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Abstract1

Brain signals recorded with electroencephalography (EEG), magnetoencephalog-2

raphy (MEG) and related techniques often have poor signal-to-noise ratio due to3

the presence of multiple competing sources and artifacts. A common remedy is4

to average over repeats of the same stimulus, but this is not applicable for tempo-5

rally extended stimuli that are presented only once (speech, music, movies, natu-6

ral sound). An alternative is to average responses over multiple subjects that were7

presented with the same identical stimuli, but differences in geometry of brain8

sources and sensors reduce the effectiveness of this solution. Multiway canonical9

correlation analysis (MCCA) brings a solution to this problem by allowing data10

from multiple subjects to be fused in such a way as to extract components common11

to all. This paper reviews the method, offers application examples that illustrate12

its effectiveness, and outlines the caveats and risks entailed by the method.13

1 Introduction14

Stimulus-driven signals recorded with electroencephalography (EEG), magne-15

tencephalography (MEG) and related techniques compete with much stronger16

sources within the brain, the body, and the environment. The signal of interest17

usually represents only a fraction of the signal power at the electrode or sensor.18

To overcome the noise and artifacts, a common practice is to present the same19

stimulus multiple times and average the responses over repeated presentations.20

Supposing that the response is the same for all presentations, and the noise is un-21

correlated between presentations, the signal-to-noise power ratio (SNR) improves22

with the number of repeats. SNR can be further improved by combining sig-23

nals across sensors, i.e. spatial filtering. Spatial filters can be optimized based24

on assumptions about signal and noise (de Cheveigné and Parra, 2014), and this25
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combination of temporal averaging and spatial filtering can greatly improve the26

SNR. However, averaging and optimization are not applicable if the stimulus is27

presented only once, for example because it is too long to be repeated (e.g. a long28

sample of speech or music), or because one wishes to probe a phenomenon likely29

to fade with repetitions (e.g. surprise).30

Instead of presenting the same stimulus multiple times to one subject, one31

can also present the same stimulus to multiple subjects just once. To the extent32

that different subjects’ brains are functionally similar, we expect similar responses33

(Hasson et al., 2004; Dmochowski et al., 2012; Lankinen et al., 2014). Unfortu-34

nately, the position or orientation of neural sources relative to sensors or electrodes35

is likely to differ across subjects, so averaging over subjects in sensor space is sub-36

optimal. In order to compare between subjects, or average over subjects, we first37

need some way to transform the data of each to a common representation that is38

comparable across subjects. This can be accomplished with spatial filters that are39

tuned to each individual subject (e.g. Haxby et al., 2011; Lankinen et al., 2014).40

Canonical Correlation Analysis (CCA) is a powerful technique to find lin-41

ear components that are correlated between two data matrices (Hotelling, 1936).42

Given two matrices X1 and X2 of size T × d1 and T × d2, CCA produces trans-43

form matrices V1 and V2 of sizes d1 × d0 and d2 × d0, where d0 is at most equal44

to the smaller of d1 and d2. The columns of Y1 = X1V1 are of norm 1 and mutu-45

ally uncorrelated between each other, as are the columns of Y2 = X2V2, while,46

more importantly, corresponding columns from each (“canonical correlate pairs”)47

are maximally correlated. The first pair of canonical correlates (CC) defines the48

linear combinations of each data matrix with the highest possible correlation be-49

tween them. The next pair of CCs defines the most highly correlated combination50

that is uncorrelated from the first pair, and so-on. Applied to data from two sub-51

jects, CCA can find spatial filters that maximize the brain activity common to52
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both, transforming both subject’s data so that they can more easily be compared53

or averaged. However, CCA does not address the issue of comparing or merging54

responses across more than two subjects.55

Extensions to connect multiple data matrices have been proposed under names56

such as multiple CCA (Gross and Tibshirani, 2015; Witten and Tibshirani, 2009),57

multiway CCA (Sturm, 2016; Zhang et al., 2011), multiset CCA (Takane et al.,58

2008; Correa et al., 2010b,a; Hwang et al., 2012; Lankinen et al., 2014; Zhang59

et al., 2017; Via, Javier, Ignacio Santamaria and Pérez, 2005; Li et al., 2009), or60

generalized CCA (Kiers et al., 1994; Afshin-Pour et al., 2012; Melzer et al., 2001;61

Tenenhaus, 2011; Tenenhaus et al., 2015; Velden, 2011; Fu et al., 2017). This62

diversity in names covers a diversity of formulations (Kettenring, 1971) that all63

share the aim of finding components that are similar across data matrices. Recent64

progress addresses regularization (Tenenhaus, 2011), sparsity (Fu et al., 2017;65

Tenenhaus et al., 2015), missing data (van de Velden and Takane, 2012), nonlin-66

earity (Melzer et al., 2001), or deep learning (Benton et al., 2017). Using similar67

techniques, independent Component Analysis (ICA) has been generalized under68

the name of group ICA (GICA) (Eichele et al., 2011; Calhoun and Adali, 2012;69

Huster et al., 2015; Huster and Raud, 2018).70

CCA has been used extensively for brain data analysis and modality fusion71

(Sui et al., 2012; Dähne et al., 2015; Dmochowski et al., 2017), and several studies72

have applied multiway CCA (MCCA) and variants thereof to merge data across73

subjects (Correa et al., 2010b; Afshin-Pour et al., 2012, 2014; Lankinen et al.,74

2014; Zhang et al., 2017; Li et al., 2009; Hwang et al., 2012; Karhunen et al.,75

2013; Haxby et al., 2011; Lankinen et al., 2014; Sturm, 2016; Zhang et al., 2017;76

Lankinen et al., 2018). This paper builds on those studies with the aim to better77

understand the range of applicability of the tool, what is achieved, and what are78

the caveats. We describe a simple formulation of MCCA that is easy to understand79
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and explain.80

We show that MCCA can be applied effectively to multi-subject datasets of81

EEG or fMRI, both to denoise the data prior to further analyses, and to summarize82

the data and reveal traits common across the population of subjects. MCCA-83

based denoising yields significantly better scores in an auditory stimulus-response84

classification task, and MCCA-based joint analysis of fMRI data reveals detailed85

subject-specific activation topographies. The aims of this paper are (a) to provide86

an intuitive understanding of MCCA, (b) investigate ways in which it can be put87

to use, and (c) demonstrate its effectiveness for a range of common tasks in the88

analysis of brain data.89

2 Methods90

In this section we describe a simple formulation of MCCA, show how it can be91

applied to a variety of tasks, and give details of the real and synthetic data sets92

used by the examples reported in the Results.93

2.1 Data analysis94

Signal model. Assume a data set consisting of N data matrices, each comprised95

of a time series matrix Xn of dimensions T (time) × dn (channels). These could96

represent EEG, MEG or fMRI data recorded fromN different subjects in response97

to the same stimulus. They could also be data from multiple imaging modalities98

gathered from the same subject. Each matrix Xn consists of linear combinations99

of a set of sources S common to all data matrices, to which is added a “noise” ma-100

trix Nn of sources uncorrelated with S, and uncorrelated with the noise matrices101

Nn′ 6=n added to the other data matrices:102

Xn = AnS + Nn, (1)
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Figure 1: Block diagram of the simple CCA formulation. Left: each data matrix

is whitened by PCA followed by normalization. Normalized PCs from both data

matrices are concatenated side by side and submitted to a final PCA. Center: the

matrix Y of summary components (SC) can be expressed as the sum of individ-

ual transforms Y1 = X1V1 and Y2 = X2V2 (canonical correlates, CC). The

transforms V1 and V2 combine the whitening and PCA matrices. Right: rotating

vectors y1 and y2 to maximize the norm of their sum is equivalent to maximizing

their correlation coefficient ρ symbolized by the projection of y1 on y2 (red line).

where An is a mixing matrix specific to subject n. The sources S might represent103

brain sources or networks driven by the same stimulus similarly across different104

subjects. We are interested in finding these “shared sources” and suppressing the105

noise. Note that this model assumes that responses of different subjects share106

the same source time course, but not necessarily the same spatial pattern over107

channels. The assumption of uncorrelated noise is usually only approximately108

met, due to spurious correlations.109

A simple CCA formulation. Consider two data matrices, X1 and X2 of size110

T ×d where T is time and d the number of channels. All data are assumed to have111
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zero mean. Each matrix is spatially whitened by applying principal component112

analysis (PCA) and scaling each principal component (PC) to unit norm to obtain113

whitened matrices X̄1 and X̄2. Whitened data are then concatenated and submit-114

ted to a new PCA to obtain a matrix Y = [X1,X2]V of size T × 2d, where V115

combines the whitening and second PCA matrices (Fig. 1 left). The submatrices116

V1 and V2 formed of the first and last d rows of V define transforms applicable117

to each data matrix:118

Y1 = X1V1, (2)

Y2 = X2V2,

with Y = Y1 + Y2 (Fig. 1 center).119

The outcome of this analysis is equivalent to standard CCA, as explained in120

the Discussion, the first d columns of Y1 and Y2 forming canonical pairs (within121

a scaling factor). Indeed, rotating X̄1 and X̄2 to maximize the correlation of the122

resulting Y1 and Y2, as required by the CCA objective, is equivalent to rotating123

with the goal of maximizing the norm of their sum, Y1 + Y2, as achieved by124

the second PCA (Fig. 1 right). The appeal of this formulation is that it is easily125

extendable to multiple data matrices.126

A simple MCCA formulation. ConsiderN data matrices Xn each of size T×d127

with zero mean. Each data matrix is spatially whitened by applying PCA and128

scaling all PCs to unit norm to obtain whitened matrices X̄n. Whitened data are129

then concatenated along the component dimension and submitted to a second PCA130

to obtain a matrix Y = [X1 . . .XN ]V of size T×D,D = Nd, where V combines131

the whitening and second PCA matrices (Fig. 2 left). The submatrices Vn of V of132

size d×D formed by extracting successive d-row blocks of V define transforms133

applicable to each data matrix:134

Yn = XnVn, (3)
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Figure 2: Block diagram of the simple MCCA formulation. Left: each data matrix

Xn is whitened by PCA followed by normalization. Normalized PCs from all data

matrices are concatenated side by side and submitted to a final PCA. Right: the

matrix Y of summary components (SC) can be expressed as the sum of individual

transforms Yn = XnVn (canonical correlates, CC).

with Y =
∑

n Yn (Fig. 2, right). If data matrices have different numbers of chan-135

nels dn, then Vn has size dn ×D where D =
∑

n dn. We call the columns of Yn136

canonical correlates (CCs) by analogy with CCA, and those of Y summary com-137

ponents (SC). Each SC is a sum of CCs over data sets. Columns of Y are mutually138

orthogonal by virtue of the final PCA, but the same is not usually true of Yn. With139

D > d columns, Yn forms an overcomplete basis of the patterns spanned by Xn.140

This formulation of MCCA is equivalent to the SUMCORR formulation of Ket-141

tenring (1971) as explained in the Discussion (Parra, 2018). The appeal of this142

formulation is that it is conceptually and computationally straightforward. PCs143

can be discarded from the initial PCAs, so as to control dimensionality and limit144

overfitting effects (next section).145

The variances of the summary components (the columns of Y) reflect the de-146

gree to which temporal patterns are shared between data matrices (Fig. 3) – the147

variance of each SC corresponding to the degree of correlation of each shared148
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dimension found in the data. If the data matrices Xn share no components, the149

variances of all SCs are one (Fig. 3 a). If a component is shared by all N data150

matrices, the norm of the first SC is N (Fig. 3 d). For data matrices with a small151

number of samples, spurious correlations may cause the variance profile to be152

skewed (Fig. 3 b). In real data, shared activity often shows up as components with153

variance elevated relative to this background (Fig. 3 c).154

Reduced-rank MCCA. It is often convenient to reduce the rank of each data155

matrix X̃n to d̊ < d by discarding PCs with smallest variance after the initial156

PCA. The MCCA transform matrices Vn are then of size d × D̊, D̊ = Nd̊, and157

the CC and SC matrices of size T × D̊. This serves as a form of regulariza-158

tion that avoids computational issues with rank-deficient data, reduces the risk of159

overfitting, and limits computation and memory requirements. Importantly, this160

approach preserves the constraint that the resulting SCs are uncorrelated (Parra et161

al., 2018).162

Dealing with data matrices with more channels than samples. CCA fails if163

the data matrices have fewer samples than channels (T ≤ d), as is typically the164

case for fMRI or calcium imaging data for which there are many more voxels or165

pixels than observation samples (Asendorf, 2015). A simple solution is to replace166

each data matrix Xn (size T × d) by a matrix X̊n of size T × T̊ with T̊ < T167

columns that capture the principal temporal patterns spanned by Xn . This can be168

done by applying singular value decomposition (SVD) to express the data as169

Xn = US tV (4)

and setting X̊n = Ů where Ů consists of the first T̊ columns of U. Since the X̊n170

have more samples than channels there is no obstacle to applying MCCA to them.171

This sequence of operations can be represented by a set of transform matrices172
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Figure 3: Behavior of the SC variance as a function of order for MCCA anal-

yses applied to 4 different types of dataset, each involving 10 data matrices. (a)

Each data matrix consisted of an independent 10000 × 15 matrix of Gaussian white

noise. In this case the SC variance profile is flat since there is no (or little) corre-

lation between data matrices. (b) Each data matrix consisted of a 165 × 15 matrix

of independent and uncorrelated Gaussian noise. In this case the SC variance pro-

file is skewed, reflecting spurious numerical correlations between the statistically

independent columns. (c) Each data matrix consisted of a 165 × 15 matrix of val-

ues derived from fMRI responses of 10 subjects in response to 165 sounds. Prior

to MCCA the 6309 voxels were reduced to 15 channels using SVD (see description

of Example 6 in the Methods). (d) Each data matrix consisted of a 10000 × 10

matrix of Gaussian white noise with an embedded sinusoid (Example 1, Fig. 4) that

was the same in all data matrices. In the last two examples, only a small subset of

the MCCA components reflect shared activity as evident by the low SC variance at

higher MCCA orders.
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Vn of size d × NT̊ . Applying them to the data yields canonical correlate and173

summary matrices of size T × NT̊ . Using this approach, it is straightforward to174

apply MCCA to datasets with a large number of “channels” such as data from175

calcium imaging or fMRI. An alternative to SVD is to apply PCA to tXn and use176

a subset of the matrix of projection vectors to form X̊n, a useful option if Xn is177

too large to fit in memory (the required covariance matrix can be calculated in178

chunks).179

2.2 Applications of MCCA180

Quantifying correlation between N data matrices. The variance of each col-181

umn of Y indicates the degree to which a component is shared across data ma-182

trices. The value is 1 if the data matrices are perfectly uncorrelated, and N if all183

data matrices include that component (Fig. 3). The profile of variances over SCs184

thus offers a measure of "sharedness" between data matrices (but see Caveats).185

Summarizing a set of data matrices. The first few columns of Y =
∑

n Yn186

represent temporal patterns that capture most of the correlation across data ma-187

trices Xn. They form a basis of the signal subspace that contains those shared188

patterns.189

Denoising. Each data matrix Xn may be denoised by projecting it to the over-190

complete basis of CCs, selecting the first D̊ < D components, and projecting191

back. We refer to this procedure as “denoising”, as it can be used to attenuate192

components that are least shared across subjects. This can be summarized by a193

denoising matrix Dn product of the first D̊ columns of Vn by the first D̊ rows of194

its pseudoinverse. The denoised data are obtained as X̃n = XnDn.195
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Dimensionality reduction. Dimensionality reduction is often performed by ap-196

plying PCA to a data matrix and truncating the PC series (Cunningham and Yu,197

2014). However, this equates relevance to variance, which may not be appropriate198

because noise sources can have high variance and useful targets small variance.199

MCCA can be used to weight dimensions according to their consistency across200

data matrices, which may be a better criterion than variance.201

Outlier detection. Temporally-local glitches and artifacts may interfere with202

data interpretation and analysis. Analysis algorithms based on least-squares are203

particularly sensitive to high-amplitude artifacts. MCCA can be used to derive204

a cross-subject ‘consensus’ response, so that individual subject’s data points that205

deviate greatly from the consensus can be flagged as outliers and excluded from206

analysis.207

2.3 Details of the evaluation examples208

The methods are evaluated using six datasets, including synthetic data, EEG, and209

fMRI.210

Example 1 - sinusoidal target in separable noise. Synthetic data for this ex-211

ample consisted of 10 data matrices, each of dimensions 10000 samples × 10212

channels. Each was obtained by multiplying 9 Gaussian noise signals (indepen-213

dent and uncorrelated) by a 9 × 10 mixing matrix with random coefficients. To214

this background of noise was added a “target” consisting of a sinusoidal time se-215

ries (Fig. 4, left) multiplied by a 1 × 10 mixing matrix with random coefficients.216

The target was the same for all data matrices, but the mixing matrices differed, as217

did the noise sources. The SNR was set to 10−20, i.e. a very unfavorable SNR,218

but because the noise is not of full rank the target and background are in principle219
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linearly separable.220

Example 2 - sinusoidal target in non-separable noise. Synthetic data for this221

example consisted of 10 matrices of dimensions 10000 samples × 10 channels,222

each obtained by multiplying 10 Gaussian noise sources (independent and uncor-223

related) by a 10 × 10 mixing matrix with random coefficients. To this background224

was added a sinusoidal target as in the previous example, with SNR varied as a225

parameter. The noise here is full rank so the target and background are not linearly226

separable.227

Example 3 - sinusoidal target in EEG noise. Data for this example used EEG228

to simulate realistic neural activity as background noise. EEG data were recorded229

during approximately 20 minutes from one subject in the absence of any task,230

from 40 electrodes (32 standard positions plus additional electrodes on forehead231

and temple) at 2048 Hz sampling rate with a BioSemi system. A robust polyno-232

mial detrending routine (de Cheveigné and Arzounian, 2018) was used to remove233

slow drifts. Ten “data matrices” were produced by selecting three-second inter-234

vals of EEG data with random offsets, removing their means, and adding a target235

consisting of 4 cycles of a 4 Hz sinusoid multiplied by a 1 × 40 mixing matrix236

with random coefficients, renewed for each data matrix. The SNR of the target237

was varied as a parameter.238

Example 4 - EEG response to tones. Data for this example were borrowed239

from a study on auditory attention (Southwell et al., 2017). EEG data were240

recorded using a 64-channel EEG system in response to 120 repetitions of a 1241

kHz tone pip with interstimulus interval (ISI) randomized between 750 and 1550242

ms (recorded for the purpose of locating electrodes responsive to sound). Data243

from a subset of 10 subjects were detrended using a robust detrending routine,244
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bad channels were interpolated using spherical interpolation (EEGLAB), and the245

data were filtered between 2-45 Hz. A peristimulus epoch of duration 1.2 s (start-246

ing 0.2 s prestimulus) was defined for each trial, and the corresponding data were247

extracted as a 3D matrix of dimensions time × channel × trial. For each channel,248

the 0.2 s prestimulus waveform was averaged over trials and subtracted from that249

channel’s waveform (“baseline correction”). After applying the first PCA (of the250

two-step MCCA) to each subject, the first 30 PCs were retained and the remainder251

discarded.252

Two analyses were performed on these data to try to extract the cortical re-253

sponse to the 1 kHz tone from the background EEG noise. In the first, repetition254

over trials was exploited to design a spatial filter for each subject using the joint255

diagonalization algorithm (JD) that maximizes the ratio of trial-averaged variance256

to total variance (de Cheveigné and Simon, 2008; de Cheveigné and Parra, 2014).257

This resulted in a set of 10 analysis matrices of size 64 × 30, one for each subject.258

In the second analysis, MCCA was applied, using 30 PCs from each subject in the259

first PCA, resulting in 10 subject-specific analysis matrices of size 64 × 300.260

For each subject, the first column of the JD analysis matrix defines the best261

linear combination of channels to maximize repeat-reliability across trials, while262

the first column of the MCCA analysis matrix defines the best linear combination263

of channels to maximize correlation with the other subjects.264

Example 5 - EEG response to speech. Data for this example were taken from265

a study on auditory cortical responses to natural speech (Di Liberto et al., 2015).266

The same data were also used in a recent study on the application of CCA to267

speech/EEG decoding (de Cheveigné et al., 2018). We borrowed the data from268

the first study, and the decoding methods and evaluation metrics from the second,269

with the purpose of evaluating the benefit of introducing a denoising stage based270
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on MCCA before the speech/EEG decoding stage.271

In brief, EEG data were recorded from 8 subjects using a 128-channel BioSemi272

system with standard electrode layout, at 512 Hz sampling rate. Each subject lis-273

tened to 32 speech excerpts, each of duration 155 s, from an audio book, presented274

diotically via headphones, for a total of approximately 1.4 hours. The database in-275

cluded both the audio stimuli and the EEG responses. Further details about the276

stimulus and recording are available in Di Liberto et al. (2015). The EEG were277

preprocessed (downsampling to 64 Hz, detrending, artifact removal), and the stim-278

ulus temporal envelope calculated as described in de Cheveigné et al. (2018).279

A decoding model (de Cheveigné et al., 2018; Dmochowski et al., 2017) was280

evaluated according to several metrics: correlation, d-prime, and percent-correct281

classification scores for a match vs mismatch classification task. The classification282

task consisted in deciding whether a segment of EEG matched the segment of283

stimulus of same duration that produced it (match) or some unrelated segment284

(mismatch). The duration of the segment was varied as a parameter from 1 to 64285

s.286

This task is related to that of determining which of two concurrent voices is287

the focus of a listener’s attention (cocktail party phenomenon) (Ding and Simon,288

2012; Fuglsang et al., 2017; Lalor et al., 2009; Khalighinejad et al., 2017; Koski-289

nen and Seppä, 2014; Martin et al., 2014; Mesgarani and Chang, 2012; Mirkovic290

et al., 2015; O’Sullivan et al., 2014; Tiitinen et al., 2012; Zion Golumbic et al.,291

2013), of potential use for the “cognitive control” of an external device such as292

a hearing aid. The decoding model used CCA to relate the stimulus to the EEG293

response, producing multiple stimulus-response CC pairs that were used for dis-294

crimination. Further details of the decoding model, classification task, and metrics295

can be found in de Cheveigné et al. (2018). Here, we are only interested in know-296

ing if scores for single-source decoding are improved by introducing a stage of297

16

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/344960doi: bioRxiv preprint first posted online Jun. 12, 2018; 

http://dx.doi.org/10.1101/344960
http://creativecommons.org/licenses/by-nc-nd/4.0/


EEG denoising based on MCCA.298

For this denoising, the EEG data of each subject were submitted to MCCA,299

keeping 40 PCs in the first PCA, resulting in a 128 × 320 analysis matrix for each300

subject. The first 110 columns of this matrix were multiplied by the first 110 rows301

of its pseudoinverse to yield a 128 × 128 subject-specific denoising matrix. This302

has the effect of attenuating activity that is least correlated with the other subjects.303

Example 6 - fMRI response to natural sounds. Data for this example were304

taken from a study that measured fMRI responses to natural sounds (Norman-305

Haignere et al., 2015). Responses were gathered from 10 subjects to each of 165306

sounds belonging to 11 categories including speech, music, animal vocalizations,307

and others. For each subject, the recording session was repeated either twice or308

3 times. See Norman-Haignere et al. (2015) for further details. For the present309

analysis, data for each subject were averaged over repeats and organized as a310

matrix Xn of 165 sounds × 6309 voxels (voxels from both hemispheres were311

used, and voxels outside a subject-specific region of interest that included primary312

and secondary auditory cortex were set to zero). In this analysis we are interested313

in finding particular profiles of response over sounds (for example speech vs non-314

speech, or music vs non-music) and also the brain areas associated with such315

profiles in each subject.316

As there are more "channels" (voxels) than samples (T < d), an SVD was used317

as described in the Methods and the first 10 dimensions were used for MCCA. The318

columns of X̊n are white so the first PCA can be dispensed of. Matrices X̊n were319

concatenated and subjected to the second-step PCA of the MCCA algorithm, and320

the 15 first columns (arbitrary number) of the SC matrix were selected as a basis321

spanning the profiles over sounds that were most similar across subjects.322

To find profiles specific to particular sound categories (e.g. speech, music,323
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etc.), Joint Decorrelation (de Cheveigné and Parra, 2014) was used to find a linear324

transform applicable to the 15-column basis to maximize the variance over the325

selected category, relative to the other categories. This can be seen as a rotation326

of the basis so as to isolate activity specific to processing of that sound category.327

This 165 × 1 activation profile was then cross-correlated with the 165 × 6309328

matrix of fMRI response data of each subject to find the topography specific to329

that subject (Haufe et al., 2014).330

3 Results331

The MCCA method is evaluated first with synthetic data to get an understanding332

of its basic properties and capabilities, and then with real EEG and MEG data to333

see whether these extend to situations of practical use.334

3.1 Synthetic data335

Example 1 - sinusoidal target in separable noise. The data consist of 10 ma-336

trices made up of a sinusoidal target (Fig. 4, left) common to all data matrices,337

with added noise distinct across matrices (see Methods). At the unfavorable SNR338

of 10−20 the target is not visible in the raw signal of any of the data matrices339

(Fig. 4 center), and it cannot be extracted by averaging because of the extremely340

low SNR and the fact that the mixing coefficients are of random sign. Since the341

data are separable (the rank of the noise is only 9), the target can be recovered by342

applying the appropriate demixing matrix (inverse of the mixing matrix), however343

that matrix is unknown.344

MCCA applied to the dataset produced projection matrices Vn that recover345

the target from Xn (Fig. 4 right). This benefit is similar to that of methods that346

leverage multiple repetitions to blindly discover spatial filters to improve SNR347
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Figure 4: Simulation with separable noise. Left: target signal. Next to left: target

in noise at SNR=10−20. Next to right: variance of SCs as a function of order. The

variance of the first SC is equal to 10 as target is perfectly shared across subjects

and mixed in separable noise. Right: target recovered by MCCA (with arbitrary

sign).

(de Cheveigné and Simon, 2008; de Cheveigné and Parra, 2014), but instead of348

repetitions, MCCA leverages the fact that the same target is mixed into multiple349

data matrices. To summarize, MCCA can reveal a target common across data350

matrices despite an extremely unfavorable SNR.351

Example 2 - sinusoidal target in non-separable noise. Data are the same as in352

the previous example, except that the noise is full rank (10 independent sources353

mixed in 10 channels) so the target is no longer linearly separable, and one cannot354

expect to recover the target perfectly, especially at extremely low SNRs. Nonethe-355

less, at a moderately unfavorable SNR (10−2 in power) MCCA can recover an356

estimate of the target that is noisy (Fig. 5 center) but much cleaner than the raw357

data (not shown). Figure 5 (right) shows the proportion of residual noise in the358

signal recovered by MCCA as a function of SNR, together with the same pro-359

portion for the best raw channel. MCCA provides a clear benefit over a range360

of SNRs. Two factors can contribute to failure: non-separability per se, and the361

fact that the algorithm fails to find the ideal demixing matrix. Figure 5 (right) also362
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Figure 5: Simulation with inseparable noise. Left: variance of SCs as a func-

tion of their order at SNR=10−2. Center: target signal recovered from mixture at

SNR=10−2. Right: proportion of residual noise power as a function of SNR for the

raw data (blue), first SC (red) or ideal demixing matrix (yellow).

shows the proportion of residual noise for the ideal demixing matrix (yellow). The363

MCCA-derived matrix performs only slightly less well than the ideal matrix. To364

summarize, MCCA is of use even if the data are not separable.365

Example 3 - sinusoidal target in real EEG noise. EEG background noise dif-366

fers from the white Gaussian noise that was used in the previous simulations in367

several ways: it usually has full rank (in particular because of electrode-specific368

noise), but the variance is unequally distributed across dimensions. It is also369

temporally structured, with strong temporal correlation and an overall low-pass370

spectrum. The first component recovered by MCCA is plotted in Fig. 6 (right)371

for several values of SNR. For SNRs of 0.1 or better the target is almost per-372

fectly recovered. At SNR=0.03 the recovered waveform is somewhat noisy, and373

at SNR=0.01 or below the target is lost. For comparison Fig. 6 (left) shows the374

time course of a raw data channel (the channel that showed the largest correlation375

with the target). For SNR=10 the target waveform is obvious in the raw data, but376

for smaller values of SNR it is lost in the EEG noise. Comparing Fig. 6 left and377
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Figure 6: Simulation with EEG noise. Left: time course of the best raw data

channel for several values of SNR. Right: time course of the first MCCA component

for several values of SNR.

right, there is a range of SNRs (roughly 0.03 to 1) for which MCCA provides a378

clear benefit. Below SNR=0.03 the algorithm switched to some other component379

within the data (Fig. 6 right, lowest trace) that happened to be similar across data380

matrices because of random correlations.381

To summarize, MCCA is effective at extracting a weak target from within real382

EEG noise.383

3.2 Real data.384

Example 4 - EEG response to tones. In this example, contrary to the previous385

one, the target is not known. However, since the data were collected in response386

to multiple repeats and for multiple subjects, we can apply two different methods387

(JD and MCCA) to isolate stimulus-evoked activity common to all subjects and388

compare the results. JD finds a linear transform that optimizes signal to noise389

ratio assuming that the signal repeats over trials. Figure 7 (top) shows the result390

of applying the JD analysis to the data of one subject. In the plot on the top left,391

the blue line shows the mean over repeats of the first component, and the gray392

band shows ±2 SD of a bootstrap resampling of this mean. On the top right is393
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Figure 7: Comparison between JD solution (within-subject repeat-reliability) and

MCCA solution (between-subject similarity) for one subject among ten. Data were

in response to repeated tones. Left: average over trials (blue) and ±2 SD of a

bootstrap resampling (gray) of the first JD component, which maximizes reliability

across trials (top), or first subject-specific CC (bottom). Right: associated topogra-

phies (correlation between trial-averaged component and trial-averaged electrode

waveforms).

the topography associated with this component (computed as the map of cross-394

correlation coefficients between the component and each channel (Haufe et al.,395

2014)). MCCA can similarly be used to design a subject-specific spatial filter that396

improves SNR. The plots on the bottom of Figure 7 show the result of applying397

the subject-specific matrix derived from the MCCA analysis for the same subject.398

Despite the different criteria used by the two analyses (consistency over trials for399

JD, consistency between subjects for MCCA) the patterns are remarkably similar.400

To summarize, it appears that MCCA can exploit between-subject consistency to401

find a spatial filter that is as effective as that found by JD that exploits between-402

trial consistency. This is useful for data that do not involve repeated trials.403

The subject-specific MCCA analysis matrices (Vn) transform each subject’s404

data (Xn) into CCs (Yn) that are well correlated across subjects so that it makes405
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Figure 8: MCCA analysis of tone response, summary over 10 subjects. Top left:

trial-averaged time course of the first SC. Bottom right: maximum absolute value

of correlation between that component and each electrode, for each subject. Other

panels: topography of correlation values (of the SC with each electrode) for each

subject (the color code is the same as in Fig. 7, bottom).

sense to average them across subjects and interpret the SCs (Y) as reflecting406

shared activity. Figure 8 top left shows the trial- and subject-averaged time course407

of the first SC, which can be interpreted as our best estimate of stimulus-evoked408

activity common to all subjects. It benefits from several stages of enhancement:409

(a) spatial filtering within each subject, (b) averaging over trials, (c) averaging410

across subjects. Also shown in Fig. 8 are the ten subject-specific topographies411

associated with this component. Despite some differences, topographies are quite412

similar across most subjects except S1. The bottom left plot shows the maxi-413

mum over electrodes of the correlation coefficient between the first SC and each414

electrode (trial-averaged). Correlation coefficients are relatively high except for415

Subject 1 for whom the EEG response did not match the other subjects.416

23

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/344960doi: bioRxiv preprint first posted online Jun. 12, 2018; 

http://dx.doi.org/10.1101/344960
http://creativecommons.org/licenses/by-nc-nd/4.0/


Example 5 - EEG response to speech. For stimuli presented once only, one417

cannot use repetition to distinguish the brain response from the noise. Instead,418

systems identification techniques (Lalor et al., 2009; Holdgraf et al., 2017; Crosse419

et al., 2016) are used to fit an encoding model to estimate the part of brain response420

that is driven by the stimulus, using some representation of the stimulus (e.g.421

envelope or spectrogram) that can be linearly related to the brain signals. The part422

of the response that fits the model can be taken as the “true” response, and the423

rest discarded as noise. However, this partition is contingent on the validity of424

the stimulus representation and the quality of the model. With MCCA, a “ground425

truth” response can instead be estimated based on similarity of brain responses426

across subjects.427

EEG were recorded in response to continuous speech (see Methods), and a428

model was fit to stimulus and response to capture their correlation (de Cheveigné429

et al., 2018; Dmochowski et al., 2017). The model used CCA to form pairs of430

maximally-correlated linear transforms of the audio stimulus features and of the431

EEG respectively (audio-EEG CCs). Note that this usage of CCA is unrelated432

to our usage of MCCA to merge data across subjects. The quality of that model433

was evaluated using a match vs mismatch classification task (see Methods). We434

compute correlation, d-prime and percent correct classification scores to evaluate435

the benefit of inserting a stage of MCCA-based denoising within the EEG prepro-436

cessing pipeline.437

Figure 9 (a) shows the correlation between the first audio-EEG CC pair (thick438

blue line) and subsequent pairs (thin lines), with and without MCCA-based de-439

noising, for one subject. To the extent that correlation is limited in part by EEG440

noise, the higher scores on the right suggest that denoising was effective. The441

d-prime metric measures the degree of separation between distributions of cor-442

relation scores for matched and mismatched segments. Figure 9 (b) shows the443
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d-prime metric for the first pair (thick blue) and subsequent pairs (thin lines),444

with and without MCCA-based denoising for segments of duration 64 s. The dot-445

ted line shows the d-prime metric for the multivariate distributions of audio-EEG446

CC pairs. The larger d-prime scores with MCCA-based denoising suggest that it447

can effectively contribute to improved discrimination. Figure 9 (c) shows classi-448

fication scores as a function of segment duration with (red) and without (black)449

MCCA-based denoising. The higher scores with MCCA-based denoising show its450

benefit for this task. Figure 9 (d) shows that a similar benefit is found in all sub-451

jects. The thick lines are scores for a duration of 16 s, whereas the thin lines are452

for segments of 2 s (lowest lines) or 64 s (highest lines). To summarize, MCCA is453

of benefit as a denoising tool for EEG responses to speech.454

Example 6 - fMRI responses to natural sounds Data were taken from a study455

that investigated fMRI responses to natural sounds (Norman-Haignere et al., 2015),456

in which 10 subjects listened to a set of 165 sounds belonging to 11 different457

classes. MCCA was applied to find patterns of selectivity to sound that were com-458

mon across subjects as explained in the Methods. In brief, the 165 × 6309 matrix459

of voxel activations for each subject was reduced to a 165 × 12 matrix using SVD,460

the reduced matrices concatenated, and submitted to PCA to obtain a 165 × 120461

matrix of SCs. Their variances are plotted in Fig. 10 (top left). The first 10 SCs462

were subjected to a JD analysis to enhance the contrast between musical sounds463

(classes ’Music’ + ’VocalMusic’) and other sounds as explained in the Methods.464

The profile of activation over sounds of the first JD component is plotted in465

Fig. 10 (top right), with sounds ordered by class and coded as different colors.466

Activations of the first two classes (’Music’ + ’VocalMusic’) are clearly distinct467

from that of the other classes. The corresponding topography of activation over468

voxels for each subject can be calculated by cross-correlating this component with469
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Figure 9: Speech-EEG decoding. (a) Correlation coefficient for the audio-EEG

first CC pair (thick blue line) and subsequent pairs (thin lines) for a CCA model,

with and without MCCA-based denoising. (b) d-prime metric for a classification

task for the first audio-EEG CC pair (thick blue line) and subsequent pairs (thin

lines), with and without MCCA-based denoising. The dotted line is for multivari-

ate classification based on all CC pairs. (c) Percentage correct classification as a

function of interval duration, with and without MCCA-based denoising. (d) Per-

centage correct for intervals of duration of 16s (thick lines) for 8 subjects, with and

without MCCA-based denoising. Thin lines are scores for 64 s (uppermost) or 2 s

(lowermost).
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the profile of activation over sounds of each voxel. Topographies for the left hemi-470

sphere for all subjects are plotted in Fig. 10 (bottom). To a first approximation, to-471

pographies are consistent in that a dorso-frontal concentration of activity is found472

in most subjects. To a second approximation, each topography includes additional473

regions, suggesting a wider network of activation that is more subject-specific.474

Such subject-specific details would be smoothed out by averaging over subjects.475

A similar JD analysis to enhance speech-specific activation revealed patterns with476

more ventral topographies (not shown). The outcome of this analysis is consis-477

tent with that reported by Norman-Haignere et al. (2015) using an ICA-related478

technique.479

The benefit of MCCA here can be interpreted in terms of dimensionality re-480

duction, based here on consistency across subjects rather than variance as with481

PCA. Dimensionality reduction allowed the final JD analysis to be performed on482

a matrix of size 165 × 12 × 10 rather than 165 × 6309 × 10, making it more483

effective by reducing overfitting. If PCA had been used instead of MCCA, the484

12 selected dimensions might well have been dominated by noise. Using MCCA485

ensures that they are instead dominated by activity similar across subjects, which486

is likely to be relevant because all subjects heard the same stimuli.487

This example demonstrates that MCCA can be applied also to data with more488

channels (pixels or voxels) than data points. MCCA offers a powerful, alternative,489

way of summarizing the high-dimensional data without having to explicitly model490

what parts of the brain response are driven by the stimulus features.491

4 Discussion492

MCCA finds a linear transform applicable to each data matrix within a data set493

to align them to common coordinates and reveal shared patterns. It can be used494
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Figure 10: MCCA of fMRI responses to natural sounds. Top left: SC variance as

a function of order. Top right: activation as a function of sound of a component

selective for music obtained by applying JD to the first 15 SCs (see text). Each

color represents a different sound category; the first two categories are ’music’ and

’vocal music’. Bottom: topographies of correlation between the music-selective

JD component and the profile of response over sound of each voxel of the right

hemisphere, for each subject.
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in several ways: as a denoising tool applicable to an individual data matrix, as a495

tool for dimensionality reduction, as a tool to align data matrices within a com-496

mon space to allow comparisons, or as a tool to summarize data and reveal patterns497

that are general across data matrices. As formulated here, MCCA is easy to under-498

stand, straightforward to apply, and computationally cheap. Care is nonetheless499

required when applying it, in particular to avoid phenomena such as overfitting.500

What is new? As reviewed in the Introduction, several versions of MCCA have501

been proposed in the literature and applied to the analysis of brain data. The502

contributions of this paper are the following. First, the formulation as a cascade503

of PCA, normalization, concatenation, and PCA offers an intuitive explanation504

that may help practitioners gain insight into this method. Past formulations may505

be hard to follow for the non-mathematically inclined, and their sheer number is506

bewildering. We used a similar 2-step formulation in a recent tutorial on joint507

decorrelation (de Cheveigné and Parra, 2014), and we hope that the present paper508

too will have tutorial value. Second, our usage of MCCA as a denoising tool,509

to attenuate noise within individual subjects based on across-subject consistency510

by projection on the overcomplete basis of its SCs, seems to be new. Third, we511

provide tutorial examples that may encourage researchers to put MCCA to work512

for a wider range of tasks, including denoising, outlier detection, summarization,513

and cross-subject statistics.514

How does it work? The effect of the processing steps is schematized in Fig. 11.515

Multiple data matrices contain the same source component S, illustrated as a color516

gradient, mixed here into two 2-dimensional data matrices (Fig. 11 a). Each point517

represents a sample in time (row of the data matrix) and the two axes represent518

two channels (columns of the data matrix). The color could represent a hidden519

sensory response that is similar across two subjects. The initial PCAs sphere each520

29

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/344960doi: bioRxiv preprint first posted online Jun. 12, 2018; 

http://dx.doi.org/10.1101/344960
http://creativecommons.org/licenses/by-nc-nd/4.0/


X2 X̄2

X1 X̄1

Y2

Y1

Y

first 2 PCs

[X̄1, X̄2]

2D projection
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Figure 11: Principle of MCCA. (a) Several data matrices share a common com-

ponent (coded as color) but its orientation and nature are unknown. (b) Whitening

makes the data matrices free to rotate. (c) Concatenation creates a cloud in 4D

space (projected here to 2D) with a direction of greater correlation/variance due to

the shared component. (d) The second PCA aligns this direction with the axes. (e)

In the process, the whitened data matrices are rotated such that shared dimensions

are maximally aligned.

data matrix (b), so that the cloud of points is free to rotate in any direction. How-521

ever, concatenating the sphered data matrices creates a cloud (in a 4-dimensional522

space) that is not spherical because of the shared component correlation along523

some direction in 4-D space (projected to 2D in panel (c)). The second PCA finds524

this direction of correlation between the data matrices and aligns it with the first525

axis (d), in the process transforming each data matrix so that it is optimally aligned526

with the other (e).527

Relation with other formulations of CCA and MCCA As explained by Parra528

(2018), the aim of MCCA is to find projection vectors vn applicable to Xn that529

maximize the ratio of between-set to within-set covariance:530

ρ =
1

N − 1

rB
rW

(5)
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with:531

rB =
∑
n

∑
n′ 6=n

tvnRnn′vn′

rW =
∑
n

tvnRnnvn.

where Rnn = tXnXn and Rnn′ = tXnXn′ are covariance and cross-covariance532

matrices of the data. The divisor 1 − N ensures that ρ scales between 0 and 1.533

Setting to zero the derivative of ρ with respect to vn, the solution is obtained by534

solving the equation535

Rv = Dvλ, (6)

with536

R =


R11 R12 · · · R1N

R21 R22 · · · R1N

...
... . . . ...

RN1 RN2 · · · RNN

 ,D =


R11 0 · · · 0

0 R22 · · · 0
...

... . . . ...

0 0 · · · RNN

 , (7)

where λ = ρ/(N − 1) + 1. Now, first decompose D = UΛ tU. Because D is537

the block-diagonal matrix of the covariances in each data set, this decomposition538

implies doing PCA on each data set separately, i.e whitening each data set. With539

this decomposition Eq. 6 can be rewritten as:540

Rv = UΛ tUvλ

Λ−1/2 tURv = Λ1/2 tUvλ

[Λ−1/2 tURUΛ−1/2][Λ1/2 tUv] = [Λ1/2 tUv]λ

R̃ṽ = ṽλ (8)

where R̃ = Λ−1/2 tURUΛ−1/2 is the covariance of the whitened concatenated541

data. Equation 8 thus corresponds to performing PCA on the concatenated whitened542
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data. In summary, the two-step PCA describe in the Methods (’simple MCCA543

formulation’) maximizes correlation between data sets. This corresponds to the544

standard SUMCORR formulation of MCCA described by Kettenring (1971) (see545

Parra, 2018). The relations between this and other MCCA formulations are de-546

scribed in (Asendorf, 2015).547

MCCA vs CCA MCCA is understood as a generalization of CCA but some dif-548

ferences are worth noting. For CCA the focus is usually on the CCs Yn (n = 1, 2),549

whereas for MCCA it may also be on the SCs Y. For standard CCA the projec-550

tion matrices are restricted to d (or minn dn) columns for each data set, whereas551

for MCCA it may be useful to consider more than d columns (as in Example 5). If552

the objective were to capture sources common to all data matrices, d components553

would suffice, but to capture also sources shared by several sources but not all,554

more than d columns are required. For CCA the d columns of Y1 are mutually555

uncorrelated as are those of Y2, whereas for MCCA theD columns of Yn are mu-556

tually correlated in general. Columns of their sum Y are uncorrelated, however.557

The large number (D > d) and non-orthogonality of the columns of Yn might558

be disconcerting for the researcher familiar with CCA. The method may be modi-559

fied such that Yn is instead constituted of d orthogonal columns. For this, MCCA560

is applied as above, for each n the first column of Yn is projected out of Xn,561

and MCCA applied again. This deflationary procedure terminates after d steps562

because the dimensionality of each data matrix is then exhausted. Smaller ma-563

trices with orthogonal columns might be convenient in certain situations, but as564

pointed out they might not capture all shared sources. The procedure described in565

the Methods is better in this respect.566

Group analysis of multi-subject data. Gathering data from multiple subjects567

in response to the same stimulus serves several purposes. First, to counteract568
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variability by increasing the number of observations, analogous to recording from569

repeated trials. Second, to make inferences at the population level via group-level570

statistical analysis. Third, to allow data-dependent analysis to improve SNR based571

on similarity between subjects, analogous to methods that improve SNR based on572

similarity between trials (de Cheveigné and Parra, 2014).573

The conventional strategy of calculating a “grand average”, with correspond-574

ing channels or voxels of each subject being averaged together (Choi et al., 2013;575

Luck, 2005), is hampered by inter-subject differences in source-to-sensor map-576

ping. The problem is mild for sources with broad topographies (as in Fig. 8),577

but for sources with more local spatial characteristics a mismatch between sub-578

jects may result in destructive summation. A similar problem affects measures of579

inter-subject correlation (ISC) applied directly to channels or voxels (Hasson et580

al., 2004), or to linear combinations that assume the same mixing vectors for all581

subjects (Dmochowski et al., 2012; Parra et al., 2018).582

One simple expedient is to select, for each subject, a group of channels based583

on responses to a “localizer” stimulus or task, calculate a root mean square av-584

erage waveform over these channels, and then average these over subjects (e.g.585

Chait et al. (2010)). However, this packs the multidimensional cortical activity586

into a single time course from which it may be hard to infer the richer dynam-587

ics of cortical activity. Another approach is to apply inverse modeling to map588

the activity to a source space common across subjects (Litvak and Friston, 2008).589

However, this requires accurate anatomical information for each subject and is590

subject to the validity of the reconstruction models (Mahjoory et al., 2017), as591

well as between-subject variability in source positions and orientations (Lio and592

Boulinguez, 2016).593

Data-driven methods such as MCCA are attractive in that they find a map-594

ping between subjects based only on shared temporal aspects of the data, without595
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requiring external information. MCCA and related methods have been widely596

used for fMRI data (Li et al., 2009; Correa et al., 2010b; Hwang et al., 2012;597

Afshin-Pour et al., 2012; Karhunen et al., 2013; Haxby et al., 2011; Afshin-Pour598

et al., 2014) and EEG/MEG (Lankinen et al., 2014; Sturm, 2016; Zhang et al.,599

2017). In contrast to MCCA, which finds variance dimensions that are similar600

across subjects with no attempt to ensure that they correspond to sources within601

the brain, ICA-based approaches attempt to to isolate sources common across602

subjects based on criteria of statistical independence (Calhoun and Adali, 2012;603

Eichele et al., 2011; Huster et al., 2015; Chen et al., 2016; Madsen et al.; Huster604

and Raud, 2018). Group ICA (GICA) as formulated by Eichele et al. (2011) can605

be seen as a concatenation of MCCA (as described here) with ICA. Isolating the606

MCCA step, as we do here, is useful conceptually and avoids the computational607

cost and assumptions associated with ICA. Hyperalignment, as used by Haxby et608

al. (2011), is conceptually the same as MCCA but restricting the transformations609

to rotations, i.e. Procrustes analysis (Xu et al., 2012). Hyperalignment has the610

advantage to maintain metric distance of patterns in the original and transformed611

space, but the disadvantage that it cannot favor channels with higher inter-subject612

correlation.613

The focus here is on temporal patterns common to all subjects and thus in the614

MCCA procedure the data are concatenated along the spatial dimension (chan-615

nels). It is also possible to extract spatial patterns common across subjects by616

concatenating data along the temporal dimension. Methods for group analysis of617

data from multiple subjects are reviewed by Correa et al. (2010a,b); Calhoun and618

Adali (2012); Sui et al. (2012); Afshin-Pour et al. (2014); Dähne et al. (2015);619

Chen et al. (2016); Huster and Raud (2018).620
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Denoising and dimensionality reduction. As described in the Methods and il-621

lustrated in the Results, data from single subjects can be denoised by projecting on622

the overcomplete basis of D CCs, truncating, and projecting back. Data dimen-623

sions that are not shared with other subjects are downweighted but not removed,624

so in general the rank of the data remains the same. Setting the cutoff D̊ < D to625

a relatively high order suppresses only those components that are very different626

from those found in other subjects, most likely to be noise. In Example 5, the set627

of 40 PCs that represented each subject were transformed into 320 CCs, of which628

110 were selected before being projected back to obtain “denoised” data, yielding629

the benefit shown in Fig. 9. The CCs that were rejected absorbed some of the630

subject-specific patterns of noise, improving the outcome.631

It is often useful to reduce the dimensionality of the data for computational632

reasons (to reduce memory or computation time), or to avoid overfitting. The633

standard procedure of applying PCA and truncating the series of PCs implicitly634

equates variance to relevance, which may not be justified, as artifact sources may635

have high variance, and useful sources may be weak. MCCA is of use in this636

respect to replace the variance criterion by a criterion of consistency with other637

data. This can be done conservatively by removing a small fraction of SCs that638

represent the most atypical patterns within the data set.639

As a tool to analyze or denoise the data of a single subject, MCCA is compa-640

rable to data-driven linear analysis techniques such as PCA, Independent Compo-641

nent Analysis (ICA), Joint Diagonalization, CCA and others. The fact that it uses642

a different criterion makes it complementary to those methods as a denoising or643

dimensionality reduction tool (e.g one can apply MCCA before or after ICA, JD,644

etc.).645
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Caveats and cautions. A risk, common to other data-driven methods such as646

ICA or JD, is circularity of the analysis (Kriegeskorte et al., 2009). The method647

is designed to optimize correlation between data matrices, and therefore the ob-648

servation that the components that it finds are correlated between data matrices649

is of little weight, unless corroborated by careful cross-validation. Related to this650

issue is overfitting: each SC depends on D =
∑

n dn parameters, a number that651

can be large if there are many data matrices involved. Overfitting can be detected652

using resampling and cross-validation methods, and the risk of overfitting can be653

reduced by dimensionality reduction or other regularization techniques.654

MCCA can easily latch on to artefacts and noise patterns shared across data655

matrices. Uninteresting linear or polynomial trends (for example EEG drift po-656

tentials) may thus appear among the first MCCA components. More generally,657

MCCA can be biased towards narrowband or low-frequency components com-658

mon across data matrices, even if their phase is not aligned, particularly if the659

noise is spectrally-shaped or contains narrow-band components. This is illus-660

trated in Fig. 12 that shows the result of applying MCCA to ten “data matrices”,661

each of 12 s duration, extracted at random from the same 40-channel EEG data662

that was used as background noise in Example 3. No known signal is common663

across these data matrices, nonetheless the lowest-order SCs have narrow spectra664

(Fig. 12 left) and quasi-sinusoidal waveforms (right) that might make them seem665

significant. It is easy to understand why MCCA might take such components to666

be shared: a sinusoid of arbitrary phase can be expressed as the weighted sum of667

a sine and a cosine, and thus narrowband activity can be approximated as result-668

ing from two sinusoidal components in quadrature phase. As this is the case for669

all datasets, MCCA will select the two-component sinusoidal basis as common.670

Such spurious components compete with genuine shared activity, complicating671

the analysis.672
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Figure 12: MCCA’s bias towards narrowband and low-frequency activity. Left:

power spectra of SCs derived from an MCCA analysis of 10 EEG “data matrices”

of duration 12 s randomly sampled from 40-channel EEG data. Power is coded as

color. Right: time course of the first two SCs.

MCCA assumes that temporal patterns are common across data matrices. A673

difference in latency of a brain response between different subjects may reduce the674

ability of MCCA to extract this activity. A common outcome in that case is two675

components, one with a shape similar to the average pattern over subjects, and the676

other similar to their difference (or derivative). MCCA can readily be extended to677

include time-lags to account for differences in response latency between subjects,678

although this comes at the expense of a greater number of parameters and a greater679

risk of overfitting. MCCA is obviously of no benefit in the absence of synchronous680

patterns, for example it is not well suited for analyzing resting-state data of a group681

of subjects.682

MCCA yields both CCs and SCs, either of which can be exploited. When683

reporting, it is important to specify which, to avoid confusion. As an example, the684

phrase ‘MCCA was applied as a preprocessing step’ is not sufficient to specify685

what was done.686

Applicability to real-time processing. This work was motivated in part by the687

need to steer an auditory assistive device using brain signals. An obstacle to reli-688
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able decoding is the high-level of noise and artifacts in the EEG signals, and anal-689

ysis and denoising methods are essential for the success of this application. To be690

useful, a method must be applicable to real-time processing, whereas MCCA as691

described here works in batch mode. It may nonetheless be of use in the following692

fashion. EEG data is recorded from a pool of subjects to a calibration sample of693

speech, and MCCA is used to derive a “canonical” EEG response to that sam-694

ple. To adapt the system to a new user, EEG data are recorded in response to695

the calibration sample, and a spatial filter is designed (for example using CCA)696

to maximize similarity between the subject’s and the canonical response. This697

spatial filter is then used in the real-time processing pipeline. This suggests that698

MCCA can also be put to use in a practical application such as cognitive control699

of a hearing aid.700

5 Conclusion701

Multiway CCA is a powerful tool for analysis of multi-subject multivariate datasets.702

It can be used both to design spatial filters to denoise data of each individual sub-703

ject, and to summarize data across subjects. Many related methods have been pro-704

posed in the literature, but the processing principles behind them, and the range of705

tasks that they can be used for, are not widely appreciated. The use of MCCA (or706

similar techniques) should be more prevalent given the ubiquitous need for merg-707

ing data across subjects. In this paper we presented a formulation of MCCA that708

is relatively easy to understand, illustrated in detail how it works, and showed how709

it can be put to use for a wide range of common tasks in multi-subject multivariate710

data analysis.711
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