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The 2D time dependent solution of thin accretion disk in a close binary system have

been presented on the equatorial plane around the Schwarzschild black hole. To do

that, the special part of the General Relativistic Hydrodynamical(GRH) equations

are solved using High Resolution Shock Capturing (HRSC) schemes. The spiral

shock waves on the accretion disk are modeled using perfect fluid equation of state

with adiabatic indices γ = 1.05, 1.2 and 5/3. The results show that the spiral shock

waves are created for gammas except the case γ = 5/3. These results consistent with

results from Newtonian hydrodynamic code except close to black hole. Newtonian

approximation does not give good solution while matter closes to black hole. Our

simulations illustrate that the spiral shock waves are created close to black hole and

the location of inner radius of spiral shock wave is around 10M and it depends on

the specific heat rates. We also find that the smaller γ is the more tightly the spiral

winds.

Keywords: General Relativity, Hydrodynamics, Numerical Relativity Black Hole, Accretion

Disk, Spiral Shock, Adaptive-Mesh Refinement

I. INTRODUCTION

Rotating accretion disk around compact objects is an important problem in astrophysics,

such as neutron stars and black holes which involve mass transfer from one object to another.

Shock waves in a rotating accretion disk onto compact objects transfer the gravitation energy

to the radiation energy which is observer by different X-ray observatory satellite, such as

Chandra. Fluctuations and oscillating of radiation emitted from these systems constantly
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remind us of time variations of the dynamical quantities. These variation can happen on

times scale of a few microseconds to few years. In order to understand these kinds of events

we have started doing some numerical simulation and looking for shock waves on an accretion

disk.

In binary systems in which a compact primary star accretes, through an accretion disk

from a lobe-filling secondary star, the tidal interaction with the companion can results in

the formation of a two-armed spiral structure(Dgani et al. 1994, Godon et al. 1997). These

spiral waves can transport angular momentum in the accretion disk which has been suggested

by analogy to the galactic dynamics context (Rozyczka et al. 1993).

The problem of accretion disk on to black hole has been previously analyzed numerically

by Hawley et al. (1985) in general relativity. They have also suggested shock waves on the

rotating accretion disk. After that so many astrophysicist worked on this kinds of problem

using with Newtonian(pseudo-Newtonian gravitational potential approximation is used) and

general relativistic hydrodynamics. In Chakabarti et al. (1993), They have compared the

analytic and numerical studies of shock wave on inviscid accretion disk flows using with the

smoothed particle hydrodynamics (SPH) code. They have believed that shocks waves could

be common in accretion disk and standing shock waves can only be produced in accretion disk

around the black hole. Near to black hole density of accretion disk in the sub-Keplerian flows

is higher than density of accretion disk in Keplerian flows the consequence of the presence

of centrifugal barrier, which is smaller at sub-Keplerian flow. Because of this high density

standing shock can form in accretion disk. This high density flow intercepts soft photons

from a cold Keplerian disk and reprocesses them to form high energy X-rays (Chakabarti et

al. 1997). In Lanzafame et al. (1998), they have used SPH code with viscosity to look at

the shock waves on an accretion disk at parameter range. They have found that if viscosity

parameter is less than critical values, shock can form. If it is bigger than critical values, shock

wave disappears. In the intermediate viscosity, the disk oscillates in the viscous time scales.

Nonaxisymmetric shock waves are found on the equatorial plane by Molteni et al. (1999).

They have used SPH and Eulerian type with TVD codes to look for nonaxisymmetric shock

wave applying a perturbation on an accretion disk at different parameter range, which are

specific angular momentum and internal energy. They have concluded that shock waves are

found by Chakabarti with perturbation in a rotating inviscid accretion flow are generally

unstable to azimuthal perturbation, but the instability are taken care of at low level and
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new stable asymmetric accretion disk is developed with a strong shock rotating steadily.

In Makita et al. (2000), first, they have reviewed the spiral shock wave in 2D and 3D

and showed their results to look for consistency with literature. One of the main problem

in accretion disk is the mechanism of angular momentum transport. One of the reason for

angular momentum transport is α-disk model. The viscosity is supposed to transform the

angular momentum and it can be produce shock waves depends on the that parameter. The

another way of the transporting angular momentum is the spiral shock waves. The first

convincing evidence of spiral shock wave in a accretion disk is observed by Steeghs et al.

(1997). They used the technique which is known as Doppler temography to observe spiral

structure in the accretion disk of the eclipsing dwarf nova binary IP Peg at the outburst

phase.

Here we do perturbation onto satirically symmetric steady state accretion disk around

the black hole. Most of the numerical calculation for accretion disk are done by Newtonian

hydrodynamical code using relativistic approximation on it. But our code fully inviscid

general relativistic hydrodynamical which is used High Resolution Shock Capturing Scheme

(HRSC). General relativistic code gives us more detail explanations when the fluid flow

closes to black hole.

II. FORMULATION

The GRH equations in references Font et al. (2000) and Donat et al. (1998), written

in the standard covariant form, consist of the local conservation laws of the stress-energy

tensor T µν and the matter current density Jµ:

▽µ T
µν = 0, ▽µJ

µ = 0. (1)

Greek indices run from 0 to 3, Latin indices from 1 to 3, and units in which the speed of

light c = 1 are used.

Defining the characteristic waves of the general relativistic hydrodynamical equations

is not trivial with imperfect fluid stress-energy tensor. We neglect the viscosity and heat

conduction effects. This defines the perfect fluid stress-energy tensor. We use this stress-

energy tensor to derive the hydrodynamical equations. With this perfect fluid stress-energy
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tensor, we can solve some problems which are solved by the Newtonian hydrodynamics

with viscosity, such as those involving angular momentum transport and shock waves on an

accretion disk, etc. Entropy for perfect fluid is conserved along the fluid lines. The stress

energy tensor for a perfect fluid is given as

T µν = ρhuµuν + Pgµν. (2)

A perfect fluid is a fluid that moves through spacetime with a 4-velocity uµ which may vary

from event to event. It exhibits a density of mass ρ and isotropic pressure P in the rest

frame of each fluid element. h is the specific enthalpy, defined as

h = 1 + ǫ+
P

ρ
. (3)

Here ǫ is the specific internal energy. The equation of state might have the functional form

P = P (ρ, ǫ). The perfect gas equation of state,

P = (Γ− 1)ρǫ, (4)

is such a functional form.

The conservation laws in the form given in Eq.(1) are not suitable for the use in advanced

numerical schemes. In order to carry out numerical hydrodynamic evolutions such as those

reported in Font et al. (2000), and to use HRSC methods, the hydrodynamic equations

after the 3+1 split must be written as a hyperbolic system of first order flux conservative

equations. We write Eq.(1) in terms of coordinate derivatives, using the coordinates (x0 =

t, x1, x2, x3). Eq.(1) is projected onto the basis {nµ, ( ∂
∂xi )

µ}, where nµ is a unit timelike

vector normal to a given hypersurface. After a straightforward calculation, we get (see Font

et al. 2000),

∂t~U + ∂i ~F
i = ~S, (5)

where ∂t = ∂/∂t and ∂i = ∂/∂xi. This basic step serves to identify the set of unknowns, the

vector of conserved quantities ~U , and their corresponding fluxes ~F (~U). With the equations in

conservation form, almost every high resolution method devised to solve hyperbolic systems

of conservation laws can be extended to GRH.
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The evolved state vector ~U consists of the conservative variables (D,Sj, τ) which are

conserved variables for density, momentum and energy respectively; in terms of the primitive

variables (ρ, vi, ǫ), this becomes (Font et al. 2000)

~U =











D

Sj

τ











=











√
γWρ

√
γρhW 2vj

√
γ(ρhW 2 − P −Wρ)











. (6)

Here γ is the determinant of the 3-metric γij, vj is the fluid 3-velocity, and W is the Lorentz

factor,

W = αu0 = (1− γijv
ivj)−1/2. (7)

The flux vectors ~F i are given by [? ]

~F i =











α(vi − 1

α
βi)D

α{(vi − 1

α
βi)Sj +

√
γPδij}

α{(vi − 1

α
βi)τ +

√
γviP}











. (8)

The spatial components of the 4-velocity ui are related to the 3-velocity by the following

formula: ui = W (vi − βi/α). α and βi are the lapse function and the shift vector of the

spacetime respectively. The source vector ~S is given by Font et al. (2000)

~S =











0

α
√
γT µνgνσΓ

σ
µj

α
√
γ(T µ0∂µα− αT µνΓ0

µν)











, (9)

where Γα
µν is the 4-dimensional Christoffel symbol

Γα
µν =

1

2
gαβ(∂µgνβ + ∂νgµβ − ∂βgµν). (10)

The numerical solution of general relativistic hydrodynamical equations and technique

used are explained in detail our first paper Dönmez (2003) which gives great detail about

formulations, numerical scheme, technique, numerical solution of GRH equations, Adaptive-

Mesh Refinement(AMR) and solution of special relativistic test problem.
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III. GENERAL RELATIVISTIC HYDRODYNAMICAL TEST PROBLEM

In this section, the Schwarzschild geometry is introduced in spherical coordinates to

define sources for the general relativistic hydrodynamical equations. Then the accretion

disk problems are numerically modeled , which have been analytically analyzed, to test the

full GRH code in 2D in the equatorial plane.

A. Schwarzschild Black Hole

The Schwarzschild solution determined by the mass M gives the geometry in outside of

a spherical star or black hole. The Schwarzschild spacetime metric in spherical coordinates

is

ds2 = −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr2 +

r2dθ2 + r2sin2θdφ2. (11)

It behaves badly near r = 2M ; there the first term becomes zero and the second term

becomes infinite in Eq.(11). That radius r = 2M is called the Schwarzschild radius or the

Schwarzschild horizon.

The spacetime metric for this line element is

gµν =















−(1− 2M
r
) 0 0 0

0 (1− 2M
r
)−1 0 0

0 0 r2 0

0 0 0 r2sin2θ















. (12)

The lapse function and shift vector for this metric is

βr = 0.0, βθ = 0.0, βφ = 0.0,

α = (1− 2M

r
)1/2. (13)
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B. The Source Terms For Schwarzschild Coordinates

The gravitational sources for the GRH equations are given by Eq.(9). In order to compute

the sources in Schwarzschild coordinates for different conserved variables, Eq.(9) can be

rewritten as,

~S =





















0

α
√
γT µνgνσΓ

σ
µr

α
√
γT µνgνσΓ

σ
µθ

α
√
γT µνgνσΓ

σ
µφ

α
√
γ(T µ0∂µα− αT µνΓ0

µν)





















. (14)

It is seen in Eq.(9) that the source for conserved density, D, is zero but the other sources

depend on the components of the stress energy tensor, Christoffel symbols, and 4-metric.

After doing some straightforward calculations, the sources can be rewritten in Schwarzschild

coordinates for each conserved variable with the following form:

The source for the momentum equation in the radial direction is

α
√
γT µνgνσΓ

σ
µr =

1

2
α
√
γ(T tt∂rgtt + T rr∂rgrr +

T θθ∂rgθθ + T φφ∂rgφφ). (15)

The source for the momentum equation in the θ direction is

α
√
γT µνgνσΓ

σ
µθ =

1

2
α
√
γT φφ∂θgφφ. (16)

The source for the momentum equation in the φ direction is

α
√
γT µνgνσΓ

σ
µφ = 0.0. (17)

The source for the energy equation is

α
√
γ(T µ0∂µα− αT µνΓ0

µν) =

α
√
γ(T rt∂rα− αT rtgtt∂rgtt). (18)
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The non-zero components of the stress-energy tensor in Schwarzschild coordinates can be

computed by Eq.(2); they are

T tt = ρh
W 2

α2
+ Pgtt

T rr = ρhW 2(vr)2 + Pgrr

T θθ = ρhW 2(vθ)2 + Pgθθ (19)

T φφ = ρhW 2(vφ)2 + Pgφφ

T tr = ρh
W 2

α
vr.

C. Geodesics Flows

As a general relativistic test problem, the accretion of dust particles onto a black hole

are solved. The exact solution for pressureless dust is given in Appendix A. This problem

is numerically analyzed in 2D in spherical coordinates at constant θ = π/2, which is the

equatorial plane, so the spatial numerical domain is the (r, φ) plane. In this calculation,2.4 ≤
r ≤ 20 and 0 ≤ φ ≤ 2π are used for the computational domain. The initial conditions for all

variables are chosen to have negligible values except the outer boundary (r = 20M) where

gas is continuously injected radially with the analytic density and velocity. Throughout the

calculation, whenever values at the outer boundary are needed the analytic values are used.

The code is tun until a steady state solution is reached, using outflow boundary conditions at

r = 2.4, inflow boundary conditions at r = 20 and the periodic boundary in the φ direction.

It is found that the resulting numerical solution does not develop any angular dependence

during the simulation.

In Fig. 1, the rest-mass density ρ, absolute velocity v = (vivi)
1/2 and radial velocity vr

are plotted as a function of radial coordinate at a fixed angular position. The numerical

solution agrees well with the analytic solution. The convergence test are also made on this

problem to test the behavior of the source terms in the GR Hydro code. Some convergence

tests with the SR Hydro code are conducted to confirm the second order convergent(Dönmez

2004). In this case, we are looking for convergence rate with source terms. The analytic

values of the accretion problem are used as initial conditions, and the computational domain

is chosen from rmin = 10M to rmax = 30M . The convergence results are given at TableI. It
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TABLE I: L1 norm error and convergence factors are given for different resolutions.

Convergence Test

# of points # of time step L1 norm error Convergence factor

32 1 1.675E − 5

64 2 4.0811E − 6 4.105

128 4 9.6456E − 7 4.23

256 8 2.1372E − 7 4.51

is noticed that code gives roughly second order convergence.

The conservation form of general relativistic hydrodynamical equations are solved. It is

expected that conserved variables must be conserved to machine accuracy, ∼ 10−16. The

checking the results of conservation variables in the numerical test problem shows that these

variables conserved to machine accuracy.

In this part of same test problem we do an AMR test. For uniform grid runs, the amount

of time it takes to reach a steady state solution increases with resolution. We carried out

a 3−level AMR calculation to compare with a uniform one for geodesic inflow to see the

behavior of AMR in this problem. In Fig. 2 we plot AMR and uniform runs on top of each

other for density vs. radial Schwarzschild coordinate. We see that while the AMR solution

has reached a steady state at t = 151M , the uniform solution has not reached a steady state

by the same time.

D. Circular Motion of Test Particles

We will now simulate the circular motion of a fluid with the numerical code. To do

this we set up a circular flow with negligible pressure in the equatorial plane, in which

angular velocity at each radial direction r is the Keplerian value, Eq.(B10). This is called a

Keplerian. The last stable circular orbit for a particle moving around a Schwarzschild black

hole is at r = 6M (M is mass of black hole) Therefore the gas or particles will fall into the
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black hole if their radial position is less than 6M . When their radial position is bigger than

6M , they should rotate in a circular orbit. Here we simulate this problem and compare the

numerical solution with the analytic expectations. This problem tests the code with sources

in the φ direction.

In order to simulate this problem, we choose the computational domain to be 3M ≤
r ≤ 20M and 0 ≤ φ ≤ 2π. The computational domain is filled with constant density

and pressureless gas, rotating in circular orbits with the Keplerian velocity and zero radial

velocity. In Fig. 3, the radial velocities of the gas vs. radial coordinate at different times are

plotted. It is numerically observed that the gas inside the last stable orbit, r = 6M , falls

into the black hole while gas outside the last stable orbit follows circular motion with the

Keplerian velocity as we expect analytically. In Fig. 4, we plot the density of the fluid vs.

radial coordinate at different times to see the behavior of the disk. It is clear from that gas

falls into the black hole for r < 6M . So the numerical results from our code are consistent

with the analytic expectations.

IV. NUMERICAL MODELING OF THE ACCRETION DISKS IN THE

SCHWARZSCHILD COORDINATE

In the present work, we do not intend to make a very concrete model for particular object,

and it is assumed a rather simple initial configuration of gas. At t = 0 computational domain

filled with some negligible values for density and pressure with zero radial and angular

velocity. The injected value from companion star from outher boundary of computational

domain are; ρin = 1.0, pin = 10−3/γ, vr = 0.01 and vφ which is the Keplerian fluid velocity.

Computational domain is 3M ≤ r ≤ 100M and 0 ≤ φ ≤ 2π. Where M is the mass of black

hole. Following problems solved are 2D modeling on an equatorial plane.

The choice of boundary conditions at the inner and the outher numerical boundary is

rather important. The boundary conditions are treated as follows. The fictitious cell are

placed just outside of a boundary and we prescribe physical variables in the fictitious cells.

Numerical fluxes on the boundary wall are computed by solving a Riemann problems between

states. The following boundary conditions are used. The value of physical variables in the

fictitious cells are the same as those in the neighboring interior cells at all the times. Radial

velocities direction can be changed depend on inner or outher boundary condition used.
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A. γ = 1.05

The first results of the spiral shock wave are given on the accretion disk around the black

hole using the Schwarzschild metric. In all simulations, the black hole is at the center of

computational domain and it is represented as a white hole in the graphics. First, gas is

injected from outher boundary to accrete an accretion disk with spiral shock wave and then

the injection is stopped to see the behavior of accretion disk during the evolutions. Finally

the numerical simulation is stopped when solution reaches to steady state.

The density of the accretion disk is illustrated in Fig.5 at t = 19643M . In early time of

simulation accretion disk is not in steady state yet but two-armed spiral shock is already

created and dynamical structure of the disk is not changed any more. The only thing which

changes during the simulation after the certain evolution time is the amplitude of density.

It is also showed in Fig.6 that the mass of accretion disk during the process of gas from

outer boundary by the companion star is in the steady states between the evolution times

10000M − 19643M . The two-armed spiral shock is created for the case γ = 1.05 during the

injecting gas. and also this spiral arms and accretion disk go to steady state.

In order to watch the behavior of the spiral shock on an accretion disk while no matter

gets into accretion disk, the injected gas is stooped. It is numerically observed that initial

structure of two-armed spiral shock wave is slightly changed because the hydrodynamical

forces given by the shock, which is created by injected gas, is gone. In order to balanced

the forces on the accretion disk, the spiral shock waves are kept, which is more compact

than the one in the beginning of this simulations, around the black hole. This newly formed

two-armed spiral shocks are plotted at t = 47526M in Fig.7. These shocks are in the steady

state and two-arms spiral shock almost 180o apart to each other. In Fig.8 we depict 1D

cut at fixed radial coordinate, r = 20.12M for density, radial velocity, orbital velocity and

pressure at t = 47526M . Two-armed spiral shocks are clearly observed. Angular momentum

transform is also seen in that graphic because the orbital velocities of spiral arms are less

than the orbital velocity of accretion disk.
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B. γ = 1.2

In this case, the same problem is solved for accretion disk except γ = 1.2 which is more

expressible than the γ = 1.05. In order to accrete an accretion disk, the same injection is

made from outher boundary with the case for γ = 1.05 and numerical simulation is run

until solution reach to steady state. Afterall the injection is stooped and the behavior of

accretion disk, and spiral shock wave are numerically observed.

We do injection from outer boundary continuously to create an accretion disk around

the black hole for γ = 1.2. In Fig.9, the two-armed spiral shock waves are created. The

solution is almost in steady state in Fig.9. Eventhough the solution is not in steady state,

the structure of accretion disk is not change during the evolutions. The result for γ = 1.2

comparable with Makita et al. (2000). But there are some differences around the black hole

because our code fully relativistic and it can give detail structure when the matter close to

black hole. Another differences in my code and Makita et al. (2000) is that we use inflow

boundary condition that is allow to gas fall into black hole but they use freezing boundary.

The using different boundary close to black hole also makes big difference in the structure

of spiral shock waves.

In order to understand the how spiral arms behave after companion star is removed, the

injecting gas from outher boundary is stooped. After the injecting is not allowed any more

at t = 17502M , Fig.10 displays numerical result at t = 19475M that two-armed spiral shock

waves are still kept because of tidal forces between companion star and black hole. Mass of

the accretion during the whole process is given at Fig.11. It reaches a maximum mass, which

is almost called steady-state point, whenever companion star is removed mass of accretion

disk stars to decrease and goes to steady-state point. That point has also two-armed spiral

shock waves.

V. CONCLUSION

The spiral shock waves on an accretion disk are an important mechanism to transform the

angular momentum. In this simulation it is concluded that accretion disk is rotating with

sub-Keplerian velocity, which is carrying positive angular momentum, and spiral shock waves

moving much slower than the disk and they are carrying the negative angular momentum.
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When the disk material hits to spiral wave, the angular momentum of accretion disk is

transform to out of accretion disk. The shock waves around the black hole are a mechanism

of transforming gravitational energy to radiation energy which is observed by the different

x−ray observatory satellite, such as Chandra.

Spiral arms in an accretion disk are one of the mechanism to emit x−ray. We have

looked at the spiral structure, which is created at around the black hole when matter falls

from companion star to primary star. Spiral structure in an accretion disk is created under

certain condition. To create spiral arms adiabatic index must be less or equal than 1.2.

In this simulations, three different simulations are done for γ = 1.1, 1.2 and 5/3. These

simulations show that we do not have any spiral arms for γ = 5/3 (the graphic for his case

did not put here) but for the others. These results are consistent with results from Makita

et al. (2000). We have also watched behavior of accretion disk after companion star stop

injection. The two-armed spiral structure kept during the evolution. It concludes that the

spiral shocks are formed by tidal forces, not by the inflow, of which claim was posed by

Bisikalo et al. (1998b).

From the point of view of dependence γ, it is concluded that spiral arms are more tightly

in smaller γ cases than larger ones. Lower γ means cooler disk with larger Mach number of

the flow. Our results are comparable with those of Makita et al. (2000) who solve Newtonian

hydrodynamical equation. Our and their results are also agree while adiabatic index, γ, is

bigger than 1.2, two armed spiral shock wave is not created which is observed for γ = 5/3.

Even the accretion disk may not be formed.
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APPENDIX A: THE ANALYTIC SOLUTION OF GEODESICS FLOWS

Pressureless gas, also called dust, falling onto a black hole in the radial direction, called

geodesic flow. It can be also called free falling gas because there are no pressure forces

opposing the inward motion of the gas.

We use the fact that the elements of the accreting fluid fall along geodesics to get the

analytic solution . In axisymmetric, steady-state flows the binding energy per baryon hUt

is conserved. Hence for dust particles, h = 1 and the gravitational binding energy Ut will

remain constant. Since UµUµ = −1, vr(r) is now determined in terms of input an constant

Ut and the known metric functions. Note that Uθ = Uφ = 0.

First, we start with the geodesic equation for free falling dust:

∇~u
~U = 0.

Uα
;βU

β = (Uα
,β + Γα

γβU
γ)Uβ = 0. (A1)

Eq.(A1) can be rewritten using Uα = dxα/dλ,

dUα

dλ
+ Γα

γβU
γUβ = 0. (A2)

Substituting the index α = 0 = t in Eq.(A2) gives

dU t

dλ
+ Γt

γβU
γUβ = 0. (A3)

Most of the Christoffel symbols at Eq.(A3) are zero, except Γt
tr = Γt

rt = 1

2
gtt∂rgtt =

1

2
(2M/(r(r − 2M))). The substituting the non-zero Christoffel symbols into Eq.(A3) gives

us

dU t

dr
= − 2M

r(r − 2M)
U t, (A4)

where dU t/dλ = (dU t/dr)(dr/dλ).

After doing some straightforward integration, Eq.(A4) goes to
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U t =
1

(1− 2M
r
)
. (A5)

To compute the radial component of the fluid velocity of geodesic gas, we need to know

the radial four velocity of the gas. In order to compute that, we use the normalization of

four velocities, which is

UµUµ = −1

U tγttU
t + U rγrrγ

r = −1. (A6)

We substitute Eq.(A5) into Eq.(A6), to

U r =

√

2M

r
. (A7)

Using the relations between the four and three velocities, U r = Wvr, U t = W/
√

1− (2M/r),

we get

vr =

√

2M

r

√

1− 2M

r
, (A8)

where vr is the velocity which is observed by an observer outside the horizon.

Now, we compute the density using the continuity equation from Eq.(5) which is

∂t(
√
γWρ) + ∂i(αv

rD) = 0. (A9)

Since we are looking for a steady state solution the time derivative of variables is zero and

we have only the radial derivative in Eq.(A9). Then the density equation becomes

∂i(αv
rD) = 0. (A10)

After doing integration of Eq.(A10), we get

αvrD = d, (A11)



16

where d is an integration constant. Now D can be computed from Eqs.(A8) and (A11),

D =
d

(1− 2M
r
)(2M

r
)
1

2

. (A12)

Finally, we compute the density ρ from Eqs.(A8) and (A12)

ρ =
1

W

d

r2(2M
r
)
1

2 (1− 2M
r
)
1

2

, (A13)

where W is the Lorentz factor and given by

W =
1

(1− 2M
r
)
1

2

. (A14)

APPENDIX B: THE ANALYTIC REPRESENTATION OF CIRCULAR MOTION

OF A TEST PARTICLE

In this Appendix we compute the angular velocity and circular velocity of a particle on

a circular orbit in the Schwarzschild spacetime, analytically.

Since Schwarzschild geometry is time independent and spherically symmetric, the con-

served quantities can be determined by the trajectory of particles. Because of spherical

symmetry, motion is always defined in at a single plane and we can choose this plane to be

the equatorial plane (θ = π/2). Then θ is constant in that plane for the motion of particles

and the θ derivatives vanish. The components of the momentum (Schutz et al. 1985) are

pt = gttpt =
mE

(1− 2M
r
)

pr = m
dr

dτ

pθ = 0 (B1)

pφ = gφφpφ =
mL

r2
,

where m, E , τ and L are the mass of particle, total energy, proper time and angular

momentum, respectively. Here E = −pt/m and L = pφ/m.
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Now, we can derive the equation of motion for a particle in the equatorial plane using

Eq.(B2) and the conservation relation, ~p.~p = −m2. This gives us

(

dr

dτ

)2

= E2 −
(

1− 2M

r

)(

1 +
L2

r2

)

. (B2)

Eq.(B2) can be rewritten by defining an effective potential V (r) and we get

(

dr

dτ

)2

= E2 − V 2(r), (B3)

where V 2(r) = (1− 2M
r
)(1 + L2

r2
).

Eq.(B3) implies that since the left side of that equation is positive or zero, the total energy

of a trajectory can be bigger or equal to the effective potential.

In order to compute the angular velocity and period of a particle in a circular orbit, we

differentiate Eq.(B3) with respect to τ , and get

d2r

dτ 2
= −1

2

dV 2(r)

dr
. (B4)

It is clear from Eq.(B4) that a circular orbit, which has constant r, is possible only at a

minimum or maximum of the effective potential, V 2(r). In a circular orbit r is constant and

the left side of Eq.(B4) goes to zero. If we take d2r/dτ 2 = 0 and substitute in the expression

for the effective potential, we can compute the circular orbit radius as

r =
L2

2M

(

1±
√

(

1− 12M2

L2

)

)

. (B5)

From Eq.(B5), a stable circular orbit at radius r has angular momentum which is

L2 =
Mr

1− 3M
r

. (B6)

The total energy in a circular orbit is E2 = V 2 and it is

E =

(

1− 2M

r

)2

/

(

1− 3M

r

)

. (B7)
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Now, the non zero components of the four velocity of a particle in the plane are

dφ

dτ
= Uφ =

P φ

m
= gφφ

Pφ

m
= gφφL =

L

r2
(B8)

and

dt

dτ
= U t =

P t

m
= gtt

Pt

m
= gtt(−E) =

E

1− 2M
r

. (B9)

We find the angular velocity by dividing Eq.(B8) by Eq.(B9):

dφ

dt
=

dφ/dτ

dt/dτ
=

√

M

r3
; (B10)

this is called the Keplerian angular velocity.

Finally, we can compute the circular velocity of a particle using the definition of four velocity

relativistic hydrodynamical equations given in Section II , Eq.(B8) and Eq.(B9). We get

vφ =
1

α

Uφ

U t

vφ =
1

√

(1− 2M
r
)

√

M

r3
. (B11)
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FIG. 1: The analytic solutions (red solid lines) with the numerical solutions (black circles) using

256 zones in the radial direction for thermodynamical variables, ρ, v, and vr.
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FIG. 2: The numerical solutions from a 3−level AMR run(64 zones, red circles) and a uniform grid

run(160 zones, black straight line) for density vs. radial coordinate.
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FIG. 3: Radial velocity vs. r is plotted. The radial velocity of fluid in the disk stays zero for

r > 6M , during the evolution. r = 6M is called the last stable circular orbit in a Keplerian disk.
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FIG. 4: Density vs. r is plotted. Density of the fluid is plotted at different times using different

colors. The matter falls into the black hole while r is less than 6M .
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FIG. 5: Plotting the density in the r − φ plane with color for γ = 1.05. It is taken at t = 19643M

and it is in steady state. Two-armed spiral shock wave is created.
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FIG. 6: Mass of accretion disk vs. time is plotted during the hole evolution. The injection is

stopped at maximum mass.
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FIG. 7: Zooming the interesting part of accretion disk at t = 47526M to see two-armed shock wave

clearly.
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FIG. 8: Plotting the density, radial velocity, orbital velocity and pressure for accretion disk at

t = 47526M in fixed r = 20.12M .
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FIG. 9: Plotting the density in the r − φ plane with color for γ = 1.2. It is taken at t = 17502M .

It is in the steady state and two-armed spiral shock wave is already created and the structure of

disk does not change.
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FIG. 10: Plotting the density in the r− φ plane with color for γ = 1.2. It is taken at t = 19475M

after injected is stopped att = 17502M . It is seen that two-armed spiral shock wave is still kept

because they are created tidal forces on the accretion disk.
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FIG. 11: Mass of accretion disk vs. time is plotted during the hole evolution. The injection is

stopped at maximum mass.
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