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Abstract

This work describes a new diffusion MR framework for imaging and modeling of microstructure 

that we call q-space trajectory imaging (QTI). The QTI framework consists of two parts: encoding 

and modeling. First we propose q-space trajectory encoding, which uses time-varying gradients to 

probe a trajectory in q-space, in contrast to traditional pulsed field gradient sequences that attempt 

to probe a point in q-space. Then we propose a microstructure model, the diffusion tensor 

distribution (DTD) model, which takes advantage of additional information provided by QTI to 

estimate a distributional model over diffusion tensors. We show that the QTI framework enables 

microstructure modeling that is not possible with the traditional pulsed gradient encoding as 

introduced by Stejskal and Tanner. In our analysis of QTI, we find that the well-known scalar b-

value naturally extends to a tensor-valued entity, i.e., a diffusion measurement tensor, which we 

call the b-tensor. We show that b-tensors of rank 2 or 3 enable estimation of the mean and 

covariance of the DTD model in terms of a second order tensor (the diffusion tensor) and a fourth 

order tensor. The QTI framework has been designed to improve discrimination of the sizes, 

shapes, and orientations of diffusion microenvironments within tissue. We derive rotationally 

invariant scalar quantities describing intuitive microstructural features including size, shape, and 

orientation coherence measures. To demonstrate the feasibility of QTI on a clinical scanner, we 

performed a small pilot study comparing a group of five healthy controls with five patients with 

schizophrenia. The parameter maps derived from QTI were compared between the groups, and 9 

out of the 14 parameters investigated showed differences between groups. The ability to measure 

and model the distribution of diffusion tensors, rather than a quantity that has already been 

averaged within a voxel, has the potential to provide a powerful paradigm for the study of complex 

tissue architecture.
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 1 Introduction

Diffusion MRI (dMRI) encodes information on translational displacements of water on the 

micrometer scale [1]. Thus, the dMRI signal is an excellent probe for microstructural 

geometries in tissue such as the human brain. In dMRI, each millimeter-scale measurement 

contains an aggregate of information from a multitude of microscopic environments 

(microenvironments). The goal of our work is to disentangle the micrometer-scale 

information from these different microenvironments. In this paper we introduce a 

mathematical framework for advanced diffusion encoding, q-space trajectory imaging (QTI), 

and we propose a model for QTI data analysis, the diffusion tensor distribution (DTD). The 

QTI framework has been designed to improve discrimination of the sizes, shapes, and 

orientations of diffusion microenvironments within tissue. In the rest of this section, we 

describe related work for both aspects of our research: the diffusion encoding and the data 

modeling. We then give a summary of the main contributions of this paper.

The vast majority of dMRI applications today are based on the Stejskal-Tanner pulse 

sequence [2], which employs a single pair of pulsed magnetic field gradients for diffusion 

encoding. Here we refer to this sequence as the single diffusion encoding (SDE) experiment. 

The SDE technique is typically used in conventional diffusion tensor imaging (DTI) for 

quantification of measures such as the mean diffusivity (MD), the apparent diffusion 

coefficient (ADC) and the fractional anisotropy (FA) [3]. Techniques more advanced than 

DTI, such as high angular resolution diffusion imaging (HARDI) [4] and measurements of 

biophysical features such as axonal diameter [5, 6], are also typically based on the SDE 

experiment.

Measures derived from conventional SDE can identify subtle changes in tissue, but most 

measures provide limited insight into the nature of that change [7–9]. For example, many 

factors such as cell death, edema, inflammation, demyelination, increase in extracellular or 

intracellular water, and partial volume effects, may cause similar changes in FA [7, 10–13]. 

This limited specificity impedes our ability to relate measures from SDE to local anatomical 

changes and neuropathologies. Some of these limitations are specific to DTI and can be 

resolved by biophysical modeling and measurements with different diffusion times [5, 6]. 

Other limitations are inherent for SDE, for example its inability to disentangle variation in 

size and shape without prior information [14].

Alternative encoding methods have the potential to significantly improve tissue 

characterization beyond what is possible with SDE and DTI, increasing the sensitivity to 

microstructure. Such methods can, for example, provide information about distributions of 

cell shapes, sizes and membrane properties within a voxel [15, 16]. Many techniques have 

been proposed for advanced diffusion encoding. Some techniques employ multiple pairs of 

pulsed field gradients, where each pair performs a measurement in a certain direction, to 
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render the MR signal sensitive to higher order moments of the diffusion process. This 

category includes double diffusion encoding (DDE) sequences [17–19, 15, 20] and even 

triple diffusion encoding (TDE) sequences [21–24]. We are here using the recently proposed 

consensus nomenclature for diffusion methods extending beyond Stejskal and Tanner’s 

design [25].

An alternative to multiple pulsed field gradients is to use time-varying gradients that are not 

pulsed, such as oscillating gradients [26], optimized gradient shapes [27], and rotating 

gradient fields or circularly polarized oscillating gradients [28, 29]. Our initial work used 

time-varying gradients to achieve an isotropic diffusion encoding [30], which can measure 

the trace of the diffusion tensor in a single shot. Recently, we have extended this work to 

investigate the use of more general time-varying gradients that specify a trajectory in q-

space [31], which we call q-space trajectory encoding (QTE). By independently varying the 

experimental variables of the q-space trajectories, one can record a multidimensional dataset 

with information about the correlations between the observables in the different dimensions. 

Conceptually analogous multidimensional approaches revolutionized the field of nuclear 

magnetic resonance (NMR) spectroscopy [32] and were adapted to other techniques such as 

IR spectroscopy [33]. We therefore refer to these new encoding methods as 

multidimensional diffusion MRI, since they add additional dimensions to the acquisition that 

can be used to disentangle underlying features of the tissue.

Diffusion imaging methods are generally defined in terms of a diffusion encoding strategy 

plus a model of the signal. For example, for DTI, DKI (diffusional kurtosis imaging) and 

QTI we have the encoding and modeling relationships described in Table 1. In this work, we 

extend the diffusion tensor model with a fourth-order tensor that describes the covariance of 

diffusion tensors within a voxel, allowing us to define a novel yet intuitive diffusion tensor 

distribution model. Providing a complete overview of all proposed diffusion signal models is 

out of the scope of the current work. However, higher-order tensor models have previously 

been used to characterize non-Gaussian diffusion [34], in diffusional kurtosis imaging (DKI) 

[35] and in describing the variability of diffusion tensors estimated from DTI [36]. Diffusion 

tensor distributions have also been considered in the context of crossing fibers [37].

The QTI framework has been designed to improve discrimination of microenvironments 

within tissue. It is well known that the traditional FA measure confounds the dispersion of 

orientations with the shape of the microenvironments: in large white matter fiber bundles 

with one orientation, the FA reflects the geometry of the microenvironments, while in 

crossing fibers, the multiple fiber orientations will reduce the measured FA, confounding the 

connection to microstructure. The true microscopic anisotropy of the microenvironments has 

recently been modeled and estimated using DDE techniques [38, 39] and using isotropic 

diffusion encoding [14]. These microscopic FA (μFA) measurements are not confounded by 

orientation dispersion. In the current work, we introduce a distributional framework that 

naturally models orientation dispersion and microscopic anisotropy.

Within the QTI framework, we find that the familiar b-value naturally extends to a tensor-

valued entity, a diffusion measurement tensor, which we call the b-tensor [40]. The b-tensor 

describes the second-order moment of the trajectory in q-space of the diffusion gradient 

Westin et al. Page 3

Neuroimage. Author manuscript; available in PMC 2017 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



during an experiment. In current literature, the b-tensor is often referred to as the b-matrix. 

Although the b-matrix concept is well established and can be found in standard text books 

on diffusion NMR and MRI as a means to correct for crossterms from imaging gradients 

[41, 42, 1, 43], the characterization of the b-matrix for gradient diffusion encoding 

waveforms is a novel concept.

For the first time, we demonstrate estimation of a per-voxel diffusion tensor distribution 

directly from dMRI data. Using measurements obtained with trajectory encoding, we extend 

the diffusion tensor model with a fourth-order tensor that describes the covariance of 

diffusion tensors within a voxel, allowing us to define a novel yet intuitive diffusion tensor 

distribution model. We demonstrate that this estimation is possible with trajectory encoding 

but not with the traditional SDE. We use the concept of general b-tensor measurements, with 

multiple tensor shapes, to estimate the DTD. We compactly describe the DTD with a mean 

and covariance, and we show that the covariance information can be divided into two parts 

related to bulk and shear in materials science. We propose to separate the bulk and shear 

variances into measures that may be more intuitively meaningful, with the goal of separating 

size, shape, and orientation coherence. Finally, we demonstrate the clinical feasibility of QTI 

in a preliminary study of patients with schizophrenia and healthy controls.

 2 Theory

QTI is a mathematical framework that combines trajectory encoding with a proposed data 

model, the diffusion tensor distribution. We describe how to use QTI to measure moments of 

the DTD and how to quantify these moments by invariant parameters that define 

microstructure information. We will explain how the new types of diffusion encodings can 

distinguish tissue architectures that are indistinguishable with conventional SDE-based 

dMRI. We motivate this here with a synthetic example: Figure 1 (top row) shows three 

diffusion tensor distributions that would all appear isotropic in an SDE experiment. Hence, 

they would be indistinguishable with conventional SDE-based dMRI sequences such as DTI, 

HARDI, DSI, and DKI. The proposed QTI framework can distinguish between these 

different cases to enable quantification of such differences in microstructure.

Throughout this paper, we will represent first-order tensors, i.e., vectors, by boldface italic 

letters (e.g. n, size 3 × 1), second-order tensors by boldface capital letters (e.g. D), and 

fourth-order tensors by blackboard bold capital letters (e.g. ℂ). Second-order tensors can be 

represented by 3×3 matrices, or if symmetric, in Voigt notation as vectors which we here 

express by corresponding lower-case letters (e.g. d, size 6 × 1). Fourth-order tensors can be 

expressed using 3 × 3 × 3 × 3 elements. Symmetric fourth-order tensors can be represented 

more compactly by matrices (e.g. ℂ, size 6 × 6) or as vectors in Voigt notation (e.g.  size 21 

× 1). The notation is explained in detail in the Appendix.

In this section we will first introduce the measurement tensor (the b-tensor) [40] and its 

connection to QTI. We will then discuss distributions over diffusion tensors and define the 

DTD model, its estimation using QTI, scalar invariants derived from DTD, and how to 

estimate these invariants.
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 2.1 Defining the b-tensor

In diffusion imaging, the measurement probe takes an average over the microenvironments 

within the tissue. By designing families of new probes, we are looking for statistical 

properties of the distribution over these microenvironments. We argue that by probing the 

collection of microenvironments with all shapes and orientations of measurement probes, we 

can recover information about the distribution over these microenvironments. For example, 

all three distributions in Figure 1 would appear isotropic in an SDE experiment, but can be 

distinguished with access to higher order moments such as variability in shape or size.

In conventional DTI, the dependence of the diffusion coefficient on the encoding direction n 
is modeled by a second-order tensor according to D(n) = nT〈D〉n, where |n| = 1. While DTI 

estimates a single second order tensor, it can be thought of as 〈D〉, which is the mean of a 

distribution of tensors. This relation can also be expressed as an inner product between the 

diffusion tensor and a b-tensor B according to

(1)

where b is the b-value. Thus, in SDE, the b-tensor is defined by the outer product of the 

gradient direction, B = b n⊗2 = b nnT. The conventional b-value is given by b =< B, I > 

where I is the second-order identity tensor. We may also express this as b = Tr(B), i.e., the 

trace of B. In the DTI literature, B is called the “b-matrix.”

In the context of SDE-based acquisitions, the b-matrix is mainly used to correct for cross-

terms with imaging gradients [44]. However, the b-matrix/tensor concept can be extended to 

analyze the diffusion encoding that results from waveforms other than SDE. In the most 

general form, we analyze the effect of an arbitrary time dependent gradient waveform g(t) in 

terms of a trajectory through q-space q(t) according to

(2)

where γ is the gyromagnetic ratio. The b-tensor can now be generally defined as

(3)

where τ is the echo time. To clarify, and as evidenced from equation 3, we note that the b-

tensor is a measurement tensor, and as such it depends only on the gradient waveform and 

not on the underlying tissue geometry.

We emphasize that the trajectory of q(t) determines the shape of the b-tensor. To allow for an 

intuitive interpretation of the gradient trajectory and its relation to q-space and 

corresponding b-tensor, we illustrate a selection of b-tensors from SDE and DDE (Fig 2). 
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The shape of the b-tensor is quantified by its eigenvalues, and two b-tensors are of identical 

shapes if they share eigenvalues. In SDE, the b-tensors are of rank 1 (the rank of the b-tensor 

is given by the number of non-zero eigenvalues) and are shaped like a stick or a line, giving 

“linear” b-tensors. In DDE, when the two pulses are not parallel, the b-tensors have rank 2, 

and are shaped like a disc or a plane, producing a “planar” b-tensor. Gradient waveforms 

designed to yield isotropic diffusion encoding, for example TDE [23] or magic angle 

spinning of the q-vector (qMAS) [30], yield b-tensors of rank 3, shaped like spheres (Fig 3). 

The concept behind qMAS is to spin q(t) in order to narrow the distribution of diffusion 

coefficients to the the mean diffusivity of each domain, similar to the narrowing of chemical 

shift anisotropy obtained by mechanically spinning the sample in the magic-angle in solid-

state NMR [45]. As we will show below, the rank of the b-tensor is important in the 

estimation of the DTD.

In general, any q-space trajectory starting and ending at the origin generates a b-tensor, and 

its shape will depend on the trajectory of the curve. Affine transformations may be used to 

modify the trajectory of the curve and the b-tensor [40]. To generate a b-tensor with a 

specific shape, one can start with a q-space trajectory q(t) that produces a b-tensor B (Eq. 3). 

Since Eq. 2 is linear, scaling q(t) with an affine transform M corresponds to scaling the 

gradient trajectory gM(t) = M g(t), and yields the new curve qM(t) = Mq(t). This results in a 

new b-tensor

(4)

The special case of transforming a normalized isotropic q-space trajectory with B = I 
produces the simple relation BM = MMT. Therefore, we can generate a family of trajectories 

with corresponding b-tensors by applying affine transforms to any existing gradient 

trajectory. Moreover, from a single trajectory that has a b-tensor of rank 3 (e.g., qMAS), we 

can generate new trajectories that span all possible b-tensors, i.e any set of three eigenvalues, 

at any orientation. Examples of affinely transformed trajectories and corresponding b-tensors 

can be found in figure 4.

We note that even if the trajectory q(t) corresponds to a B that is initially a rank 3 tensor yet 

not isotropic, the following transformation

(5)

will generate a new trajectory that yields a corresponding isotropic b-tensor, and can also 

transform q(t) to a trajectory that produces isotropic encoding. This is since BM = M B MT 

= B−1/2B(B−1/2)T = I.

According to central concepts in image processing, efficient detection of signal is achieved 

by adapting the detection unit to the characteristics of the signal. Thus, we would like to 
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sample the signal with a variety of measuring b-tensors that span the entire family of shapes 

expected in the tissue microenvironments. For example, one natural option is a family of b-

tensors that span the entire spectrum of shapes, from sticks through plates to spheres. When 

a linear and planar b-tensor are orthogonal, the linear tensor effectively encodes diffusion in 

a direction perpendicular to its planar counterpart, and visually, the linear b-tensor points 

along the normal of the plane of the planar b-tensor. Thus, there is a dual nature of a linear 

and planar b-tensor that share symmetry axes. In an anisotropic structure, a linear b-tensor 

oriented along the structure will yield higher signal attenuation, whereas the orthogonal 

planar tensor will yield lower signal attenuation.

An example of such encoding can be found in our recent work on TDE [24] where we use 

stick-sphere-plate b-tensors to measure stick-sphere-plane microscopic diffusion tensors. 

This proposed family of trajectories (Fig 4) was generated by applying affine transforms to 

an initially isotropic (i.e., spherical) qMAS encoding [14, 9] (Fig. 3, last row) as the initial 

input trajectory.

 2.2 Defining a distribution over diffusion tensors

Consider a system composed of a collection of microenvironments, where in each individual 

microenvironment the diffusion is described by a diffusion tensor D (as in Fig. 1). We 

propose to compactly model these microenvironments within a voxel with a distribution over 

tensors. The tensor D is then a stochastic variable with expectation 〈D〉, where 〈·〉 represents 

averaging over the distribution in the voxel. The covariance of D is given by a fourth-order 

tensor ℂ [36], that we define using the standard definition of covariance

(6)

where D⊗2 = D ⊗ D is the outer product of D with itself. For implementation, it is 

convenient to express the symmetric 3 × 3 tensor D in Voigt notation as a column vector d of 

size 6 × 1, containing the six distinct components of D, according to,

(7)

The  factors are necessary for d and D to have equal norms. The tensors 〈D⊗2〉 and 〈D〉⊗2 

can now be defined by

(8)

where i, j ε {xx, yy, zz, yz, xz, xy}, and
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(9)

Hence, these tensors can be represented by 6 × 6 matrices. For the covariance ℂ, we reuse 

the same symbol for the 3 × 3 × 3 × 3 (Eq. 6) and the 6 × 6 versions of ℂ, which can now be 

expressed as

(10)

or in full by

(11)

where 21 out of the 36 elements are unique since ℂ has both major symmetry (cab,cd = 

ccd,ab) and minor symmetry (cab,cd = cba,cd). Note that this symmetry is different than for 

fully symmetric fourth-order tensors which have only 15 unique elements (cabcd with fully 

permutable indices).

 2.3 Diffusion modeling and estimation

The QTI framework describes the diffusion-encoded MR signal from a system composed of 

multiple microenvironments, each having Gaussian diffusion modeled by a diffusion tensor 

D and measured using a b-tensor B. The signal S (normalized by the non-diffusion weighted 

signal, S0) can be expressed as

(12)

where 〈·· 〉 averages the MR signal across all environments in a voxel. Assuming Gaussian 

diffusion in all microenvironments, it is sufficient to describe a QTI experiment by the b-

tensor alone; other factors, such as the diffusion time or the duration of diffusion encoding, 

do not need to be explicitly accounted for. The abstraction of assuming Gaussian diffusion is 

useful and reasonably accurate as long as 1 > S(B) > 0.1 [46] and as long as any restricting 

geometries are small compared to the length scale of diffusion that takes place during the 

encoding waveform. This is also a central assumption, for example, in the NODDI model 

that assumes the apparent axonal diameter to be zero [47]
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Investigating the cumulant expansion of S reveals a key relationship,

(13)

where  B⊗2. This approximation enables us to relate 〈D〉 and ℂ from our model directly to 

the signal measurements. The derivation is presented in the Appendix, where we also show 

that expansion to the third order yields a 6th-order tensor that is related to the skewness of 

the distribution of diffusion tensors. The approximation in Eq. 13 is valid up to some b-value 

(trace of B) called the convergence radius, which depends on the distribution of the diffusion 

tensors. For simple distributions and for SDE, the convergence radius has been calculated 

analytically [48].

 2.4 Scalar invariants derived from QTI

In this section, we introduce scalar invariants to describe properties of the distribution of 

microenvironments. We define these invariants using projections of 〈D〉 and ℂ, and ratios of 

these projections. Figure 1 illustrates the tensors 〈D〉 and ℂ graphically for three distinct 

distributions of microenvironments, and example invariants.

 Invariants from the mean of the tensor distribution—First, we note that existing 

DTI invariants can be expressed as inner products. For example, we can express the mean 

diffusivity (MD) as an inner product of the diffusion tensor and the isotropic tensor Eiso 

according to

(14)

where Eiso is defined by

(15)

which is a scaled second-order identity tensor with unity Frobenius norm. In the next section 

we show that not only the mean, but also variances, can be expressed as inner products, and 

we use this to derive other scalar invariants of the distribution D.
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 Invariants from the covariance of the tensor distribution—From the 4th order 

covariance tensor, several scalar invariants can be derived. We start with discussing isotropic 

components of this tensor. We first define the isotropic 4th order tensor

(16)

This isotropic fourth-order tensor can be divided into two distinct isotropic components, 

which in the field of mechanics are interpreted as bulk and shear modulus of the fourth-order 

stress tensor [49]. We define these tensors as

(17)

and

(18)

It is evident that the bulk and shear components are orthogonal, < bulk, shear >= 0.

These isotropic tensors can be used to derive scalar measures of variances from the fourth-

order covariance tensor ℂ. For example, the variance in mean diffusivities VMD between 

local microenvironments, is the bulk part of the variance,

(19)

using the definition of ℂ from (Eq. 6) and where
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(20)

(21)

Note that if ℂ has been estimated, 〈D⊗2〉 can be obtained from ℂ and 〈D〉 (Eq. 6). The 

variance VMD can be interpreted as the bulk or size variation of the diffusion tensors in the 

distribution and can in short be expressed as VMD = 〈MD2〉 − 〈MD〉2. Similarly, we obtain 

the shear variance Vshear by

(22)

This equation can be seen in terms of tensor-shape from eigenvalue variance. We can define 

the shape of a tensor T with eigenvalues λ1, λ2, and λ3, according to

(23)

With this definition the components of Vshear in Eq. 22 can be described by

(24)

(25)

and the shear variance can be expressed as Vshear = 〈Vλ (D)〉 − Vλ(〈D〉). Further, the total 

isotropic variance is the sum of VMD and Vshear

(26)

The shear variance Vshear is sensitive to both variations in orientation of the tensors, as well 

as the shape (microscopic anisotropy) of the tensors, in the distribution. It would yield a high 

value for a system containing randomly ordered anisotropic compartments (Fig. 1, left), and 

a low value for isotropic compartments (Fig. 1, middle). On the other hand, VMD reflects 

variation of mean diffusivities and would yield a low value if all microscopic compartments 

are similar in this respect (Fig. 1, left), but a high value if they are not (Fig. 1, middle).
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 2.5 Normalized scalar invariants derived from QTI

We propose to separate the bulk and shear variances into measures that may be more 

intuitively meaningful, with the goal of separating size, shape, and orientation coherence. 

The measures we propose are normalized and range between 0 and 1. Normalizing the VMD 

gives a natural size variation parameter, CMD. Normalizing the shear variance is more 

challenging because it is affected by both the shape of the microenvironments and their 

orientation coherence (or dispersion). We derive a measure of shape, Cμ, related to μFA and 

a separate measure of microscopic orientation coherence, Cc, related to previously presented 

order parameters. Figure 5 summarizes the intuitive meaning of these measures.

 Normalized size variance—This variance measure describes the normalized size 

variance of the tensors, where size is defined by the trace of the tensor, or equivalently by its 

mean diffusivity. A normalized size variance measure can be defined by normalizing VMD 

(Eq. 19) to produce

(27)

where the subscript k indicates a sample from the distribution D, and the summation is over 

all samples. CMD is 0 when all microenvironments have the same size, and increases with 

increased size variance.

 Micro- and macroscopic anisotropy—We can also define a microenvironment shape 

measure using normalized variances. The obtained quantity Cμ is related to the microscopic 

anisotropy μFA of the tensors in the distribution

(28)

and thus

(29)

The factor  makes the range of the measure [0,1]. Note that the averaging brackets 〈 〉 in Eq. 

28 are applied on the outer product of the tensors for each microdomain 〈D⊗2〉. By instead 

performing the averaging on the microdomain tensors and then taking the outer product 

〈D〉⊗2, we arrive at an expression for the macroscopic anisotropy that corresponds to the 

familiar FA measure according to
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(30)

These two anisotropy measures Cμ and CM become equal when all the tensors have the same 

shape and orientation. If there is dispersion of the orientations or variation in shape, then the 

two anisotropy measures are different. To illustrate the difference between these two 

anisotropy measures, consider a case when all tensors in a voxel have identical eigenvalues 

but are randomly oriented. In that case, CM would be zero, but Cμ would assume the value 

that CM would have had if all tensors were aligned. A corresponding analogy applies for FA 

and μFA [?], since they are simply the square roots of CM and Cμ. Notice the similarity 

between Eqs. 28 and 30, where the only difference is whether the averaging across tensors 

takes place before or after the tensor outer product.

This way of calculating μFA is a direct method and does not involve any powder averaging 

as required by previous methods [14, 39]. Powder averaging requires that the sampling of 

the data is isotropically distributed on the sphere. For multiple diffusion encoding schemes, 

there is no general method for distributing the measurements isotropically. For double 

diffusion encoding, the few schemes that have been presented [39, 50, 51] have very specific 

numbers of measurements and cannot be varied when optimizing a clinical protocol.

 Microscopic orientation coherence—The orientation coherence of 

microenvironments can by quantified by the orientational order parameter. The name “order 

parameter” is a well-established parameter for describing the order in liquid crystals. It is 

defined as OP = 〈3 cos2(θ) − 1〉/2 , where θ is the angle between the domain and voxel scale 

symmetry axes. This original vector definition of the order parameter is based on the notion 

that the structures have the same size, and thus can be described by angles. This definition 

has recently been extended to (diffusion) tensors [14, 9]. Translated into our notation, these 

definitions of OP are

(31)

and

(32)

OP provides a measure of orientation dispersion that has a simple geometric interpretation 

where OP = 0 indicates randomly oriented domain orientations and OP = 1 indicates 

perfectly coherent alignment.
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We here define a new order parameter, Cc, the microscopic orientation coherence. Cc is 

related to prior definitions of OP, but it is designed to remove the effect of size distributions

(33)

which we can recognize as the ratio of the micro- and macroscopic anisotropies. As an 

illustrative example, if all microenvironments are of the same shape and aligned, Cμ and CM 

are equal, and thus Cc equals 1. If the microenvironments are randomly oriented, CM 

becomes 0 and thus Cc equals 0. For very small Cμ this orientation coherence measures is 

not meaningful since the average orientation of the microenvironments is uncertain.

 2.6 Connections to DKI

The QTI framework connects naturally to DKI [35], which is also based on the cumulant 

expansion of the signal (Eq. 13). The difference is that the fourth order tensor used in DKI, 

 is totally symmetric and thus has only 15 unique elements, which can be estimated from 

an SDE experiment. In contrast, ℂ has major and minor symmetry with 21 unique elements, 

requiring acquisitions with b-tensors of rank 2 or 3. By comparing the DKI model from ref 

[35] with Eq. 13, we see that

(34)

However, , because has total symmetry whereas ℂ has not. This has 

consequences for the metrics that can be derived. It can be shown that

(35)

This means that DKI entangles the bulk and shear contributions to the tensor variance. To 

more explicitly see this, we will derive the totally symmetric isotropic tensor (15 unique 

elements), and express it by a bulk and a shear component. Consider the mean kurtosis, here 

defined as the average of across the sphere as [52]

(36)

which in our notation is written as

Westin et al. Page 14

Neuroimage. Author manuscript; available in PMC 2017 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(37)

where tsym is an isotropic tensor that has total symmetry (15 independent components), 

defined as

(38)

From Equation 38, and the fact that the bulk and shear components are orthogonal, we can 

see that the ratio of the inner products with the shear and bulk tensor

(39)

which is the factor 2 in equation 35.

 Disentangling bulk and shear kurtosis by QTI—From equation 38 we see that 

tsym is the sum of a bulk and shear part, and thus DKI’s mean kurtosis is also the sum of 

two kurtosis components

(40)

With access to the full 4th order tensor ℂ, QTI allows the estimations of the two separate 

kurtosis contributions. We denote these two novel measures the bulk kurtosis,

(41)

and the shear kurtosis,

(42)
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From this analysis, we can expect MK to depend on the orientation dispersion through the 

dependence of Kshear on Vshear (Eq. 22), just as FA depends on orientation dispersion [?]. 

This may explain why there is a strong correlation between MK and FA [53]. To obtain a 

kurtosis metric purely related to microscopic anisotropy that is independent of orientation 

dispersion, we propose the microscopic kurtosis:

(43)

 2.7 Estimation of the tensor covariance

To estimate the fourth-order covariance ℂ from a set of dMRI measurements, we first denote 

= B⊗2 and ℂ in Voigt notation as column vectors of size 21 × 1, represented by and  and 

we denote B as a column vector of size 6×1, represented by b. We can now estimate the non-

diffusion encoded signal S0, the average diffusion tensor 〈d〉 and the tensor covariance by 

solving the following equation system

(44)

(45)

where β is the model parameter vector (S0 〈d〉  containing the estimated non-diffusion 

encoded signal, the mean of the diffusion tensor distribution (a diffusion tensor), and its 

variance (a 4th-order covariance tensor), and where m is the number of measurements and p 
is the number of parameters of the model (p = 1 + 6 + 21 = 28). The β vector can be 

estimated by pseudoinversion according to

(46)

To simplify the description, we omit in this section correction for heteroscedasticity 

introduced by the logarithmic transformation of the signal data, but we include the 

correction in the data analysis section below.

For XTX to be invertible, it must have full rank, i.e., rank(XTX) = 28. Note that 28 = 

1+6+21, so this number can intuively be related to the one paramter to specify the signal 
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baseline, the 6 parameters required to specify the 2nd order mean diffusion tensor, and the 

21 parameters needed to specificy the 4th order covariance tensor.

Just as in DTI, which requires sampling in at least 6 “non-collinear” directions, we need to 

sample with at least 21 unique linear combinations of to estimate  To formally specify the 

requirements on these measurements is beyond the scope of this work, but we here provide a 

rule of thumb similar to the useful albeit incomplete “non-collinear” requirement in DTI 

[54]. First, note that with SDE encoding, the b-tensor has rank-1 and can only have a stick 

shape. As a consequence, the rank of XTX is limited to p = 1 + 6 + 15 = 22. This is since = 

b2n⊗4 = b2ninj nknl is fully symmetric, with indices that are fully exchangeable. It is known 

that fully symmetric 4th order tensors have only 15 unique elements. For experiments 

performed with b-tensors of rank 2 or 3, however, = B⊗2 = bij bkl, in which case has 

major symmetry and thus up to 21 unique elements. Hence, the rank of XTX can become 

1+ 6+ 21 = 28, provided that the signal is sampled using b-tensors with, for example, 

different shapes, sizes, and orientations. Figure 6 demonstrates that sampling with different 

shapes (e.g. linear, planar and isotropic) and sizes (i.e. b-values) of the b-tensor disentangles 

the three cases shown in Fig. 1, which are indistinguishable with SDE only (green lines).

 3 Method

 3.1 Implementation

We acquired data for q-space trajectory imaging (QTI) on a clinical MRI scanner (Philips 

Achieva 3T) using a pulse sequence developed in house adapted from [9]. Imaging 

parameters were: TE = 160 ms, TR = 6000 ms, field of view = 288×288×60 mm3, image 

resolution 3 × 3 × 3 mm3, partial Fourier factor of 0.8. Diffusion encoding was performed 

using q-space trajectory encoding waveforms. Identical waveforms were executed before 

and after the 180° pulse to compensate for potential non-linear gradient terms. The gradient 

waveforms were designed using Eq. 4 (Figure 4).

We implemented two acquisition schemes: a preliminary acquisition and a proof-of-principle 

scheme designed for clinical studies. The preliminary acquisition had 11 linearly spaced b-

values between 50 and 2000 s/mm2, using linear, prolate, spherical, oblate and planar b-

tensors, rotated into the six directions specified by the icosahedral direction scheme (Figure 

7), yielding in total 330 measurements. The clinical acquisition protocol was composed of 

216 measurements and utilized five b-values. Measurement tensors of four shapes were 

employed, i.e., sticks, prolates, spheres, and planes, each associated with a specific gradient 

trajectory (Table 2). From 6 to 30 b-tensor “measurement directions” were obtained by 

rotating the gradient waveforms using an evenly distributed geometric sampling scheme 

(Figure 7).

 3.2 Subjects

Five patients with schizophrenia and five age-matched healthy controls without neurological 

disorders were investigated using the clinical protocol. The local institutional review board 

approved all study protocols and written informed consent was obtained from all subjects. 

All schizophrenia patients met the DSM-5 criteria for schizophrenia. Disease duration was 
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between 5 and 12 years (median of 10 years). The median Positive and Negative Syndrome 

Scale score at the time of MRI was 55, with a range of 42–71.

 3.3 Analysis

Data was motion-corrected with affine transforms optimizing the mutual information 

between acquired data and reference volumes extrapolated from low b-value volumes [56]. 

Optimization was performed using three degrees of freedom: rotation around the z-axis and 

in-plane translations, i.e., along the x- and y-directions.

The average diffusion tensor and the tensor covariance were fitted to the data using Eq. 44. 

Prior to fitting, data was smoothed using a Gaussian filter with a standard deviation of 0.5 

voxels. The fit was corrected for heteroscedasticity using HS = HXβ as the regression model 

instead of S = Xβ, where H is a diagonal matrix with the signal amplitudes as diagonal 

elements [57]. Scalar maps derived from the QTI framework representing the mean and 

variance of the DTD, i.e., MD, VMD, Vshear, and Viso, were calculated from Eqs. 14, 19, 22, 

and 26. Normalized variance measures, i.e., CMD, Cμ, CM and Cc were calculated by using 

Eqs. 27, 28, 30, and 33. Kurtosis maps were calculated by using Eqs. 37, 41, 42, and 43.

FA maps were registered to MNI space using [58]. ROIs for global white matter (WM) were 

defined in template space from the Harvard-Oxford atlas and projected to subject space to 

extract values for analysis and group comparisons. Only voxels present in all subjects were 

included in the WM mask. Significance was tested using the t-test (two-tailed, assuming 

equal variances). We refrained from a more detailed and regional analysis due to the limited 

statistical power offered by the limited group sizes [59].

 4 Results

We first present the preliminary data, followed by the clinical pilot study. Preliminary data 

was acquired with five different shapes of the diffusion encoding tensor. Despite the rather 

long echo time (TE = 160 ms) in the prototype implementation, the sequence yielded high 

quality images even at the maximal diffusion encoding (Fig. 8A). More efficient encoding 

can be obtained by incorporating a pause for the 180° pulse in the gradient waveform [60], 

in contrast to the present implementation where the same waveform was applied before and 

after the 180° pulse. The dual nature of a linear and planar diffusion encoding is evident in 

regions of the images with coherent fibers, where structures that appear bright in images 

encoded with a stick-shaped b-tensor appear dark in those encoded with the planar b-tensor, 

and vice versa (Fig. 8A) [31, 29]. In white matter, the signal for high b-values decreases as 

the shape of the b-tensor goes from linear, through prolate to isotropic, but increases again 

for oblate and planar tensors (see Fig. 8B, corpus callosum and crossing WM). In cortical 

regions with high fiber orientation dispersion, the signal also varies with the shape of the b-

tensor, but to a lesser degree (Fig. 8B). The difference in signal from measurements with 

differently shaped b-tensors depends on the underlying distribution of microscopic diffusion 

tensors (Fig. 6).

Figure 9 demonstrates parameter maps from QTI, calculated from data obtained with the 

clinical protocol. Figure 9A shows the mean and variance of the diffusion tensors, i.e., the 
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mean diffusivity (MD), the variance of the mean diffusivity, and the shear variance (VMD 

and Vshear). These parameters were obtained by fitting Eq. 13 to the data and calculating 

invariant projections of the tensors 〈D〉 and ℂ using Eqs. 14, 19, and 22. As expected, the 

map of MD is high in the ventricles and the subarachnoid space where there is cerebrospinal 

fluid, and at its lowest in the white matter. The map of the variance in MD, VMD, exhibits 

high values in regions where we expect high variability in mean diffusivities, for example, in 

voxels with both tissue and cerebrospinal fluid. Regions with MD above 2.6 μm2/ms were 

masked out, since high b-value data were inseparable from the noise floor in such regions. It 

is noteworthy that VMD is non-zero in most parts of the brain. The map of variance in shape 

and orientation, Vshear, shows low values in gray matter and high values in white matter, 

with the exception of the corpus callosum where the fibers are more well-aligned than in 

other structures. The last map of Viso shows the total variance, which is the sum of size, 

shape, and orientation variance.

Maps of normalized variance measures are presented in Fig. 9B. The measures are the size 

variance parameters (CMD), the micro- and macroscopic anisotropy parameters (Cμ = μFA2 

and CM = FA2), and the microscopic orientation coherence measure (Cc). The normalized 

size variance is higher in gray than in white matter. The microscopic anisotropy Cμ is high 

and relatively uniform in white matter, even in crossing fiber regions, whereas the 

macroscopic anisotropy is lower in regions of crossing fibers than in single fiber regions. 

Finally, the orientation coherence Cc is high in larger coherent tracts such as the corpus 

callosum, and lower in regions of high orientation dispersion.

Figure 9C compares DKI’s MK with the kurtosis measures derived from the QTI analysis, 

which separate the diffusional kurtosis into two components (Eqs. 37, 41, and 42). The 

conventional diffusional kurtosis MK is generally low in the gray matter and high in the 

white matter. The kurtosis related to dispersion in mean diffusivity, Kbulk, is generally low in 

the white matter, but higher and uniform in the gray matter. The kurtosis related to the 

difference between local and global anisotropy, Kshear, is high in most of the white matter 

except in regions of coherent fiber structures such as the corpus callosum. The alternative 

definition of the anisotropy-related kurtosis in Eq. 43, Kμ, which relates only to anisotropy-

induced variance and not to the degree of orientation coherence, is high also in the corpus 

callosum.

Maps of FA and μFA are presented in Fig. 10. The μFA was calculated from Eq. 28 and 

corresponds to the value the conventional FA would assume if all fibers were parallel. The 

parameter is thus independent of the fiber orientation dispersion and shows high values 

across all WM. In contrast, the FA calculated from 〈D〉 using Eq. 30 shows low values in 

regions of crossing fibers. In fact, the FA map resembles the regularity parameter Cshear, 

calculated by Eq. 32. Hence, FA primarily reflects the degree of order among fibers in white 

matter and to a lesser degree the amount of microscopic diffusional anisotropy. The features 

of the μFA map agree well with the in-vivo maps obtained with DDE and qMAS-based 

approaches in previous studies [9, 51].
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 4.1 Example clinical study of schizophrenia

To investigate the clinical feasibility of the proposed diffusion MRI framework we 

performed a small pilot study comparing five healthy controls to five patients with 

schizophrenia. Due to the small number of subjects, the results from the study are 

preliminary, and a larger study is planned to confirm the implications of the current findings. 

Parameter maps were calculated for all subjects, and analyzed using in-house software to 

obtain an average value across all white matter, as defined from the Harvard-Oxford atlas in 

template space and backprojected to subject space.

Table 3 shows a comparison of parameters between white matter of controls and patients 

with schizophrenia. Although the statistical power was limited due to the small group sizes 

(n = 5), we note that significant differences between the groups were found for eight of 

eleven parameters tested. Patients had significantly higher MD and VMD, whereas no effect 

was found for Vshear and Viso. The normalized variances Cμ and CM showed significance. 

The four normalized parameters are plotted in Fig. 11, showing a separation between the 

groups especially for Cμ. Both anisotropy measures μFA and FA were significantly lower in 

the patients. For kurtosis, the conventional MK showed no difference, whereas all the more 

specific kurtosis metrics showed significant differences, with higher Kbulk and lower Kshear 

and Kμ in the patients.

Previous studies suggest that two separate pathologies dominate changes seen in 

schizophrenia by diffusion MRI [62]: cellular pathology (likely demyelination) and 

increased levels of extracellular free water (attributed to atrophy or to neuroinflammation), 

see Fig. 12. We tested these hypotheses by comparing analysis of simulated data with 

average WM data from our study. For demyelination, we simulated measurements on a 

group of parallel fibers with varying radial diffusivity (RD) while keeping the axial 

diffusivity (AD) fixed (AD = 2.6 μm2/ms, RD = 0.05 → 1.7 μm2/ms), inspired by [63]. For 

the free water hypothesis, we simulated measurements on dispersed fibers with AD = 2.0 

μm2/ms and RD = 0.2 μm2/ms being gradually replaced with isotropic water with MD = 2.9 

μm2/ms. The values of these parameters are in agreement with what can be expected for 

white matter in general [64] and were slightly adjusted to improve agreement between 

simulated and observed values. Note that this model is simplistic, but can nevertheless 

illustrate potential mechanisms of change that can be separated by the DTD model.

The data from average white matter did not agree well with the predictions of the 

demyelination hypothesis (red lines), here modeled by a coherent increase in the radial 

diffusivity of fibers. For the free water hypothesis, however, here modeled by replacing 

fibers with an isotropic diffusion component, the agreement was good (blue lines). These 

results suggest that most of the effect in the schizophrenia group is driven by an increase in 

both MD and VMD resulting from increased levels of free water. The increase in these 

parameters may also be responsible for the reductions of the apparent anisotropies FA and 

μFA, through an increase in the denominators of Eqs. 30 and 28.
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 5 Discussion

In this work, we have introduced QTI and expanded the diffusion signal by the cumulant to 

the fourth order to enable identification of the fourth-order covariance term in the tensor 

distribution [36]. Thus, the tensor ℂ has a simple interpretation as the covariance of “local” 

diffusion tensors.

Other studies have also explored the use of fourth-order tensors. DKI is directly related to 

the cumulant expansion of the diffusion-encoded signal [35]. QTI and DKI both provide 

quantitative measures, but QTI is more specific since DKI entangles the two isotropic 

components of the fourth-order tensor (Fig. 1, Eqs. 40–43). We would like to stress that the 

different types of diffusion tensor covariances cannot be estimated using only rank-1 b-

tensors. The fourth order covariance matrix carries unique information in its two isotropic 

components, of which one relates to microscopic anisotropy. In the context of DDE, fourth-

order tensor models have been used extensively. For example, Lawrence et al. derived such a 

model based on a Taylor expansion of the MR signal [38], while Jespersen et al. investigated 

the cumulant expansion [39]. Jensen et al. developed a dPFG version of DKI, that involved a 

fourth-order tensor with 66 unique elements [65]. Distinct advantages of the framework we 

propose are 1) that it is applicable to arbitrary gradient encoding schemes, 2) the complex 

diffusion measurements have an intuitive geometric meaning, and 3) the analysis produces 

an output that has a simple interpretation: mean and covariance of a tensor distribution.

By generalizing the concept of diffusion encoding in our analysis, we do not need to be 

limited by traditional PFG-type encoding. To analyze diffusion encoding performed with 

arbitrary gradient waveforms, we express the diffusion encoding in terms of a general 

measurement b-tensor. Although the b-matrix concept is well established and can be found 

in standard text books on diffusion NMR and MRI [41, 42, 1, 43], the characterization of the 

b-matrix using DDE and more general gradient waveform diffusion MRI is a novel concept. 

In current literature, the concept of the b-matrix normally refers to the standard rank-one 

measurement (in our terminology) with added imaging gradient and other correction terms. 

Extending the traditional rank-1 diffusion measurement, to both rank-2 and full rank-3 

measurements, allows measurement of information that is not attainable with SDE 

measurements.

In the present imaging protocol, the imaging voxels were also relatively large (3×3×3 mm3) 

due to the long echo time (TE = 160 ms) necessitated by the present prototype-like 

implementation on the MRI scanner. We are confident that considerably improved 

implementations are possible, and that the protocol settings can be optimized using 

established methods [66]. A minimal requirement for a protocol, however, is that data is 

acquired with measurement tensors of varying shapes, which is not possible with SDE only. 

By optimizing parameter settings, we believe that standard DTI resolutions will be 

obtainable in clinically relevant imaging times.

Numerous DTI studies have shown that FA is a sensitive parameter, but that it lacks 

specificity. For example, crossing fibers result in lower FA and will be seen as a variation of 

FA in white matter [8, 9]. By contrast, Cμ (or μFA) displays little variation within the white 
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matter, which is an important feature of Cμ since any disease-related reduction of the 

microscopic anisotropy will stand out clearly and be specific in terms of microstructure. 

Since white matter exhibits some degree of orientation dispersion [67, 68, 47], we 

recommend the use of Cμ (or μFA) for analysis of white matter microstructure rather than 

the conventional FA, which entangles orientation dispersion and microscopic anisotropy into 

a single metric. Many studies have also shown that MD is very sensitive to changes in cell 

density, useful for example in tumor diagnosis [69]. Due to the random ordering of tumor 

cells, FA is of little use for understanding tumor microstructure, whereas μFA can enable 

non-invasive quantification of average cell shape [70, 9].

The application of QTI in schizophrenia patients generated a number of noteworthy 

observations. As expected [62], the chronic schizophrenia patients showed elevated MD in 

the white matter. Interestingly, this increase was matched by an increase in VMD. This 

increase cannot be explained by a homogeneous increase in the local mean diffusivity, but 

can be explained by an increasing fraction of free water (Fig. 12). This suggests that 

increased extracellular water, e.g., due to chronic neuroinflammatory processes or atrophy, is 

the primary mechanism explaining white matter diffusion changes in our cohort of patients 

with chronic schizophrenia [71]. However, we also observed reduced Cμ but unchanged Cc 

in the schizophrenia patients, which could indicate axonal degradation at a microscopic 

level. Further studies with larger sample sizes are needed to confirm these findings. We note 

that the current results, obtained by averaging throughout the entire white matter, do not lend 

themselves to the precise interpretation of the newly proposed measures in comparison with 

more traditional SDE measures. It will be interesting and more meaningful to study 

localized changes in both the white matter and the gray matter, and then to assess these 

results with analogy to simple prototype distributions, such as those in Figure 5.

The results from our pilot study are preliminary because of the low number of subjects 

(5+5). By comparing measures from the subjects with those obtained from simulations of 

two different pathologies, we were able to show that diffusion changes occurring in 

schizophrenia are best explained by an increasing fraction of free water. This suggests that 

increased levels of extracellular water, e.g. due to chronic neuroinflammatory processes or 

atrophy, are the primary mechanism explaining white matter diffusion changes in our cohort 

of patients with chronic schizophrenia. However, further studies with larger sample sizes are 

needed to validate this finding. Larger sample sizes would also be required to separate global 

and local effects, especially considering that it is not known whether global effects precede 

local alterations [62].

The proposed framework has some noteworthy limitations. First, the present analysis 

assumes Gaussian diffusion in each microenvironment. We believe that this is a relevant 

starting point for analysis of diffusion MRI data from white matter obtained with clinical 

MRI scanners, since with limited hardware, the time during which the diffusion is encoded 

is far longer than the characteristic time scale where the diffusion process turns from being 

free to restricted [72]. For example, most axons in the corpus callosum are below 2–3 μm 

[73]. Assuming an intrinsic intra-axonal diffusivity of 2 μm2/ms, the characteristic time scale 

is 2–4 ms. Here, we performed diffusion encoding during approximately 100 ms, and thus 

the radial diffusion coefficient of white matter was likely nearly zero. This means that the 
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assumption of Gaussian diffusion in each local domain is reasonable. This is also the starting 

point for model-based methods such as NODDI [47]. Under the assumption of Gaussian 

diffusion in each microenvironment, any q-space trajectory that produces a specific B will be 

equal. If we want to include restricted diffusion effects in the model, our current second-

order model of the q-space trajectory would need to be extended.

Other aspects that may be important to consider are water exchange and coherent flow. At 

least in healthy white matter, water exchange likely takes place on time scales much longer 

than the duration of the diffusion encoding [72]. Coherent flow would result in a dependence 

of the MR signal on the amount by which the encoding is flow compensated [74, 75]. 

Extending the signal model to account for restricted diffusion, water exchange and coherent 

flow was, however, beyond the scope of the present work. Another limitation is the 

approximation in Eq. 12, which is only valid for b-values up to the convergence radius [48]. 

Estimates of Cμ will suffer from systematic errors if the maximum b-value is too large. 

However, this is a limitation that is also shared with other models based on the cumulant 

expansion, such as DTI and DKI, and the specific impact on QTI parameters will be 

addressed in future research. Another potential source of bias is low SNR for high b-value 

acquisitions and the rectified noise floor that results from it [76]. This problem is also 

present for SDE and can be met by adjusting the voxel size. For QTI, optimized gradient 

waveforms can also contribute to substantially improved SNR by reduced TE [60].

 6 Conclusions

We have described a new diffusion MR framework for imaging and modeling of 

microstructure that we call q-space trajectory imaging. Our work shows that performing 

diffusion encoding with a wide range of q-space trajectories is feasible on a clinical system. 

The work further generalizes the concept of b-values, enabling new types of measurements 

not available with conventional SDE-based diffusion MRI. We showed that the cumulant 

expansion of the MR signal yields the mean diffusion tensor and a fourth-order covariance 

tensor. While the diffusion tensor is represented by a single isotropic parameter (MD), the 

covariance tensor is characterized by two principal isotropic parameters, i.e., VMD and 

Vshear, that represent within-voxel variance of diffusion coefficients. Together with the 

diffusion tensor, these parameters can be used to disentangle the diffusional kurtosis into 

more specific representations, or to calculate parameters such as CMD, Cμ and Cc. These 

parameters are more specific than what is possible to obtain with conventional DTI and DKI. 

By disentangling variation in size from variation in shape and direction, our framework may 

be useful for studying changes beyond the macroscopic anisotropy as is done with 

conventional DTI. Alterations in macroscopically isotropic regions, where there is high 

orientation dispersion or low microscopic anisotropy but variance in size, could be captured 

by our new normalized variance measures. Since the framework does not require 

macroscopic anisotropy, our framework could be useful not only in white matter but also in 

gray matter.
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 7 Appendix

 7.1 Vector and matrix notation of higher order tensors

We represented tensors by vectors and matrices in order to simplify implementation in 

software. A symmetric second-order tensor can be represented by a 6 × 1 column vector 

according to

(47)

and symmetric fourth-order tensor can be represented by a 6 × 6 matrix, for example = 

B⊗2 = bbT, or by a 21 × 1 column vector according to
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(48)

 7.2 Inner and outer products

Inner and outer products are simple to implement in software when the tensors are 

represented by column vectors and matrices. The outer product is then given by

(49)

and the inner product by

(50)

and for fourth-order tensors by

(51)

The inner product of two matrices is also defined according to

(52)

We may encounter a case that utilize all of these notations, for example, the evaluation of the 

square of the apparent diffusion coefficient in the direction n,

(53)

where the following identities follows from the notation
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(54)

The above analysis also demonstrates the relation

(55)

which becomes important in the analysis of the isotropic bases of the 4th order tensor.

 7.3 Isotropic 4th order tensors

First, consider the projection of ℂ onto bulk, using only the rules defined above,

(56)

Second, considering the projection D⊗2 on shear,

(57)

where we utilized

(58)

Now we consider projection of ℂ onto shear,

(59)
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 7.4 Cumulant expansion up to six-order tensor

The approximation in Eq. 13 is a cumulant expansion where we expand s(b) = log S(b) 

around b = 0 according to

(60)

where

(61)

(62)

For b = 0, these functions evaluate to

(63)

(64)

(65)

where = D⊗2. Hence s″(0) =< ℕ, 〈D⊗2〉 − 〈D〉⊗2 >=< ℕ, ℂ >.

 Third order term (six-order tensor)

For completeness, we note that

(66)

where
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(67)

and

(68)

so that

(69)

where we can define

(70)

and identify ℳ as the third central moment. This is a rank 6 tensor with 729 elements, of 

which 56 are unique.

 7.5 Taylor expansion

For completeness, we also consider the Taylor expansion of E(b), which is given by

(71)

The difference is that in the Taylor expansion, which is valid for lower b-values than the 

Cumulant expansion, the fourth-order term is given by 〈 , whereas it for the cumulant 

expansion is given by ℂ = 〈  − 〈D〉⊗2.

 7.6 Comparison with DKI

For the sake of completeness, we note that the DKI model is given by [35]

(72)

where < 〈D〉, Eiso >= MD. Hence
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(73)

Because Eq. 73 involves projection onto outer products of vectors, the following still holds

(74)
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Fig. 1. 
Synthetic examples of diffusion tensor distributions that cannot be differentiated using 

conventional SDE-based dMRI sequences such as DTI, HARDI, DSI, and DKI, but can be 

distinguished using the proposed QTI framework. The first row shows synthetic examples of 

diffusion tensor distributions within a voxel that yield an isotropic average diffusion tensor 

〈D〉. As a consequence, these different structures are indistinguishable with conventional 

DTI. The second row shows the DTD model corresponding to each synthetic example. The 

DTD model includes average diffusion tensors, shown by 3×3 matrices, and covariance 

tensors, shown as 6×6 matrices, along with the scalar invariants from Eqs. 14, 19 and 22. In 

these graphical representations, green is positive, black is zero, and red is negative. Although 

the three examples have identical average diffusion tensors they have different covariance 

tensors ℂ. See the Diffusion and modeling and estimation section (2.3) for details on model 

estimation. The corresponding fourth-order tensors as observed by diffusional kurtosis 

imaging using only the linear b-tensors obtained with SDE encoding are equal in these three 

examples. The ability to measure and model the distribution over diffusion tensors, rather 

than a quantity that has already been averaged within a voxel, has the potential to provide a 

powerful new paradigm for the study of complex tissue architecture.
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Fig. 2. 
Examples of gradient waveforms and trajectories that produce “linear” and “planar” b-tensor 

shapes, from the SDE and DDE experiments. Color coding is as follows: in the gradients 

waveform column, red-green-blue defines the x-y-z gradient directions; in the gradient 

trajectory column, slewrate, slow to fast, is encoded by red-yellow-green-blue from zero to 

max; in the q-space trajectory column, trajectory speed, slow to fast, is encoded red-yellow-

green-blue; in the b-tensor column, the diagonal elements of the b-tensor are mapped to red-

green-blue. In the rank-1 case, this b-tensor color mapping corresponds to the principal 

eigenvector direction, analogous to the standard color coding for diffusion tensors. In the 

planar case, rather than relying on a randomly oriented major eigenvector for color 

information, the effect is to sum the colors in the plane (as in the bottom row where red plus 

green gives yellow in the RGB sense).
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Fig. 3. 
TDE and QTE encoding schemes can be used to produce isotropic diffusion encoding, with 

a spherical b-tensor. Color coding is as follows: in column 1, red-green-blue defines the x-y-

z gradient directions; in columns 2 and 3, slewrate and trajectory speed are encoded by red-

yellow-green-blue, where red is slow and blue is fast; in column 4 the diagonal elements of 

the b-tensor are mapped to red-green-blue (and thus gray indicates these elements of the 

isotropic b-tensor are the same). The encoding scheme in the second row was generated by 

transforming the TDE encoding from the top row: first, pulses were shifted closer together 

so the green positive pulse aligned with the negative red pulse etc., and then a transform was 

applied to make the encoding isotropic, as in Eq. 5. In the bottom row, the isotropic diffusion 

encoding from qMAS produces a lasso-like q-space trajectory.
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Fig. 4. 
QTE encoding: an example family of b-tensors, with shapes ranging from linear to spherical 

to planar. Gradient waveforms and trajectories are shown along with the resulting q-space 

trajectories and b-tensors. The curves were produced by transforming the curve with 

efficient isotropic encoding (C) to yield linear encoding (A), prolate encoding (B), oblate 

encoding (D), and planar encoding (E). We have used b-tensors from this family in our 

proof-of-concept clinical study, where multiple rotated versions of this family were applied.
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Fig. 5. 
This visualization of four proposed measures demonstrates how the measures would change 

in eight illustrative synthetic macrodomains (voxels). Note that these measures intuitively 

separate size, shape, and orientation coherence, as well as providing the traditional 

macroscopic anisotropy.
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Fig. 6. 
The signal plots show the MR signal versus b-value measured in four synthetic datasets 

using b-tensors of three different ranks, where ranks are identified with shapes such that rank 

1 is “linear,” rank 2 is “planar,” and rank 3 is “spherical.” The four synthetic datasets 

represent four distinct scenarios with different distributions of microenvironments (spheres 

of one size, spheres of many sizes, sticks of one size and multiple orientations, and 

ellipsoids of multiple sizes and orientations). Notice the similarities of the light green signal 

curves in the second, third and fourth plots. This illustrates that when using traditional SDE 

(linear b-tensor), multiple different microenvironments can produce similar signal responses. 

In fact, they may even be identical. This shows that using simple model-based estimation of 

the distribution using SDE data and a predefined model of specific shape, a distribution over 

size and orientation of that shape that fits the data can always be found, but the parameters 

found will of course be meaningless if the predefined model does not reflect the underlying 

tissue architecture.
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Fig. 7. 
In the proposed sampling scheme, Platonic solids are used to ensure even sampling in all 

directions [55]. Number of distinct sample directions are listed below each solid. Note the 

dual nature of the icosahedron and dodecahedron: the center of the each face of the 

icosahedron corresponds to the vertex of the dodecahedron, and vice versa. Further, the 

center of each face of the truncated icosahedron corresponds to a corner in either the 

icosahedron or dodecahedron. When the icosahedron, dodecahedron, and truncated 

icosahedron nest, their vertices (right) give evenly spaced sampling directions. To employ 

this scheme, a gradient waveform is rotated so that the symmetry axis of its b-tensor aligns 

with the desired direction (Table 2).
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Fig. 8. 
In vivo data from the preliminary data set. A. MR images diffusion encoded with b = 2000 

s/mm2 and b-tensors of five shapes, i.e., linear, prolate, isotropic, oblate, and planar. Data is 

displayed from two different b-tensor rotations (directions) sampled from the icosaheadron 

(icosa 1 and icosa 2, top and bottom rows). Note that the linear and the planar measurements 

are dual, and thus, where the linear measurement is bright the planar is dark; see yellow 

circles. This can be compared to the Funk-Radon transform that is performed in q-ball 

imaging, where the diffusion signal is the result of integration on a great circle [61]. The 

planar measurement inherently does this integration. B. Signal-versus-b curves averaged 

across all directions for corpus callosum (red), crossing white matter (green) and gray matter 

(blue). Curves are encoded with increasing color brightness from linear (dark, I), through 

prolate (II), isotropic (III), oblate (IV) to planar encoding (full color, V). As expected, the 

linear encoding attenuates the signal the least, while the isotropic encoding attenuates it the 

most, and the attenuations from the other encodings are in between. This in vivo data can be 

compared to the synthetic curves from Figure 6, motivating the need for a model, such as the 

DTD, that can decipher this data.
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Fig. 9. 
Examples of parameter maps obtained in QTI, calculated from data acquired with the 

clinical protocol. A. Top row shows the mean diffusivity MD (Eq. 14), the bulk VMD and 

shear variances Vshear (Eqs. 19, 22), and their sum Viso. B. Middle row shows examples of 

normalized variance measures. C. Lower row shows different kurtosis measures derived 

from QTI: Total mean kurtosis (MK, Eq. 37) separated into two components, bulk and mean 

kurtosis represented by Kbulk and Kshear(Eq. 41) and (Eq. 42). The anisotropy-related 

kurtosis Kμ (Eq. 43) is shown in the rightmost panel.
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Fig. 10. 
The anisotropy measure FA and the microscopic anisotropy μFA, which is known from 

previous DDE and qMAS studies [9, 51], are straightforwardly calculated from CM and Cμ.
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Fig. 11. 
Comparison of normalized measures in schizophrenia patients (SZ) and healthy controls 

(CTR). The CMD, CM and Cμ averaged across the white matter were all three significantly 

reduced in the schizophrenia group. Changes in Cc was not found to be significant between 

the groups. Significance was tested using the Wilcoxon rank-sum U-test.
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Fig. 12. 
Comparison of measured data to simulations of two hypothesized pathologies in 

schizophrenia. Scatter plots show Vshear versus FA (left) and VMD versus MD. Data points 

represent an average across the cerebral white matter. The two parameters VMD and Vshear 

are related to variances of the distribution, corresponding to changes in size, and changes in 

orientation/shape respectively. FA and Vshear were weakly correlated. MD and VMD were 

strongly correlated. Solid lines show results from analysis of data simulated to represent a 

demyelination hypothesis, i.e. increasing radial diffusivity (red), and a free-water hypothesis, 

i.e. replacing WM with isotropic freely diffusing water (blue). Example voxels representing 

these hypotheses is shown to the right.
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Table 1

Relationship between diffusion imaging method, diffusion encoding technique, q-space sampling strategy, and 

data modeling methods for current diffusion imaging paradigms and QTI. Example measures include 

fractional anisotropy (FA), microscopic FA (μFA), and microscopic anisotropy (Cμ).

Method Diffusion encoding q-space sampling Example model/Example measure

DTI SDE single shell diffusion tensor/FA

HARDI SDE single- or multi-shell orientation distribution functions

DSI SDE Cartesian sampling 3-D diffusion propagator

DKI SDE multi-shell kurtosis

– DDE typically single-shell μFA

– TDE typically single-shell single-shot diffusion trace

QTI trajectory encoding multi-trajectory DTD/Cμ
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Table 3

Comparison of QTI parameters between controls (CTR) and schizophrenia patients (SZ), reported as the group 

mean (standard deviation). Parameters were averaged across all white matter before the comparison. 

Significance was tested using the Wilcoxon rank-sum U-test.

Parameter CTR (n = 5) SZ (n = 5) Significance

MD 0.99 (0.01) 1.05 (0.04) p < 0.05

VMD 0.13 (0.01) 0.17 (0.02) p < 0.05

Vshear 0.45 (0.03) 0.43 (0.02) n.s.

Viso 0.59 (0.04) 0.61 (0.02) n.s.

CMD 0.10 (0.01) 0.11 (0.01) n.s.

Cμ 0.55 (0.02) 0.47 (0.04) p < 0.01

CM 0.16 (0.01) 0.13 (0.01) p < 0.01

Cc 0.26 (0.02) 0.24 (0.02) n.s.

μFA 0.74 (0.01) 0.69 (0.03) p < 0.05

FA 0.37 (0.01) 0.33 (0.02) p < 0.01

MK 0.93 (0.05) 0.90 (0.03) n.s.

Kbulk 0.31 (0.01) 0.36 (0.04) p < 0.05

Kshear 0.62 (0.04) 0.53 (0.06) p < 0.05

Kμ 0.79 (0.05) 0.67 (0.07) p < 0.01
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