O(ε). Thus, there exists θ such that θ = βηγ < 2−1 because η = O(ε). Finally, the
Newton-Kantorovich theorem results in the desired results (28).

Second, the local uniqueness of the solution is discussed. Now, let us define t∗ ≡ [1 −
√

1 − 2θ]/(γβ).
Clearly, S ≡ { Piε : ||Piε−P

(0)
iε || ≤ t∗ } is in the certain convex set D. In the sequel, since ||Piε−P

(0)
iε || = O(ε)

holds for a small ε, the local uniqueness of P ∗
iε is guaranteed in the neighbourhood of ε = 0 for a subset S

by applying the Newton-Kantorovich theorem.

5 A Numerical Algorithm for Solving the CSALE

When the cross-coupled stochastic algebraic Lyapunov equation (CSALE) (26) is solved, the existence of the
cross-coupled term in CSALE (26) makes it difficult to solve this equation directly. Thus, in order to avoid
the cross-coupled term, a new decoupling algorithm that is based on the fixed-point algorithm is established.
Taking into account the fact that SjεP

(k)
iε = O(ε), i 6= j, let us consider CSALE (29) in its general form.

XiεΛiε + ΛT
iεXiε +

N∑
p=1

ApεXiεApε + ε(XjεΦjε + ΦT
jεXjε) + Uiε = 0, i, j = 1, 2, i 6= j, (29)

where

X1ε :=
[

X111 εX112

εXT
112 εX122

]
, X2ε :=

[
εX211 εX212

εXT
212 X222

]
,

Λiε :=
[

Λi11 εΛi12

εΛi21 Λi22

]
, Φiε :=

[
Φi11 εΦi21

εΦi21 Φi22

]
,

U1ε :=
[

U111 εU112

εUT
112 εU122

]
, U2ε :=

[
εU211 εU212

εUT
212 U222

]
.

It should be noted that

P
(k+1)
iε ⇒ Xiε, Aε − S1εP

(k)
1ε − S2εP

(k)
2ε + MiεP

(k)
iε ⇒ Λiε,

−SiεP
(k)
jε + εSjiεP

(k)
iε ⇒ εΦiε,

P
(k)
iε SjεP

(k)
jε + P

(k)
jε SjεP

(k)
iε + P

(k)
iε SiεP

(k)
iε − εP

(k)
jε SijεP

(k)
jε − P

(k)
iε MiεP

(k)
iε + Qiε ⇒ Uiε,

where ⇒ represents the replacement.
Without loss of generality, the following condition is assumed for CSALE (29).

Assumption 3 (Λiε, A1ε), i = 1, 2 are stable.

Algorithm (30) for solving CSALE (29) is given as follows:

X
(n+1)
iε Λiε + ΛT

iεX
(n+1)
iε +

N∑
p=1

ApεX
(n+1)
iε Apε + ε(X(n)

jε Φjε + ΦT
jεX

(n)
jε ) + Uiε = 0, (30)

i, j = 1, 2, i 6= j, n = 0, 1, ... ,

where X
(0)
iε = 0.

It should be noted that the numerical computation of (30) can be carried out independently for each
solution. The following theorem indicates the convergence of algorithm (30).

Theorem 5 Under Assumption 3, the fixed-point algorithm (30) converges to an exact solution Xiε with a
rate of

||X(n)
iε − Xiε|| = O(εn), n = 1, 2, ... . (31)
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In order to prove Theorem 5, the following Lemma will be used.

Lemma 1 If dz(t) = Az(t)dt +
∑N

p=1 Apz(t)dwp(t) is exponentially mean-square stable and Q = QT ≥ 0,
zT (0)Pz(0) =

∫∞
0

zT (t)Qz(t)dt, where P satisfies the stochastic algebraic Lyapunov equation (SALE) :
AT P + PA +

∑N
p=1 AT

p PAp + Q = 0.

Proof : The proof of Theorem 5 can be derived by using mathematical induction. When n = 0 for algorithm
(30), it is easy to verify that the first order approximations Xiε corresponding to ε are X

(1)
iε . When n =

h, h ≥ 2, it is assumed that

||X(h)
iε − Xiε|| = O(εh). (32)

By subtracting (29) from (30) and substituting h into n, the following equations hold:

(X(h+1)
iε − Xiε)Λiε + ΛT

iε(X
(h+1)
iε − Xiε) +

N∑
p=1

AT
pε(X

(h+1)
iε − Xiε)Apε

= −ε
[
(X(h)

jε − Xjε)Φjε + ΦT
jε(X

(h)
jε − Xjε)

]
. (33)

Using the assumption (32), the following equations are satisfied:

(X(h+1)
iε − Xiε)Λε + ΛT

ε (X(h+1)
iε − Xiε) +

N∑
p=1

AT
pε(X

(h+1)
iε − Xiε)Apε = O(εh+1). (34)

Hence, using Lemma 1, it is easy to verify that

||X(h+1)
iε − Xiε|| = O(εh+1). (35)

Consequently, error equations (31) hold for all n ∈ N. This completes the proof of Theorem 5.
When CSALE (30) is solved, a large computational dimension n̄ := n1 + n2 is required to be compared

with the small computational dimensions ni. Thus, in order to reduce the computational dimension, a
fixed-point algorithm can be applied again.

Let us consider the SALE (36) in the following general form.

YεEε + ET
ε Yε +

N∑
p=1

AT
pεYεApε + Hε = 0, (36)

where

Eε :=
[

E11 εE12

εE21 E22

]
, Hε :=

[
H1 εH12

εHT
12 H2

]
, Yε =

[
Y1 εY12

εY T
12 Y2

]
,

Eii, Apii ∈ Rni×ni , Yi = Y T
i ≥ 0 ∈ Rni×ni , Hi = HT

i ∈ Rni×ni , i = 1, 2.

It should be noted that for the SALE (36),

Aε − SεP
(n)
ε ⇒ Eε, Apε ⇒ Apε, P (n)

ε SεP
(n)
ε + Q ⇒ Hε, P

(n+1)
ε ⇒ Yε,

where ⇒ stands for the replacement.
Substituting Yε into the SALE (36), the following set of three linear equations (37) is satisfied.

ET
11Y1 + Y1E11 + ε2(ET

21Y
T
12 + Y12E21)

+
N∑

p=1

[
AT

p11Y1Ap11 + ε2(AT
p21Y2Ap21 + AT

p21Y
T
12Ap11 + AT

p11Y12Ap21)
]

+ H1 = 0, (37a)

ET
11Y12 + Y1E12 + ET

21Y2 + Y12E22
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+
N∑

p=1

[
AT

p11Y1Ap12 + AT
p21Y2Ap22 + ε2AT

p21Y
T
12Ap12 + AT

p11Y12Ap22

]
+ H12 = 0, (37b)

ET
22Y2 + Y2E22 + ε2(ET

12Y12 + Y T
12E12)

+
N∑

p=1

[
AT

p22Y2Ap22 + ε2(AT
p12Y1Ap12 + AT

p22Y
T
12Ap12 + AT

p12Y12Ap22)
]

+ H2 = 0. (37c)

First, in order to guarantee the existence of the unique solution of the set of the SALE (37), the following
assumption is supposed.

Assumption 4 detFii 6= 0, detF12 6= 0, where

Fii := ET
ii ⊗ Ini + Ini ⊗ ET

ii +
N∑

p=1

AT
pii ⊗ AT

pii, i = 1, 2,

F12 := ET
22 ⊗ In1 + In2 ⊗ ET

11 +
N∑

p=1

AT
p22 ⊗ AT

p11.

It should be noted that the Assumption 4 is satisfied automatically for sufficiently small ε because of
Assumption 2.

By considering the form of equation (37), the following algorithm in equation (38) to solve the SALE
(36) is given.

ET
11Y

(m+1)
1 + Y

(m+1)
1 E11 +

N∑
p=1

AT
p11Y

(m+1)
1 Ap11

+ε2

[
ET

21Y
(m)T
12 + Y

(m)
12 E21 +

N∑
p=1

(AT
p21Y

(m)
2 Ap21 + AT

p21Y
(m)T
12 Ap11 + AT

p11Y
(m)
12 Ap21)

]
+ H1 = 0,(38a)

ET
22Y

(m+1)
2 + Y

(m+1)
2 E22 +

N∑
p=1

AT
p22Y

(m+1)
2 Ap22

+ε2

[
ET

12Y
(m)
12 + Y

(m)T
12 E12 +

N∑
p=1

(AT
p12Y

(m)
1 Ap12 + AT

p22Y
(m)T
12 Ap12 + AT

p12Y
(m)
12 Ap22)

]
+ H2 = 0,(38b)

ET
11Y

(m+1)
12 + Y

(m+1)
12 E22 +

N∑
p=1

AT
p11Y

(m+1)
12 Ap22 + Y

(m+1)
1 E12 + ET

21Y
(m+1)
2

+
N∑

p=1

[
AT

p11Y
(m+1)
1 Ap12 + AT

p21Y
(m+1)
2 Ap22 + ε2AT

p21Y
(m)T
12 Ap12

]
+ H12 = 0, (38c)

Y
(0)
i = 0, i = 1, 2, Y

(0)
12 = 0.

The following theorem indicates the convergence of the algorithm in equation (38).

Theorem 6 Suppose that Assumption 4 is satisfied. There exists a small σ̂ such that for all ε ∈ (0, σ̂), 0 <
σ̂, the iterative algorithm in equation (38) converges to the exact solutions of Yi and Y21 with a rate equal to
that of linear convergence. Subsequently, the following equations hold.

||Y (m)
i − Yi|| = O(ε2m), i = 1, 2, (39a)

||Y (m)
12 − Y12|| = O(ε2m), m = 1, 2, ... . (39b)



10

Proof: The proof of Theorem 6 can be done by mathematical induction. Subtracting equation (37) from
equation (38), the following equations (40) are obtained.

ET
11Ỹ

(m+1)
1 + Ỹ

(m+1)
1 E11 +

N∑
p=1

AT
p11Ỹ

(m+1)
1 Ap11

+ε2

[
ET

21Ỹ
(m)T
12 + Ỹ

(m)
12 E21 +

N∑
p=1

(AT
p21Ỹ

(m)
2 Ap21 + AT

p21Ỹ
(m)T
12 Ap11 + AT

p11Ỹ
(m)
12 Ap21)

]
= 0, (40a)

ET
22Ỹ

(m+1)
2 + Ỹ

(m+1)
2 E22 +

N∑
p=1

AT
p22Ỹ

(m+1)
2 Ap22

+ε2

[
ET

12Ỹ
(m)
12 + Ỹ

(m)T
12 E12 +

N∑
p=1

(AT
p12Ỹ

(m)
1 Ap12 + AT

p22Ỹ
(m)T
12 Ap12 + AT

p12Ỹ
(m)
12 Ap22)

]
= 0, (40b)

ET
11Ỹ

(m+1)
12 + Ỹ

(m+1)
12 E22 +

N∑
p=1

AT
p11Ỹ

(m+1)
12 Ap22 + Ỹ

(m+1)
1 E12 + ET

21Ỹ
(m+1)
2

+
N∑

p=1

[
AT

p11Ỹ
(m+1)
1 Ap12 + AT

p21Ỹ
(m+1)
2 Ap22 + ε2AT

p21Ỹ
(m)T
12 Ap12

]
= 0, (40c)

where

Ỹ
(m)
i := Y

(m)
i − Yi, i = 1, 2, Ỹ

(m)
12 := Y

(m)
12 − Y12.

Setting k = 0, the following equations (41) hold.

ET
ii Ỹ

(1)
i + Ỹ

(1)
i Eii +

N∑
p=1

AT
piiỸ

(1)
i Apii + O(ε2) = 0, i = 1, 2. (41)

Hence, taking into account the nonsingularity of Fi, i = 1, 2 and F12 and Lemma 1, ||Y (1)
i − Yi|| = O(ε2) is

satisfied. Moreover, substituting these equations into equation (40c), ||Y (1)
12 − Y12|| = O(ε2) is also satisfied.

Thus, the relation holds true for k = 1. Assume that the relation is true for k = l for some l ≥ 2.

||X(l)
i − Yi|| = O(ε2l), i = 1, 2, (42a)

||X(l)
12 − Y12|| = O(ε2l). (42b)

Using the above assumptions, it is not difficult to obtain (43).

ET
ii Ỹ

(l+1)
i + Ỹ

(l+1)
i Eii +

N∑
p=1

AT
piiỸ

(l+1)
i Apii + O(ε2l+2) = 0, i = 1, 2. (43)

After simplification, since Fii, i = 1, 2 are nonsingular, ||Y (l+1)
i − Yi|| = O(ε2l+2) holds by using Lemma 1.

Similarly, substituting these equations into equation (40c), ||Y (l+1)
12 −Y12|| = O(ε2l+2) is also obtained. Thus,

the relation is also true for k = l + 1. Consequently, the error equation (39) holds for all k ∈ N by using
mathematical induction.

An algorithm which solves the CSAREs (16) with the small positive parameter ε is given below.

Step 1. Solve the SAREs (22) that is given as the initial conditions of the Newton’s method (26). It should
also be noted that the solutions of SAREs (22) can be obtained by applying the Newton’ method.

Step 2. In order to carry out the Newton’s method (26), apply the new proposed algorithm (30).

Step 3. In order to reduce the dimension of the workspace for solving the CSALE (30), apply the new
proposed algorithm (38). As a result, the sequence of solution of the Newton’s method (26) is obtained.

Step 4. If the new combined algorithm converges, then Piε is the solution of the CSAREs (16), STOP.
Otherwise, increment n → n + 1 and go to Step 2.
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6 High-Order Approximate Stochastic Nash Strategies

The attention is focused on the design of the high-order approximate stochastic Nash strategies. Such
strategy is obtained by using the iterative solution (26).

u
(k)∗
i (t) = −R−1

ii BT
iεP

(k)
iε x(t), i = 1, 2. (44)

The degradation of the cost functional via new high-order approximate stochastic Nash strategies (44) is
given as follows.

Theorem 7 Under Assumption 2, the use of the high-order approximate stochastic Nash strategies (44)
results in (45)

Ji(u
(k)∗
1 , u

(k)∗
2 , x(0)) = Ji(u∗

1, u∗
2, x(0)) + O(ε2k+1), i = 1, 2. (45)

Proof. When u
(k)∗
i (t) is used, the equilibrium values of the cost functional are

Ji(u
(k)∗
1 , u

(k)∗
2 , x(0)) = xT (0)Ziεx(0), (46)

where Ziε is a positive semidefinite solution of the following SALE

Ziε

(
Aε − S1εP

(k)
1ε − S2εP

(k)
2ε

)
+
(
Aε − S1εP

(k)
1ε − S2εP

(k)
2ε

)T

Ziε +
N∑

p=1

AT
pεZiεApε

+P
(k)
iε SiεP

(k)
iε + εP

(k)
jε SijεP

(k)
jε + Qiε = 0, i, j = 1, 2, i 6= j. (47)

Subtracting (16) from (47), Vε = Ziε − Piε satisfies the following SALE

Viε

(
Aε − S1εP

(k)
1ε − S2εP

(k)
2ε

)
+
(
Aε − S1εP

(k)
1ε − S2εP

(k)
2ε

)T

Viε +
N∑

p=1

AT
pεViεApε

+PiεSjε

(
Pjε − P

(k)
jε

)
+
(
Pjε − P

(k)
jε

)
SjεPiε

+
(
P

(k)
iε − Piε

)
Siε

(
P

(k)
iε − Piε

)
+ εP

(k)
jε SijεP

(k)
jε − εPjεSijεPjε = 0. (48)

By using the result of (28), it is easy to verify that

Viε

(
Aε − S1εP

(k)
1ε − S2εP

(k)
2ε

)
+
(
Aε − S1εP

(k)
1ε − S2εP

(k)
2ε

)T

Viε +
N∑

p=1

AT
pεViεApε + O(ε2k+1) = 0. (49)

Therefore, Viε = O(ε2k+1) because of Lemma 1. Hence

x(0)T Viεx(0) = x(0)T Ziεx(0) − xT (0)Piεx(0)

= Ji(u
(k)∗
1 , u

(k)∗
2 , x(0)) − Ji(u∗

1, u∗
2, x(0)) = O(ε2k+1) (50)

results in (45).

7 Computational Example

In order to demonstrate the efficiency of the proposed hybrid algorithm, a computational example is given.
The system matrices are given as follows.

N = 1, A11 =


0 1 −0.266 −0.009

−2.75 −2.78 −1.36 −0.037
0 0 0 1

−4.95 0 −55.5 −0.039

 , A12 =


0.0024 0 −0.087 0.002
−0.185 0 1.11 −0.011

0 0 0 0
0.222 0 8.17 0.004

 ,
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P̄1 = block diag
(

P̄111 0
)

, P̄111 =

[
1.7123e − 01 4.3365e − 03 7.1775e − 01 −1.7063e − 02
4.3365e − 03 2.6823e − 03 1.8830e − 02 4.3122e − 05
7.1775e − 01 1.8830e − 02 8.0187 −4.4513e − 02

−1.7063e − 02 4.3122e − 05 −4.4513e − 02 1.4427e − 01

]
,

P̄2 = block diag
(

0 P̄222

)
, P̄222 =

[
1.2736e − 01 1.5610e − 03 6.6965e − 01 −1.7821e − 02
1.5610e − 03 1.2588e − 03 8.5483e − 03 −1.1701e − 04
6.6965e − 01 8.5483e − 03 1.2265e + 01 −5.7345e − 02

−1.7821e − 02 −1.1701e − 04 −5.7345e − 02 2.2051e − 01

]
,

P
(4)
1ε =


1.7116e − 01 4.3347e − 03 7.1692e − 01 −1.6549e − 02 3.0879e − 04 −8.7559e − 07
4.3347e − 03 2.6822e − 03 1.8789e − 02 5.5618e − 05 2.7774e − 05 2.2816e − 07
7.1692e − 01 1.8789e − 02 7.9996 −4.4580e − 02 8.0812e − 03 4.9144e − 05

−1.6549e − 02 5.5618e − 05 −4.4580e − 02 1.4391e − 01 5.8779e − 03 7.3899e − 05
3.0879e − 04 2.7774e − 05 8.0812e − 03 5.8779e − 03 5.1657e − 04 6.3888e − 06

−8.7559e − 07 2.2816e − 07 4.9144e − 05 7.3899e − 05 6.3888e − 06 7.9906e − 08
−1.0598e − 02 1.1305e − 04 −2.0946e − 02 1.0910e − 01 9.1598e − 03 1.1510e − 04
−1.0024e − 02 −2.6288e − 04 −1.0992e − 01 7.9670e − 04 −1.9330e − 04 −9.4303e − 07

−1.0598e − 02 −1.0024e − 02
1.1305e − 04 −2.6288e − 04

−2.0946e − 02 −1.0992e − 01
1.0910e − 01 7.9670e − 04
9.1598e − 03 −1.9330e − 04
1.1510e − 04 −9.4303e − 07
1.6808e − 01 3.1479e − 04
3.1479e − 04 3.0621e − 03

 ,

P
(4)
2ε =


4.7354e − 04 1.2072e − 05 3.9670e − 03 −2.1963e − 04 1.4892e − 03 1.7818e − 05
1.2072e − 05 3.1989e − 07 1.0766e − 04 −2.8842e − 06 3.3793e − 05 4.3778e − 07
3.9670e − 03 1.0766e − 04 6.5371e − 02 −4.8525e − 04 −2.3526e − 02 −2.8743e − 04

−2.1963e − 04 −2.8842e − 06 −4.8525e − 04 1.1785e − 03 −8.6911e − 04 −1.4425e − 05
1.4892e − 03 3.3793e − 05 −2.3526e − 02 −8.6911e − 04 1.2729e − 01 1.5602e − 03
1.7818e − 05 4.3778e − 07 −2.8743e − 04 −1.4425e − 05 1.5602e − 03 1.2588e − 03
2.1774e − 02 4.9125e − 04 −4.0432e − 01 −2.2283e − 02 6.6862e − 01 8.5352e − 03
1.4953e − 03 5.2797e − 05 2.3162e − 02 −7.0029e − 03 −1.7798e − 02 −1.1687e − 04

2.1774e − 02 1.4953e − 03
4.9125e − 04 5.2797e − 05

−4.0432e − 01 2.3162e − 02
−2.2283e − 02 −7.0029e − 03

6.6862e − 01 −1.7798e − 02
8.5352e − 03 −1.1687e − 04
1.2249e + 01 −5.7512e − 02

−5.7512e − 02 2.2015e − 01

 .

Table 1: Error per iterations.
k ||G(k)(1.0e − 01)|| ||G(k)(1.0e − 02)|| ||G(k)(1.0e − 03)|| ||G(k)(1.0e − 04)||
0 1.8875e − 01 1.8875e − 02 1.8875e − 03 1.8875e − 04
1 1.3163e − 02 7.7570e − 05 7.7732e − 07 7.7777e − 09
2 4.1112e − 04 1.0296e − 08 1.0965e − 12 4.0055e − 14
3 3.2712e − 09 1.3893e − 13
4 2.0230e − 13

A21 =


0.021 0 0.121 0.003
−1.1 0 −1.62 −0.015

0 0 0 0
−2.43 0 1.37 −0.034

 , A22 =


−0.21 1 −1.6 −0.005
−1.9 −1.8 9.3 −0.12

0 0 0 1
−3.1 0 −56 0.032

 ,

A111 = 1.0e − 02 ×


0.06 0 0.46 0.002
−1 0 1.49 −0.04
0 0 0 0

0.12 0 29.8 −0.028

 , A112 = 1.0e − 02 ×


−0.002 0 0.83 0
−6.78 0 −10.1 0.09

0 0 0 0
−1.24 0 0.498 −0.017

 ,

A121 = 1.0e − 02 ×


0.011 0 0.22 0
−2.1 0 1.7 −0.123

0 0 0 0
−0.07 0 6.38 −0.011

 , A122 = 1.0e − 02 ×


−0.197 1 −1.2 −0.003
−54.5 −20 70.1 −2.37

0 0 0 1
−3.4 0 −21.0 −0.017

 ,

B11 =


0

36.1
0
0

 , B22 =


0

78.9
0
0

 , Bij = O, i 6= j,
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Q1 = block diag
(

0.1I4 O4×4

)
, Q2 = block diag

(
O4×4 0.1I4

)
,

R11 = R22 = 0.1, R12 = 2, R21 = 3.

First, the initial conditions (27) of Newton’s method (26) are given in the top of this page.
The small parameter is chosen as ε = 0.1. It should be noted that the algorithm (26) converges

to the exact solution with accuracy of ||G(k)(ε)|| < 1.0e − 10 after four iterations, where ||G(k)(ε)|| :=∑2
i=1 ||Gi(ε, P

(k)
1ε , P

(k)
2ε )||. The convergence solutions P

(4)
iε are given in the top of this page.

In order to verify the exactitude of the solution, the remainder per iteration by substituting P
(k)
iε into the

CSAREs (16) is computed. In Table 1, the results of the error ||G(k)(ε)|| per iterations are given for several
values ε. As a result, it can be seen that the algorithm (26) has the quadratic convergence.

Finally, the convergence of the fixed point algorithm in equation (38) is demonstrated. For ε = 0.1,
Table 2 shows the errors per iteration for the algorithm for the first iteration of Newton’s method, where
the convergence condition is given by ||H(Y (m)

ε )|| = ||Y (m)
ε Eε + ET

ε Y
(m)
ε + AT

1εYεA1ε + Hε|| < 1.0e − 10.

Table 2.

m ||H(Y (m)
ε )||

1 1.79755e − 01
2 1.30085e − 03
3 1.75259e − 05
4 1.89520e − 07
5 2.19458e − 09
6 2.48513e − 11

From Table 2, it can be verified that the proposed algorithm satisfies equation (39). That is, the proposed
algorithm (38) has a linear rate of convergence. Hence, the combined algorithms in equations (26), (30) and
(38) of this paper are very attractive. Furthermore, even if the weakly coupled large-scale systems (1) are
composed of two four-dimensional subsystems, the required workspace is four. This feature is very useful
from the practical viewpoint.

8 Conclusion

The infinite horizon stochastic Nash games have been discussed. First, the conditions for existence of Nash
equilibria by utilizing the CSAREs have been established. Second, a numerical algorithm for solving the
CSAREs that arose in the stochastic Nash games for weakly coupled large-scale systems has been studied. In
order to solve CSARE, Newton’s method and two fixed point algorithms have been combined. Using a new
hybrid algorithm, it has been shown that the quadratic convergence and the reduced-order computation are
both attained. Moreover, the local uniqueness of the solution has been proved for the first time. Thus, the
proposed algorithm is expected to be very useful and reliable for a sufficiently small ε. As another important
feature, the high-order approximate strategy such that the better cost performance is attained has been
established. In fact, the cost degradation for using the proposed approximate strategy has been proved
for the first time. Finally, the computational examples have shown excellent results that the quadratic
convergence has been verified and the proposed algorithm has succeeded in reducing the computational
workspace.

References
[1] V.A. Ugrinovskii, Robust H∞ control in the presence of stochastic uncertainty, Int. J. Control 71 (1998) 219-237.

[2] D. Hinrichsen and A.J. Pritchard, Stochastic H∞, SIAM J. Control and Optimization 36 (1998) 1504-1538.

[3] B.S. Chen and W. Zhang, Stochastic H2/H∞ control with state-dependent noise, IEEE Trans. Automatic Control 49
(2004) 45-57.

[4] M.A. Rami and X.Y. Zhou, Linear matrix inequalities, Riccati equations, and indefinite stochastic linear quadratic controls,
IEEE Trans. Automatic Control 45 (2000) 1131-1143.

[5] R. Srikant and T. Basar, Asymptotic solutions to weakly coupled stochastic teams with nonclassical information, IEEE
Trans. Automatic Control 37 (1992) 163-173.

[6] H. Mukaidani, Optimal numerical strategy for Nash games of weakly coupled large-scale systems, Dyn. Continuous, Discrete
and Impulsive Systems, Series B: Applications and Algorithms, 13 (2006) 249-268.



14

[7] H. Mukaidani, A numerical analysis of the Nash strategy for weakly coupled large-scale systems, IEEE Trans. Automatic
Control 51 (2006) 1371-1377.

[8] H. Mukaidani, Numerical computation of sign indefinite linear quadratic differential games for weakly coupled large-scale
systems, Int. J. Control 80 (2007) 75-86.

[9] H. Mukaidani, Newton’s method for solving cross-coupled sign-indefinite algebraic Riccati equations for weakly coupled
large-scale systems, Applied Mathematics and Computation (2007) (to appear).

[10] T. Yamamoto, A Method for finding sharp error bounds for Newton’s method under the Kantorovich assumptions, Nu-
merische Mathematik, 49 (1986) 203-220.

[11] H.S. Wu, R.A. Willgoss and K. Mizukami, Robust stabilization for a class of uncertain dynamical systems with time delay,
J. Optimization Theory and Applications, 82 (1994) 1573-2878.


