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Abstract:  
Forecasting product quality by incorporating customer satisfaction perception factors is an 

intriguing research area, which can promote the sustainable development of enterprises. To 

address small-sample random time series data, this study proposes a combined forecasting 

approach (CFA) for the product quality index that considers perception factors. The proposed 

approach is based on the support vector regression (SVR) and an improved gray forecasting 

model (GFM). First, the study constructs a system of perception factors related to defect parts 

per million (DPPM). Then, the key perception factors (KPF) are selected using the gray entropy 

relational degree, which is derived from gray relational analysis and information entropy. Then, 

a multivariable GFM is proposed based on the weighted Markov and the derived form of the 

gray model to reduce the forecasting error. Finally, a CFA is constructed considering KPF and 

optimized based on the SVR and the proposed GFM to forecast the DPPM. A case study of 

liquid crystal display is conducted to demonstrate the feasibility of the proposed CFA. The 

forecast error of the proposed CFA is 3.2%, which is better than those of GFM, SVR, and 

ARIMA (4.01%, 6.21%, and 9.89%, respectively). The comparison and discussion of methods 

demonstrate the superiority of the proposed approach for forecasting product quality. 

 

Keywords: Combined forecasting approach; Support vector regression; Gray forecasting model; 

Key perception factors; Liquid crystal display. 
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1. Introduction 

New products are often developed by improving existing products to meet customer 

requirements and product quality [1, 2]. This is especially true for electronic products 

such as mobile phones, personal computers, and other smart products [3-5]. These 

products typically have high quality to meet customer requirements, resulting in 

significant delivery time, engineering costs, and technology risks during their redesign 

processes [4, 5]. Fierce market competition changes the supply-demand relationship of 

the product market, forcing enterprises to compete to improve their product quality. To 

effectively respond to diverse customer requirements and grasp market dynamics, it is 

important to reasonably plan purchasing and production by forecasting the quality 

performance of products [6, 7]. Considering customer perception factors, forecasting 

the quality performance of products, tracing quality problems, and adjusting market 

strategy have become a priority for enterprises to improve product quality. 

 

As the core display component for manufacturers of smart terminal products, the 

product quality of liquid crystal display (LCD) directly affects customer satisfaction [8, 

9]. Poor LCD functions include residual screen image, uneven color and brightness 

distribution, and low durability in extreme environments. Poor LCD appearances 

include tolerance standards for size discrepancies, surface scratches, and internal dust 

particles. After delivery, various product quality issues are characterized by the defect 

part per million (DPPM), a crucial quality index. DPPM can accumulate relevant 

technical repair solutions and experience expansion for the next-generation product 

design, along with the impact of perception factors on product quality during enterprise 

mass production [10-13]. Therefore, it makes sense to forecast DPPM based on 

customer perception factors to adjust market strategy and trace product quality for 

enterprises. 

 

Various single forecasting methods have been used, such as exponentially weighted 

averages (EWA) [3], exponential translation method [14], elastic coefficient method 

[15], regression analysis method [16], and Gompertz curve [17]. These methods 

neglected to analyze the role of various factors that affect the predicted value and set 

the weight subjectively, leading to relatively low prediction accuracy. Other methods 

such as neural network prediction [18], Markov chain [19], and support vector machine 

[20] have been proposed. The neural network requires sample training to ensure 
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recognition accuracy, and there are unstable factors in the acquisition of probability 

values in the Markov chain model. The accuracy of the support vector machine model 

is also sensitive to the selection of the kernel function. Due to the characteristics of not 

having strict requirements on sample distribution, small sample demand, and 

multivariable prediction, gray system theory has garnered the attention of researchers 

[21-23]. In terms of combined forecasting models, existing methods include the gray 

theory and support vector machine [24], GM (1,1) and Markov chain [25], GM (1, N) 

and GM (0, N) [26], and the improved gray neural network model [27]. These combined 

methods can eliminate the shortcomings of single methods and have better 

generalization ability. However, they mainly focus on improving and integrating 

existing forecasting methods and do not consider the internal and external perception 

factors that affect the forecasting results. 

 

As customers become more closely connected with enterprises, the market has shifted 

from being enterprise-led to customer-led, with diversified customer requirements [28]. 

Perception factors have a direct impact on customer satisfaction and future purchasing 

intentions. Leong et al. [29] have established the relationship between perception 

factors and customer satisfaction. By paying attention to customer satisfaction, 

enterprises can better understand customer needs, adjust product structures accordingly, 

and improve product and service quality in a timely manner [30]. Therefore, it is 

necessary to analyze perception factors to meet or exceed customer expectations in the 

most effective way. Under the influence of perception factors such as performance, 

quality, sales, and service, demand forecasting becomes a multi-input forecasting 

problem. Traditional methods are ineffective in forecasting the results, but the gray 

forecasting model (GFM) [31] and support vector regression (SVR) [32] can effectively 

address these problems. However, the fitting of the gray model for sample series with 

large random fluctuations is poor [33], resulting in prediction errors. The Markov theory 

is effective in dealing with time series with large random fluctuations. To deal with 

multiple input forecasting problems, a GFM modified by weighted Markov theory has 

been proposed. Therefore, a combined forecasting approach (CFA) considering 

perception factors has been presented based on GFM and SVR. First, the perception 

factors were selected using the improved gray entropy relational degree. Then, the 

weighted Markov model and gray relational analysis were used to modify the GFM. 

Finally, the proposed CFA based on improved GFM and SVR was used to forecast the 
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DPPM of product quality. 

 

The main contributions of this research are as follows: (1) Selection of key perception 

factors (KPF) using gray entropy relational degree based on gray forecasting model and 

information entropy. An improved multivariable GFM was developed by incorporating 

weighted Markov to forecast the sample data of perception factors. (2) Integration of 

the output forecasting results of SVR and improved GFM into the CFA, which was 

modified by the inverse perturbation model of weights. The feasibility of the proposed 

CFA was demonstrated through a case study of LCD. The comparison and discussion 

of methods demonstrated the forecasting superiority of the proposed approach. 

 

The remaining sections of this paper are organized as follows. Section 2 provides a brief 

review of related literature. Section 3 introduces the methodologies of GFM, Markov, 

and SVR. In Section 4, a case study on forecasting the DPPM of an LCD is presented 

to demonstrate the effectiveness of the proposed approach. Finally, the conclusions are 

summarized in Section 5. 

 

2. Literature review 

By taking perception factors into consideration [34], enterprises can gain a more 

accurate understanding of customer requirements, adjust their product structure 

accordingly, and improve the quality of their products and services in a timely manner 

[35]. In order to deal with complex reasoning problems that arise under conditions of 

uncertainty, a belief rule-based inference methodology has been applied to assess 

perception risk in product development processes [36, 37]. Cao et al. [6] proposed a 

novel approach to customer demand prediction in service-oriented manufacturing that 

incorporates customer satisfaction. Segoro [37] demonstrated that perception factors 

related to service quality have a positive correlation. Hosseini et al. [38] applied path 

analysis as a principal analytical tool to conduct causal evaluations and investigated the 

significant effects of store image attributes on customer perceptions. Dubey and Sangle 

[39] validated a scale for measuring customer perceptions of relationship management 

initiatives. Denantes and Donoso [40] estimated a structural equation model to analyze 

perception factors that explained customer satisfaction with respect to service quality. 

By establishing a demand forecasting model reveals the internal relationship between 

customer satisfaction and the impact of perception factors on demand trends, which 
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broaden the scope of forecasting by incorporating perception factors. In our study, 

perception factors were categorized, organized, and carefully filtered to serve as input 

for the proposed combined forecasting model. 

 

The existing forecasting methods can be classified into qualitative forecasting and 

quantitative prediction. Qualitative methods include scenario prediction [32], 

subjective probability [41], and Delphi [42]. Although they are simple to calculate, they 

have limitations in terms of the knowledge and personal abilities of experts, subjective 

weight setting, and lack of quantitative description of system characteristics. This leads 

to difficulties in ensuring prediction accuracy and poor practical application. On the 

other hand, quantitative forecasting methods include exponentially weighted averages 

[43], Markov chain model [44], gray correlation model [45], neural network [46], and 

support vector machine [47]. However, with the increasing complexity of systems and 

diversification of perception factors, a single forecasting model cannot meet the 

requirement of higher accuracy. Since different forecasting methods have different 

emphases, the combination of forecasting methods can extract useful information and 

minimize the forecasting errors to the greatest extent. 

 

To minimize forecasting errors, Lee and Tong [48] developed an improved grey 

forecasting method that combined residual modification with genetic programming sign 

estimation for energy consumption forecasting. Xie et al. [49] used an optimized 

discrete GFM to forecast total energy production and consumption. Leong et al. [29] 

proposed a new perspective by analyzing the relationships between SERVPERF, 

customer satisfaction, and loyalty among low-cost and full-service airlines using 

SERVPERF with SEM-artificial-neural-network predictive analytic approach. These 

methods revealed the relationship between perception factors and customer satisfaction. 

To reduce the adverse effect of multiple input data and small sample size, Cao et al. [6] 

modeled the structural relationships between customer satisfaction and influence 

factors using the structural equation model, and they employed the least square support 

vector mechanism to predict customer demand. Zhou et al. [50] proposed a data-driven 

prediction model by combining discrete wavelet transform preprocessing and support 

vector machine (SVM) to forecast groundwater depth. Ouyang et al. [51] proposed a 

combined multivariate model to improve the prediction accuracy of wind power based 

on SVR models and data mining algorithms. Ren et al. [52] proposed an optimized 
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combination prediction model based on SEV-MFOA-SVM for concrete dam 

deformation considering quantitative evaluation and hysteresis correction. Wang et al. 

[53] proposed a combined model with a multi-objective optimization algorithm for 

short-term wind speed prediction. Lu et al. [54] proposed a combined approach for wind 

power prediction based on an extreme learning machine and least squares support 

vector machine model. Adnan et al. [55] proposed a hybrid method for monthly runoff 

prediction in a watershed by integrating particle swarm optimization and grey wolf 

optimization with extreme learning machine. Zhou et al. [56] proposed a combined 

multi-task learning and Gaussian process regression model for predicting the multi-time 

scale and multi-component solar radiation 

 

Those methods mentioned earlier have limitations in dealing with complex nonlinear 

data, relying on a single predictive model, which will result in unstable forecasting 

results. For instance, the logarithmic model necessitates adjustments to account for the 

autocorrelation present in time series data, resulting in unreliable parameter estimation 

and insignificant variable significance tests. While the SVM can effectively address 

nonlinear and high-dimensional challenges in small sample datasets, the choice of 

kernel functions, such as Gaussian, Sigmoid, and Laplace kernels, in specific 

application contexts may impact the forecasting accuracy. The forecasting results of 

different kernels can vary significantly for different datasets. However, SVM methods 

may suffer from overfitting issues when it comes to predicting problems with small 

sample sizes and multiple inputs. 

 

In contrast, GFM demonstrates its capability in predicting grey problems characterized 

by limited sample sizes and multiple inputs. This feature simplifies the data collection 

process and enables the facilitation of multi-stage trend forecasting. And GFM is a high-

precision differential dynamic model favored by researchers, as it can consider multiple 

independent variables and has verifiable characteristics. GFM has been successfully 

applied in economic management and engineering technology. Moreover, integration 

of the GFM with Markov theory, which examines the dynamic trends of perception 

factors and technical demands from a probabilistic standpoint utilizing probability 

transfer matrices, has been demonstrated in several studies [32, 57-59] to enhance the 

model’s fitting ability and improve the forecasting accuracy of specific combination 

models. The comparison of these approaches was summarized in Table 1. 
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Table. 1 Comparison of approaches 

Approaches Research contributions 

EWA [3] It is simple and practical to compute, but it does not consider the correlation 

of time series, resulting in lower prediction accuracy. 

CNN [18] No complex reasoning models are required; however, it is not suitable for 

small sample predictions and may suffer from the problem of overfitting. 

GFM [31] The dataset does not need to follow a strict distribution sequence, but poor 

fitting can occur for sample sequences with large random fluctuations, 

leading to larger prediction errors. 

Markov [44] Analyzing the problem of poor fit from a probability perspective is 

beneficial, but it may be difficult to adapt to large sample datasets. 

SVM [52] It can handle small sample datasets with nonlinearity and high 

dimensionality, but the choice of kernel function may influence the 

prediction results. 

ARIMA [64] By seeking autocorrelation between historical data, one can predict the 

future by assuming that it will follow historical trends. However, this 

requires the sequence to be stationary. 

CFA The method is highly applicable and has high predictive accuracy in 

handling small-sample random time series data. 

 

In conclusion, the selection of the forecasting method directly influences the accuracy 

of the forecasted results. In certain system environments, the use of single models may 

not be suitable due to the impact of sample size and input variables on the accuracy of 

the forecasting. To address the forecasting issue of product quality, this study proposes 

a CFA, which considers perception factors. This approach has two main highlights: (1) 

The gray entropy relational degree is used to derive perception factors based on gray 

relational analysis and information entropy. An improved multivariable GFM is 

developed based on the weighted Markov model, where probability transfer matrix 

compensates for poor fitting of GFM. (2) The CFA is constructed using an improved 

GFM and SVR, which are integrated by the inverse perturbation model of weights. A 

real-world case application and comparison of methods on LCD validates the 

effectiveness of the proposed approach, which establishes a foundation for forecasting 

product quality in enterprises. 

 

 

3. Methodology 

Research on perception factors is essential for realizing accurate quality index 

prediction and improving customer satisfaction. Perception factors that affect prediction 

results include product quality, sales, and service. Product quality can be further divided 

into sub-factors, such as safety, packaging, and appearance. Sales can be divided into 
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price competitiveness, cost performance, timeliness, and accuracy. Service can be 

divided into service initiative, capability, response speed, and problem rectification 

timeliness. For the LCD, which is a key component for manufacturers of smart terminal 

products, perception factors can be further divided into sub-factors, such as reliability, 

energy efficiency, and noise vibration ratio. To analyze the degree of influence of 

perception factors on prediction results, the gray entropy relational degree was used to 

select the KPF. To improve prediction accuracy and overcome the limitations of a single 

prediction model, the KPF is used as an input for the weighted CFA based on the GFM, 

weighted Markov model, and SVR. The product quality index, measured by DPPM, 

can be characterized by customer satisfaction and accumulated technical repair schemes 

for product redesign during mass production. 

 

3.1. Gray theory and gray entropy relational degree 

The gray entropy relational degree is an improvement to the gray theory that 

incorporates information entropy. This method is used to select the KPF of the 

perception factors. The basic theories were defined as follows: 

 

Definition 1: Let X0	=	(X0 1 ,	X0 2 ,	…,	X0 n )  be a reference sequence and 

Xi	=	(Xi 1 ,	Xi 2 ,	…,	Xi n ) (i=1, 2, …, N) be a comparative sequence. Then, the gray 

relational coefficient between X0 and Xi at point k (k=1, 2, …, n) is expressed as follows 

[57]: 

Ɛi k =
min

i
min

k
|X0 k -Xi k |+Ψmax

i
max

k
|X0 k -Xi k ||X0 k -Xi k |+Ψmax

i
max

k
|X0 k -Xi k | 																							(1) 

The degree of gray relational coefficient between Xi and X0 is expressed as follows: 

ϒ(x
0
,	xi) ϒ

0i
=

1

n
Ɛi k

n

k=1

																																												(2) 

where the degree of gray relational coefficient is weighted by calculating the gray 

relational coefficient point by point, which allows for the easy determination of the 

local points’ correlation tendency, but at the cost of losing effective information. 

 

Definition 2: Considering the optimization resolution coefficient Ψ, the information 

entropy is introduced into the gray relational coefficient. The Ψ is optimized as follows 

[60]: 
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	Ψ(k)=

1.5θ k 												 1

θ k
3

2θ k 									2 1

θ k
3

0.8, 1 						0 1

θ k
2

(0, 1]																θ k =0

																																										(3) 

where, 	θ k
∆

max
i

max
k
|X0 k -Xi k | 																																													(4) 

	∆v k =
∑ |X0 k -Xi k |N

i=1

N
																																																	(5) 

In Equation (3), if there are outlier values in the observation sequence, namely,	 1

θ k
3, 

Ψ(k)ϵ θ k ,	1.5θ k , to suppress the overall influence of max
i

max
k
	|X0 k -Xi k | on the 

degree of gray relational coefficient, in general Ψ(k) 1.5θ k  . If the observation 

sequence is relatively stable, Ψ(k) will take a larger value to enhance the influence of 

max
i

max
k
|X0 k -Xi k | on the degree of gray relational coefficient, namely, 2

1

θ k

3 , 1.5θ k Ψ(k) 2θ k  . Generally, Ψ(k) 2θ k  ; if 0
1

θ k
2 , Ψ(k) ϵ[0.8, 1] , 

and θ k 0, the value of Ɛi k  has no effect on Ψ(k), Ψ(k) ϵ(0, 1]. 

 

Definition 3: The distribution of the gray relational coefficient is mapped based on 

information entropy as follows [57]: 

p
i

k
Ɛi k∑ Ɛi kn

k 1

																																																	(6) 

where p
i

k 0  and ∑ p
i

kn
k 1 1 . Based on the rule of information entropy, the 

entropy of the gray relational coefficient of attribute p
i

k  is as follows: 

	Hi k p
i

k

n

k 1

p
i

k 																																													(7) 

 

Definition 4: The gray entropy relational degree between Xi  and X0  is presented as 

follows [60]: 	E X
i

Hi k

Hmax

																																																					(8) 

where Hmax n. Therefore, the KPF Xi is selected by comparing the gray entropy 
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relational degree E X
i

. 

 

3.2. GFM modified by the weighted Markov theory 

The forecasting value is obtained using GFM modified by the weighted Markov. The 

detailed modeling process is presented as follows: 

 

(1) Magnitude ratio testing: There are often some data missing or abnormal features 

while collecting data. Particularly, when the starting point x 0 1  and end point x 0 n  

of the sequence are missing, data gaps will be generated if these problematic data are 

removed. The magnitude ratio testing is a commonly used method to fill the blank data 

at the end point of the sequence or to judge the smoothness of the sequence. For the 

known data	x(0)=(x 0 1 ,	x 0 2 ,	⋯,	x 0 n ), the following formula is used to calculate 

the sequence	σ=(σ 2 ,	σ 3 ,	⋯,	σ n ): 	σ k =
x 0 k-1

x 0 k
                                                 (9) 

where k=2, 3, …, n;	σ k ∈ e
-2

n+1, 	e 2

n+1  is the tolerable coverage. If the magnitude ratio 

falls in the tolerable coverage, the exponential characteristics of the data sequence are 

obvious, and a high-precision GFM can be established. Otherwise, the original 

sequence needs to be transformed as follows: 

 y 0 k x 0 k                                             (10) 

Where k=1, 2, 3, …, n; c is the adjusting coefficient, which can make the magnitude 

ratio of the original sequence falling within the tolerable coverage. 

 

(2) Establishment of univariate GFM: Assuming that the original data set is x 0

x 0 1 ,	x 0 2 ,		⋯ ,	x 0 n  , the generating sequence of a single summation is 

x(1)	=	(x 1 1 ,	x 1 2 ,	⋯,	x 1 n ). Then, the next closest mean-generating sequence of 

x(1)  is z(1)	=	(z 1 2 ,	z 1 3 ,	⋯,	z 1 n ) , where, z 1 k 0.5 x 1 k

x 1 k‐1 , k 2,	3,	 ⋯ ,	n  . Based on the GM(1, 1) model, the gray differential 

equation is defined as follows: 	x 0 k az 1 k =b                                                   (11) 

where a and b are the development coefficient and action of the gray model, respectively. 

According to the least square estimation method, the time response sequence function 
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of the gray model is defined as follows: 	x 1 k+1 = x 0 1
b

a
∗ e ak

b

a
																																						(12) 

here z 1 k 0.5 x 1 k x 1 k‐1 0.5 x 1 k‐1
x 0 k +x 1 k‐1 =0.5 2x 1 k‐1 x 0 k =x 1 k‐1 +0.5x 0 k  . Therefore, 

Equation (11) is transformed as follows: 	x 0 k
b

1 0.5a

a

1 0.5a
x 1 k‐1 																																							(13) 

Assuming that α a

1 0.5a
  and β b

1 0.5a
 , then Equation (18) can be transformed as 

follows: 	x 0 k =β-αx 1 k‐1 =β-α x
1

k‐2 +x 0 k‐1 x 0 k‐1 -

αx 0 k‐1 = 1-α x 0 k‐1 . The derived form of GM (1, 1, x(0)) of the model GM(1, 1) 

is defined as follows: 	x 0 2 β-αx 1 1 , k=2	x 0 k 1-α x 0 k‐1 ,	k>2
																																															(14) 

 

(3) Establishment of multivariable GFM: Let x1
0 	=	(x1

0
1 ,	x1

0
2 , x1

0
3 ,… , 

x1
0

n )  be the time sequence to be predicted. The time sequence of KPF is 

xi
0

= xi
0

1 ,	xi
0

2 ,	xi
0

3 ,	…,	xi
0

n ,where	 i=2,	3,	…,	N  . Considering that 

x(1)=	(x 1 1 ,	x 1 2 ,	…,	x 1 n )  is a generating sequence of the single summation, 

z1
1

  is the next closest mean-generating sequence of x1
1

 . Then, the gray forecasting 

model GM (1, N) is defined as follows: 

x1
0

k +az1
1

k = bixi
1

(k)

N

i=2

																																															(15) 

The gray differential equation of GM (1, N) is defined as follows: 

dx(1)

dt
+ax1

1
=b2x2

1
+b3x3

1
+…+bNxN

1 																																				(16) 

The time response sequence function of GM (1, N) is defined as follows: 

x0
1

k+1 =(x
1

1
0 -

1

a
bixi

1
k+1

N

i=2

)e
-ak

+
1

a
bixi

1
k+1

N

i=2

																	(17) 

where x1
0

(1)	 	x1
1

(0) . Assuming that x1
0

2 	+	az1
1

2 	=	∑ bixi
1

,N
i=2  

x1
0

3 +az1
1

3 =∑ bixi
1

,N
i=2 	x1

0
3 +az1

1
3 =∑ bixi

1
,N

i=2 	… 	,	x1
0

n +az1
1

n =	
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∑ bixi
1N

i=2 . 

 

To solve the model parameters of GM (1, N), the linear equation is constructed as 

follows: 

Y=Ba																																																																		(18) 

where 	B=

-z1
1

2 x2
1

2 ⋯ xN
1

2

-z1
1

3 x2
1

3 ⋯ xN
1

3⋮ ⋮ ⋮ ⋮
-z1

1
n x2

1
n ⋯ xN

1
n

,	Y=

x1
0

2

x1
0

3⋮
x1

0
n

,	a=

a

b2⋮
bN

 . There are three 

ways to solve the Equation (18) based on the different values of n and N: 

a

B-1Y 																											n=N+1

(BTB)
-1

B
T

Y													 n＞N+1

BT(BBT)
-1

Y														n＜N+1

																																							(19) 

Based on z1
1

k x1

1
k‐1 0.5x1

0
k  , we can derive that x1

0
k a x1

1
k‐1

0.5x1
0

k ∑ bixi
1

kN
i=2  , namely, (1 0.5a)x1

0
k ∑ bixi

1
kN

i=2 ax1

1
k‐1  . 

Then, x1
0

k ∑ bi

1 0.5a
xi

1
kN

i=2

a

1 0.5a
x1

1
k‐1  . By assuming that β

i

bi

1 0.5a
  and 

α a

1 0.5a
, we can derive that x1

0
k ∑ β

i
xi

1
kN

i=2 -αx1

1
k‐1 . Then the derived form 

of GM (1, N) is defined as GM (1, N, x(0)): 

x1
0

k = β
i
xi

0
k

N

i=2

+(1- )x1
0

k-1 																																					(20) 

where x1
0

k 	=	∑ [β
i
xi

1
k	-	1 	+	β

i
xi

0
k ]	-	α[x1

1
k	-	2 	+	x1

0
k	-	1 ]N

i=2  , x1
0

k 	=	∑ β
i
xi

1
k	-	1 	-	αx1

1
k	-	2 	+	∑ β

i
xi

0
k 	-	αx1

0
k	-	1N

i=2
N
i=2  , and x1

0
k 	=	

x1
0

k	-	1 	+	∑ β
i
xi

0
k 	-	αx1

0
k	-	1N

i=2  . As the time response model has a large 

amount of calculation based on GM (1, N), which is easy to produce a certain 

cumulative error. Conversely, GM (1, N, x(0)) as a GFM has a good single level. This 

simplifies the calculation and reduces the cumulative error of numerical values in the 

calculation process during practical application. 

 

(4) A GM (1, N, x(0)) may presents poor fitting ability to sample sequences with large 

random fluctuation, resulting in forecasting error. Here, weighted Markov theory [61] 

is used to modify the multivariable forecasting time sequences of GFM. The Markov 

process is a stochastic process with Markov characteristics, and the Markov process 
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whose parameter set and state set are both discrete is called Markov chain [62]. The 

procedures are presented as follows: 

 

1) State division: The forecasting sequence is divided into m state intervals, which is 

presented as Ei=	 Ei1,	Ei2 , i=1, 2,	⋯,	m , where Ei1=Y(t)×Ai, Ei2=Y(t)×Bi, and Ai and 

Bi are the upper and lower limits of the state i. 

 

2) Construction of the state transition probability matrix: If S
(k)

 represents the kth state 

vector of the gray system, then S
(k+1)

S
(k)

P. Additionally, f
ij
 represents the transition 

frequency between states, and Pij	 i, j ∈ E), E = {E1, E2,⋯, Em}  represents the 

transition probability from state i to state j. Then, the state transition probability matrix 

is presented as follows: 

	P=

P11 ⋯ P1j⋮ ⋯ ⋮
Pi1 ⋯ Pij

																																																			(21) 

 

3) Markov property test: If P·j is denoted as the sum of the jth column of the transfer 

frequency matrix divided by the sum of each column and each row, which is called 

“marginal probability” and can be expressed as follows: 

P·j=
∑ f

ij
m
i=1∑ ∑ f

ij
m
j=1

m
i=1

																																																								(22) 

Then, calculating the χ2 distribution statistic of the degree of freedom (m-1)
2
: 

χ2=2 f
ij

m

j=1

m

i=1

ln
Pij

P·j

																																															(23) 

Based on the given significance level, the value of site χ2((m-1)
2
) can be found in the 

literature (book) and compared with the value of site χ2. If χ2>χ2((m-1)
2
), the sequence 

can be treated as a Markov chain. 

 

4) Determination of each order weight: The autocorrelation coefficients of each order 

can be calculated as follows: 

rk=
∑ (xi-x)(xi+k-x)n-k

i=1∑ (xi-x)
2n

i=1

																																																		(24) 

where rk is the k order autocorrelation coefficients, xi is the initial demanded value, and 
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x is the corresponding average value. Meanwhile, the autocorrelation coefficients of 

each order are normalized and the corresponding weights of each order can be obtained 

as follows: 

wk=
|rk|∑ |rk|n

k=1

																																																											(25) 

When the original states of the data with different time delays are known, the state 

transition probability of asynchronously long time is weighted and a new time state 

transition probability matrix to be predicted is obtained to forecast the next time state. 

 

3.3. SVR forecasting model 

As the SVR model is mainly applicable to small sample prediction [62], where can be 

used to forecast the DPPM when the KPF Xi was acquired. By considering the KPF 

obtained from the gray entropy relational degree as input, then the training time and 

forecasting accuracy of the SVR can be improved. DPPM prediction using the SVR 

algorithm can be seen as solving the following optimization problems: 

	 min Y= ω,	b, δi,	δi =
ωTω

2
+C δi+δi

n

i=1

s.t.

y
i
-ωTφ xi -d≤ε+δi

-y
i
+ωTφ xi +d≤ε+δi

δi≥0,	δi≥0  i=1,	2, …, n.
																																					(26) 

where xiϵRn  is the feature vector of the input, ωTφ xi +d  is the separating 

hyperplane, 	φ xi   maps sample features to a more high-dimensional feature space, 

ωϵRn  is the separating hyperplane weight vector. yi is the objective value, which 

presents the forecasting value of DPPM.  is an insensitive loss value, and the loss is 

considered if and only if the absolute value of the error between the predicted value and 

the target value is greater than ε. δi is the relaxation variable, C is the penalty factor, 

which indicates the outlier of the degree of importance. 

 

In order to accurately divide the separating hyperplane, the kernel function K(xi, xj) is 

introduced to map the input data to a higher-dimensional space, so that the sample data 

is linearly separable in the mapped feature space, thereby solving the nonlinear 

regression problem. In this paper, the excellent radial basis function (RBF) is selected 

as the kernel function [63], and its expression is presented as follows: 
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	K(x
i
,	xj)=exp(-

xi-xj

2

2σ2
)                                             (27) 

where   is the width of the kernel function. Then, the forecasting model of SVR is 

presented as follows: 	y x = ai-ai K(x
i
,	xj)+d

n

i=1

																																								(28) 

where ai and ai are the Lagrange multiplier introduced when solving the SVR model. 

 

3.4. CFA optimized by inverse perturbation of weights 

Due to the influence of application scenarios and perception factors, a single forecasting 

method cannot achieve the desired level of accuracy. Therefore, the problem of CFA 

research is addressed. The CFA combines two qualitative or quantitative prediction 

models using inverse perturbation of weights, which compensates for the deficiencies 

of single forecasting methods and produces better forecasting results by integrating the 

advantages of multiple models. The improved GFM has the ability to reduce the 

randomness of the sequence and is suitable for short-term forecasting with small 

samples. However, it has poor prediction accuracy for nonlinear data sequences with 

large fluctuations. Fortunately, the SVR model can address this issue. Thus, the 

proposed solution is to integrate the GFM and SVR methods to forecast product quality. 

 

In the integrated procedures of GFM and SVR, the key problem is to determine the 

weights of CFA. Therefore, an inverse perturbation of weights based on SVR and GFM 

is constructed to obtain accurate forecasting results. The weights of CFA are usually 

determined by mathematical programming based on certain constraints and the 

forecasting errors of models. Currently, many scholars determine the weights of CFA 

according to the principle of minimum absolute error or relative error. In this study, the 

weight vector of CFA is constructed based on the mathematical programming model 

with an inverse perturbation model of weights. The detailed process is presented as 

follows. 

 

Suppose that r different types of single forecasting models are used to construct the 

CFA, which can be expressed as follows: 
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y
t
= wi

r

i=1

y
i,t

wi

r

i=1

1,	 w
i

0,	i 1,	2,	 ⋯ ,	r 																																					(29) 

where y
t
 is the forecasting value of CFA at time t t 1,	2, ⋯ ,	n , y

i,t
 is the forecasting 

value of the forecasting model i at time t, and wi is the weight of ith forecasting model. 

Suppose y
t
 is the real value at time t, the prediction errors ei,t is presented as follows: 	ei,t y

t
y

i,t
																																																									(30) 

 

Here, Fi represents the error vector of ith forecasting model: 	Fi=[e1,1,	e2,2,	⋯,	ei,t]
T																																																			(31) 

The e represents the error matrix of Fi: 	e F1,F2, ⋯ ,Fi 																																																				(32) 

The Er represents the error information matrix of CFA: 

	Er eTe

E11 ⋯ E1r⋮ ⋱ ⋮
Er1 ⋯ Err

																																																(33) 

If Rr 1,	1, ⋯ ,	1 T; W w1,w2, ⋯ ,wr
T is the weight vector of r-kinds forecasting 

models, the sum of squares of the forecasting error S of CFA is presented as follows: 

	S= et
2

n

t=1

= , 2n

t=1

W ErW                                 (34) 

 

Then, to determine the best CFA, the mean absolute percentage error (MAPE) of the 

forecasting result is judged based on the inverse perturbation model of weights. 

Therefore, the abovementioned problem is transformed into a weight optimization 

model as follows [57]: 

	 min	S W ErW

s.t.	Rr W 1

W≥0

																																																			(35) 

To simplify the solving process, the Lagrange multiplier λ is introduced to obtain S

W ErW	 	λ Rr W‐1 , and the first partial derivative of S with respect to W is set as 

zero. The optimal solution of the abovementioned constraint problem is derived as 

follows: 
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∂S

∂W
2ErW	 	λRr 0																																																		(36) 

If Er
1 is the inverse matrix of Er, the weight vector of single forecasting model and 

the optimal solution of CFA can be obtained as follows: 

W ‐ Er
1Rr

Rr Er
1Rr

S=
1

Rr Er
1Rr

																																																						(37) 

 

Ulteriorly, when the weight is inverse perturbed, the higher forecasting accuracy of CFA 

is observed. Assuming that the initial weight is ωj , W ωj, ⋯ ,wr
T , 

k	≠	j, k=1,	2,	…,	m, ωj
'+∑ ωk

'm
k≠j,	k=1 =1, the new weight is constructed as follows: 

ωj
' 	=	tωj																																																																(38) 

With the changes in time t, where 0<ωj
'<1,	0<t<1/ωj. Moreover, if d	=	(1	-ωj

' 	)/(1	-	ωj), 

the other weight is derived as follows: 

ωk
' 	=	dωk																																																																(39) 

where k	≠	j, k=1,	2,	…,	m , ωj
'+∑ ωk

'm
k≠j,	k=1 =1 . Therefore, with the changes in t, the 

weight ωj  can be perturbed. With the inverse perturbed of combining weights, the 

minimization MAPE of CFA can be obtained. 

 

3.5. Framework flowchart of the proposed approach 

The proposed approach framework is shown in Figure 1, and the steps can be 

described as follows: 

Step 1: Collect perception factors based on the historic feedback data of the market 

and customer provided by the department of return material approval (DRMA) in 

the enterprise. 

Step 2: Integrate gray theory and information entropy to build a gray entropy 

model and utilize the gray entropy relational degree to select KPF. 

Step 3: Construct CFA based on SVR and modified multivariate GFM using 

weighted Markov. 

Step 4: Use the inverse perturbation method to modify the combining weights of 

CFA until the minimization of MAPE is achieved to reduce forecasting error. 

Step 5: Perform case application and methods comparison, comparing and 

analyzing the forecasting results of different methods with and without considering 
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the perception factors. 
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Figure. 1 Framework flowchart of the proposed approach 

 

4. Case study 

LCD is a critical component for manufacturers of smart terminal products, and its 

display performance significantly impacts customer satisfaction. With the widespread 

use of electronic products, many microelectronics enterprises focus on LCD design, 

research and development, production, and sales. Therefore, it is important to forecast 

the DPPM of LCD based on perception factors related to customer satisfaction. The 

KPF, which affects the quality of LCD, includes monthly DPPM, such as stability, 

packaging quality, reliability, service initiative, and other unknown influence factors. 

Some of these factors belong to the known perception factors, while others are unknown 

and can be predicted using the SVR and improved GFM. The proposed method is 

implemented in a microelectronics enterprise in Xiamen (China) to provide decision 

support for product quality forecasting. 

 

4.1. Selection of KPF by gray entropy relational degree 

Different industries may require different hierarchical models of perception factors for 

customer satisfaction. In this study, we develop a hierarchical model of perception 
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factors specific to LCD products in the microelectronics manufacturing industry. We 

obtained the perception factors from historical statistical data provided by the DRMA 

department in the enterprise and sorted them through multiple expert discussions. The 

cost-performance factor is comprehensive, taking into account the product’s 

performance and yield. It is crucial for customers in their decision to purchase the 

product. Price competitiveness determines the price advantage of the commodity 

relative to its competitors, and it is also an important factor for customers in their 

purchasing decision. Offering appropriate price incentives can stimulate market 

demand and increase purchasing power. However, as customer consumption levels 

increase, product quality and service requirements have surpassed price as the most 

important factors. High-quality, low-price commodities tend to win the favor of 

consumers. To improve market share, enterprises must analyze product quality 

perception factors and ensure high-quality in-sales and after-sales services. The ACSI 

model [6, 57] provides a conceptual model and technical support for establishing 

evaluation indices after screening the perception factors. Among the perception factors, 

product performance, product quality, product sales, and maintenance service cover all 

aspects of customer needs. The screening of KPF will be analyzed based on these four 

aspects. 

 

Among the perception factors, product performance (x1) includes reliability (x11), 

stability (x12), and electrostatic discharge level (x13); product quality (x2) includes 

residual shadow value (x21), appearance quality (x22), and packaging quality (x23); 

product sale (x3) includes sales quantity (x31), acceptance quantity (x32), and cost 

performance (x33); maintenance service (x4) includes timeliness (x41), response speed 

(x42), and delivery ability (x43). Accordingly, a three-level evaluation system of 

perception factors was established. The first level included the comprehensive DPPM 

(to protect corporate trade secrets, DPPM was presented by the total number of failure 

products). The second level included the perception factors of product performance, 

quality, sale, and service; the third level included the detailed factors. The historical 

data of perception factors for a type of LCD are shown in Table 2 (abbreviated as 1901 

to 2010 for January 2019 to October 2020). 
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Table. 2 Historical data of the perception factors 

Time DPPM 
x1 x2 x3 x4 

x11 x12 x13 x21 x22 x23 x31 x32 x33 x41 x42 x43 

1901 3483 0.68 78 81 2.4 7.5 6.8 1703729 1141 8.6 65 63 72 

1902 3889 0.67 80 83 2.5 7.7 7.2 1268039 967 8.5 68 63 73 

1903 4443 0.75 82 86 2.2 7.9 7.5 1570603 163 8.6 69 72 75 

1904 4507 0.78 86 84 2.1 8.3 7.6 2065983 659 8.7 75 78 75 

1905 4480 0.76 80 82 2.1 8.1 8.1 2495828 478 8.9 72 72 71 

1906 4514 0.77 86 91 2.5 8.4 8.2 388838 1746 8.8 82 85 78 

1907 4746 0.82 89 91 2.3 7.8 7.9 2127220 1896 8.4 76 82 77 

1908 4870 0.81 90 95 2.2 8.2 7.4 2318312 469 8.3 74 78 82 

1909 4727 0.82 90 95 2.1 8.1 7.3 3075136 1772 8.8 75 81 79 

1910 4556 0.78 85 83 2.4 7.2 6.9 1741169 2194 8.8 71 72 71 

1911 4311 0.8 87 88 2.2 8.1 7.3 3256955 1373 8.9 78 76 85 

1912 4070 0.84 87 89 2.5 7.9 7.5 2579021 1204 8.2 81 79 82 

2001 2655 0.75 75 81 2.7 6.7 6.9 3363595 1106 8.1 68 65 68 

2002 1820 0.73 73 79 2.8 6.6 6.5 2569915 664 8.1 62 64 61 

2003 2553 0.72 72 78 2.5 6.8 6.3 1562932 1747 8.1 60 61 60 

2004 2675 0.72 78 82 2.6 7.5 6.6 2096573 629 8.2 61 60 62 

2005 2639 0.71 76 83 2.3 7.1 6.9 2576629 2373 8.4 65 71 70 

2006 2671 0.74 77 82 2.2 7.6 6.8 2647063 634 8.4 72 69 75 

2007 2697 0.77 82 87 2.1 8.1 7.2 2188120 2088 8.5 77 79 80 

2008 2617 0.81 82 88 2.2 8.2 8.1 2928438 1197 8.4 82 84 90 

2009 2460 0.82 85 91 2.1 9 8.5 2528095 540 8.6 89 91 89 

2010 2288 0.81 87 91 2.2 9 9.1 2278006 356 8.7 88 89 76 

 

The perception factor mentioned above constitutes the main focus of investigation as it 

has a significant impact on customer satisfaction. In practical applications, changes in 

research background, budget, competitors, and other external factors may necessitate 

adjustments to the perception factors. To accurately predict the effects of these changes 

on customer satisfaction, we utilized the gray entropy relational degree to select key 

perception factors (KPF). Table 3 presents the initial data for the perception factors 

(other values were compared to the row of 1901). 
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Table. 3 Initialization of the original data 

Time DPPM 
x1 x2 x3 x4 

x11 x12 x13 x21 x22 x23 x31 x32 x33 x41 x42 x43 

1901 1 1 1 1 1 1 1 1 1 1 1 1 1 

1902 1.117 0.985 1.026 1.025 1.042 1.027 1.059 0.744 0.848 0.988 1.046 1.000 1.014 

1903 1.276 1.103 1.051 1.062 0.917 1.053 1.103 0.922 0.143 1.000 1.062 1.143 1.042 

1904 1.294 1.147 1.103 1.037 0.875 1.107 1.118 1.213 0.578 1.012 1.154 1.238 1.042 

1905 1.286 1.118 1.026 1.012 0.875 1.080 1.191 1.465 0.419 1.035 1.108 1.143 0.986 

1906 1.296 1.132 1.103 1.123 1.042 1.120 1.206 0.228 1.530 1.023 1.262 1.349 1.083 

1907 1.363 1.206 1.141 1.123 0.958 1.040 1.162 1.249 1.662 0.977 1.169 1.302 1.069 

1908 1.398 1.191 1.154 1.173 0.917 1.093 1.088 1.361 0.411 0.965 1.138 1.238 1.139 

1909 1.357 1.206 1.154 1.173 0.875 1.080 1.074 1.805 1.553 1.023 1.154 1.286 1.097 

1910 1.308 1.147 1.090 1.025 1.000 0.960 1.015 1.022 1.923 1.023 1.092 1.143 0.986 

1911 1.238 1.176 1.115 1.086 0.917 1.080 1.074 1.912 1.203 1.035 1.200 1.206 1.181 

1912 1.169 1.235 1.115 1.099 1.042 1.053 1.103 1.514 1.055 0.953 1.246 1.254 1.139 

2001 0.762 1.103 0.962 0.988 1.125 0.893 1.015 1.974 0.969 0.942 1.046 1.032 0.944 

2002 0.523 1.074 0.936 0.975 1.167 0.880 0.956 1.508 0.582 0.942 0.954 1.016 0.847 

2003 0.733 1.059 0.923 0.963 1.042 0.907 0.926 0.917 1.531 0.942 0.923 0.968 0.833 

2004 0.768 1.059 0.987 1.012 1.083 1.000 0.971 1.231 0.551 0.953 0.938 0.952 0.861 

2005 0.758 1.044 0.974 1.025 0.958 0.947 1.015 1.512 2.080 0.977 1.000 1.127 0.972 

2006 0.767 1.088 0.987 1.012 0.917 1.013 1.000 1.554 0.556 0.977 1.108 1.095 1.042 

2007 0.774 1.132 1.051 1.074 0.875 1.080 1.059 1.284 1.830 0.988 1.185 1.254 1.111 

2008 0.751 1.191 1.051 1.086 0.917 1.093 1.191 1.719 1.049 0.977 1.262 1.333 1.250 

2009 0.706 1.206 1.090 1.123 0.875 1.200 1.250 1.484 0.473 1.000 1.369 1.444 1.236 

2010 0.657 1.191 1.115 1.123 0.917 1.200 1.338 1.337 0.312 1.012 1.354 1.413 1.056 

 

According to Equations (3)-(5), Ψ(k) = [1.00, 0.39, 0.28, 0.79, 0.47, 0.49, 0.48, 0.76, 

0.48, 0.25, 0.36, 0.67, 0.24, 0.71, 0.38, 0.39, 0.26, 0.39, 0.36, 0.45, 1.00, 0.79]T. 

Furthermore, based on Equation (1), the relational coefficient matrix Ɛi k  T can be 

calculated. According to Equation (6), the mapping results of the relational coefficient 

matrix Pi k  T can be derived. According to Equations (7)-(8), the gray entropy 

relational degree of perception factors E X
i

, which is shown in Table 4, where x13, x21, 

x31, and x41 have the higher gray entropy relational degree, which indicates the impact 

on DPPM. It is easy to know that the electro-static discharge level (x13), residual shadow 

value (x21), sell quantity (x31), and timeliness (x41) have a great impact on of DPPM. 

Thus, they were selected as the KPF of performance, quality, sale, and service. 

 

Table. 4 Gray entropy relational degree of perception factors 

x11 x12 x13 x21 x22 x23 x31 x32 x33 x41 x42 x43 

0.813 0.915 0.981 0.999 0.998 0.999 0.996 0.973 0.961 1.000 0.996 0.992 
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4.2. Application of GFM modified by weighted Markov 

Based on KPF, which was presented in Table 4, as the input value, a multivariable 

forecasting model of DPPM is established using improved GFM model in Section 3.2. 

The DPPM value at the future time point is outputted based on the GFM modified by 

the weighted Markov. The KPF are x2, x3, x4, and x5, and the DPPM is x1, then the 

initialization of KPF is shown in Table 5. 

 

Table. 5 Initialization of KPF 

Time 
  KPF   

x1 x2 x3 x  x5 

1901 1 1 1 1 1 

1902 1.117 1.025 1.042 0.744 1.046 

1903 1.276 1.062 0.917 0.922 1.062 

1904 1.294 1.037 0.875 1.213 1.154 

1905 1.286 1.012 0.875 1.465 1.108 

1906 1.296 1.123 1.042 0.228 1.262 

1907 1.363 1.123 0.958 1.249 1.169 

1908 1.398 1.173 0.917 1.361 1.138 

1909 1.357 1.173 0.875 1.805 1.154 

1910 1.308 1.025 1.000 1.022 1.092 

1911 1.238 1.086 0.917 1.912 1.200 

1912 1.169 1.099 1.042 1.514 1.246 

2001 0.762 0.988 1.125 1.974 1.046 

2002 0.523 0.975 1.167 1.508 0.954 

2003 0.733 0.963 1.042 0.917 0.923 

2004 0.768 1.012 1.083 1.231 0.938 

2005 0.758 1.025 0.958 1.512 1.000 

2006 0.767 1.012 0.917 1.554 1.108 

2007 0.774 1.074 0.875 1.284 1.185 

2008 0.751 1.086 0.917 1.719 1.262 

2009 0.706 1.123 0.875 1.484 1.369 

2010 0.657 1.123 0.917 1.337 1.354 

 

According to Equations (14)-(15), the magnitude ratio of the sequence was calculated 

so that the magnitude ratio of the perception factor falls within the allowable coverage 

(0.917, 1.091), the results are shown in Table 6. Based on the single variable GFM of 

the perception factor, the FFRP was forecasted by establishing the multivariable GFM 

GM (1, N), where the single variable GFM of x2 was 
dx2

(1)

dt
-0.003x2

1
=1.021, a=-0.003 

and β= 1.021. The derived model was x2
0

2 =1.021+0.003x2
0

1 ,  (k=2), 	x2
0

k =1.022x2
0

k-1 , (k=3, 4, ⋯, n). The residual testing of derived model of x2 was 

shown in Table 7. 
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Table. 6 Magnitude ratio of the KPF 

Time 
  KPF   

x1 x2 x3 x  x5 

1902 0.983 0.976 1.000 1.059 0.956 

1903 0.925 0.965 1.091 0.992 0.985 

1904 0.921 1.024 0.941 0.940 0.920 

1905 0.928 1.025 1.000 0.921 1.042 

1905 0.928 1.025 1.000 0.921 1.042 

1906 0.992 0.989 0.936 0.917 0.954 

1907 0.951 0.993 0.985 0.961 0.994 

1908 0.975 1.013 1.040 0.990 1.027 

1909 1.030 0.948 0.946 1.038 0.986 

1910 1.037 1.047 1.075 1.083 1.049 

1911 1.057 0.944 0.983 0.926 0.917 

1912 1.059 0.988 0.976 0.998 1.091 

2001 1.034 1.010 0.926 0.953 1.089 

2002 1.054 1.012 0.998 1.055 1.059 

2003 0.986 1.011 1.082 0.993 1.001 

2004 0.954 1.050 1.039 0.989 0.988 

2005 1.013 0.987 1.047 1.016 0.919 

2006 0.988 1.013 1.045 0.967 0.948 

2007 0.991 0.942 1.048 0.977 0.935 

2008 1.031 0.989 0.954 0.973 0.939 

2009 1.064 0.967 1.048 0.953 0.922 

2010 1.075 1.000 0.954 1.035 1.011 

 

Table. 7 Residual testing of x2 

Time Actual value Forecasting value Relative error Magnitude ratio State 

1901 1.000 1.000 0.000 1.000 1 

1902 1.025 1.026 0.075 0.999 1 

1903 1.062 1.029 -3.135 1.032 1 

1904 1.037 1.032 -0.515 1.005 1 

1905 1.012 1.035 2.235 0.978 3 

1906 1.023 1.038 1.425 0.986 2 

1907 1.030 1.041 1.025 0.990 2 

1908 1.017 1.044 2.609 0.975 3 

1909 1.073 1.047 -2.467 1.025 1 

1910 1.025 1.050 2.393 0.977 3 

1911 1.086 1.053 -3.081 1.032 1 

1912 1.099 1.056 -3.953 1.041 1 

2001 1.088 1.059 -2.704 1.028 1 

2002 1.075 1.062 -1.245 1.013 1 

2003 1.063 1.065 0.156 0.998 2 

2004 1.012 1.068 5.505 0.948 3 

2005 1.025 1.071 4.465 0.957 3 

2006 1.012 1.074 6.111 0.942 3 

2007 1.074 1.077 0.272 0.997 2 

2008 1.086 1.080 -0.552 1.006 1 

2009 1.123 1.083 -3.553 1.037 1 

2010 1.123 1.086 -3.276 1.034 1 

MAPE   0.081   
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As shown in Table 7, the average error is 0.081>0.05. The weighted Markov is used to 

modify the univariate GFM to improve the forecasting accuracy. According to the 

relative error shown in Table 6, the interval state is preliminarily divided into [-3.95, -

0.52], [0.27, 1.56], and [2.39, 6.11]. Then, the forecasting sequence is divided into three 

state intervals. The actual state division according to x2 is shown as follows: State 1: 

A1=0.999 , B1=1.042 , E11=Y(t)×0.999 , E12=Y(t)×1.042 ; State 2: A2=0.986 , 

B2=0.999 , E21=Y(t)×0.986 , E22=Y(t)×0.999 ; State 3: A3=0.942 , B3=0.986 , 

E31=Y(t)×0.942, E32=Y(t)×0.986. After determining the state of each sequence, the 

validity of the improved GFM is verified by Markov testing, and the transfer frequency 

matrix is (f
ij
)
3×3

=
10 2 1

1 3 0

0 1 5

 . The first, second, and third-order state transition 

probability matrices are P(1)=
0.83 0.17 0

0.25 0.75 0

0 0.17 0.83

 , P(2)=
0.74 0.26 0

0.40 0.60 0

0.04 0.26 0.70

 , and 

P(3)=
0.68 0.32 0

0.48 0.52 0

0.10 0.32 0.58

 , respectively. The distribution statistics of χ2

2∑ ∑ f
ij

3
j=1

3
i=1 ln

Pij

P·j
=12.3>χ

0.05
2 4 =9.49, which satisfies the Markov testing. 

 

According to Equations (24)-(25), the auto-relational coefficient and weight of each 

state transition matrix are calculated as: r1=0.251 , r2 0.499 , r3=0.544 , 	w1=0.194 , 

w2=0.386, and w3=0.420. Owing to the division of 3 different state intervals, the three-

year data closest to the time sequence is selected to prepare the forecasting table. For 

the perception factor x2, the Markov model parameters of the transition steps and new 

state transition probability at the time point 2009 are shown in Table 8. 

 

Table. 8 Model parameters of x2 modified by weighted Markov 

Time Initial state Time lag Weight 
State transition probability 

Probability 
E1 E2 E3 

2008 1 3 0.194 1.000 0.000 0.000 P(1) 

2007 2 2 0.386 0.333 0.444 0.222 P(2) 

2006 3 1 0.420 0.333 0.370 0.296 P(3) 

 

When the state transition probability matrix of each order is known, the states of each 

order are weighted and summed. Then, the state transition of perception factors under 

the forecasting time is calculated as p
1
=0.56 p

2
=0.27 p

3
=0.17. It can be observed that 
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the state of perception factors x2 in the 2009 period is 1. Similarly, the state of other 

perception factors can be obtained, and the forecasting results can be optimized. The 

comparison of results of GFM and improved GFM are shown in Table 9. It is easy to 

know that the accuracy of the forecasting result with the perception factors has been 

improved. The results shown that the optimization method is scientific. 

 

Table. 9 Results comparison between the GFM and improved GFM 

KPF Time 
Actual 

value 
GFM 

Relative 

error (%) 

GFM modified 

by Markov 

Relative 

error (%) 

 2009 1.123 1.083 -0.036 1.121 -0.002 

x2 2010 1.123 1.086 -0.033 1.132 0.008 

 2011  1.096  1.139  

 2009 0.875 0.825 -0.057 0.842 -0.038 

x3 2010 0.917 0.957 0.044 0.925 0.009 

 2011  0.931  0.923  

 2009 1.384 1.252 -0.095 1.327 -0.041 

x4 2010 1.337 1.137 -0.150 1.281 -0.042 

 2011  1.145  1.296  

 2009 1.369 1.419 0.037 1.399 0.022 

x5 2010 1.354 1.394 0.030 1.322 -0.024 

 2011  1.387  1.313  

MAPE    0.06  0.023 

 

According to the relative error and MAPE of perception factors, the forecasting 

accuracy of the univariate GFM modified by weighted Markov is higher than that of 

the univariate GFM. The reason is that forecasting curve of the univariate GFM is an 

ideal smooth curve. If the randomness of sample data of the model fluctuates 

significantly, the forecasting result of the model will be unsatisfactory. The weighted 

Markov theory based on the transfer probability can make up for the deficiency of GFM, 

so the forecasting accuracy of the improved GFM is higher. Accordingly, the optimized 

univariate GFM results are used as the data samples of the multivariable GM(1, 5, x(0)). 

All data samples are accumulated once, and ( a , b2 , b3 , b4 , b5 ) = 

(0.926, 3.134, 1.485, -2.979, -1.132) is calculated according to Equation (21). Then, 

GM(1, 5) is 
dx(1)

dt
+0.926x1

1
=3.134x2

1
+1.485x3

1
-2.979x4

1
-1.132x5

1
 . According to 

GM(1, 5), the parameter (a , β
2
 , β

3
 , β

4
 , β

5
 )= (0.632, 2.94, 0.851, -3.015, -0.879 ) of 

GM(1, 5, x(0)) is calculated. According to Equation (23)-(25), the model of GM (1, 5, 

x(0)) is x1
0

k =0.632x1
0

k-1 +2.94x2
0

k +0.851x3
0

k -3.015x4
0

k -0.879x5
0

k  . 

Therefore, the relative error and MAPE of the improved multivariable FGM for each 

time point can be obtained, as shown in Table 10. It can be observed that the DPPM at 
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the time point 2011 is 0.736, and the equivalent actual DPPM value is 2563. 

 

Table. 10 Forecasting result of improved multivariable GFM for DPPM 

Time Actual value Initialization Forecasting value Restoring values 
Relative 

error (%) 

1901 3483 1.000 1.000 3483 0.000 

1902 3889 1.117 1.149 4001 2.889 

1903 4443 1.276 1.317 4588 3.265 

1904 4507 1.294 1.259 4384 -2.736 

1905 4480 1.286 1.220 4250 -5.139 

1906 4514 1.296 1.366 4757 5.393 

1907 4746 1.363 1.305 4544 -4.246 

1908 4870 1.398 1.435 4999 2.643 

1909 4727 1.357 1.449 5047 6.770 

1910 4556 1.308 1.348 4694 3.026 

1911 4311 1.238 1.261 4391 1.864 

1912 4070 1.169 1.240 4318 6.086 

2001 2655 0.762 0.746 2597 -2.167 

2002 1820 0.523 0.558 1945 6.851 

2003 2553 0.733 0.770 2682 5.050 

2004 2675 0.768 0.724 2520 -5.784 

2005 2639 0.758 0.741 2581 -2.213 

2006 2671 0.767 0.784 2731 2.233 

2007 2697 0.774 0.797 2776 2.941 

2008 2617 0.751 0.774 2697 3.073 

2009 2460 0.706 0.755 2631 6.963 

2010 2288 0.657 0.702 2445 6.865 

2011   0.736 2563  

MAPE     4.01 

 

4.3. Application of the SVR model 

Based on KPF, which was presented in Table 5, as the input value, a multivariable 

forecasting model of DPPM is established using SVR model in Section 3.3. According 

to Equations (26)-28, the kernel function of SVR is chosen as the radial basis function, 

and the parameters of the penalty function and kernel function are optimized by grid 

search. The parameter is trained using a k-fold cross-validation method, where k is set 

to 8. When the number of the hidden layer nodes is set to be 8, the forecasting 

performance of the network is the best after 734 iterations. Then, the regression curve 

and convergence curve of the training set are shown in Figure 2 using the MATLAB 

2018R software. And the forecasting result and MAPE of SVR are shown in Table 11. 

According to Table11, MAPE between the forecasting result and actual value is 6.21%. 

The accuracy of the forecasting result still needs to be improved. 
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(a) Regression curve of training SVR                  (b) convergence curve of SVR 

Figure. 2 Regression curve and convergence curve of SVR 

 

Table. 11 Prediction results and MAPE of SVR 

Time Actual value Forecasting value Relative error (%) 

1901 3483 3515 0.90 

1902 3889 4028 3.57 

1903 4443 4763 7.20 

1904 4507 4850 7.62 

1905 4480 4813 7.44 

1906 4514 4860 7.67 

1907 4746 5182 9.19 

1908 4870 5357 10.00 

1909 4727 5155 9.06 

1910 4556 4918 7.94 

1911 4311 4584 6.33 

1912 4070 4263 4.75 

2001 2655 2535 -4.52 

2002 1820 1638 -10.00 

2003 2553 2420 -5.19 

2004 2675 2557 -4.39 

2005 2639 2517 -4.63 

2006 2671 2553 -4.42 

2007 2697 2582 -4.25 

2008 2617 2492 -4.77 

2009 2460 2317 -5.80 

2010 2288 2129 -6.93 

2011  2650  

MAPE   6.21 

 

4.4. Application of CFA by inverse perturbation of weights 

According to the forecasting results represented in Section 4.2 and Section 4.3, the 

weights of CFA with SVR and improved GFM (setting as w1 and w2, respectively) are 

optimized based on the inverse perturbation model of weights. The forecasting error 

matrix of the two models is eT=[-32 -139 -320 -343 -333 -346 -436 -487 -428 -362 -

273 -193 120 182 133 118 122 118 115 125 143 159; 0 -112 -145 123 230 -243 202 -

129 -320 -138 -80 -248 58 -125 -129 155 58 -60 -79 -80 -171 -157], whereas the matrix 



28 

of error information is Er=eTe=
1506795 175476

175476 540590
  based on Equations (31)-(36). 

According to Equations (37)-(39), the weights of the forecasting model 

is w= 0.2152 0.7848 . The relative error of CFA is shown in Table 12. 

Table. 12 Relative error of the CFA 

Time Accrual value Forecasting value Relative error % 

1901 3483 3490 0.1947 

1902 3889 4007 3.0348 

1903 4443 4626 4.1121 

1904 4507 4484 -0.5074 

1905 4480 4371 -2.4312 

1906 4514 4780 5.8824 

1907 4746 4682 -1.3555 

1908 4870 5076 4.2262 

1909 4727 5070 7.2631 

1910 4556 4742 4.0840 

1911 4311 4433 2.8263 

1912 4070 4306 5.7994 

2001 2655 2584 -2.6744 

2002 1820 1879 3.2246 

2003 2553 2626 2.8456 

2004 2675 2528 -5.4848 

2005 2639 2567 -2.7334 

2006 2671 2692 0.8011 

2007 2697 2735 1.3937 

2008 2617 2653 1.3840 

2009 2460 2564 4.2155 

2010 2288 2377 3.8959 

2011  2582  

MAPE   3.20 

 

By utilizing the inverse perturbation of weights through Equation (38)-(39), the MAPE 

of CFA is recalculated and presented in Table 13. Figure 3 displays a comparison 

between the actual values and the forecasted values with perturbed weights. In Table 

13, the MAPE of CFA is affected by the perturbation of weights. Notably, a weight 

distribution of 0.3722 and 0.6278 yield a MAPE of 2.80% for CFA, indicating excellent 

accuracy results. 

 

Table. 13 MAPE of CFA with weights inverse perturbation 

 Values of t inverse perturbation w1 Values of t inverse perturbation w2 Initial  

 0.2 0.5 2 4 0.8 0.9 1.1 1.2 weights 

w1 0.0430 0.1076 0.4304 0.8608 0.3722 0.2937 0.1367 0.0582 0.2152 

w2 0.9570 0.8924 0.5696 0.1392 0.6278 0.7063 0.8633 0.9418 0.7848 

MAPE 3.85 3.60 2.84 5.32 2.80 2.93 3.49 3.79 3.20 
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(b) Inverse perturbation of w2 

Figure. 3 Results comparisons between actual values and the inverse perturbation of weights 

 

4.5. Comparison and discussion 

The comparison of methods is conducted, and the MAPE and relative error of the three 

approaches (without the incorporation of perception factors) are presented in Table 14. 

In Table 14, the MAPE values of SVR, improved GFM, and CFA were found to be 

7.12%, 20.1%, and 7.16%, respectively. It is evident that without considering 

perception factors, the MAPE of various forecasting models is higher. This is due to the 

presence of extreme values of non-primary perception factors that disturb the 

forecasting model, leading to poor accuracy. Table 15 presents the MAPE and relative 

error of the three models, incorporating KPF. In table 15, the proposed CFA method 

demonstrates a lower MAPE value than the other forecasting models, indicating its 
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effectiveness in integrating the benefits of single forecasting methods. 

Table. 14 Forecasting error of three methods without incorporating KPF 

Time 
Relative error 

of CFA (%) 

Relative error of 

improved GFM (%) 

Relative error 

of SVR (%) 

1901 4.8285 0.0000 5.0492 

1902 6.9975 13.0408 6.7213 

1903 8.2824 5.1265 8.4266 

1904 9.6494 24.5785 8.9672 

1905 9.6246 19.4221 9.1769 

1906 8.9110 14.2827 8.6656 

1907 2.2143 32.7554 0.8187 

1908 9.5148 13.4870 9.3333 

1909 -5.1946 35.9076 -7.0728 

1910 -8.1544 -9.5218 -8.0920 

1911 -7.0596 22.8463 -8.4262 

1912 -8.9924 9.4927 -9.8372 

2001 -7.7967 8.1319 -8.5246 

2002 -9.7509 -44.9063 -8.1444 

2003 -7.8761 -66.5807 -5.1934 

2004 7.5879 -8.9630 8.3443 

2005 8.4637 51.2567 6.5082 

2006 -4.3052 13.4993 -5.1188 

2007 -6.7935 -13.3945 -6.4918 

2008 -3.1694 9.9846 -3.7705 

2009 5.9971 -0.1643 6.2787 

2010 6.3276 -24.8676 7.7531 

MAPE 7.16 20.1 7.12 

 

Table. 15 Forecasting error of three methods by considering KPF 

Time 
Relative error of 

CFA (%) 

Relative error of 

improved GFM (%) 

Relative error of 

SVR (%) 

1901 0.1947 0.000 0.9049 

1902 3.0348 2.889 3.5672 

1903 4.1121 3.265 7.2000 

1904 -0.5074 -2.736 7.6197 

1905 -2.4312 -5.139 7.4426 

1906 5.8824 5.393 7.6656 

1907 -1.3555 -4.246 9.1869 

1908 4.2262 2.643 10.000 

1909 7.2631 6.770 9.0623 

1910 4.0840 3.026 7.9410 

1911 2.8263 1.864 6.3344 

1912 5.7994 6.086 4.7541 

2001 -2.6744 -2.167 -4.5246 

2002 3.2246 6.851 10.000 

2003 2.8456 5.050 -5.1934 

2004 -5.4848 -5.784 -4.3934 

2005 -2.7334 -2.213 -4.6295 

2006 0.8011 2.233 -4.4197 

2007 1.3937 2.941 -4.2492 

2008 1.3840 3.073 -4.7738 

2009 4.2155 6.963 -5.8033 

2010 3.8959 6.865 -6.9311 

MAPE 3.20 4.01 6.21 
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Method Discussion: When considering KPF, the MAPE of four forecasting methods 

were compared, including the CFA, improved GFM with Weighted Markov, Support 

SVR, and ARIMA, as shown in Figure 4. The results indicate that the effectiveness of 

the improved GFM is better than that of SVR, and the MAPE of the CFA is better than 

that of both GFM and SVR. Furthermore, the comparisons between the forecasting 

values and the actual values of these methods are shown in Figure 5. The forecasting 

values generated by CFA are observed to be closer to the actual values when compared 

to the other forecasting methods. 

 
Figure. 4 MAPE of four forecasting methods 

 

 
Figure. 5 Comparisons results between actual values and forecasting results of four methods 

 

In summary, the DPPM of LCD while considering KPF is a multivariable fitting process. 

It is not sufficient to rely on a single model to forecast quality indexes. The proposed 

CFA is a method that can integrate the advantages of both SVR and GFM. Through a 

comparison and discussion of these methods, it can be observed that the CFA has a 

better forecasting effectiveness than other methods when considering KPF, and can 
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enable accurate forecasting of DPPM for LCD. 

 

5. Conclusions 

To promptly address market demand fluctuations in a customer-centric environment 

and enhance customer satisfaction and market competitiveness, this study introduces a 

CFA for predicting the product quality index. 

 

The contributions of this study can be summarized as follows: Perception factors of 

customer satisfaction for LCD in microelectronics enterprises were constructed, and 

KPF that affect the forecasting result was selected using the gray entropy relational 

degree based on the gray forecasting model and information entropy. An improved 

GFM was achieved using the weighted Markov method to forecast the time sequences 

of the sample data of the perception factors. SVR and improved GFM were integrated 

into a CFA by considering KPF to output forecasting result of DPPM based on the 

inverse perturbation model of weights. 

 

The case study and methods comparison of the LCD in a microelectronics enterprise 

proved that the proposed CFA can effectively forecast the quality index by considering 

KPF. The MAPE of the proposed CFA was better than that of GFM, SVR, and ARIMA, 

with error rates of 3.2%, 4.01%, 6.21%, and 9.89%, respectively. It can be observed 

that the forecasting values generated by the CFA were closer to the actual values than 

those of the other methods. 

 

Accurate prediction of quality indices plays a crucial role in assisting enterprises to 

anticipate customer satisfaction with their products and provide valuable insights for 

design, research and development, and production departments. Moreover, it facilitates 

capacity planning, resource scheduling, and equipment maintenance based on product 

quality indices, thus enabling the revision of process and technical indicators to enhance 

product quality and market performance, leading to sustainable enterprise development. 

However, this study possesses certain limitations. Firstly, due to restricted data access, 

a more comprehensive dataset incorporating various perception factors affecting 

customer satisfaction could not be obtained and tested. Secondly, although the 

improved GFM exhibits accurate system state forecasting within the last 2-3 years, its 

long-term forecasting accuracy cannot be guaranteed. Therefore, prior to implementing 



33 

the approach proposed in this study, it is imperative to ensure enterprise collaboration 

and data accuracy. Nevertheless, the proposed CFA holds immense potential in 

facilitating decision support, problem tracing, and quality enhancement within the 

enterprise. 

 

In the future, further research will be directed towards the meticulous construction of 

the perception factor system, precise delineation of state divisions within the Markov 

model, optimization of SVR, and further refinement of the CFA. These endeavors aim 

to bolster the accuracy of forecasting in practical applications [65, 66]. Additionally, a 

smart forecasting system will be developed to promote the practical application of 

quality forecasting of LCD in the microelectronics industry. 
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