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Abstract: Considering the dynamic risk factors and risk situation throughout the entire deep excavation 13 

operations, timely adjustment and optimization of safety measures can enhance the practicality of construction 14 

technical plans on sites. A digital and quantitative model representing the practical risk situation of the deep 15 

excavation is urgently required for realizing the prediction, optimization, and control of the actual construction 16 

state. Thus, this research aims to propose a real-world-oriented model integrating Bayesian network (BN) and 17 

design structure matrix (DSM) for decision-making in safety risk management. First, risk factors were identified, 18 

and the BN model was established to evaluate the anti-risk ability of the construction site. Then, a multi-objective 19 

safety measure optimization model under specific constraints was established. Particularly, the DSM was adopted 20 

to express the control relationship between risk factors and safety measures. Moreover, with genetic algorithms 21 

applied, the optimal safety measure set for on-site safety risk management can be obtained. For model validation, 22 

a deep excavation project of metro construction in Wuhan, China, was selected as a case study. The hybrid 23 

optimization model showed the characters of initiative and timeliness in construction risk management. By 24 

providing the timely and optimized combination of safety measures, the dynamic decision-making approach can 25 

proactively and effectively improve the risk resistance ability of construction sites. 26 

Keywords: deep excavation, dynamic safety risk management, multi-objective optimization, digital twin model 27 

1 Introduction 28 

Deep excavation is a complex construction operation with numerous potential risks [1]. For ensuring safety 29 

management on sites, construction activities need to be undertaken following the guidance of technical plans [2]. 30 

In this process, potential risks can be addressed for proactive management [3]. Especially, the deep excavation 31 

construction is a dynamic and comprehensive information system involving the construction method, the 32 

construction process, the dynamic risk situation, and the construction cost and duration, etc. For mitigating 33 

involved risk factors, safety measures must be adjusted consistently according to the dynamic situations in 34 

construction to improve safety performance [1][4]. However, in practice, the determination of safety measures is 35 

primarily reliant on the subjective expertise of engineers. Moreover, the static construction technical plans 36 

generated prior to the construction phase pose challenges in terms of adaptability to the dynamic nature of the 37 

construction site, which may lead to poor performance on risk control, cost, and duration. Addressing the above 38 

issues, a digital and quantitative approach is urgently required for supporting the prediction, optimization, and 39 
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control of the dynamic practical risk situation of the deep excavation [1]. 40 

With the emergence of digital twin and other information technologies [5], novel technical approaches have 41 

been stimulated for the management and reuse of construction safety special plans. The application of digital 42 

twin in the engineering field can be understood as the representation of digital information-oriented physical 43 

systems and support for managing these systems [6]. Based on the semantic and digital expression of construction 44 

safety special plans, the utilization of digital twin technology in construction risk management has demonstrated 45 

significant potentials [7]. Digital twin models can be used to analyze, predict and diagnose the risk situations. 46 

Then the simulation results are fed back to the real construction sites, thus helping to optimize and make decisions 47 

on the risk management. The above statement serves as the starting point of this research. 48 

Thus, differing from the conventional research method [8], this research aims to develop a real-world-oriented 49 

simulation based on cyber-physical synchronicity for safety risk management in construction scenarios, utilizing 50 

data-driven engineering and synchronized physical information. Specifically, a hybrid safety measure 51 

optimization model, based on integrating Bayesian network (BN) and design structure matrix (DSM), was 52 

established. By synchronously updating and analyzing the dynamic practical risk situation of the deep excavation, 53 

the hybrid model can facilitate objective decision-making by providing optimal safety measures for effective 54 

safety risk management. It is noted that the model is dynamic and capable of adapting to changes in decision-55 

making situations on construction sites. In addition, safety measures can be dynamically adjusted to adapt to the 56 

dynamic construction sites and further improve the safety measures planning. Details of the application 57 

procedures and key technologies of the proposed approach has been described in this research. Ultimately, a 58 

practical deep excavation case was adopted to verify the effectiveness of this approach. 59 

This research represents a novel approach for managers and engineers in the selection of safety measures, 60 

aiming to enhance risk factor control and optimize the performance of safety management. From the perspective 61 

of optimizing construction safety plans dynamically, the research findings can facilitate the application of digital 62 

twin technology in guiding construction safety management on sites. 63 

2 Background 64 

2.1 Automatic safety risk management platforms in construction 65 

In recent years, various tools and platforms have been studied and applied to support the automatic safety 66 

risk management in construction. These tools and platforms have been extensively studied and applied to address 67 

different complex challenges. For example, Zhou et al. proposed a BIM-based 4D model as an integrated tool to 68 

present the real-time visualization safety status of related components under changing conditions [9]. Kim et al. 69 

proposed a BIM platform that can prevent fall-related accidents by reporting safety measures in advance [10]. In 70 

this manner, automated hazard identification and safety checking in construction process can be realized. 71 

Moreover, other existing studies have explored potential methods (e.g., Bayesian Networks, fuzzy decision-72 

making model) for safety risk identification and management in deep excavation-related fields [11][12]. Ding et 73 

al. established an ontology-based methodology for construction risk knowledge management through information 74 

model and semantic web technology [13]. Lee et al. developed a risk management system for deep excavation 75 

based on BIM-3DGIS framework and optimized grey Verhulst model [14]. Also, information integration and 76 

exchange were needed to be considered in the above BIM technology applications. A semantic industry 77 
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foundation classes (IFC) data model was proposed for automatic safety risk identification in dynamic deep 78 

excavation process [7]. 79 

Specially, digital twin technology can provide real-time virtual models and data that accurately reflect both 80 

the semantic and geometric attributes and functions of infrastructures. In this process, three prevalent functional 81 

categories of digital twins are identified: (1) status twins for monitoring the physical condition of objects and 82 

equipment; (2) operation twins for adjusting operating parameters based on linked actions and/or workflows; and 83 

(3) simulation twins for predicting how an objective or device responds to operational conditions in the future 84 

[15][16]. The integration of data-driven site management and digital twin technology has emerged as a robust 85 

problem-solving approach [17][18][19], which has also shown great potentials on risk management in 86 

construction [6]. 87 

2.2 Decision-making on safety measures for risk management 88 

Few existing studies on the selection of safety measures for risk factor control, as well as methods for 89 

establishing anti-risk capabilities of construction sites and identifying optimal solutions, are found within extant 90 

literature [1]. Generally, the process of decision-making of safety measures consists of two steps: (1) the network 91 

of risk factors and events, which shows the causal relationship matrix between risk factors and safety measures; 92 

(2) the combination of optimization models for safety measures. For the former, previous methods such as fuzzy 93 

fault trees [20] and Bayesian network (BN) [21][22] have been used to support safety management. Specifically, 94 

BN has the advantage of expressing the uncertain knowledge and reasoning simulated by human thought, and 95 

has been widely used in fault diagnosis [23] and risk assessment [24]. For the latter, multi-objective models have 96 

been proposed. The multi-objective optimization is an effective scientific approach for modeling Pareto frontier 97 

optimization problems, which has been widely applied in both practical engineering scenarios and the research 98 

field of safety management. Integrating with heuristic algorithms, optimal solutions on construction site layout 99 

[25], camera placement [26], and other engineering problems can be obtained. Zhang and Xing proposed a fuzzy 100 

multi-objective particle swarm method to model and solve the optimization problem of time-cost-mass 101 

equilibrium [27]. Xu and Song analyzed the multi-objective dynamic layout of temporary facilities on 102 

construction site under fuzzy random environment [28]. It is proved that the multi-objective optimization has 103 

been an effective method to model and solve the dynamic, fuzzy, and multi-factor problems in the engineering 104 

and construction field. 105 

2.3 Research gaps and objective 106 

The above studies have demonstrated the potential of using different platforms in facilitating automatic risk 107 

management in construction projects. Safety risk identification and safety measure decision-making are indeed 108 

the two sides of one coin, which should be considered at the onset. Traditionally, the selection of safety measures 109 

for risk control often depends on the text of construction technical plans or an expert’s experience in deep 110 

excavation. For mitigating the potential risk events involved in the deep excavation, safety measures must be 111 

applied according to the dynamic construction situations to improve safety performance. How to establish an 112 

approach according to the actual decision-making process which supports engineers to achieve a better 113 

performance of safety, duration, and cost on complex construction sites such as metro station construction 114 

projects is still challenging. It is noted that the dynamic management and application of construction safety 115 
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special plans is a crucial aspect of the entire site management system, which involves the seamless integration of 116 

the semantic data and the digital information-oriented physical system. Based on the integration of the special 117 

plan management data and real-time monitoring data under the construction site information system, the 118 

generation and optimization of the "physical system-digital plan" management scheme under the digital twin 119 

technology can be realized [9][29][30]. This is a potentially valuable technical approach for the safety 120 

management of deep excavation. 121 

Consequently, this research aimed to propose an approach describing and supporting the decision-making 122 

process of safety measures. For overcoming the subjectivity and one-sidedness of engineers in decision-making 123 

under static construction technical plans, a real-world-oriented intelligent and automatic optimization approach 124 

of safety measures was developed in this research, based on cyber-physical synchronicity. Considering the 125 

dynamic nature and uncertainty inherent in engineering construction, a multi-objective optimization model of 126 

safety measures based on the information feedback on sites was explored. That is, the model was dynamic and 127 

adaptable to changes in construction site deep excavation operations. Compared to the static construction 128 

technical plans that are produced before the construction stage, the hybrid approach proposed in this research can 129 

show characters of initiative and timeliness in construction risk management. It would enable managers and 130 

engineers to select optimal safety measures while considering risk control for deep excavation projects. 131 

3 Methodology 132 

3.1 Overview 133 

For guiding the deep excavation operations, the dynamic decision-making of safety measure optimization for 134 

safety risk management was analyzed and expressed in Fig. 1. In the form of IDEFO model, two main stages 135 

were included. 136 

 Stage of construction site management: Under the construction site management system and special 137 

construction technical plans, construction activities (i.e., A0) on sites proceed in an orderly manner. 138 

 Stage of safety risk management: Considering the dynamic risks on sites, safety risk management activities 139 

(i.e., A1), including risk factor identification, risk event network construction, and accordingly anti-risk ability 140 

evaluation were conducted. According to the evaluation results and the requirements of construction site risk 141 

control, the influence factors of measure selection and the priority rules of influence factors were analyzed. 142 

Then, with the optimization model development, the optimal combination of safety measures can be obtained 143 

(i.e., A2) to support the dynamic safety risk management. 144 
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 145 

Fig. 1. Workflow of the dynamic decision-making of safety measure optimization for safety risk management. 146 

In the above process, safety risk management (i.e., A1) and decision-making of safety measures (i.e., A2) 147 

were the two core activities involved in the risk management stage. Correspondingly, a hybrid safety measure 148 

optimization model integrating Bayesian network (BN) and design structure matrix (DSM) was proposed in this 149 

research to implement these two steps. By utilizing this model, the primary steps of safety risk management in 150 

deep excavation were listed as follows: (1) the integration of the special plan management data and real-time 151 

monitoring data under the construction site information system; (2) risk factor identification; (3) anti-risk ability 152 

evaluation; (4) acquisition and implementation of optimal safety measures; (5) safety performance evaluation. 153 

Key points for realizing the above steps were expressed in detail in the following subsections. 154 

3.2 Bayesian network (BN) for risk factor assessment 155 

Bayesian network (BN), as a graphical formalism by representing the relationship between events and factors, 156 

can effectively carry out multi-source information expression, fusion, and uncertainty reasoning the knowledge 157 

or information based on the joint probability distributions [31][32]. BN is composed of network structure and 158 

probability parameters. In BN, nodes are connected by the directed line to form the network and are also called 159 

variables [33]. The directed line shows the relationship between variables, which is described by using the 160 

conditional probability table (CPT). Given that BN B = <M, K>, M is the directed acyclic graph, and K is the set 161 

of the probability of variables. Given that M = {X1, X2, …, Xn, V}, Xi represents the node i (i = 1, 2, …, n); and 162 

V is the set of the edges of networks. Given that Xi and Xi+1 nodes, if the arrow points from Xi to Xi+1 and no 163 

other arrow points to Xi, the Xi can be called the parent node, and xi+1 is the child node. The probability of the 164 

parent node is named prior probability, and the probability of other nodes is named conditional probability. Given 165 

node X and parent nodes Xi, when nodes Xi is independent of each other, according to the chain rule, the equation 166 

is: 167 

1 2 n
i 1

( , , ) ( | ( ))
n

i x iP X X P X P X
=

= =, X                              (1) 168 
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1
( | ) ( | ) ( ) ( | ) ( )

n

i i i i i
i

P X Y P Y X P X P Y X P X
=

=                        (2) 169 

where the n is the number of child nodes; P(Xi) is the prior probability of node i (i=1, 2, … , n); P (Y|Xi) is the 170 

conditional probability; P(Xi|Y) is the posterior probability. 171 

The occurrence probability of the node Y (i.e. the risk event) can be calculated based on Equation (2) to 172 

reason the occurrence of a risk event. In addition, based on the backward reasoning of Equation (2) when given 173 

Y=1, key risk factors contributing to the occurrence of risk events can be identified considering the occurrence 174 

influence, which is the Sensitivity Analysis of BN. Key risk factors should be paid additional attention to the 175 

safety management of deep excavation. In this research, the main steps of BN establishment for risk factor 176 

assessment were described as follows: 177 

 Step 1: BN establishment for safety management. In general, the BN can be obtained by transforming the 178 

fault tree analysis [20], which is a common approach that identifies and accesses the factors leading to an 179 

accident. According to domain expertise and literature, the BN was determined into three levels, namely risk 180 

accident, risk event state, and risk factors. 181 

 Step 2: Determination of the occurrence probability of risk factors. The probability of risk factors, also 182 

called prior probability, can be computed based on past accident data or experts’ experiences. However, in 183 

practice, complete data on accidents or events is often difficult to collect, and experts and experienced 184 

engineers can also provide a critical review of the risk factor. Questionnaire is used to analyze the risk in 185 

this research, and then, the prior probability of risk factors is calculated by a weighted average of 186 

questionnaires, which is readjusted by experts and engineers. 187 

 Step 3: Determination of the conditional probability of risk factors. For the children node of BNs, the 188 

occurrence probability is described by the CPT. Children nodes are divided into two types based on the 189 

value, including {0,1} and (0,1), which represent an un-occurrence or occurrence and uncertainty of 190 

occurrence, respectively. For the first type, the CPT is achieved by a logical analysis of its parent nodes. For 191 

the second type, the CPT can be obtained by network learning or experts’ experience. 192 

3.3 Causal relationship matrix between safety measures and risk factors 193 

Design structure matrix (DSM) is introduced as a straightforward and flexible modeling technique that can 194 

be used for designing, developing, and managing complex systems [34]. DSM offers network modeling tools that 195 

represent the elements of a system and their interactions [35]. A numerical matrix with m rows and n columns is 196 

a widely used approach for representing the relationship of a digraph, where m represents the number of nodes 197 

while n denotes the number of edges in the digraph [36]. Specifically, the matrix layout is as follows: the system 198 

element names are placed down the side of the matrix as row headings and across the top as column headings in 199 

the same order. If an edge from node i to j exists, then the value of element aij (row i, column j) is unity and given 200 

with a numerical mark. 201 

In this research, the DSM method was modified to establish the relationship matrix of factors and measures. 202 

Rows and columns were headed with the complete list of measures to be taken and factors to be controlled in the 203 

project. Values in the matrix explain if causal relations exist among the measures and risk factors. It described 204 

the reduction of occurrence probability of risk factors when relevant measures were taken. Three main steps are 205 

considered in the relationship matrix establishment: (1) list the risk factors and corresponding measures of 206 
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accident event; (2) enter marks in the causal relationship matrix; (3) check with engineers and managers to verify 207 

CSM. In deep excavation, given risk factors set X = <X1, X2, …, Xi …, Xm> and safety measures set S = (S1, 208 

S2, …, Sj…, Xn). Xi is the risk factor i (i= 1, 2, …, m). Sj is the safety measures j (j=1, 2, …, n). Given Q as the 209 

causal relationship matrix, the matrix is represented as follows: 210 

                                      Q=[a i j]m n                                   (3) 211 

where aij is the probability reduction of risk factor i when safety measure j is taken. 212 

Table 1 shows the causal relationship matrix. The matrix can be obtained by the case data or questionnaires 213 

answered by experienced engineers. 214 

Table 1. Causal relationship matrix. 215 

Risk factors 
Safety measures 

S1 … Sn 

X1 a11 … a1n 

… … aij … 

Xm am1 … amn 

In this research, considering the difficulties in case data collection, a questionnaire was adopted to obtain the 216 

matrix. In addition, the impacts of selected safety measures on the dynamic risk situation, construction cost, and 217 

duration were evaluated using the questionnaire to support the objective function calculation. In this process, 218 

fuzzy linguistic terms were used to represent the qualitative opinions of the impact on the index into quantitative 219 

value [37]. Table 2 shows the fuzzy linguistic terms and their corresponding type-1 fuzzy sets. 220 

Table 2. Linguistic terms of the impaction and their corresponding type-1 fuzzy sets. 221 

Linguistic terms Type-1 fuzzy sets Fuzzy number 

Very-Low (VL) (0, 0, 0.1) 0.01 

Low (L) (0, 0.1, 0.3) 0.1 

Medium-Low (ML) (0.1, 0.3, 0.5) 0.3 

Medium (M) (0.3, 0.5, 0.7) 0.5 

Medium-High (MH) (0.5, 0.7, 0.9) 0.7 

High (H) (0.7, 0.9, 1) 0.9 

Very-High (VH) (0.9, 1, 1) 0.99 

Based on Table 2, a questionnaire of safety measures was designed and shown in Table 3, by which the value 222 

of the index can be calculated. 223 

Table 3. Questionnaire of safety measures (partly). 224 

Risk factors Safety measures 

Impaction {VL, L, ML, M, MH, H, 

VH} 

aij c(Sj) t(Sj) 

X1: Water seepage 

from sidewall 

S1: Drain to relieve pressure with diversion pipes.    

S2: Grout to seal seepage sites.    

Note: The risk factor of water seepage from sidewall (X1) can be controlled by the measures of S1 and S2. How 225 

about the impact of safety measures on the risk reduction of factors, cost, and duration? The impact of measures on 226 

risk reduction, c(S1), and t(S1) was divided into seven levels, including Very-low (VL), Low (L), Medium-low (ML), 227 

Mediumn(M), Medium-High (MH), High (H), and Very-High (VH). 228 
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3.4 Multi-objective optimization model of safety measures 229 

3.4.1 Combination optimization model 230 

The occurrence of risk factors is bound up with the implementation of safety measures on the deep excavation 231 

site. In general, if the adopted safety measures are comprehensive, the occurrence probability of risk factors can 232 

be low. Nevertheless, more safety measures may cause an increase in risk addition, cost overrun, and duration 233 

delay. In addition, the effect of different safety measures controlling the risk factors varies [1][29]. Therefore, the 234 

optimization model of safety measures decision-making was designed in this research, with an objective function 235 

and achieving the optimal balance among dynamic risk situations, construction costs, and duration impacts while 236 

meeting safety management requirements. The risk index was defined as the influence of the occurrence of risk 237 

factors on a project under the measures selected and implemented. The cost impact index referred to the ratio of 238 

increased cost to the project cost when proposed safety measures were performed, showing the impact on the 239 

project. The duration influence index referred to the influence of the increased time on the project when safety 240 

measures were implemented. 241 

 Objective function: 242 

1 21 1

n n
j j j jj j

MinQ w k c w k t
= =

= + * ( S ) * ( S )                       (4) 243 

 Constraint functions: 244 

1

p
=1 2 =1 2

1
1  is selected;

0, otherwise

i
i j ij

j

i

j i j

j
j

X
P p X k a

S

X aP a p
S X S i ... n j ... m

P a P'

k




=    −



 =



 −
   
 =  
   





( ) ( ) ( )

( ) （ ） （ ）
, , , , ; , , ,

( ) ( )
, S

          (5) 245 

where Sj is the safety measure j; 246 

c(Sj) is the cost impact index of safety measure j, ranging from 0 to 1; 247 

      t(Sj) is the duration impact index of safety measure j, ranging from 0 to 1; 248 

Q is the composite index of the safety measure j implemented; 249 

kj is the variable of whether safety measure j is selected, and kj = {0, 1}; 250 

w1 and w2 are weights of cost impact index and duration impact index, respectively; 251 

П is the value of causal relationship matrix, and aij is the reduction degree of occurrence probability of 252 

risk factor i when safety measure j is performed, ranging from 0 to 1; 253 

      P(Xi/Sj) is the occurrence probability of risk factor i when safety measure j is applied; 254 

      P(a) is the occurrence probability of risk accident when safety measures are applied; 255 

P’ is the value of early warning of risk accidents; 256 

 is the redundancy of the occurrence of risk accidents. 257 

In summary, the objective function of Equation (4) aimed to explore the minimal trade-offs between 258 

construction cost and duration. Equation (5) represented the occurrence probability of risk events after safety 259 

measures were performed, which required to be lower than the value of safety early warning. 260 
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3.4.2 Genetic algorithm for the multi-objective optimization model 261 

Finding the optimal safety measures to achieve the best performance of risk management is a combinatorial 262 

optimization, which is considered a nondeterministic polynomial-time (NP) hard problem [35]. Genetic algorithm 263 

(GA) can be used to identify global near-optimum trade-offs and does not tend to be stuck at a local optimum 264 

[38][39]. The main steps of using GA to obtain optimal solutions are as follows: 265 

 Step 1: Coding. The safety measures are encoded in the form of a string with 0 or 1, which is called a 266 

chromosome, or an individual, where 0 represents that the measure is not selected, and 1 indicates that the 267 

measure is selected for safety management. The length of the chromosome is n. 268 

 Step 2: Initialization. N individuals are generated, forming a population. 269 

 Step 3: Fitness value evaluation of each individual. The fitness value is the indicator that reflects the bad 270 

and the good of individuals. 271 

F（I）=cmax - Q（I）                                (6) 272 

where F(I) and Q(I) are the fitness value and the objective function value of individual I respectively; cmax 273 

is a constant. As the fitness value increases, the individual gets better. 274 

 Step 4: Selection. The strategy of best retention option, as a common method, is used to operate individual 275 

selection. M (M < N) individuals with a larger value than others are chosen for the next generation operation. 276 

 Step 5: Crossover: Crossover is the operation that the genes of the selected two individuals are exchanged 277 

according to probability (Pc) to produce a new individual, often, Pc = [0.4, 0.99]. 278 

 Step 6: Mutation. Some individuals are randomly chosen from the above population for mutation. The gene 279 

of selected individuals is randomly changed with the mutation probability Pm to generate new individuals, 280 

replacing the original individuals in the population. In general, Pm= [0.0001, 0.1]. Turn to step 3. 281 

 Step 7: The iteration stops and the optimal result is outputted. The iteration is stopped when the solution 282 

fitness curve exhibits convergence. The optimal solution for problem-solving is obtained by decoding the 283 

outputted chromosome. 284 

Integrating the established BN, causal relationship matrix, and multi-objective optimization model, the 285 

occurrence probability of risk accidents for the specific project can be predicted, and the key factors can be 286 

identified by feedback reasoning under the given occurrence probability of risk accidents. The above multi-287 

objective optimization model can greatly support the optimal safety measure selection. Moreover, the anti-risk 288 

ability of construction sites and the risk-cost-duration index under specific safety measure sets can be outputted 289 

at the same time. 290 

3.5 Evaluation metric of the application effect of the optimized safety measures 291 

For further evaluating the application effect of the optimized safety measures, a safety index was adopted in 292 

this research (Eqs. 7 and 8). In this way, the safety performance of the targeted project, relating to the construction 293 

specification, can be reflected. 294 

t

i
i 1

1V = 1 r , i 1,2,...,t
t =

− = ,                            (7) 295 

n
'

m p m n
j 1

r = ( r r ) / 2 , r r , j 1,2,...,n
=

+ = = ,                   (8) 296 
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where V is the value of the safety index (V = [0, 1]); t is the duration of construction; ri is the value of risk degree; 297 

rm is the level of risk related to each monitoring item; rp is the level of risk as assessed by safety patrol; and rn’ is 298 

the risk associated with monitoring point n. 299 

4 Case study 300 

4.1 Case background 301 

One deep excavation project was chosen in this research as an example to describe the application process of 302 

the proposed approach and evaluate its effectiveness in safety measure decision-making. The example referred 303 

to a metro station construction in Wuhan city, Hubei province, China, which is located at the T-junction of the 304 

Guanshan Road and Luoyu Road with heavy traffic. The area of the deep excavation is approximately 6,400 m2, 305 

and the depth is 17.5 m. An open-cut method is adopted to excavate. Table 4 shows the characteristics of the 306 

construction project. At present, the construction process is in the third soil excavation, and the overall situation 307 

of safety management on a construction site is well-managed. In this research, the risk event of collapse was 308 

selected as the targeted risk to develop the case study. 309 

Table 4. Characteristics of the construction project. 310 

Characteristics Value/Situation Characteristics Value/Situation 

Construction size 6,400 m2 Geological environment Medium-complex 

Excavation depth 17.5 m Surrounding environment Complex 

Excavation shape Rectangle Envelop enclosure  Bored pile, Jet-grouted pile 

Hydrological 

environment 
Medium-complex Bracing system 

Reinforced concrete, steel 

bracing 

4.2 Dynamic decision-making of safety measures 311 

4.2.1 BN for the collapse risk of deep excavation 312 

In this research, the collapse risk of deep excavation was chosen as the example to explain the dynamic 313 

decision-making of safety measures. Based on the analysis and adjustment of the documents with experts’ 314 

experience, risk factors and accordingly main safety measures were summarized in Table 5. Concretely, experts 315 

and engineering practitioners with rich domain experiences were invited to a seminar. The knowledge sources 316 

encompass: (a) practical knowledge derived from design specifications and construction manuals, (b) theoretical 317 

knowledge acquired from statistical models in academic papers, and (c) tacit knowledge possessed by domain 318 

experts. Especially, for avoiding the subjectivity from experts in the process of determination, safety measures in 319 

similar projects were searched in the case database of the construction technology plan [1]. The discussion results 320 

were summarized by the seminar. 321 

Table 5. Risk factors and safety measures of the collapse risk of deep excavation. 322 

Risk factors Safety measures 

X1: Water seepage 

from sidewall 

S1: Drain to relieve pressure with diversion pipes. 

S2: Grout to seal seepage sites. 

X2: Over digging 
S3: Set elevation control pile and review measurements. 

S4: Backfill the over dug part and compacted it. 
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S5: Direct the mechanical excavation by special personnel. Excavate manually when 30cm 
left. 

X3: Precipitation 

failure 

S6: Artificially dug deep wells and dewater inside the foundation pit. 

S7: Add dewatering wells. 

X4: Heavy heap load 

on slope 

S8: Set up temporary measures for preventing stacking. 

S9: Strengthen pile load inspection of slope. 

S10: Unload slope top pile load with reasonable organization. 

X5: Dynamic load on 

slope 

S11: Set up temporary measures for safe distance of dynamic load trajectory. 

S12: Strengthen the dynamic load trajectory inspection 

X6: Support with 

poor timeliness 

S13: Strictly monitor the progress of excavation and reserve the working surface needed to 

support erection. 

S14: Strengthen construction site inspection and timely erect supports. 

X7: Lack of response 

to deformation of 

supports 

S15: Check the prestress of steel supports and add prestress to them. 

S16: Increase vertical temporary supports and reduce transverse flexural deformation. 

S17: Stop the excavation and encrypt supports. 

S18: Forbid stacking loads on steel supports, and forbid standing or walking on them. 

X8: Poor construction 

quality of supports 

S19: Carry out construction in strict accordance with drawings, meeting error requirements 

in size and position. 

S20: Repair quality problems in support erection. 

S21: Install protective measures to protect supports from impact and other damages. 

X9: Design 

deficiency of support 

system 

S22: Strengthen the survey work and improve the accuracy of survey data. 

S23: Strengthen the construction site inspection, and reinforce the support system when 

problems were found. 

X10: Monitoring and 

early warning with 

poor timeliness 

S24: Strictly implement monitoring plans, and strengthen early-warning analysis. 

S25: Strengthen the construction site inspection, and find and warn hidden dangers timely. 

S26: Check inspection records daily to ensure timely inspection. 

Based on the seminar results and Table 5, the BN of the collapse risk of deep excavation was established in 323 

this research, mainly including ten risk factors (i.e. X1~X10), two risk states (i.e. M1: Poor stability of soil in 324 

foundation pit; M2: Failure of support system) and one risk event (i.e. T: Collapse risk). Then, the designed 325 

questionnaires were distributed to 100 experienced engineers from 10 station construction projects. The average 326 

occurrence probability of risk factors and the conditional probability of risk states in the BN were determined. 327 

Fig. 2 depicts the BN of the collapse risk of deep excavation integrating probabilities of nodes, which was 328 

generated through Genie 2.0. According to the implication of the Bayesian network structure, the causal 329 

relationship between any two points can be presented by the directed arrow. In particular, ten risk factors (i.e. 330 

X1~X10) were defined as being independent of each other. 331 
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 332 

Fig. 2. BN of the collapse risk of deep excavation with probabilities of nodes. 333 

4.2.2 Causal relationship matrix for the collapse risk management 334 

Through expert interviews with 20 engineers from 10 projects, the mean value of the causal relationship 335 

matrix was calculated based on the fuzzy linguistic terms and fuzzy sets in Table 2. Table 6 presents the causal 336 

relationship matrix between safety measures and risk factors. 337 

Table 6. Causal relationship matrix between safety measures and risk factors. 338 

Risk factors 
Safety measures 

S1 S2 S3 … S23 S24 S25 S26 

X1 60% 80% 0 … 0 0 0 0 

X2 10% 0 80% … 0 0 0 0 

X3 0 0 0 … 0 0 0 0 

X4 0 0 10%  0 0 0 0 

X5 0 10% 0  0 0 0 0 

X6 0 0 0  0 0 0 10% 

X7 0 10% 10%  0 10% 20% 0 

X8 0 0 0  0 0 0 0 

X9 0 0 0 … 80% 0 0 0 

X10 0 0 0  0 80% 80% 60% 

4.2.3 Anti-risk ability evaluation of construction sites 339 

Key risk factors that may deeply affect the accident occurrence can be identified by the feedback reasoning 340 

of the BN. The sensitivity analysis method was used to test the impaction of change of factors on the occurrence 341 

of risk events. Set the occurrence probability of an accident as 100%, and the involved key factors can be 342 

identified. Fig. 3 shows that X1, X3, X4, X7, X9, and X10 are sensitive factors in this construction site situation, 343 

which means the occurrence of the risk event is more sensitive to these six risk factors. Effective safety measures 344 

should be adopted to control these factors preferentially in the safety management of deep excavation. 345 
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 346 

Fig. 3. Key factor identification in the collapse risk. 347 

According to the latest safety inspection, safety measures that have been implemented on construction sites 348 

were confirmed: S22: Strengthen the survey work and improve the accuracy of survey data; S23: Strengthen the 349 

construction site inspection, and reinforce the support system when problems were found; S24: Strictly implement 350 

monitoring plans, and strengthen early-warning analysis; and S25: Strengthen the construction site inspection, and 351 

find and warn hidden dangers timely., etc. Based on the BN in Fig. 2 and the causal relationship matrix in Table 352 

6, the anti-risk ability of construction sites was evaluated. In this phase of deep excavation, the occurrence 353 

probability of the collapse risk of deep excavation was 11%, which exceeded the safety warning value of 10%. 354 

Therefore, it was necessary to take timely and effective safety measures to enhance the anti-risk ability of 355 

construction sites. 356 

4.2.4 Optimal safety measure set selection 357 

Considering the safety warning value of the collapse risk (i.e., 10%), the multi-objective model was adopted 358 

and calculated based on the GA, using Matlab R2016b. In this process, safety measures selection or not was 359 

coded as 1 or 0, and the value of  was assigned to 10% according to the requirements of safety management. In 360 

particular, for achieving the optimal safety measure set with appropriate cost-duration tradeoff index, safety 361 

warning values of 4%, 6%, 8% and 10% were inputted into the multi-objective model. Accordingly, the iterations 362 

of optimal solutions under different safety warning values were shown in Fig. 4. 363 
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 364 

Fig. 4. Results of GA of the multi-objective model (figures of (a)–(d) were under safety warning values of 4%, 365 

6%, 8% and 10% respectively). 366 

Table 7 shows the output optimal safety measure sets under different safety warning values. Integrated with 367 

the cost-duration tradeoff index, safety measure set of No. 2 was adopted in this project as the optimal solution. 368 

That is, the optimal safety measures were S2, S3, S6, S7, S8, S10, S11, S12, S15, S18, S25, and S26. According to the 369 

causal relationship matrix between safety measures and risk factors in Table 6, the above measures mainly aim 370 

to control risk factors of X1, X2, X3, X4, X5, X7, and X10. Risk factors can be controlled to meet the requirement 371 

of collapse risk prevention. 372 

Table 7. Optimal safety measures under different safety warning values. 373 

Items Results under different safety warning values 

No. 1 2 3 4 

Safety warning value 4% 6% 8% 10% 

Probability of risk P(a) 3.3% 5.1% 7.5% 9.7% 

Minimal cost-duration 

tradeoff index  
3.68 2.52 0.98 0.64 

Optimal safety measure set 

S1, S2, S3, S5, S6, S7, S10, S11, 

S12, S13, S14, S17, S18, S19, S21, 

S24, S25, S26 

S2, S3, S6, S7, S8, 

S10, S11, S12, S15, 

S18, S25, S26 

S1, S7, S10, 

S12, S24, S26 

S1, S9, S14, S15, 

S24, S26 

Through the causal relationship matrix in Table 6 and Equation (4), the occurrence probability of risk factors 374 

under the selected safety measures was determined. In this circumstance, the anti-risk ability of the construction 375 

site under optimal safety measures was calculated as 5% (Appendix). It was indicated that the optimal solution 376 

can improve the anti-risk ability of collapse and enhance safety management in the deep excavation. 377 

5 Results 378 

According to the generated optimal safety measure sets, engineers on sites can update the safety measure plan, 379 

keep track, and implement them as required. The construction site was inspected by engineers for eight times in 380 

two months, confirming that safety measures were well-performed. Also, the managers confirmed that no risk 381 
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events occurred during this duration. According to the recent on-site safety inspection, safety measures of S2, S6, 382 

S8, S11, S14, S17, S20, S22, S23, and S25 were implemented to manage risk factors. Based on the multi-objective 383 

optimization model, the P(a) (occurrence probability of collapse) is 0.043, and the Q (negative influence) is 2.85. 384 

The implementation of these safety measures effectively reduced the occurrence probability of risk factors and 385 

then made the risk events under control. The performance of the implemented safety measures was better than 386 

the decision based on managers’ experience, due to the minimal trade-offs among the dynamic risk situation, 387 

construction cost, and duration. 388 

At the same time, three deep excavation projects constructed simultaneously were selected in this case study. 389 

These three projects are Luoxiong Road Metro Station, Guanggu Road Metro Station, and Jiayuan Road Metro 390 

Station, which have similar project background (including weather, duration, location, etc.) and features (e.g., 391 

construction size, surrounding environment, etc.) with the targeted project. Above three deep excavation projects 392 

were used to compare with the targeted project, under the same BN network, to verify the effectiveness of the 393 

proposed approach. Basic information on three projects was obtained from the case database which was 394 

numbered as No. 180, No. 182, and No. 183, respectively. Table 8 lists the basic information about the target 395 

project and the other three projects. 396 

Table 8. Basic information on four construction projects. 397 

Characteristics Targeted project No.180 No.182 No.183 

Construction size 6,400 m2 7,500 m2 6,000 m2 4,200 m2 

Excavation depth 17.5 m 20 m 17 m 17,m 

Excavation shape Rectangle Rectangle Rectangle Rectangle 

Hydrological environment Medium-complex Medium-complex 
Medium-

complex 
Medium-complex 

Geological environment Medium-complex Medium-complex 
Medium-

complex 
Medium-complex 

Surrounding environment Complex Complex Complex Complex 

Construction method Open-cut construction method 

Envelop enclosure  Bored pile, Jet-grouted pile 

Bracing system Reinforced concrete plus steel bracing 

The engineers conducted the safety patrol on four construction sites, and some monitoring data were recorded 398 

using the Safety Early-Warning System [28]. 399 
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 400 

Fig. 5. Changes in the safety index among four construction projects. 401 

Fig. 5 shows the changes in safety index among four construction projects and that the safety index of the 402 

targeted project was higher than the other three construction projects and the mean value of four projects. This 403 

result reflected that the safety performance of the targeted project was better than the other three construction 404 

projects when guided by a dynamic safety technical plan. The optimized plan can achieve a 100% risk occurrence 405 

reduction with minimal cost and duration, which performed better than similar construction projects without the 406 

guidance of dynamic construction technical plans. Integrating the dynamic construction process, the application 407 

effect of the dynamic optimized construction technical plan was illustrated as follows: 408 

 During the first phase of enclosure construction, there was no significant difference in the safety performance 409 

of the four projects. The risk was without evident accumulation on sites at the beginning of construction. 410 

Moreover, the technical plan has not been optimized at this construction stage. 411 

 In the progress of excavation and retaining structure construction, risk cumulated on the construction site 412 

gradually with earth excavation and supporting system construction, including the deformation of retaining 413 

structure, foundation pit stack, rainfall, poor-quality support, and untimely. Appropriate optimized safety 414 

measures must be adopted to control risk factors when the security early warnings are released by the security 415 

warning system or engineers’ safety inspection on the site. 416 

 With the completion of the enclosure and earthwork excavation, the construction risks were gradually released 417 

and controlled by the safety measures of the dynamic optimized construction technical plan during the main 418 

structure construction. In addition, site safety performance improved compared with the other three 419 

construction projects under the non-dynamically optimized construction technical plan guidance. 420 

6 Discussion 421 

   Compared to the static construction technical plans that are produced before the construction stage, it is 422 

urgent to realize the dynamic optimized construction technical plans to guide deep excavation operations. The 423 

digital twin model was explored in this research to improve the performance and efficiency of safety risk 424 

management of deep excavation. Specifically, a hybrid safety measure optimization model was proposed, which 425 

demonstrated characteristics of initiative and timeliness in reflecting practical safety risk situation and guiding 426 

construction risk management. First, for guiding the deep excavation process, the dynamic decision-making of 427 
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safety measure optimization for safety risk management was analyzed. Two main stages were included in this 428 

process: construction site management and safety risk management. Then, Considering the dynamic risks on sites, 429 

safety risk management activities (e.g., risk factor identification, risk event network construction, and accordingly 430 

anti-risk ability evaluation) were analyzed in this research. According to the evaluation results and the 431 

requirements of construction site risk control, the influence factors of measure selection and the priority rules of 432 

influence factors were explained. Last, with the optimization model development, the optimal combination of 433 

safety measures can be obtained to support dynamic safety risk management. 434 

The application effect of the proposed approach was evaluated in a practical project in the case study, with 435 

the application process description and the comparison with three other similar projects. By providing the 436 

optimized combination of safety measures and supporting decision-making, it was proved the proposed approach 437 

can proactively improve the risk resistance ability of the construction site. Especially, different construction 438 

stages in the dynamic construction process were considered. The technical plan of the target construction project 439 

was deepened and optimized timely in the process of construction engineering under the dynamic evaluation of 440 

risk events. At this moment, this plan can provide knowledge and information on optimized measures to meet 441 

management objectives and can better reflect the idea of active safety control, which is of great significance to 442 

construction site safety management. This dynamic evaluation provides appropriate safety measures for the 443 

optimization plan to support construction risk management in site work activities. To some extent, appropriate 444 

measures have been taken to control the risk factors before safety pre-warning to enhance safety performance. 445 

From the perspective of management, risk can be well controlled at the level of risk factors. According to the 446 

research results, potential construction risks can be gradually released and controlled by the safety measures of 447 

the dynamic optimized construction technical plan during the main structure construction. 448 

For the practical application, the research outcomes can support the safety risk management stage by 449 

providing an innovative and automatic method of safety measure decision-making. Compared to existing studies 450 

[11][12], the multi-objective restriction in the safety risk management was considered in this research. Multi-451 

objective optimization was applied to model and solve the dynamic, fuzzy, and multi-factor problems in safety 452 

risk management for deep excavations. Under the integration of the special plan management data and real-time 453 

monitoring data within the construction site information system, the hybrid model proposed in this research can 454 

support the generation and optimization of safety measures. In this process, the synchronization of data-driven 455 

engineering and physical information was utilized. That is, with the intelligent "physical system-digital plan" 456 

management scheme, the integration of the special plan management data and real-time monitoring data under 457 

the construction site information system can be utilized to determine the optimal safety measure set. Combined 458 

with existing semantic systems and platforms on risk management [13][14], the research outcomes can be used 459 

for enhancing the automatic safety risk management in deep excavation. 460 

7 Conclusions and future work 461 

Considering the potential of digital twin technology in construction risk management, this research aims to 462 

develop a real-world-oriented simulation based on cyber-physical synchronicity for safety risk management in 463 

deep excavation. A hybrid safety measure optimization approach based on integrating Bayesian network (BN) 464 

and design structure matrix (DSM) was proposed in this research, by which the prediction, optimization, and 465 

control of the safety risk situation in actual construction procedures can be supported. By synchronously updating 466 
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and analyzing the dynamic risk situation on sites, the proposed approach can facilitate the identification of 467 

optimal safety measures to achieve safety management objectives, considering the minimal impact on cost and 468 

duration. In practice, managers can employ the recommended safety measures to make optimal decisions during 469 

the implementation of construction projects. Under the dynamic safety measure solution, the anti-risk ability of 470 

potential risks and the entire safety performance of the targeted project can be effectively improved. 471 

Although the research method and outcomes could bring benefits to the safety management of deep 472 

excavation on sites, some research limitations still exist. First, except for the dynamic risk situation, construction 473 

cost, and duration, other factors (e.g., the feasibility and contextual features of the construction site) which may 474 

affect the safety measures decision-making were ignored in this research. For supporting a more comprehensive 475 

decision-making of safety measures in practice, the aforementioned factors should be considered at the same time 476 

in future studies. Second, the multi-objective optimization model proposed in this research mainly focused on 477 

one single critical risk event at one time. In fact, it is suggested that the optimal solution should be decided 478 

considering the overall risk situation on construction sites. In addition, safety management is closely related to 479 

the application of measures. Especially, for improving safety risk management, the development of a 480 

comprehensive method to verify the effectiveness of implemented measures is required in future work. Future 481 

research can focus on the above three aspects to promote the safety management of dynamic deep excavation 482 

operations. Last, as a dynamic and complex engineering information management activity, this research 483 

integrated the concept of digital twin technology to enhance decision-making for safety measures. The generation 484 

and optimization of the "physical system-digital plan" management scheme under the digital twin technology 485 

was expressed. Based on the research results, the semantic expression of special plans can provide the theoretical 486 

and empirical support for the dynamic safety risk management of construction sites. However, further exploration 487 

is required in the construction of a digital twin model for physical information systems, as well as the 488 

corresponding synchronization application and visual expression. 489 

Appendix 490 

The cloud platform of metro construction management established in this research is shown in Fig. 6. The 491 

interface in Fig. 6 expresses the results of the anti-risk ability of collapse after safety measure application. 492 

 493 
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 494 

Fig. 6. The cloud platform of metro construction management. 495 
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