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A B S T R A C T

Humans comprehend speech despite the various challenges such as mispronunciation and noisy environments.
Our auditory system is robust to these thanks to the integration of the sensory input with prior knowledge and
expectations built on language-specific regularities. One such regularity regards the permissible phoneme se-
quences, which determine the likelihood that a word belongs to a given language (phonotactic probability; “blick”
is more likely to be an English word than “bnick”). Previous research demonstrated that violations of these rules
modulate brain-evoked responses. However, several fundamental questions remain unresolved, especially
regarding the neural encoding and integration strategy of phonotactics in naturalistic conditions, when there are
no (or few) violations. Here, we used linear modelling to assess the influence of phonotactic probabilities on the
brain responses to narrative speech measured with non-invasive EEG. We found that the relationship between
continuous speech and EEG responses is best described when the stimulus descriptor includes phonotactic
probabilities. This indicates that low-frequency cortical signals (<9 Hz) reflect the integration of phonotactic
information during natural speech perception, providing us with a measure of phonotactic processing at the in-
dividual subject-level. Furthermore, phonotactics-related signals showed the strongest speech-EEG interactions at
latencies of 100–500ms, supporting a pre-lexical role of phonotactic information.
1. Introduction

Speech can be described as a succession of categorical units called
phonemes that comply with language-specific regularities determining
admissible combinations within a word. A sequence is said well formed if
it sounds plausible as a word to native speakers (e.g. blick) and ill formed if
it is perceived as extraneous to the language (e.g. bnick) (Chomsky and
Halle, 1968; Parker, 2012). A numerical value can be assigned to a given
sequence of phonemes describing its likelihood of belonging to the lan-
guage, meaning that well-formedness is a graded value (Scholes, 1966;
Chomsky and Halle, 1968; Frisch et al., 2000; Bailey and Hahn, 2001;
Hammond, 2004). This concept has been linked to our ability to learn
language-specific regularities and constraints for phoneme sequences,
which are referred to as phonotactics (Zamuner and Kharlamov, 2016).
Phonotactics aids lexical access (Vitevitch et al., 1999) and speech seg-
mentation (Brent and Cartwright, 1996; Mattys et al., 1999) by con-
straining the space of likely upcoming phonemes, thus contributing to the
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robustness of speech perception to challenges such as noise, competing
speakers, and mispronunciation (Davidson, 2006a; Obrig et al., 2016).
High phonotactic probability facilitates learning of new words (Storkel
and Rogers, 2000; Storkel, 2001, 2004; Storkel andMorrisette, 2002) and
low phonotactic probability (violation) may trigger an attempt to repair a
sequence into a well-formed word (Dehaene-Lambertz et al., 2000; Hall�e
et al., 2008; Carlson et al., 2016). Despite the compelling evidence for a
role of phonotactic information in speech processing (Vitevitch et al.,
1997; Ettinger et al., 2014; Leonard et al., 2015), considerable uncer-
tainty remains about the cortical mechanisms underpinning the contri-
bution of phonotactic information to speech comprehension (Winther
Balling and Harald Baayen, 2008; Balling and Baayen, 2012; Ettinger
et al., 2014). Hypotheses range from the explicit encoding of phonotactic
probabilities to the use of the lexical neighbourhood size as a proxy
measure (McClelland and Elman, 1986; Bailey and Hahn, 2001; Pisoni
and Remez, 2005; Leonard et al., 2015). Furthermore, part of the debate
regards the pre- or post-lexical role of phonotactics, but this question is
5 Paris. France.
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hard to resolve given the lack of neural data examining the cortical
representation of phonotactic statistics.

One way to illuminate these issues is through the direct measurement
of brain activity using technologies with high-temporal resolution, such
as electroencephalography (EEG). Brain responses to phonotactics
emerge by contrasting EEG responses to well- and ill-formed speech to-
kens, i.e. the phonotactic mismatch response (PMM; Connolly and Phil-
lips, 1994; Dehaene-Lambertz et al., 2000). This paradigm has been
largely exploited in the literature, but with results that are sparse and
sometimes inconsistent. EEG responses to these violations emerge at la-
tencies consistent with other well-known brain components, such as the
mismatch-negativity (MMN), N400, and late positive complex (LPC)
(Dehaene-Lambertz et al., 2000; Ulbrich et al., 2017; White and Chiu,
2017; Wiese et al., 2017). However, various types of confounds hamper
the identification of responses specific to phonotactics. One issue is that
brain responses to phonotactic probability may overlap with those
reflecting subsequent processes, such as learning in case of novel
well-formed sequences (nonsense words) and phonological repair for
ill-formed tokens (non-words) (Bailey and Hahn, 2001; White and Chiu,
2017). Secondly, if meaningful words are contrasted with ill-formed to-
kens, lexical-level N400 responses may arise that confound the contrast
(Kutas and Federmeier, 2011; Rossi et al., 2011). The use of nonsense
words avoids the latter issue, but the paradigm becomes more artificial
and one can question whether the cortical mechanisms underlying
phonological processing of such stimuli are equivalent to those employed
to process natural speech.

Here we use natural speech together with novel stimulus-response
modelling techniques (Ding and Simon, 2014). Recent research demon-
strated that linear modelling approaches, such as the temporal response
function (Lalor et al., 2009; Crosse et al., 2016) and canonical correlation
analysis (de Cheveign�e et al., 2018), allow to isolate and measure cortical
responses to linguistic features of interest (e.g. phonemes) using natural
speech stimuli (Di Liberto et al., 2015; Di Liberto, Crosse et al., 2018).
Natural speech is generally characterised by well-formed words, thus we
cannot rely on responses to ill-formed tokens as in PMM studies. Instead,
we use a computational model of phonotactics based on phonological
constraints (Hayes and Wilson, 2008) to estimate a graded measure of
well-formedness that fits expert intuitions. Then, we test whether these
values are reflected in the time-locked brain responses elicited by
narrative speech. We characterise the dynamics of cortical signals that
are elicited by natural speech stimuli, contributing to the debate on the
underpinnings of the cortical processes specific to phonotactics.

2. Materials and methods

The present study is based on new analyses of a previously published
EEGdataset on natural speech perception (Di Liberto et al., 2015; Broderick
et al., 2018). The data includeboth the audio stimulus and theEEG response
of the subjects listening to that stimulus. Data analysis involves fitting the
EEG to severalmultiple representations of the stimulus using a linearmodel.
The quality of fit is used as an indicator of the relevance of each represen-
tation as a predictor of the cortical activity evoked in the listener by the
speech stimulus. Both the EEG data and audio are available at
https://datadryad.org/resource/%3ca href¼title¼ "https://datadryad.org/
resource/https://doi.org/10.5061/dryad.070jc">https://datadryad.org/
resource/https://doi.org/10.5061/dryad.070jc. The code used for the data
analysis can be found at http://audition.ens.fr/adc/NoiseTools/and
https://sourceforge.net/projects/aespa/. This manuscript reports all infor-
mation regarding measures, conditions, data exclusions, and sample size.

2.1. Subjects and experimental procedure

Nineteen healthy subjects (13 male) aged between 19 and 38 years
old participated in the experiment. Participants were native speakers of
English and reported no history of hearing impairment or neurological
disorder. The experiment was carried out in a single session for each
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subject. Electroencephalographic (EEG) data were recorded from par-
ticipants as they undertook 20 trials, each of ~155 s in length, where
they were presented with an audiobook version of a classic work of fic-
tion read by a male American English speaker. The trials preserved the
storyline, with neither repetitions nor discontinuities. All stimuli were
presented monophonically at a sampling rate of 44,100Hz using Senn-
heiser HD650 headphones and Presentation software from Neuro-
behavioral Systems (http://www.neurobs.com). Testing was carried out
in a dark room and subjects were instructed to maintain visual fixation
for the duration of each trial on a crosshair centered on the screen, and to
minimise eye blinking and all other motor activities. All procedures were
undertaken in accordance with the Declaration of Helsinki and were
approved by the Ethics Committees of the School of Psychology at Trinity
College Dublin, and the Health Sciences Faculty at Trinity College Dub-
lin. Further details about the stimulus and recording are available in Di
Liberto et al. (2015) and Broderick et al. (2018).

2.2. Speech representations

The analysis approach used here follows a system identification
framework (Lalor et al., 2009; Crosse et al., 2016) that aims at disen-
tangling brain responses to different speech and language properties (Di
Liberto et al., 2015). To this end, we first need to define such properties
(note that the first two elements are as in Di Liberto et al., 2015):

1. Acoustic spectrogram (S): This was obtained by filtering the speech
stimulus into 16 frequency-bands between 250 Hz and 8 kHz
distributed according to Greenwood's equation (equal distance on the
basilar membrane; Greenwood, 1961) using Chebyshev type 2 filters
(order 8), and then computing the Hilbert amplitude envelope (the
absolute value of the analytical signal obtained by the Hilbert
Transform) for each frequency band.

2. Phonetic features (F): This multivariate representation of speech en-
codes phoneme-level information using phonetic features. The
Prosodylab-Aligner software (Gorman et al., 2011) was used to
partition each word into phonemes from the American English In-
ternational Phonetic Alphabet (IPA) and align the speech stimulus
with its textual transcription. This procedure returns estimates of the
starting and ending time-points for each phoneme. The time series of
phoneme labels (35 phonemes) was recoded as a multivariate time
series of 19 binary feature indicator variables, one for each of 19
phonetic features (based on the University of Iowa's phonetics project
http://soundsofspeech.uiowa.edu/) coding the manner of articula-
tion (plosive, fricative, affricate, nasal, liquid, and glide), place of
articulation (bilabial, labio-dental, lingua-dental, lingua-alveolar,
lingua-palatal, lingua-velar, and glottal), voicing of a consonant
(voiced and voiceless), and backness of a vowel (front, central, and
back). Also, a specific feature was reserved for diphthongs. Each in-
dicator variable took the value 1 between the start and the end of the
phoneme (if relevant) and 0 elsewhere. Each phoneme was charac-
terised by a value of 1 for some combination of indicator variables;
not all such combinations map to permissible phonemes.

3. Phoneme onsets (O): This vector marks phoneme onsets with a
discrete-time unit impulse. This information is not a linear trans-
formation of F, thus linear models may benefit from the explicit
definition of O combined with F.

4. Finally, we propose a feature vector describing phonotactic probabili-
ties (P). Natural languages include various constraints on the
permissible phoneme sequences. Probabilities can be derived for a
given speech token from this set of constraints. For example, the
nonsense word blick would “sound better” than bnick to a native En-
glish speaker, which is reflected by a higher phonotactic probability
for the first word. Here, we used a computational model (BLICK;
Hayes and Wilson, 2008) based on a combination of explicit theo-
retical rules from traditional phonology (expressed as sequences of
phonetic features) and a maxent grammar (Goldwater and Johnson,
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2003). A training stage on a separate large corpus of English-language
data fits the model parameters. Then, given a new phoneme sequence,
BLICK produces probabilities describing the likelihood that a
sequence belongs to the language. This feature of the stimulus has
been shown to optimally match the well-formedness intuition of
native speakers (see phonotactic probability model section), thus we
expected it to be reflected in the cortical responses to speech.

Given a phoneme sequence p1..n, where pi indicates a single phoneme,
P is composed of two vectors: a) inverse phonotactic probability
(score(p1..n) is the output of the BLICK software and corresponds to
–log(L(p1..n)), with L(p1..n) indicating the likelihood that a token belongs
to the language; as such, it is small for well-formed tokens and large for
ill-formed ones) and b) within-word derivative of the phonotactic score
(score(p1..(n-1)) - score(p1..n)), which describes the contribution of the
latest phoneme to the well-formedness of the sequence.

In order to assess and quantify the contribution of each of the rep-
resentations F, O, and P to the speech-EEG mapping, the main analyses
were conducted on each of the combinations S, FS, OFS, and POFS. The
rationale is that, if we extend the speech representation by including
information not subsumed by other features, this will improve the fitting
score. As an additional test of the value of that information, we also reran
this analysis on data where the information was shuffled, thus with the
same dimensionality but with additional information that did not
correspond to the auditory stimulus (the entire procedure, including
model fit, was rerun for each shuffled version). Shuffled vectors/matrices
were generated by randomly shuffling: a) Phonetic features (Fshu): in
every occurrence of a phoneme, coded as a combination of NF phonetic
features (1 for vowels and 3 for consonants) was replaced by the same
number of phonetic features chosen randomly for its entire duration; b)
Onset time (Oshu): the onset vector O was replaced by a vector with the
same number of impulses at random time points; and c) Phonotactic
probability values (Pshu): the values in the phonotactic vector P were
randomly permuted while keeping the time information. Shuffling dis-
rupts the value of the feature as a predictor of the EEG response, and the
distribution of outcomes of the shuffled analysis thus serves as a baseline
against which to judge the significance of analysis results obtained with
unshuffled data.

In addition to the phonotactic vector P, we defined three alternative
phonotactic vectors that could reflect the encoding of phonotactic in-
formation in the brain. First, Pneigh is a vector of pulses indicating
phoneme onsets with amplitudes determined by the neighbourhood den-
sity. This information indicates the number of phonological neighbours
given a speech token, where a phonological “neighbour” is a sequence of
phonemes that can be obtained from the given token by deletion, addi-
tion, or substitution of a single phoneme. Similarly, Psur and Pent are
vectors of phoneme onsets that are amplitude-modulated using phoneme
surprisal and entropy respectively. These were calculated using the purely
probabilistic measures “phoneme surprisal” and “cohort entropy” as
defined by Gaston and Marantz (2018).

2.3. Phonotactic probability model

Phonotactic probability vectors were derived using the BLICK algo-
rithm (Hayes and Wilson, 2008), a state-of-the-art tool based on explicit
theories of phonology. Specifically, the BLICK algorithm constructs
maxent grammars (e.g. Goldwater and Johnson, 2003) consisting of a set
of numerically weighted phonological constraints, which are expressed
as sequences of phonetic features. Weights are associated to each
constraint and their weighted sum estimates a penalty score indicating
the inverse “goodness” of that token. Specifically, the likelihood L that a
token belongs to the language is modelled as L¼ e-score, where X is the
score produced by the model. The weights of the phonotactic constraints
are determined according to the principle of maximum entropy and, in
the present work, were pre-assigned (E.T. Jaynes, 1988; Grend�ar, 2001;
Hayes, 2012) by means of a training stage on a separate large corpus of
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data (extracted from the CMU Pronouncing Dictionary;
http://www.speech.cs.cmu.edu). The choice of weights minimised the
probability of words that are not plausible tokens for the language ac-
cording to the set of constraints. The estimated probabilities were shown
to accurately match the phonological well-formedness intuition of native
speakers (r¼ 0.946; Hayes and Wilson, 2008). This pre-trained grammar
was used on the textual transcription of the audio-book stimulus to
calculate probability values estimating the well-formedness of each
speech token. Given a word, two scores were calculated for each
phoneme token. The first indicates the penalty score (inverse log prob-
ability) of the word segment up to that phoneme (e.g. the scores for/b/,
/b l/,/b l ɪ/, and/b l ɪ k/were calculated in correspondence of the four
phonemes of the word ‘blick’). This time series of inverse probabilities
was coded by the amplitudes of a series of pulses synchronous with those
of the onset vector. The distribution of the inverse probabilities is shown
in Supplementary Fig. 1. The second is the finite difference of consecutive
inverse probability values within a word (starting from the second
phoneme of each word, e.g. P(/b/)–P(/b l/), P(/b l/)–P(/b l ɪ/), P(/b l
ɪ/)–P(/b l ɪ k/); the score for the first phoneme of a word was assigned to
the same value as in the first vector). The time series of difference
measures was also coded as a time series of pulses synchronous with O.
The concatenation of these two pulse trains constitutes the 2-dimensional
phonotactic probability vector P.

2.4. Data acquisition and preprocessing

Electroencephalographic (EEG) data were recorded from 128 scalp
electrodes (plus 2 mastoid channels), filtered over the range 0–134 Hz,
and digitised with a sampling frequency of 512Hz using a BioSemi Active
Two system. Data were analysed offline using MATLAB software (The
Mathworks Inc.). EEG data were digitally filtered between 0.5 and 32 Hz
using a Butterworth zero-phase filter (low- and high-pass filters both with
order 2; implemented with the function filtfilt), and down-sampled to
64 Hz. EEG channels with a variance exceeding three times that of the
surrounding channels were replaced by an estimate calculated using
spherical spline interpolation (EEGLAB; Delorme and Makeig, 2004). All
channels were then re-referenced to the average of the two mastoid
channels with the goal of maximizing the EEG responses to the auditory
stimuli (Luck, 2005).

2.5. Dimensionality reduction

The analyses that follow involve fitting the stimulus representation to
the EEG response using linear models. Both the stimulus and the EEG
include a large number of dimensions (channels), many of which are
correlated. To limit the risk of overfitting, it is useful to minimise this
redundancy and reduce the dimensionality. This is typically performed
using principal component analysis (PCA). PCA finds a matrix of size N x
N (if the data have N channels) that transforms the data to N ‘principal
components’ (PC). The variance of the PCs sum up to the variance of the
data. Subject to that constraint, the first PC is the linear transform of the
data with the largest possible variance. The second PC has the largest
variance of transforms orthogonal to the first and so on. The first few PCs
pack most of the variance, and so little variance is lost if a subset of
NPC<N PCs are selected and the remainder discarded. A similar
dimensionality-reduction procedure is applied at multiple stages of the
following analyses. In each case NPC is tuned as a hyperparameter in a
crossvalidation procedure to optimise the tradeoff between information
retained and overfitting.

2.6. Denoising with multiway CCA

Our goal of evaluating the relevance of high-level speech structure
representations by measuring their ability to predict cortical responses is
hampered by the high level of noise and artifact in the EEG. We use a
novel tool, multiway canonical correlation analysis (MCCA) to merge

http://www.speech.cs.cmu.edu
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EEG data across subjects so as to factor out the noise. MCCA is an
extension of canonical correlation analysis (CCA; Hotelling, 1936) to the
case of multiple (>2) datasets. GivenNmultichannel datasets Yi with size
T� Ji, 1� i�N (time x channels), MCCA finds a linear transform Wi
(sizes Ji� J0, where J0<min(Ji)1�i�N) that, when applied to the corre-
sponding data matrices, aligns them to common coordinates and reveals
shared patterns (de Cheveign�e et al., 2018). These patterns can be

derived by summing the transformed data matrices: Y ¼ PN

i¼1
YiWi. The

columns of the matrix Y, which are mutually orthogonal, are referred to
as summary components (SC) (de Cheveign�e et al., 2018). Intuitively, the
first few components are signals that most strongly reflect the shared
information across the several input datasets, thus minimising
subject-specific and channel-specific noise. Note that, in the context of
MCCA, ‘noise’ refers to both EEG artifacts (e.g. eye blinks) and EEG
response patterns that are not similar across participants. Here, these
datasets are EEG responses to a same speech stimulus for 19 subjects.

This technique allows to extract a consensus EEG signal that is more
reliable than that of any subject. This methodology overcomes limita-
tions of previous studies that attempted to obtain similar consensus re-
sponses by averaging data across subjects. Unless such data is
corregistered using anatomical information, likely topographical dis-
crepancies between participants may lead to suboptimal averaging and
thus loss of information (O'Sullivan et al., 2015; Di Liberto and Lalor,
2017). MCCA accomodates such discrepancies without the need for
corregistration. Under the assumption that brain responses to speech
share a similar time course within a homogeneous group of normal
hearing young adults, the MCCA procedure allows us to extract such
common responses to the stimulus from other, more variable aspects of
the EEG signals, such as subject-specific noise. For this reason, our
analysis focuses on the first NSC summary components, which we can
consider as spanning the most reliable EEG response to speech. NSC was
arbitrarily set to the number of dimensions for a single subject after
dimensionality reduction (NPC; see the following section). This conser-
vative choice was made by taking into consideration that any remaining
irrelevant signals within the retained components will be excluded
through the more restrictive CCA analysis that follows.
2.7. Analysis procedure

2.7.1. Stimulus-response model based on two-way canonical correlation
analysis

Speech elicits brain responses that can be recorded with EEG. How-
ever, a large part of the EEG signal is unrelated to the stimulus, for
example because it reflects other brain processes, or various forms of
noise (e.g. muscle movements). Similarly, certain speech and language
properties may have little or no impact on the measured brain responses.
Studying the relation between speech and the corresponding EEG re-
sponses can greatly benefit from the ability to remove those unrelated
portions of speech and EEG. This can be done by using canonical corre-
lation analysis (CCA), a powerful technique that linearly transforms both
stimulus and brain measurements so as to minimise irrelevant variance
(Hotelling, 1936; de Cheveign�e et al., 2018). As such, CCA serves both as
a denoising procedure and as stimulus-EEG modelling approach.

In its more general definition, given two sets of multichannel data X
and Y of size T� J1 and T� J2, CCA finds linear transformations of both
that make them maximally correlated. Specifically, CCA produces the
transformation matrices W1 and W2 (sizes J1� J0 and J2� J0, where
J0<min(J1,J2)) that maximise the correlation between pairs of columns
of XW1 and YW2, while making the columns of each transformed data
matrix mutually uncorrelated. The first pair of canonical components
(CC) is the linear combination of X and Y with highest possible correla-
tion. The next pair of CCs are the most highly correlated combinations
orthogonal to the first, and so-on.

In the present study, X represents the stimulus (both acoustic
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properties and linguistic abstractions) and Y represents the neural data
(either the EEG signal Yi of a specific subject or the consensus signal Y
extracted with MCCA). This basic formulation of CCA can capture the
instantaneous interaction between stimulus representations and brain
response. The basic formulation can readily be extended to convolutional
interactions (e.g. delays or filtering) by applying to both stimulus and
EEG matrices a set of time shifts. CCA then produces solutions that
correspond to optimal finite impulse response filters (FIR) of order n,
where n is the number of time shifts. Alternatively, and this is the solution
adopted here, the time shifts can be replaced by a bank of filters. CCA
then finds optimal filters within this filter space. With the appropriate
choice of filterbank, long temporal structures can be captured for both X
and Y with a relatively small number of parameters (de Cheveign�e et al.,
2018), thus capturing the same information but reducing the risk of
overfitting and the computation time. We used a dyadic bank of FIR
bandpass filters with characteristics (center frequency, bandwidth,
duration of impulse response) approximately uniformly distributed on a
logarithmic scale. There was a total of 15 channels (NCH) with impulse
response durations ranging from 2 to 128 samples (2 s).

The filterbank was applied to each channel of the stimulus repre-
sentation, yielding a matrix of size T� (NF�NCH), and the dimension-
ality of this filtered representation was reduced by applying PCA and
selecting Nstim components, as described previously. The same filterbank
was also applied to each channel of the MCCA-processed EEG, yielding a
matrix of size T� (NSC�NCH), and the dimensionality of this matrix was
reduced by applying PCA and selecting NEEG components. CCA was then
applied to these reduced filtered stimulus and EEG data matrices. The
CCA models were trained and tested using a leave-one-out nested cross-
validation to control for overfitting (cross-validation folds corresponded
to trials of the experiment, i.e. parts of the audiobook). For each iteration
of the outer cross-validation loop, one fold was held out for testing while
an inner cross-validation loop was run on the remaining data. In this
inner loop, the model hyperparameters were tuned on a held-out vali-
dation fold to maximise the sum of the correlation coefficients for the CC-
pairs. This inner loop allowed for the tuning of the values Nstim and NEEG,
while the outer loop controlled for overfitting. The entire process was
repeated for a range of time shifts between stimulus and EEG response, to
determine a shift that compensates optimally for the latency of neural
processing.

2.7.2. Temporal response function analysis
The CCA-based analysis allows to optimally quantify the coupling

between a stimulus and the corresponding EEG responses. However, the
convolutional steps (filterbank) make it difficult to interpret temporal
relations. Therefore, complementary to CCA, the Temporal Response
Function (TRF) analysis method was used to compute a channel-specific
mapping between each speech feature and the recorded EEG data (Lalor
et al., 2006; Ding and Simon, 2012). This method estimates a temporal
filter that optimally describes how the brain transforms the speech fea-
tures of interest S(t) into the corresponding continuous neural responses
R(t), over a series of pre-specified time-lags: R(t) ¼ TRF * S(t), where ‘*’
indicated the convolution operator. The TRF values, or weights, were
estimated using a regularised linear regression approach (Ridge regres-
sion), wherein a regularisation parameter was tuned to control for
overfitting (Crosse et al., 2016). The simpler nature of the TRF mapping
makes the result more easily interpretable than for CCA. Specifically, the
spatio-temporal dynamics of the system can be investigated by studying
the magnitude of the TRF model weights, which reflects the importance
of each feature (channel and time-lag) to the speech-EEG mapping.

This approach is complementary with CCA analysis in that it provides
us with detailed insights on the temporal and spatial patterns. The
downside is that it does not benefit from the denoising allowed by CCA.
For this reason, it is preferable to conduct the analysis on data filtered
within the region of greatest SNR (for an example of the effect of EEG
filtering on forward TRF models, see Di Liberto et al., 2015). We
restricted the analysis to the 0.5–9Hz frequency band, using separate



G.M. Di Liberto et al. NeuroImage 196 (2019) 237–247
low- and high-pass fifth-order Butterworth zero-phase filters. The im-
pulse response of the overall band-pass filter is shown in Fig. 4B.

The time course of the EEG response is potentially affected (e.g.
smoothing) by filtering (in particular the 0.5 Hz high-pass filter) (Van-
Rullen, 2011; Widmann and Schr€oger, 2012). However, while TRF
components may be smeared, this should not affect the latency of the
peaks estimates as the filters were zero-phase (Matlab function filtfilt).
Moreover, we further controlled for this issue by successfully replicating
these results by using different types of filters (Butterworth and Cheby-
shev) and orders.

2.7.3. Measuring the quality of the speech-EEG mapping
We used two metrics to quantify the quality of the CCA-based speech-

EEG mapping model: correlation and discriminability (d-prime) in a
match-vs-mismatch classification task. A Pearson's correlation coefficient
was calculated for each CC-pair. The first CC-pair offers the highest cor-
relation (by construction), but meaningful speech-EEG correlations can
arise for an arbitrary number of additional CC pairs. To obtain an aggre-
gate measure sensitive to these multiple dimensions, we introduced a
match-vs-mismatch classification task that consisted in deciding whether
a segment of EEG (duration TDECODER) was produced by the segment of
speech that gave rise to it, or by some other (randomly selected) segment.
Discriminability in this task, measured by d-prime, reflects the ability of
the model to capture the relation between speech and EEG. The d-prime
metric was derived from the discriminant function of a support vector
machine (SVM) classifier trained on the normalised Euclidean distance
between pairs of CCs. A cross-validation procedure (k¼ 30) was used in
which the classifier was evaluated on data distinct from that used for the
training. This measure, which quantifies how well the cortical signals
track the stimulus, will henceforth be referred to as the Cortical Tracking
Index (CTI). For the main evaluation dataset, the segment duration TDE-
CODER was set to 5 s, which avoided saturation (classification either too
easy or too difficult) in both group and single-subject level analyses.

We used the TRF-based analysis to attempt to pinpoint latencies and
topographies associated with each feature of the stimulus representation.
The TRF analysis involves a lag window of duration 100ms that was
shifted within a 0–1000ms range (non-overlapping). For each window
position, the associated topography was estimated by calculating Pear-
son's correlation coefficients between the EEG signal and its prediction
for each scalp electrode separately. This procedure was repeated for TRF
models fit with different stimulus features. Shifting the analysis over time
allows us to estimate roughly the latency of cortical processing associated
with a particular stimulus feature. Another solution is to investigate the
temporal dynamics reflected by CCA models. However, this was
impractical in the present application of CCA as the use of a filter-bank
rather than time-lags would have complicated the interpretation of the
result. Instead, the use of time-lags would have increased the dimen-
sionality and the risk for overfitting, thus potentially reducing the quality
of the CCA models (de Cheveign�e et al., 2018).

2.8. Statistical analyses

Unless otherwise stated, all statistical analyses were performed using
two-tailed permutation tests. For tests involving several contiguous time
latencies, false discovery rate (FDR) correction for multiple comparisons
was used.

3. Results

Non-invasive EEG signals were recorded from nineteen participants
as they listened to an audiobook. We conducted three analyses tackling
the questions: 1) Do cortical signals reflect the small changes in phono-
tactic probability that characterise natural speech? 2) Can we measure
these phonotactic responses at the individual-subject level? And 3) do
these signals reflect a pre-lexical influence of phonotactics in speech
comprehension?
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3.1. Neural evidence for the processing of probabilistic phonotactics

To increase the SNR of the data, brain signals that are common among
participants listening to the same speech stimulus were estimated using
MCCA (de Cheveign�e et al., 2018). This consensus signal (CS) has a better
signal-to-noise ratio than EEG data of individual subjects. A speech-EEG
model based on CCA was then employed to relate this consensus EEG
signal to different stimulus representations. The quality of the model
(measured by correlation and CTI) was used as a measure of the ability of
each feature to capture speech structure predictive of the EEG response.
Comparing different representations, a larger CTI (d-prime) value in-
dicates that the model is better at matching portions of speech with the
corresponding EEG data, suggesting that the EEG signal reflects the
speech properties used in that model.

We wish specifically to evaluate the predictive power of phonotactics
(P) relative to, and in combination with, other known informations such
as spectrogram or phonetic features. For this, we compared multiple
combinations of stimulus features, including or not the phonotactic
vector P.

We first estimated the quality of a CCA-based model involving only P
(Fig. 1A,top) and EEG. The r-value of 0.57 obtained for the first CC-pair
was larger than the 99th percentile of a distribution obtained by rerun-
ning the CCA analysis after shuffling the values of the pulses within the P
vector while leaving their times intact (Fig. 2A; median over 50 shuffles:
r¼ 0.54; 99th percentile: r¼ 0.55). This result indicates that phonotactic
probabilities were reflected by the EEG signals. However the phonotactic
vector is correlated with other predictive properties (such as spectrogram
or phonemes), so we cannot be sure that its predictive power stems from
phonotactic information per se. For that, we must compare stimulus
representations that include, or not, the phonotactic vector P. We defined
a set of descriptors encoding information about the stimulus and lin-
guistic abstractions that we hypothesised are processed during speech
perception: The acoustic spectrogram S (Di Liberto et al., 2015; Lalor
et al., 2009; Obleser et al., 2012), a phoneme representation based on
phonetic features F (Mesgarani et al., 2014; Di Liberto et al., 2015; Di
Liberto, Crosse, et al., 2018), phoneme onsets O (Brodbeck et al., 2018)
and our newly introduced phonotactic vector P (see Fig. 1A). If each of
these features carries information complementary to the others, and not
captured by them, we expect speech-EEG correlations to monotonically
increase with the inclusion of additional information in the analysis:
namely S, FS, OFS, and POFS as schematised in Fig. 1B. Indeed, corre-
lation coefficient values for CCAmodels based on these four combination
of features agree with this prediction (Fig. 2B; rS< rFS< rOFS< rPOFS). Of
possible concern is that these models differ in the number of dimensions
(and thus parameters) involved. A large number of parameters can lead
to overfitting, which should (thanks to cross-validation) penalise the
models with more dimensions, contrary to what we observe. To further
exclude the potential confound of dimensionality, we randomly shuffled
the values of the pulses within the phonotactic vectors while keeping
their timing constant. The distribution of correlation scores for PshuOFS
obtained by repeated shuffling is indicated in Fig. 2B. The value obtained
for POFS is above the 99th percentile of that distribution. This same
control procedure was applied to the F and O vectors and confirmed that
their respective enhancements are driven by the addition of meaningful
information as they produced stronger correlations than the 99th
percentile of the corresponding shuffled distributions. In summary, each
of these properties carries useful information not carried by the others.

The previous analysis was based on correlations for the first CC-pair
only. However, some of the other components may also capture rele-
vant stimulus-EEG interactions. To get a more complete picture we per-
formed a similar analysis based on the Cortical Tracking Index (which
combines all CC pairs simultaneously; see Methods). These CTI values
showed patterns resembling what previously seen for the correlation
analysis. Specifically, a d-prime of 2.56 resulted from the CCA analysis on
P, which was greater than the 99th percentile of the shuffled distribution
(Fig. 2C; median over 50 shuffles: d-prime¼ 2.30; 99th percentile: d-



Fig. 1. (A) Speech representations for a 5 s portion of the stimulus. From bottom to top, the acoustic spectrogram (S) which consists of a 16-channel time series of
power within 16 frequency bands; phonetic features (F), whose permissible combinations map to English phonemes; phoneme onsets (O), which mark the beginning of
each phoneme; and the probabilistic phonotactic vector (P), a representation indicating the inverse likelihood of a sequence (from the beginning of a word to each of
its phonemes). (B) Expected outcomes: We hypothesise that, if a stimulus feature encodes properties not captured by other features, adding it to the others will
improve the prediction of cortical responses. In particular we predict an increase in cortical tracking when phonotactic probabilities are added to the mix (POFS – OFS,
blue increment).

Fig. 2. EEG responses to natural speech are best explained when including phonotactic probability in the stimulus representation. Data from all participants
were combined using MCCA. This consensus EEG signal (CS) preserves signals that are maximally correlated across subjects. (A) A CCA analysis was conducted
between the phonotactic vector (P) and the CS signals. This result was compared to the correlations obtained when using vectors with same time information but
shuffled phonotactic values (Pshu; 50 versions). Speech-EEG correlations for the first canonical component (CC) pair were best for P than Pshu. (B) A CCA analysis was
conducted between each speech representation and the CS signals. Speech-EEG correlations for the first canonical component (CC) pair were best when using the
combined model POFS, indicating that phonotactic probabilities explain EEG variance that was not captured by the purely acoustic-phonemic models (S, FS, and OFS).
(C) The Cortical Tracking Index (CTI; d-prime score of a match-vs-mismatch classification test) was larger for P compared to all of its shuffled versions Pshu. (D) In
addition, phonotactic probabilities enhanced the CTI score when combined with acoustic and phoneme-level properties. The box-plots indicate the 99th percentile of
the correlation or CTI when using a model (P, FS, OFS, or POFS) after randomly shuffling information for the indicated property (F, O, and P respectively). EEG
responses to speech reflect phonotactic probabilities at the individual-subject level.
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prime¼ 2.37). Furthermore, CTI values monotonically increased for S, FS,
OFS, and POFS, showing again greater values than the corresponding
shuffle distributions (Fig. 2D). The greater value for POFS relative to OFS
and PshuOFS reinforces our claim that cortical signals reflect phonotactic
probabilities.

The previous analysis provided evidence that the cortical responses to
natural speech, measured with non-invasive EEG are coupled to phono-
tactic probabilities. To test whether such responses can be reliably
measured at the individual-subject level, we conducted the same CCA
analysis as in the previous section on the brain recordings from each
individual. Fig. 3 (left panels of A and B) illustrates both correlation
(average correlations for the first five components) and CTI results. The
CTI values are overall smaller than for the analysis based on the
consensus signal, reflecting the greater amount of noise in the subject-
specific data, but the same trends are observed. POFS is the best per-
forming model in terms of both correlation (POFS>OFS, p¼ 0.0006;
d¼ 1.00; POFS> FS, p¼ 0.0010; d¼ 0.97; POFS> S, p< 0.0001;
d¼ 2.24; FDR-corrected) and d-prime (POFS>OFS, p¼ 0.0036; d¼ 0.76;
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POFS> FS, p< 0.0001; d¼ 1.33; POFS> S, p< 0.0001; d¼ 1.30; FDR-
corrected). In addition, this analysis confirmed that phonetic features
explain EEG variance not captured by the acoustic spectrogram (FS> S;
correlations: p< 0.0001, d¼ 2.12; d-prime: p¼ 0.0009, d¼ 0.79; FDR-
corrected) and, similarly, that the phoneme onsets vector increase
further the amount of EEG variance explained (OFS> FS; correlations:
correlations: p¼ 0.0190, d¼ 0.58; d-prime: p¼ 0.0046, d¼ 0.76; FDR-
corrected). The average benefits (relative gain) of adding the onset
vector O, and the phonotactic vector P, for both measures is plotted in the
right-hand panels of Fig. 3A and B. Statistical analysis on these average
measures confirms that phonotactic information has a measurable effect
on the EEG responses to speech (correlation: p¼ 0.0008, d¼ 0.90; d-
prime: p¼ 0.0008, d¼ 0.85).

Finally, we conducted additional analyses to test whether other
models of phonotactic information can explain EEG responses as well, or
better, than P. A first single-subject CCA-based analysis compared P to
neighbourhood density (Pneigh). This property was suggested as a possible
neural strategy for an indirect encoding of phonotactic information



Fig. 3. Phonotactic probabilities enhance the speech-EEG mapping at the individual subject level. CCA analyses were conducted between each speech rep-
resentation and the corresponding EEG responses for each individual subject. (A) Average speech-EEG correlations for the first five canonical component pairs were
greatest when using the combined model POFS (left panel). The thick black line indicates the average across subjects while the coloured dots/lines refer to the in-
dividual subjects. The bar-plot shows the relative correlation gain (%) of the combined models OFS and POFS with FS (i.e. the contribution given by O and P
respectively). (B) Similar results are shown for the CTI score. Results for individual subjects are colour-coded (same colors as for A). Phonotactic probabilities enhance
the single-subject scores for FS and also show significant improvement compared to OFS.
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(Vitevitch et al., 1999; Bailey and Hahn, 2001). P had larger CTI values
than this new measure (POFS> PneighOFS; two-tailed permutation test:
p< 0.0001; d¼ 1.19). We performed a similar comparison between P
and probabilistic definitions of phoneme surprisal (Psur) and entropy
(Pent) that were derived by means of a completely data-driven approach
(Brodbeck et al., 2018; Gaston and Marantz, 2018). Again, P performed
better than these two measures. Specifically, P showed larger CTI values
than Pent (POFS> PentOFS; two-tailed permutation test: p¼ 0.0150;
d¼ 0.62) and Psur (POFS> PsurOFS; two-tailed permutation test:
p¼ 0.0031; d¼ 0.69).

3.2. Timescale of cortical responses to phonotactics

Our results indicate that the language phonotactics is encoded in the
cortical signals during natural speech listening. We conducted further
analyses to assess the temporal dynamics of this effect. Linear forward
models were fit using the TRF approach to describe how speech prop-
erties are transformed into EEG signals. Because of the sensitivity of the
forward TRF method to EEG noise, we restricted the analysis to the fre-
quencies 0.5–9 Hz, which are most relevant for the coupling of the EEG
signal with speech acoustics and phoneme-level properties (Di Liberto
et al., 2015; K€osem and van Wassenhove, 2016; Di Liberto, Lalor, et al.,
2018; Vanthornhout et al., 2018).

Forward encoding models were fit for each speech representation (S,
FS, OFS, POFS) using non-overlapping time-lag windows of duration
100ms within the interval 0–1000ms. Average EEG prediction correla-
tions confirm the hypothesised general trend that emerged also from the
CCA analysis (S< FS<OFS< POFS; Supplementary Fig. 2). Crucially,
the direct comparison of POFS and OFS reveals a significant effect of
phonotactics for speech-EEG latencies between 100 and 500ms (two-
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tailed permutation test, FDR corrected, p< 0.05), with peak effect-size at
the latency-window 300–400ms (d¼ 3.11) (Fig. 4A). A similar result
was observed in the TRF waveforms corresponding to the model weights
for P, which show a negative component that peaks at about 300ms for
parietal electrodes (Fig. 4B). Note that the TRFwaveforms in Fig. 4B were
calculated using the TRFweights for P only, meaning that the result could
be influenced also by other EEG responses that correlate to the phono-
tactic vector. In turn, significant components outside the latencies of
interest are likely to be spurious. In particular, the first positive TRF
component has both latencies (65ms) and topographical maps consistent
with those of auditory responses. Because of this limitation, we restricted
our considerations to the latency interval 100–500ms.

4. Discussion

Our results indicate that low-frequency cortical responses to natural
speech reflect probabilistic phonotactics. First, linear modelling revealed
a time-locked interaction between phonotactic information and low-
frequency EEG. Then, we established that brain responses to phonotac-
tics can be measured at the individual subject-level. Finally, we found
that speech-EEG latencies of 100–500ms are most relevant to those brain
responses, suggesting that phonotactic information contributes to natural
speech processing at pre-lexical stages.

4.1. A novel measure of phonotactic processing

Phonotactic information has been suggested to play a role in speech
perception (Vitevitch et al., 1997; Ettinger et al., 2014; Leonard et al.,
2015). However, crucial questions remain unanswered about the un-
derpinnings of the corresponding cortical processes, mainly due to a lack



Fig. 4. Robust coupling between EEG signal and phonotactic probabilities at speech-brain latencies of 100–500ms. (A) A temporal response function (TRF)
analysis was conducted to estimate the amount of EEG variance explained by phonotactic probabilities for speech-EEG latency windows between 0 and 1000 ms and
window-size 100 ms. EEG prediction correlations were calculated for different speech stimulus representations and for the various speech-EEG latency windows. The
enhancement in EEG predictions due to phonotactic probabilities is shown for all latency windows. Shaded areas indicate the standard error of the mean (SE) across
subjects. Stars indicate significant enhancement (**p < 0.01, *p< 0.05; permutation test FDR corrected) (top). Cohen's d was calculated to measure the effect size of
the enhancement due to phonotactics. Values above 0.5 are considered as ‘medium-large’ effects (above dashed grey line) (bottom). (B) Grand average TRF waveforms
at selected individual channels show the time course of the responses to phonotactics. Thick lines indicate a response that is statistically different from zero across
subjects (p< 0.05, t-test, FDR corrected). Note that, while panel A isolated the effect of phonotactics, this result is influenced also by lower-level auditory responses.
The inset in the top-right corner shows the impulse response of the band-pass filter that was applied to the EEG at the preprocessing stage (top). Topographical patterns
of the TRF weights are shown for latencies with significant weights for the phonotactic probability TRF (bottom).
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of tools to extract direct measures of brain responses to phonotactics.
Although prior studies have partially fulfilled this need (Connolly and
Phillips, 1994; Dehaene-Lambertz et al., 2000; Wagner et al., 2012;
Cibelli et al., 2015), their findings were mainly confined to nonsense
words or to the domain of phonotactic violations, which are exceptions in
natural speech scenarios. The present study aimed to measure brain
signals reflecting phonotactic information during continuous speech
processing, which are difficult to isolate when measuring only phono-
tactic violations. In fact, those violations trigger various other processes
such as phonological repair, which may emerge in the evoked-response
(Dehaene-Lambertz et al., 2000; Dupoux et al., 2001; Domahs et al.,
2009). Here, we found evidence that low-frequency cortical responses to
narrative speech reflect the well-formedness of phoneme segments as
expressed by inverse probability values, with no (or very few) violations
and thus no need for phonological repair (Figs. 2 and 3). This finding
pushes beyond the phonotactic violation paradigm and provides us with
a tool based on linear models to isolate measures of phonotactic-level
processing during natural speech perception using non-invasive EEG.

This work constitutes a further step towards the characterisation of
brain responses to natural speech, adding to recent work aimed at
isolating brain responses to distinct processing stages, involving speech
acoustics (Ding and Simon, 2014), phonemes (Di Liberto et al., 2015; Di
Liberto, Peter, et al., 2018), sentence structure (Ding et al., 2015, 2017),
and semantic similarity (Broderick et al., 2018). The ability to simulta-
neously account for and disentangle brain responses to continuous
speech at different processing stages constitutes a novel and powerful
tool to study the neurophysiology of speech. In particular, isolating brain
responses to phonotactics could provide new insights on how that in-
formation is used to support speech perception, and also how this
mechanism plays against us. For example, when learning a second lan-
guage, phonotactic priors of the native language can cause misperception
andmispronunciation, and contribute to stereotypical accents (Davidson,
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2006a; 2006b; Lentz and Kager, 2015). In addition, the present frame-
work produces objective measures indicating how strongly EEG re-
sponses to speech correspond with a particular phonotactic model, thus
offering a new opportunity to test the neurophysiological validity of
theoretical and computational models (e.g. BLICK vs. others).

Our results provide new insights in this direction, indicating the EEG
signal reflects more strongly phonotactic probabilities when linguistic
constraints are included in their estimation (using the computational
model BLICK). The present finding indicates that cortical signals reflect a
process matching the sensory input with expectation at the phonemic
time-scale, which is in line with previous work suggesting that phono-
tactic expectation plays a role in perception by providing, for example,
rapid sensory restoration in case of noise (Leonard et al., 2015, 2016).
However, it remains unclear how exactly our brain builds such priors.
Are sonority patterns part of this process (Parker, 2012)? Is the model
provided by BLICK physiologically plausible or do we rely on very
different mechanisms to build phoneme expectation?While the first issue
may require additional investigation with a separate experiment, here we
tackled the second point explicitely by testing alternative models of
phoneme expectation based on a probabilistic definition of phoneme
probability based on a completely data-driven approach (Psur, Pent)
(Brodbeck et al., 2018; Gaston and Marantz, 2018). These models pro-
duced probability vectors significantly correlated with the output of
BLICK (rblick,sur¼ 0.43, rblick,ent¼ 0.47), but they were less effective at
predicting brain activity. These same probability vectors were previously
shown to be coupled with MEG cortical activity localised in core auditory
cortex and superior temporal sulcus (Brodbeck et al., 2018). However,
the effect was most prominent for short latencies (110ms), while the
phonotactic-EEG coupling measured here emerged between 100 and
400ms and was strongest at latencies between 300 and 400ms. While we
can speculate that our result reflects cortical processes within those same
cortical areas, there may be also other brain areas involved, especially in
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correspondence of long speech-EEG latencies such as 400ms (Fig. 4),
which were less prominent or absent in Brodbeck et al. (2018). Our
phonotactic vector was also more strongly linked to the EEG signal than
phonological neighbourhood density (Pneigh) (Vitevitch et al., 1999;
Frisch et al., 2000; Bailey and Hahn, 2001). This is in line with previous
studies suggesting distinct roles for phonotactics and neighbourhood
density (Vitevitch et al., 1999; Bailey and Hahn, 2001; Storkel et al.,
2006). Specifically, the first would aid speech perception by facilitating
processing and triggering learning of new words at early pre-lexical
stages, while the latter would influence the integration of new and
existing lexical representations at a later stage.

The speech-brain latencies and spatio-temporal maps that were
measured here are in line with and complement the literature on pho-
notactic information. Previous studies indicated that phonotactic viola-
tions contribute to evoked brain components such as N400 and LPC
(Friedrich and Friederici, 2005; Domahs et al., 2009; White and Chiu,
2017). It has also been suggested that phonotactic information and the
size of the neighbourhood of permissible words may contribute at
different stages of the speech perception process, possibly modulating
distinct components of the neural response at different latencies (Vite-
vitch et al., 1999; Storkel et al., 2006). Our results contribute to this
debate by suggesting that latencies of 100–500ms are the most relevant
for the processing of phonotactic probabilities. These latencies are
consistent with the finding by Leonard et al. (2015) of an effect of pho-
notactics for latencies up to 400ms. However, that result emerged spe-
cifically for high-frequency cortical signals (high-gamma power) that
were recorded invasively (electrocorticography), and the authors did not
see any effect for lower frequency data. Here we show for the first time
that a negativity corresponding to phonotactics arises at latencies of
300–400ms in low-frequency cortical responses to continuous speech.
The fact that Leonard and colleagues could not measure this effect in
superior temporal gyrus (STG) suggests that its cortical sources may be in
sites that go beyond their coverage. The advantage of EEG over such
invasive recordings is a more comprehensive coverage of the cortex.

Topographical patterns at the latencies where the effect of phono-
tactic arises present activations over centro-parietal scalp areas that
qualitatively resemble that of an N400 component. One possibility is that
this response reflects multiple cortical correlates, one in correspondence
with the earlier weaker effect (100–300ms) (Brodbeck et al., 2018), and
a separate one with a larger effect-size at longer latencies (300–500ms)
(Pylkk€anen et al., 2002, 2000). It is also possible that this response is
related to an N400 reflecting phonological-level processing in a natural
speech scenario (Deacon et al., 2004). However, a more specific experi-
ment should be conducted to more clearly investigate this issue, with a
direct comparison of EEG responses to phonotactic probabilities and
phonotactic violations (as previously attempted in the similar context of
semantic-level processing, Broderick et al., 2018).

4.2. Theoretical implications of a rapid time-locked response to
phonotactics

Our results have important implications for current theories on pho-
notactics, by providing insights into both temporal dynamics (when) and
neural encoding (how) of this cortical mechanism. Phonotactic infor-
mation, which aids speech recognition and learning of new words
(Mattys and Jusczyk, 2001; Munz, 2017), was suggested to involve one of
the following: 1) the phoneme identification stage (one-step models;
Dehaene-Lambertz et al., 2000; Dupoux et al., 2011); 2) a pre-lexical
stage that occurs after phoneme identification (two-step models;
Church, 1987); or 3) a later lexical stage that influences pre-lexical
processes through feedback connections (lexicalist models; McClelland
et al., 2006; McClelland and Elman, 1986). In this context, a large body of
literature in psycholinguistics supports a pre-lexical account of phono-
tactics (McQueen, 1998; Jusczyk et al., 1999; Sebasti�an-Gall�es, 2007).
For example, infants showed sensitivity to phonotactics by 9 months of
age, suggesting that this information aids speech segmentation even at
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early developmental stages, before being able to understand speech
(Jusczyk et al., 1994). Similarly, it was shown that humans are sensitive
to phonotactic information evenwhenmeaning is not involved (nonsense
words), pointing to the early implementation of phonotactic repair
(Dupoux et al., 1999; Davidson, 2011; Rossi et al., 2013). This indirect
evidence for a pre-lexical influence of phonotactic information finds
experimental support in both phonotactic violation studies (Dehaene--
Lambertz et al., 2000; Pylkk€anen et al., 2002) and in the present work,
which isolated cortical responses to probabilistic phonotactics that arise
starting from short speech-EEG latencies (100ms).

Although we cannot be conclusive on this point, an effect of phono-
tactics at latencies of 100–500ms could be in line with one-step models
(Dehaene-Lambertz et al., 2000; Dupoux et al., 2011), which hypothesise
that phonotactic processing occurs pre-lexically and together with
phoneme identification, whose EEG responses were measured for la-
tencies up to 300ms (Di Liberto et al., 2015; Khalighinejad et al., 2017).
Indeed, it is possible that other post-lexical brain responses to phono-
tactics exist but could not be reliably measured. One possibility is that
such higher-level effects exhibit weaker time-locking to the phonotactic
vector, which could reflect a different definition of phoneme expectation
(different from the one estimated by BLICK), thus hampering the ability
to capture them with our framework.

In summary, our results indicate that rapid time-locked brain re-
sponses to probabilistic phonotactics emerge for low-frequency cortical
signals (<9Hz). This phenomenon can be reliably measured at the in-
dividual subject-level using natural speech stimuli. We also found that
the speech-EEG latencies of 100–500ms most strongly reflect phono-
tactic information, which is in line with a pre-lexical account of phono-
tactic processing. This provides the field with new opportunities to study
the brain processing of phonotactics using natural speech.
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