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ABSTRACT

In the lines of our approach in [15], where we exploit Nesterov fast gradient concept [12] to the
Moreau-Yosida regularization of a convex function, we devise new proximal algorithms for nons-
mooth convex optimization. These algorithms need no bundling mechanism to update the stability
center while preserving the complexity estimates established in [15]. We report some preliminary
computational results on some academic test problem to give a first estimate of their performance in
relation with the classical proximal bundle algorithm.

1. Introduction
We are interested in minimizing a nonsmooth convex

function f ∶ ℝn → ℝ, over a nonempty convex com-
pact subset S of ℝn. We denote by f ∗ the optimal value of
this problem and x∗ an optimal solution. Having generated a
number of test points yi ∈ S, i = 1,…with the correspond-
ing function values f (yi) and subgradients gi ∈ )f (yi) via
an oracle (for f ) to form the bundle ∶ {(yi, f (yi), gi)}, the
function

f̌(x) = max{f (yi) + ⟨gi, x − yi⟩, i ∈ }, (1)

is a piecewise cutting-plane model for f , which underesti-
mates f , i.e. for any x ∈ S, f̌(x) ≤ f (x). We use the
shortcut i ∈  for (yi, f (yi), gi) ∈ . Let F� be theMoreau-
Yosida regularization of f w.r.t. some � > 0 assumed fixed
in the sequel. The function F� is given by

F�(x) = minz∈S

{

f (z) +
�
2
‖z − x‖2

}

.

Minimizing f is equivalent to minimizing F�. Exploiting
the fact that F� is convex and differentiable, it is proposed in
[15], to apply the concept of fast gradient method [12, 13] to
F� for the minimization of f . This results in the following
scheme, starting from any x0 = y0 ∈ ℝn,

yk+1 = argmin
x∈S

{

f (x) +
�
2
‖x − xk‖2

}

= xk − 1
�
∇F�(xk),

xk+1 = yk+1 + �k(yk+1 − yk), �k = �−1k+1(�k − 1),
(2)

where {�k} is the Nesterov’ sequence defined by

�0 = 1, �k+1 =
1 +

√

1 + 4�2k
2

, k ≥ 0.

This sequence has the following properties

�2k−1 = �
2
k−�k, k ≥ 1, �2k =

k
∑

i=0
�i, �k ≥

k + 2
2

, k ≥ 0.
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(3)

The above scheme generates a sequence {yk} of approxima-
tions to an optimal point of the considered problem, and a
second sequence {xk} of stability centers, different from the
former. It is possible to use another update for xk+1, as pro-
posed by Güler in [5],

xk+1 = yk+1 + �k(yk+1 − yk) + �k(yk+1 − xk), (4)

where

�k = �k�−1k+1. (5)

Computing exactly yk+1, the proximal point of the stabil-
ity center xk is out of reach in practice. In [15], we compute
an approximate solution through a sequence of quadratic sub-
problems

zj = argmin
x∈S

{

f̌j (x) +
�
2
‖x − xk‖2

}

, j = 1,… ,

As the bundle j grows, {zj}j≥0 tends to yk+1. An approx-
imate proximal point of xk is identified when the condition

f (zj) − f̌j (z
j) ≤ "k, (6)

is satisfied for some positive tolerance "k, in which case yk+1
is set to zj (we keep the same notation as for the exact proxi-
mal point). Then, the next stability center xk+1 is updated us-
ing this approximation in place of the exact proximal point in
(2) or (4). There are two versions of the above outlined algo-
rithm FPBA, that we denote by FPBA1 and FPBA2 (FPBA
stands for Fast Proximal Bundle Algorithm). FPBA1 uses
the rule in (2) to update the next prox-center xk+1 while
FPBA2 uses the momentum term proposed by Güler with
the sequence {�k}, cf (4). The complexity estimates of the
two algorithms are given respectively as

f (yk) − f ∗ ≤ 2�‖x0 − x∗‖2

(k + 1)2
+ #k, k ≥ 1, (7)

for FPBA1, and

f (yk) − f ∗ ≤ �‖x0 − x∗‖2

(k + 1)2
+ #k, k ≥ 1, (8)
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Fast proximal algorithms

for FPBA2, where x∗ is any optimal solution and

#k = �−2k−1

k−1
∑

i=0
�2i "i (9)

is the accumulation of errors at step k, see Theorems 3.1
and 3.2 in [15].

In this paper, we first propose a variant of the algorithm
FPBA in [15] that uses no bundling mechanism to update
the stability center xk and second, take inspiration from [10,
14] and the recent survey on bundle methods [4] we propose
two other proximal algorithms in the lines of our approach.
For ease of exposition, we limit our development to the case
with �k = 0, k ≥ 0. The results for the other case can
be obtained conjointlty with the development and arguments
used in [15]. We assume that S is simple enough to allow
solving easily all the linear and quadratic subproblems in the
paper.

2. Fast proximal cutting plane algorithm
In Section 4 of [15], an analysis of the accumulated er-

rors (9) shows that one can tolerate large errors in early iter-
ations but require smaller and smaller errors in the progress
of the algorithms. Based on this, on may be content with
only one quadratic subproblem at each step k, obtaining the
proximal point of xk w.r.t to f̌k , which is an approxima-
tion of the exact proximal point of xk w.r.t. f with error
"k = f (yk+1) − f̌j (y

k+1) ≥ 0. There is no need to distin-
guish between serious and null steps as in FPBA or classical
proximal bundle algorithms. The resulting variant of FPBA,
which we term as Fast Proximal Cutting Plane Algorithm
(FPCPA), is as follows.

Algorithm 1.
0. Choose x0 = y0 ∈ ℝn and the sequence {�k}k≥0. Set
k = 0.

1. Compute f (yk), gk ∈ )f (yk) and update k.
2. If gk = 0, terminate.
3. Compute

yk+1 = argmin
x∈S

{

f̌k (x) +
�
2
‖x − xk‖2

}

, (10)

and xk+1 = yk+1 + �k(yk+1 − yk) + �k(yk+1 − xk).
4. Set k = k + 1 and go to Step 1.

In this algorithm, the choice of the sequence {�k} as �k =
0, k ≥ 0 or �k = �k�−1k+1, k ≥ 0, results in two versions
of the algorithm, which we denote respectively by FPCPA1
and FPCPA2. They preserve respectively the complexity es-
timates (7) and (8). It is possible to use a proximity param-
eter that depends on k with the same complexity estimates,
provided that �0 = � and �k ≤ �k−1, k ≥ 1, see Propo-
sition 3.1 in [15]. With a dynamic setting of the proximity
parameter, Algorithm 1 appears as an implementable ver-
sion of the inertial proximal algorithm [1]. The convergence
of this algorithm may be derived from that of Algorithm 3
below.

3. Fast level algorithm
Define the level lk by

lk = �fklow + (1 − �)f
k
best = f

k
best − �Δk, (11)

where
⋅ 0 < � < 1 is the level parameter,

⋅ fkbest is the best objective value found at step k,

⋅ fklow is a finite lower bound on f ∗,

⋅ Δk = fkbest − f
k
low ≥ 0.

By interpreting the term f̌k (x) in (10) as the dualization
of a constraint f̌k (x) ≤ lk, an alternative to (10), consists
in projecting xk on the lk-level set of f̌k , see [4, 6]. The
corresponding algorithm, denoted by FLA (for Fast Level
Algorithm) is as follows.
Algorithm 2.

0. Choose x0 = y0 ∈ ℝn and the sequence {�k}k≥0. Set
k = 0.

1. Compute f (yk) and gk ∈ )f (yk) and update k.
2. Update fkbest, f

k
low. Set Δk = fkbest − f

k
low and lk =

fkbest − �Δk.
3. If Δk ≤ " or gk = 0, stop.
4. Compute

yk+1 = argmin
x∈S

{1
2
‖x − xk‖2 ∶ f̌k (x) ≤ lk

}

(12)

and xk+1 = yk+1 + �k(yk+1 − yk) + �k(yk+1 − xk).
5. Set k = k + 1 and loop to Step 1.

The convergence property of this algorithm is given below.
Theorem 1. For the sequence {yk} generated by Algorithm 2
with �k = 0, k ≥ 0, we have

f (yk) − f ∗ ≤ 2�‖x0 − x∗‖2

t0(k + 1)2
+ #k, k ≥ 1,

where tk is the optimal dual solution of (21).
The proof is given after that of the next algorithm.

4. Fast doubly stabilized algorithm
In this section, taking inspiration from [14], we propose

an algorithm with the aim to leverage the good features of
the two previous ones by combining the quadratic problems
(10) and (12) into a single quadratic subproblem as follows

min
x∈S

{

f̌k (x) +
�k
2
‖x − xk‖2 ∶ f̌k (x) ≤ lk

}

,

or equivalently

min
(x,r)∈S×ℝ

{

r +
�k
2
‖x − xk‖2 ∶ f̌k (x) ≤ r, r ≤ lk

}

. (13)

For a reason to be apparent shortly, here the proximity pa-
rameter needs to depend on k. The resulting algorithm is
as follows, we term it as Fast Doubly Stabilized Algorithm
(FDSA for short), keeping the wording of [14].

First Author et al.: Preprint submitted to Elsevier Page 2 of 6



Fast proximal algorithms

Algorithm 3.
0. Choose x0 = y0 ∈ ℝn and the sequence {�k}k≥0. Set
k = 0.

1. Compute f (yk) and gk ∈ )f (yk) and update k.
2. Update fkbest, f

k
low. Set Δk = fkbest − f

k
low and lk =

fkbest − �Δk.
3. If Δk ≤ " or gk = 0, stop.
4. Compute the x-solution yk+1 of (13) and set xk+1 =
yk+1 + �k(yk+1 − yk) + �k(yk+1 − xk).

5. Set k = k + 1 and loop to Step 1.

Its convergence is given by the next result.

Theorem 2. Given some � > 0, assume that the sequence
{�k} satisfies �0 = � and �ktk−1 ≤ �k−1tk for k ≥ 1. Then,
for the sequence {yk} generated by Algorithm 3 with �k =
0, k ≥ 0, we have

f (yk) − f ∗ ≤ 2�‖x0 − x∗‖2

t0(k + 1)2
+ #k, k ≥ 1,

where tk is the optimal dual solution associated with the con-
straint f̌k (x) ≤ r in (13) and #k is given by (9).

PROOF. The proof uses the arguments of Lemma 3.1, 3.2
and Theorem 3.1. For the paper to be self-contained, we
povide a complete proof.

The KKT conditions for (13) imply that there exist pkf ∈
)f̌k (y

k+1), pkS ∈ )S (yk+1) and real numbers tk, �k ≥ 0
such that

�k(yk+1 − xk) + tk(pkf + p
k
S ) = 0, tk[f̌k (y

k+1) − rk] = 0,

1 − tk + �k = 0, �k(rk − lk) = 0,
(14)

where rk is the r-solution of (13). These conditions imply
that tk = �k + 1 ≥ 1 and


k(xk−yk+1) = pkf +p
k
S where 
k = t−1k �k (≤ �k). (15)

Recall that )IS (x) is the normal cone of S at x i.e.

)IS (x) = {y ∈ ℝn ∶ ⟨y, z − x⟩ ≤ 0, z ∈ S}.

We have for any x ∈ S,

⟨pkf + p
k
S , x − y

k+1
⟩ = ⟨pkf , x − y

k+1
⟩ + ⟨pkS , x − y

k+1
⟩

≤ ⟨pkf , x − y
k+1

⟩.

Therefore, as pkf ∈ )f̌k (y
k+1), we get for any x ∈ S,

f̌k (y
k+1) + ⟨pkf + p

k
S , x − y

k+1
⟩ ≤ f̌k (x) ≤ f (x).

and f (yk+1) + ⟨pkf + p
k
S , x − y

k+1
⟩ − "k ≤ f (x), with "k =

f (yk+1)− f̌k (y
k+1). In other words, pkf +p

k
S ∈ )"kf (y

k+1).
Using (15), we have for any x ∈ S,

f (x) ≥ f (yk+1) + 
k⟨xk − yk+1, x − yk+1⟩ − "k. (16)

Let �k = f (yk) − f ∗. Taking x = yk(∈ S) in (16) and
multiplying the resulting inequality with �k − 1 give

(�k−1)(�k−�k+1) ≥ 
k⟨x
k−yk+1, �k(yk−yk+1)+yk+1−yk⟩−�k"k.

We add this inequality with the one resulting from (16) with
x = x∗(∈ S) and get

(�k−1)�k−�k�k+1 ≥ 
k⟨x
k−yk+1, �k(yk−yk+1)+x∗−yk⟩−�k"k

Now, multiplying the above inequality by �k and using the
first relation in (3) yield

�2k−1�k − �
2
k�k+1 ≥ 
k⟨u

k, vk⟩ − �2k"k, (17)

where uk = �k(yk+1−xk) and vk = �k(yk+1−yk)+yk−x∗.
For any u, v ∈ ℝn, we have (parallelogram law)

⟨u, v⟩ = 1
2
(‖u‖2+‖v‖2−‖u−v‖2) ≥ 1

2
(‖v‖2−‖u−v‖2).

(18)

Hence

�2k−1�k − �
2
k�k+1 ≥


k
2
(‖vk‖2 − ‖vk − uk‖2) − �2k"k.

Let wk = vk − uk = �k(xk − yk) + yk − x∗, k ≥ 0. Then,

wk+1 = �k+1(xk+1 − yk+1) + yk+1 − x∗
(2)
= (�k − 1)(yk+1 − yk) + yk+1 − x∗
= vk,

and

�2k−1�k − �
2
k�k+1 ≥


k
2
‖wk+1‖2 −


k
2
‖wk‖2 − �2k"k,

The assumption �ktk−1 ≤ �k−1tk implies 
k ≤ 
k−1 and then

�2k−1�k − �
2
k�k+1 ≥


k
2
‖wk+1‖2 −


k−1
2

‖wk‖2 − �2k"k.

We now sum these inequalities for i = 1,… , k − 1 to get

�2k−1�k ≤ �0�1 +

0
2
‖w1‖2 +

k−1
∑

i=1
�2i "i −


k−1
2

‖wk‖2

�0=1
≤ �1 +


0
2
‖w1‖2 +

k−1
∑

i=1
�2i "i.

(19)

Using (16) with x = x∗ and k = 0, we get

�1 ≤ −
0⟨x0 − y1, x∗ − y1⟩ + "0
(18)
= −


0
2
[

‖x0 − y1‖2 + ‖y1 − x∗‖ − ‖x0 − x∗‖2
]

+ "0

≤ −

0
2
‖y1 − x∗‖2 +


0
2
‖x0 − x∗‖2 + "0

Since w1 = v0 = �0(y1 − y0) + y0 − x∗
�0=1= y1 − x∗, we

have
�1 +


0
2
‖w1‖2 ≤


0
2
‖x0 − x∗‖2 + "0,
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and from (19),

�k ≤

0

2�2k−1
‖x0 − x∗‖2 + �−2k−1

k−1
∑

i=0
�2i "i.

It remains to use in the first term of the r.h.s. of this inequal-
ity, the fact that 
0 = t−10 � and �k−1 ≥ (k + 1)∕2 from (3).
□

A few comments are in order.

1. In the same way as Lemma 1 of [14], it can be shown
that the x-solution of (13) is either the one of (10)
or that of (12). Algorithm 3 makes the choice auto-
matically depending on the value of tk (in fact this
choice depends on the proximity and the level param-
eters �k and � (defining lk) which determine tk). If
yk+1p and yk+1l denote the respective optimal solutions
of the quadratic problems (10) and (12), we have

yk+1 =

{

yk+1p if tk = 1(�k = 0),

yk+1l if tk > 1(�k > 0).

Because tk > 0, we have f̌k (y
k+1) = rk, k ≥ 0,

while rk ≤ lk if tk = 1 and rk = lk if tk > 1.
2. Discarding the accumulation of errors, the complex-

ity estimate improves slightly compared to the one of
Algorithm 1 as t0 ≥ 1, cf (7).

3. We get from (16) and Cauchy-Schwartz inequality,

f (yk+1) ≤ f (x) + 
k‖xk − yk+1‖‖x − yk+1‖ + "k,

for any x ∈ S. Therefore, if


k‖x
k − yk+1‖ ≤ "1 and "k ≤ "2,

for some stopping tolerances "1, "2 > 0, then

f (yk+1) ≤ f (x) + "1‖x − yk+1‖ + "2, ∀x ∈ S.

We can then consider yk+1 as an approximate optimal
solution if "1 and "2 are small enough.

4. We can recover the complexity estimate ofAlgorithm 1
from Theorem 2. Indeed, by replacing (11) with lk =
+∞, we have �k = 0, k ≥ 0 and then, tk = 1 and

k = �k, k ≥ 0. Algorithm 3 then reduces to Al-
gorithm 1. The complexity estimate given in Theo-
rem 2 becomes (7), the one already given for Algo-
rithm 1, with the assumption that now writes �0 = �
and �k ≤ �k−1 for k ≥ 1.

5. For the assumption in Theorem 2 to hold, the proxim-
ity parameter needs to depend on k. An example of
sequence that satisfies this assumption is given by

�0 = � and �k = 
k−1 = t−1k−1�k−1, k ≥ 1, (20)

due to the fact that tk ≥ 1. This rule maintains (tk−1 =
1) or decreases (tk−1 > 1) the proximity parameter for
the next step. The sequence is only decreasing then

while it may be useful sometimes to increase the prox-
imity parameter. If it was possible to guess tk, an in-
tuitive choice suggested by the assumption would be
�k = tk
k−1 = tkt−1k−1�k−1. The ratio tkt

−1
k−1 would re-

flect the change between steps k−1 and k, maintaining
(tk−1 = tk = 1), increasing (tk−1 < tk) or decreasing
(tk−1 > tk) the proximity parameter accordingly for
the next step. Unfortunately, tk is obtained only after
fixing �k and solving (13). □

In the light of the proof of Theorem 2, we now give that
of Theorem 1.

PROOF OF THEOREM 1. It is clear that the unique solution
of (12) is also the unique solution of the problem

min
x∈S

{�k
2
‖x − xk‖2 ∶ f̌k (x) ≤ lk

}

, (21)

for any given �k > 0; we set �0 = �. The KKT condi-
tions for this quadratic problem imply that there exist pkf ∈
)f̌k (y

k+1), pkS ∈ )S (yk+1) and tk > 0 (as xk ≠ yk+1)
such that

�k(yk+1 − xk) + tk(pkf + p
k
S ) = 0, tk[f̌k (y

k+1) − lk] = 0.

Therefore, for any x ∈ S,

f̌k (y
k+1) + ⟨pkf + p

k
S , x − y

k+1
⟩ ≤ f (x),

or equivalently,

f (x) ≥ f (yk+1) +
�k
tk
⟨xk − yk+1, x− yk+1⟩− "k, (22)

where "k = f (yk+1) − f̌k (y
k+1). The remaing of the proof

is similar to that of Theorem 2, under the same assumption
�0 = �, �ktk−1 ≤ �k−1tk, k ≥ 1. □

Remark 1. As given in Theorem 1, we cannot state if the
complexity estimate Algorithm 2 improves or not over the
one of Algorithm 1. Since the sequence {yk} generated by
Algorithm 2 is the same as if we use (21) in place of (12)
in Step 4, we conjecture that the complexity estimate of Al-
gorithm 2 to be the same as that of Algorithm 3. Indeed,
with an appropriate choice of �k and � to have �k > 0 for
all k ≥ 0, the sequence {yk} generated by Algorithm 3 is
the same as that obtain from Algorithm 2, and then the same
complexity estimate as given by Theorem 2. □

Remark 2. The level parameter � does not appears explic-
itly in the complexity estimate of Algorithm 2 as it is for
the level bundle algorithms in [10]. In fact it is hidden in t0
as it influences the level and the dual variables of the level
constraints. □

We now give the complexity estimates of Algorithms 2
and 3 used with the sequence {�k} given by (5). The proof
is analogue to that of Theorem 3.2 in [15] with the same ar-
guments used in the above proofs of Theorems 1 and 2. The
main difference is a better lower bound obtained on the scalar
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product ⟨uk, vk⟩ (cf (17)) thanks to the update of xk+1 using a
secondmomentum term proposed byGüler intuitively in [5].
It is shown in [7, 8] by Kim and Fessler that it corresponds
to an optimal choice of parameters obtained through a re-
laxed performance estimation problem introduced by Drori
and Teboulle to optimize first-order algorithms, see [3].

Theorem 3. Assume that Algorithms 2 and 3 use the se-
quence (5) under the assumption of Theorem 2 on the se-
quence {�k}. Then, for the sequence {yk} generated, we
have

f (yk) − f ∗ ≤ �‖x0 − x∗‖2

t0(k + 1)2
+ #k, k ≥ 1,

where t0 is the (respective) dual solution associated with the
constraint f̌k (x) ≤ w in respectively the quadratic sub-
problems (21) and (13) with �0 = �, and #k is given by (9).

For the above complexity estimates to be meaningful, it
is necessary that the accumulation of errors #k to not be di-
vergent with the first terms.

Lemma 1. The sequence {#k} is bounded above.

PROOF. Recall that

0 ≤ #k =
k−1
∑

i=0
�ki "i where �

k
i = �

2
i �
−2
k−1, i = 0,… , k − 1.

We can observe that 0 ≤ �ki ≤ 1 = �kk−1 and the former
errors vanish with their weights as they tend to 0 when k
grows. We have #k+1 − #k = "k − �−1k #k, see Section 4
in [15]. Therefore, "k ≤ �−1k #k implies #k+1 ≤ #k. From
Proposition 4.3 in [2], as the bundle k grows, f (yk+1) and
f̌k (y

k+1) get closer to each other i.e. "k = f (yk+1) −
f̌k (y

k+1)→ 0 (this means that the last errors vanish as well
with high k). We cannot have "k > �−1k #k(≥ 0) for an in-
finite number of k as it results in the contradiction 0 > 0.
Therefore, there exists some k∗ such that "k ≤ �−1k #k for
k ≥ k∗ and then #k ≤ #k−1 ≤ … ≤ #k∗+1 ≤ #k∗ < ∞, i.e.
the sequence {#k}k≥k∗ is decreasing. □

Remark 3. We finally observe that in the above develop-
ment, we may replace f̌k by any other lower model f

k
≤ f

and practical in the sense that the corresponding subprob-
lems analogue to (10), (12) and (13) are easy to solve. In this
case, the error at setp kwrites "k = f (yk+1)−fk(y

k+1) ≥ 0.
□

5. Numerical experiments
We conducted some preliminary experiments that aim

to provide a first look on the performances of the proposed
algorithms as compared with the classical proximal bundle
algorithm (CPBA). The test problems are the one considered
in [15] and described in [11] and the algorithms are imple-
mented using Python 3.5 and Cplex 12.7.1 (with its default

Table 1
Test problems

Problem Name n f ∗
1 CB2 2 1.952224
2 CB3 2 2
3 DEM 2 -3
4 QL 2 7.2
5 LQ 2 -

√

2
6 Mifflin1 2 -1
7 Mifflin2 2 -1
8 Rosen-Suzuki 4 -44
9 Shor 5 22.600162
10 Maxquad 10 -0.841408
11 Maxq 20 0
12 Maxl 20 0
13 Goffin 50 0
14 MxHilb 50 0
15 L1Hilb 50 0

settings). FPCPA and CPBA may be run with a fixed prox-
imity parameter, we use here � = 1.0 which suits for well-
scaled problems (FLA does not need the proximity parame-
ter). We ran FDSA with the rule (20). As the sequence {�k}
is decreasing, we consider a small positive constant �inf and
set

�k = max[�inf , 
k−1], k ≥ 1, �inf = 10−10‖g0‖.

Our implementation of CPBA uses at each step k a sequence
of quadratic subproblemsfor j = 1,…

zk,j = arg min
(x,r)∈S×ℝ

{

f̌k,j (x) +
�
2
‖x − x̂k‖2

}

,

where x̂0 = x0 and x̂k+1 = zk,j if

f (zk,j) ≤ f (x̂k) − �[f (x̂k) − f̌k,j (z
k,j)],

in which case we have a descent step, otherwise a null step.
In our experiments, we set � = 0.5. Since they are non-
smooth unconstrained problems, we consider an input pa-
rameter f (0)inf to cope with the assumption of compactness of
S. Hence, in Algorithm 2 the lower bound is computed as

fklow = min
(x,r)∈ℝn+1

{f̌k (x) ∶ f (0)inf ≤ f̌k (x)},

and we add the constraint f (0)inf ≤ f̌k (x) to all the quadratic
subproblems to be consistent with our development. There
are many tricks to avoid computing fklow at each step, e.g.
[4, 9, 14] but for simplicity, it is updated as indicated above.
For all the test problems, we set � = 0.8 in (11) and f (0)inf =
−10 except for the problems 8 and 9 for which it takes the
values −100 and 0 respectively. The maximum number of
steps allowed for all the algorithms (number of descent steps
in CPBA) is set to 500. With the given optimal functions
values, we stop the algorithms on the same basis, when

fkbest − f
∗ ≤ 10−6(1 + |fkbest|).
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Table 2
Computational results

CPBA FPCPA1Pb
#k #fg f − f ∗ #fg f − f ∗

1 8 22 9.35E-07 23 1.64E-06
2 7 14 3.51E-07 12 4.54E-08
3 4 7 3.08E-09 8 3.84E-09
4 8 20 2.57E-06 27 1.97E-06
5 4 8 1.29E-07 6 1.75E-06
6 9 27 6.70E-07 20 4.50E-07
7 8 22 1.13E-06 22 3.74E-07
8 9 40 3.90E-05 40 3.74E-05
9 10 43 1.89E-05 43 1.45E-05
10 14 127 3.94E-07 209 9.56E-07
11 78 456 9.59E-07 269 7.60E-07
12 210 231 6.36E-08 81 5.89E-09
13 25 69 2.47E-10 87 8.36E-10
14 500† 504 1.50E-04 264 9.72E-07
15 161 433 9.76E-07 62 8.40E-07

FLA1 FDSA1Pb
#fg f − f ∗ #fg f − f ∗

1 18 7.46E-07 22 2.53E-06
2 16 4.52E-07 13 3.13E-07
3 11 9.55E-07 11 2.58E-06
4 17 6.60E-06 19 1.47E-06
5 11 2.51E-07 7 3.79E-08
6 21 1.95E-06 16 1.39E-08
7 27 6.73E-07 17 1.91E-06
8 70 2.47E-05 48 9.41E-06
9 59 1.50E-05 41 2.25E-05
10 204 1.34E-06 202 1.29E-06
11 231 9.11E-07 77 2.97E-07
12 48 5.12E-07 8 2.99E-09
13 59 1.86E-10 50 5.81E-12
14 19 2.71E-07 8 1.52E-07
15 26 8.72E-07 8 5.17E-07

† maximum number of k-steps (500) reached.

We report on Table 2, the number of steps (column #k) for
CPBA, the number of steps is the same as the number of calls
to f -oracle (column #fg which also indicates the number
of steps of all the algorithms except CPBA) and the abso-
lute difference between f , the best function value found at
stop and the optimal value f ∗. These experiments show an
improvement of the first two proposed algorithms over the
classical proximal bundle algorithm since both solve all the
test problems within the maximum number of steps allowed
to the contrary of the latter. The rule (20) (which gives a
decreasing sequence of proximity parameters) seems to be
effective with Algorithm 3 which compares favorably to the
other algorithms on a majority of the test problems in terms
of number of calls to the oracle. We expect further improve-
ment from a more sophisticated management of the proxim-
ity parameter in this algorithm.

6. Concluding remarks
Wedeveloped new algorithms for nonsmooth convex prob-

lems in the line of our previous approach in [15] based of
fast gradient methods for smooth optimization. The lim-
ited experiments to get a first look at their performances is
encouraging. Numerical experiments on large scale prob-
lems are needed to confirm these performances including the
benefit analysis of the momentum term by Güler. Another

question we would like to investigate is whether the use of
non Euclidean entropy-like distances may be beneficial in
the present setting as it is for the classical proximal bundle
algorithms on certain convex problems. See the recent syn-
thesis in [16] exposing the benefits and limitations of the non
Euclidean proximal framework.
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