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Abstract
Longitudinal image analysis has become increasingly important in clinical studies of normal aging
and neurodegenerative disorders. Furthermore, there is a growing appreciation of the potential
utility of longitudinally acquired structural images and reliable image processing to evaluate
disease modifying therapies. Challenges have been related to the variability that is inherent in the
available cross-sectional processing tools, to the introduction of bias in longitudinal processing
and to potential over-regularization. In this paper we introduce a novel longitudinal image
processing framework, based on unbiased, robust, within-subject template creation, for automatic
surface reconstruction and segmentation of brain MRI of arbitrarily many time points. We
demonstrate that it is essential to treat all input images exactly the same as removing only
interpolation asymmetries is not sufficient to remove processing bias. We successfully reduce
variability and avoid over-regularization by initializing the processing in each time point with
common information from the subject template. The presented results show a significant increase
in precision and discrimination power while preserving the ability to detect large anatomical
deviations; as such they hold great potential in clinical applications, e.g. allowing for smaller
sample sizes or shorter trials to establish disease specific biomarkers or to quantify drug effects.
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Introduction
Progressive brain atrophy can be observed in a variety of neurodegenerative disorders.
Several longitudinal studies have demonstrated a complex, regionally and temporally
dynamic series of changes, that occur in normal aging and that are uniquely distinct in
neurodegenerative disorders, such as Alzheimer's disease, Huntington's disease, and
schizophrenia. The availability of large, high quality longitudinal datasets, has already
begun to significantly expand our ability to evaluate selective, progressive anatomical
changes. One of the major caveats in these studies is the use of tools that were originally
designed for the analysis of data collected cross-sectionally. Inherent noise in cross-sectional
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methods, based on a single common template or atlas, often shadow individual differences
and result in more heterogeneous measurements. However, by exploiting the knowledge that
within-subject anatomical changes are usually significantly smaller than inter-individual
morphological differences, it is possible to reduce within-subject noise without altering the
between-subject variability. As such, the development of unbiased longitudinal analytical
approaches are critical in fully elucidating phenotypic variability, and in the construction of
imaging based biomarkers to quantify response in clinical trials and to evaluate disease
modifying therapies. In particular, these tools can be expected to increase the sensitivity and
reliability of the measurements sufficiently to require smaller sample sizes and fewer time
points or shorter follow-up periods.

The novel longitudinal methodologies described in this paper are designed to overcome the
most common limitations of contemporary longitudinal processing methods: the
introduction of processing bias, over-regularization, and the limitation to process only two
time points. In addition, building on FreeSurfer (Fischl, in press; Fischl et al., 2002), our
methods are capable of producing a large variety of reliable imaging statistics, such as
segmentations of subcortical structures, cortical parcellations, pialand white matter surfaces
as well as cortical thickness and curvature estimates.

Bias
Longitudinal image processing aims at reducing within subject variability, by transferring
information across time, e.g. enforcing temporal smoothness or informing the processing of
later time points with results from earlier scans. These approaches, however, are susceptible
to processing bias. It is well documented that especially interpolation asymmetries can
influence downstream processing and subsequent analyses (Thompson and Holland, 2011;
Yushkevich et al., 2010) and can result in severe underestimation of sample sizes due to
overestimation of effect sizes. Interpolation asymmetries occur when, for example,
resampling follow-up images to the baseline scan and thus smoothing only the follow-up
images while keeping the baseline image untouched. As described in Reuter and Fischl
(2011) and as demonstrated below, interpolation asymmetries are not the only source of
bias. Consistently treating a single time point, usually baseline, differently from others, for
instance, to construct an atlas registration or to transfer label maps for initialization
purposes, can already be sufficient to introduce bias. Bias is a problem that often goes
unnoticed, due to large measurement noise, imprecise methods, small sample sizes or
insufficient testing. Not treating all time points the same can be problematic as the absence
of bias cannot simply be proven by not finding it. Furthermore, the assumption that group
effects are not (or only mildly) influenced by processing bias is usually incorrect. It is rather
unlikely that bias affects all groups equally, considering that one group usually shows only
little longitudinal change, while the other undergoes significant neurodegeneration. For
these reasons, we carefully designed and implemented our longitudinal methods to treat all
time points exactly the same. Another potential source of bias may be induced when
constraining sequential results to be smooth. Temporal regularization can limit the power of
an algorithm to detect large changes. We aim at avoiding this kind of over-regularization by
initializing the processing in each time point with common information, but allowing the
methods to evolve freely.

It should be noted, that different types of bias, not induced by the image analysis software
but rather related to pre-processing or image acquisition steps, can already be present in the
images, equally affecting both longitudinal and independent (cross-sectional) processing.
Examples include the use of different scanner hardware, different scanner software versions,
different calibration, acquisition parameters or protocols across time. These biases cannot
easily be removed by downstream processing, although they can possibly be reduced. Other
types of bias are related to intrinsic magnetic properties of the tissue (e.g. T1, T2*) across
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time (aging) or across groups (neurodegenerative disease) potentially introducing bias in
measures of thickness or volume (Salat et al., 2009; Westlye et al., 2009). However, since
age and disease level are usually very similar within-subject, the rate of change in a
longitudinal study will be less affected than cross-sectional volume or thickness analysis.

Related work
In SIENA, Smith et al. (2001, 2002) introduced the idea of transforming two input images
into a halfway space, to ensure both undergo the same resampling steps to avoid
interpolation bias. However, traditionally, the baseline image is treated differently from the
follow-up images. Often longitudinal processing is approached by employing higher order
registration methods to compute and analyze the deformation field that aligns baseline to a
follow-up scan, e.g. SPM2 uses high dimensional warps Ashburner et al. (2000)). These
procedures are usually not inverse consistent and resample only the follow-up images. SPM,
for example, has been employed in longitudinal studies of neurodegeneration in two time
points (Chételat et al., 2005; Kipps et al., 2005) without specifically attempting to avoid
asymmetry-related bias. The longitudinal segmentation algorithm CLASSIC (Xue et al.,
2006) jointly segments a 4D image via longitudinal high-order warps to the baseline scan
using an elastic warping algorithm. Also Avants et al. (2007) work in the baseline space as a
reference frame. In that work, first a spatiotemporal parameterization of an individual's
image time series is created via nonlinear registration (SyN). The underlying
diffeomorphism is then resampled at the one year location and compared to baseline to
quantify the annual atrophy. Qiu et al. (2006) present a method for longitudinal shape
analysis of brain structures, quantifying deformations with respect to baseline and
transporting the collected information from the subject baseline to a global template. Other
authors focus on cortical measures. Han et al. (2006) describe a method to initialize follow-
up surface reconstruction with surfaces constructed from the baseline scans. Li et al. (2010)
register follow-up images to the baseline (rigidly and nonlinearly based on CLASSIC) and
then keep the directions fixed across time along which they locally compute thickness in the
cortex.

Over the last few years, several authors attempt to avoid processing bias. In 2009, initial
software versions of our methods, relying on unbiased within-subject templates as described
in this paper, were made publicly available (Reuter, 2009; Reuter et al., 2010a). Related
efforts, however, aim primarily at removing only interpolation bias. Avants et al. (2010), for
example, similarly utilize within-subject templates, while still treating the baseline image
consistently differently from follow-up time points. Nakamura et al. (2011) avoid bias only
in the registration procedure by combining forward and inverse linear registrations to
construct symmetric pairwise maps. Also combining forward and backward transformations,
Holland and Dale (2011) use a nonlinear pairwise registration and intensity normalization
scheme to analyze the deformation in follow-up images by measuring volume changes of
labels defined in baseline space.

Approach
In this work we present an automated longitudinal processing pipeline that is designed to
enable a temporally unbiased evaluation of an arbitrary number of time points by treating all
inputs the same. First an unbiased, within-subject template is generated by iteratively
aligning all input images to a median image using a symmetric robust registration method
(Reuter et al., 2010b). Because of the simultaneous co-registration of all time points,
processing can be performed in a spatially normalized voxel space across time reducing
variability of several procedures. Furthermore, the median image functions as a robust
template approximating the subject's anatomy, averaged across time, and can be used as an
estimate to initialize the subsequent segmentations.

Reuter et al. Page 3

Neuroimage. Author manuscript; available in PMC 2013 July 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Cortical and subcortical segmentation and parcellation procedures involve many complex
nonlinear optimization problems, such as topology correction, nonlinear atlas registration,
and nonlinear spherical surface registration. These nonlinear problems are typically solved
with iterative methods. The final results can thus be sensitive to the selection of a particular
starting point. However, by initializing the processing of a new data set in a longitudinal
series with common information, the variations in the processing procedures can be
efficiently reduced and the robustness and sensitivity of the overall longitudinal analysis
significantly improved. Increased reliability often comes at the cost of over-regularization
by enforcing temporal smoothness. Our methods do not add explicit constraints such as
temporal smoothness or higher-order within-subject warps to transfer labels, nor do they
incorporate the order of time points at all. Higher precision is achieved solely by common
initialization while segmentation and surface reconstruction procedures are allowed to
evolve freely. We demonstrate that the resulting measurements are significantly more
reliable in both healthy controls (in test–retest, simulated noise and simulated atrophy) as
well as in neurodegeneration studies. We show that the increased precision enables greater
power to evaluate more subtle disease effects or to reduce sample sizes. This longitudinal
processing stream is made available as part of FreeSurfer (Fischl, in press; Fischl et al.,
2002; Reuter, 2009). The FreeSurfer software package is an open access resource that has
gained popularity in evaluating cortical and subcortical measures.

Impact
An early version of the methods described in this paper has been successfully employed in a
variety of studies analyzing progressive changes in Alzheimer's disease (Chiang et al., 2010,
2011; Desikan et al., 2010; Sabuncu et al., 2011), Huntington's disease (Rosas et al., 2011),
memory training (Engvig et al., 2010) and for the validation of prospective motion
correction (Tisdall et al., in press). The Alzheimer's Disease Neuroimaging Initiative
(ADNI), for instance, makes available2 their raw image data and derived measures,
processed with the initial version of our longitudinal method (FS 4.4). ADNI is one of the
largest publicly available longitudinal image data sets, consisting of more than 3000 scans,
released with the goal to determine in-vivo biomarkers for the early detection of AD.
Although our initial processing methods that were used for the derived measures are less
powerful than the newer version presented in this paper, the available results are still of
great importance to researchers without the possibility to locally process the raw images, as
well as to function as a benchmark for method development and comparison (Holland et al.,
2011).

Currently, large datasets such as ADNI are under consideration for other neurological
diseases. As such, the highly sensitive, reliable and fully automated unbiased longitudinal
methods described in this paper have the potential to help us understand natural progression
of regionally and spatially selective neurodegeneration as occurs in distinct neurological
disorders. The resulting, subject specific, morphometric measurements yield biomarkers that
potentially serve as surrogate endpoints in clinical trials, where the increase of statistical
power is of most immediate importance.

Methods
Overview of longitudinal processing pipeline

The proposed processing of longitudinal data consists of the following three steps:

2http://adni.loni.ucla.edu/research/mri-post-processing/.
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1. [CROSS]: First all time points of all subjects are processed independently. This is
also called cross-sectional processing. Here a full image segmentation and surface
reconstruction for each time point is constructed individually. Some of this
information is needed later during the longitudinal processing and to construct the
subject template in the next step.

2. [BASE]: For each subject a template is created from all time points to estimate
average subject anatomy. Often the within-subject template is also referred to as the
subject ‘base’ (different from baseline scan!) or simply as the template. Here an
unbiased median image is used as the template and a full segmentation and surface
reconstruction is performed. We describe the creation of the subject template in the
following sections.

3. [LONG]: Finally each time point is processed “longitudinally”, where information
from the subject-template [BASE] and from the individual runs [CROSS] is used to
initialize several of the algorithms. A [LONG] process usually takes about half the
time to complete than a [CROSS] or [BASE] run.

The improved and more consistent results from the final set of [LONG] runs (step 3) provide
the reliable input for post-processing or subsequent statistical analysis.

In step 3 above, the longitudinal processing of each time point is initialized with information
from the subject template [BASE] and the [CROSS] results to reduce variability. However,
depending on the flexibility of the individual algorithms, this general procedure may
sacrifice accuracy and potentially underestimate changes of greater magnitude. Whenever
information is transferred across time, e.g. to regularize or explicitly smooth results,
methods can become biased towards underestimating change and accuracy may suffer
particularly when measuring longitudinal change over long periods of time. While a
conservative estimate of change is often preferable in a power analysis, than an
overestimation, we focus on avoiding asymmetries and over-regularization to remain as
accurate and unbiased as possible. The longitudinal processing step (see also Fig. 1) mainly
consists of the following procedures (more details can be found online (Reuter, 2009)).

Spatial normalization and NU intensity
All inputs are resampled to the unbiased template voxel space to further reduce variability
(since FS 5.1). This can be achieved during the motion correction and conforming steps by
composing the linear transforms and only resampling once to avoid additional resampling/
smoothing. For this paper, we employ linear interpolation, but recently switched to cubic B-
spline interpolation for future releases to reduce interpolation artifacts (Thevenaz et al.,
2000). Then acquisition bias fields in [LONG] are independently corrected using a non-
parametric non-uniform intensity normalization (N3) (Sled et al., 1998).

Talairach registration
The affine map from the robust template [BASE] to the Talairach space is fixed across time.
It can be assumed that a single global affine transformation to the Talairach coordinate
system is appropriate since the bulk of the anatomy within-subject is not changing. The
advantages of this approach lie in the noise reduction obtained by avoiding the use of
individual intensity volumes for each time point and in consistent intra-cranial volume
estimation. Data is only copied from the subject template if fixing it across time is
meaningful, for example the affine Talairach registration or the brain mask (see green solid
arrows in Fig. 1).
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Brainmask creation
The brain mask, including some cerebrospinal fluid (CSF), is kept constant for all time
points (in [LONG] and in the subject template [BASE]) to reduce variability under the
assumption that the location and size of the intracranial vault are not changing (although of
course the contents may be). The brain mask is constructed as the union (logical OR) of the
registered brain masks across time. In other words, a voxel is included in the brain mask if it
is included in any of the time points, to ensure no brain is accidentally clipped. Although the
brain mask is fixed across time by default, it can be adjusted in individual time points
manually if necessary (e.g. by editing it or mapping it from the initial [CROSS] results).

Normalization and atlas registration
For the second intensity correction (pre-segmentation filter) (Dale et al., 1999), each
[LONG] run is initialized with the common set of control points that were constructed in the
[BASE], to encourage consistency across time. Similarly for the normalization to the
probabilistic atlas (Fischl et al., 2002, 2004a), the segmentation labels of the [BASE] are
passed as a common initialization in each time point (dashed arrows in Fig. 1). Also the
nonlinear atlas registration is initialized with results from the [BASE]. However, these
procedures are intrinsically the same as before and are still performed for each time point to
allow for the necessary flexibility to detect larger departures from the average anatomy of
the [BASE]. Starting these procedures without a common initialization would only increase
variability as more time points may terminate in different local minima.

Subcortical segmentation
Specifically for the subcortical segmentation we allow even more flexibility. Instead of
initializing it with the template segmentation, a fused segmentation is created for each time
point by an intensity based probabilistic voting scheme. Similar to Sabuncu et al. (2010),
where training label maps are fused for the segmentation, we also use a weighted voting
scheme to construct a fused segmentation of each time point from the initial segmentations
of all time points obtained via independent processing [CROSS] (using the standard atlas
based registration procedure in FreeSurfer). Based on local intensity differences between the
time points at each voxel we employ a kernel density estimation (Parzen window) using a
Gaussian kernel on the registered and intensity normalized input images and initial labels. In
other words, if the intensity at a given location is similar at another time point, the
corresponding label is highly probable. This weighted majority voting (including votes from
all time points) yields the labels to construct the fused segmentation. Since this procedure is
driven by all time point's initial segmentations rather than the template's segmentation, it
allows for more flexibility. For each time point, it represents the anatomy more accurately
than the segmentation of the template. In order to correct for potential remaining noise, each
fused label map is used to initialize a final run through the regular atlas based segmentation
procedure. This fine-tuning step usually converges quickly.

Surfaces reconstruction
The regular cortical surface construction in FreeSurfer starts with the tessellation of the gray
matter / white matter boundary, automated topology correction (Fischl et al., 2001; Ségonne
et al., 2007), and surface deformation following intensity gradients to optimally place the
gray/white and gray/CSF borders at the location where the greatest shift in intensity defines
the transition to the other tissue class (Fischl and Dale, 2000). In the longitudinal stream, the
white and pial surfaces in each time point are initialized with the surfaces from the template
[BASE] and are allowed to deform freely. This has the positive effect that surfaces across
time demonstrate an implicit vertex correspondence. Furthermore, manual editing to fix
topology or surface placement is in many cases only necessary in the subject's template
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[BASE] instead of in each individual time point, reducing potential manual intervention (and
increasing reliability).

Cortical atlas registration and parcellations
Once the cortical surface models are complete, a number of deformable surface procedures
are usually performed for further data processing. The spherical registration (Fischl et al.,
1999b) and cortical parcellation procedures (Desikan et al., 2006; Fischl et al., 2004b)
establish a coordinate system for the cortex by warping individual surface models into
register with a spherical atlas in a way that aligns the cortical folding patterns. In the
longitudinal analysis we make the first-order assumptions that large-scale folding patterns
are not substantially altered by disease, and thus assume the spherical transformation of the
subject template to be a good initial approximation. In [LONG] the surface inflation with
minimal metric distortion (Fischl et al., 1999a) is therefore copied from the [BASE] to all
time points. The subsequent non-linear registration to the spherical atlas and also the
automatic parcellation of the cerebral cortex in each time point are initialized with the
results from the [BASE]. This reliably assigns a neuroanatomical label to each location on
the surface by incorporating both geometric information derived from the cortical model
(gyral and sulcal structure as well as curvature), and neuroanatomical convention.

Note that no temporal smoothing is employed, also the order of time points is not
considered. The above steps are meaningful under the assumptions that head size is
relatively constant across time which is reasonable for most neurodegenerative diseases but
not, for example, for early childhood development. However, users can optionally keep
individual brainmasks or introduce manual edits to accommodate for special situations, at
the cost of decreased reliability.

Within-subject template
Atlas construction, usually creating a template of several subjects, has been an active field of
research. For example, Joshi et al. (2004), Avants and Gee (2004) or Ashburner (2007)
approach unbiased nonlinear atlas construction by iteratively warping several images to a
mean. In order to create a robust within-subject template of several longitudinal scans, we
need to make several design decisions. All time points need to be treated the same to avoid
the possible introduction any asymmetries. Furthermore, we use only a rigid transformation
model to remove pose (or optionally an affine transformation to additionally remove scanner
calibration differences). Currently we avoid higher order warps to not introduce any
temporal smoothing constraints or worse, incorrect correspondence that is relied upon by
downstream processing (e.g. when transferring labels). We do not assume exact tissue
correspondence in our model. Finally, instead of the commonly used intensity mean, a
voxel-wise intensity median is employed to create crisper averages and remove outliers such
as motion artifacts from the template.

Template estimation of N images Ii is usually stated as a minimization problem of the type:

(1)

where the template Î and the transformations φ̂i, that map each input image to the common
space, need to be estimated. For robustness and other reasons as described below, we set the
image dissimilarity metric E(I1, I2) = ∫Ω|I1(x) − I2(x)|dx where Ω denotes the coordinate
space. Thus, for fixed transformations φi the minimizing Î is given by the voxel-wise median
of all Ii. For a rigid transformation consisting of translation and rotation φ = (t⃗, r) ∈ℝ3 ×
SO(3), we choose the following squared distance with respect to identity
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, where we compute the Frobenius norm of the difference between
the identity I and the 3 × 3 rotation matrix R representing the rotation r. Since the inputs Ii
are rather similar, Î can be approximated by the following iterative algorithm:

1. Compute the median of the N input images Î.

2. Register and resample each input image to Î.

3. Continue with step 1 until the obtained transforms φi converge.

The registration step adjusts the location of the inputs closer to Î, so that the next average
can be expected to improve. This iterative algorithm is performed on a Gaussian pyramid of
the images, with differently many iterations on each resolution. The inexpensive low
resolutions are iterated more often to quickly align all images approximately, while the more
time consuming higher resolutions only need to refine the registration in a few steps.

Robustness
For the registration of two images at the core of the template estimation, we use a robust and
inverse consistent registration method as described in Reuter et al. (2010b). Inverse

consistency means that the registration φij of imagesIi to Ij is exactly the inverse of ,
which is usually not guaranteed. This property keeps individual registrations unbiased and is
achieved by a symmetric resampling step in the algorithm to the halfway space between the
two input images, as well as a symmetric model, to avoid estimation and averaging of both
forward and backward transformations. This approach, incorporating the gradients of both
inputs, additionally seems to be less prone to local optima. While pairwise symmetry is not
strictly necessary to keep the template unbiased it avoids unnecessary iterative averaging in
the common case of only two input images, where both can be resampled at the halfway
space after a single registration step. Another advantage of the robust registration algorithm
is its ability to reduce the influence of outlier regions resulting in highly accurate brain
registrations, even in the presence of local differences such as lesions, longitudinal change,
skull stripping artifacts, remaining dura, jaw/neck movement, different cropping planes or
gradient nonlinearities. Reuter et al. (2010b) showthe superiority of this method over
standard registration tools available in the FSL (Jenkinson et al., 2002; Smith et al., 2004) or
SPM packages (Ashburner and Friston, 1999; Collignon et al., 1995) with respect to inverse
consistency, noise, outlier data, test–retest analysis and motion correction.

In spite of the fact that in the above template estimation algorithm convergence is not
guaranteed, the procedure works remarkably well even if significant longitudinal change is
contained in the images (see Fig. 2), due to the robustness of the median image. In this
context see also related work in Fletcher et al. (2009) who construct a different intrinsic
median for atlas creation by choosing “metamorphosis” as the metric on the space of images
that accounts for both geometric deformations as well as intensity changes. In a mean image
outlier regions and longitudinal structural change will introduce blurring. Strong motion
artifacts in specific time points may corrupt the whole image. The median, however,
suppresses outlier artifacts, ghosts and blurry edges and seems to be a good choice as
normality cannot be assumed due to longitudinal change, motion artifacts etc. Only for the
special case of two time points, the median reduces to the mean and may contain two ghost
images. Registration with this ill-defined average can be avoided by computing the mid-
space directly from the registration of the two inputs. In general, the use of the median leads
to crisper within-subject templates. It is therefore well suited for constructing initial
estimates of location and size of anatomical structures averaged across time or for creating
white matter and pial surfaces. As described above this information is used to inform the
longitudinal processing of all individual time points.
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To demonstrate the effect of the median, Fig. 3 shows the difference between the mean and
median template of a series of 18 time point images of a Huntington's disease subject, taken
over a span of 7 years. Some of the time points contain strong motion artifacts. Additionally,
this subject exhibits significant atrophy, i.e. approximately 8% volume loss in the caudate
and significant thinning of the corpus callosum. Due to the robustness of the median the
template image remains crisp with well defined anatomical boundaries, in spite of the
longitudinal change, as opposed to the smoother mean image. In a two bin histogram of the
gradient magnitude images, the bin with larger gradient magnitudes contains 4.4% of the
voxels in the median and 3.7% in the mean image, indicating crisper edges in the median.
The difference images in the top row of Fig. 3 localize the differences between the mean and
median image mainly in regions with large longitudinal change such as the ventricles,
corpus callosum, eyes, neck and scalp. Because of the crispness of the median image, co-
registration of all 18 inputs needed only three global iterations, while it took five iterations
to converge for the mean at a higher residual cost.

Improved template estimation
We found in our tests that the template estimation converges without pre-processing.
However, it may need a large number of iterations to converge in specific cases and thus a
considerable amount of processing time (> 1 h). If the early average images are very
distorted the corresponding registrations will be inaccurate. Once the average becomes
crisper the convergence is fast. The following procedure is designed to speed up
computations, by initially mapping all images to a mid-space and starting the algorithm
there:

1. First the registration of each image Ii to a randomly selected image Ĩ is computed,
to get estimates of where the head/brain is located in each image with respect to the
location in Ĩ. These registrations do not need to be highly accurate as they are only
needed to find an approximation to the mid-space for the initialization. However,
highly accurate registration in this step will reduce the number of iterations later.

2. Then the mid-space is computed from the set of transformation maps and all
images are resampled at that location. See Appendix B for details on how the
average space is constructed.

3. The iterative template estimation algorithm (Within-subject template section) is
initialized with the images mapped to the mid-space and, in most cases, needs only
two further iterations to converge: One to register all images to the average image
and another one to check that no significant improvements are possible.

Since all images are remapped at the mid-space location, including image Ĩ, they all undergo
a common resampling step removing any interpolation bias. The random asymmetry that
may be introduced when selecting image Ĩ as the initial target is further reduced due to the
fact that the registration method is inverse consistent, so the order of registration (image Ĩ to
image Ii or vice versa) is irrelevant. Alternatively it is possible to construct all pairwise
registrations and compute the average location considering all the information (e.g. by
constructing average locations using each input as initial target independently and averaging
the N results). This, however, significantly increases computational cost unless N is very
small and seems unnecessarily complicated given that the above algorithm already removes
resampling asymmetries and randomizes any potential remaining asymmetry possibly
induced by choosing an initial target.

Global intensity scaling
If the input images show differences in global intensity scales, the template creation needs to
adjust individual intensities so that all images have an equal weight in the final average. This
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can be done by computing a global intensity scale parameter in each individual registration.
Once we know the intensity scale si of each image with respect to the target (initially image
Ĩ but later average template), the individual intensities can be adjusted to their geometric
mean

(2)

by scaling each image intensity values with . Note, in the longitudinal processing stream
presented in this paper, intensity normalized skull stripped images (norm.mgz in FreeSurfer)
are used as input to construct the co-registration, thus global intensity scaling during the
registration step is not necessary, however, it can be important in other applications.

Affine voxel size correction
It may be desired to adjust for changes in scanner voxel sizes, possibly induced by the use of
different scanners, drift in scanner hardware, or different scanner calibrations, which are
frequently performed especially after software/hardware upgrades. Takao et al. (2011) find
that even with scanners of the exact same model, inter-scanner variability affects
longitudinal morphometric measures, and that scanner drift and inter-scanner variability can
cancel out actual longitudinal brain volume change without correction of differences in
imaging geometry. Clarkson et al. (2009) compare phantom based voxel scaling correction
with correction using a 9 degrees of freedom (DOF) registration and show that registration is
comparable to geometric phantom correction as well as unbiased with respect to disease
status. To incorporate automatic voxel size correction, we design an optional affine [BASE]
stream, where all time points get mapped to an average affine space by the following
procedure:

1. First perform the rigid registration as described above on the skull stripped brain
images to obtain an initial template image and average space.

2. Then use the rigid transforms to initialize an iterative affine registration employing
the intensity normalized full head images.

3. Fine tune those affine registrations by using the affine maps to initialize a final set
of registrations of the skull stripped brain images to the template, where only rigid
parameters are allowed to change.

Since the registration of the brain-only images in the final step is rather quick (a few
minutes), especially with such a high quality initialization, the fine tuning step comes at
little additional effort and ensures accurate brain alignment. Note, that we also propose a full
affine (12 DOF) registration as two non-uniform orthogonal scalings and a rotation/
translation in the middle generally cannot be represented by 9 DOF.

Adding time points
Opposed to independent processing, longitudinal processing evaluates concurrently scans
that have been collected at different time points in order to transfer information across time.
As a result, it always implicitly requires a delay in processing until all of the time points are
available to remain unbiased, independent of the longitudinal method used. While this
would be standard in a clinical therapeutic study, it is less optimal in observational studies.
However, due to the robust creation of the subject median template, the subsequent addition
of time points, assuming that they are not collected significantly later in time, would not be
expected to have a large influence on the analyses if sufficient temporal information is
contained in the template already. The purpose of the subject template is mainly to remove
interpolation bias and to initialize processing of the individual time points in an unbiased

Reuter et al. Page 10

Neuroimage. Author manuscript; available in PMC 2013 July 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



way. Similar to atlas creation, where a small number of subjects is usually sufficient for
convergence, it can be expected that within subject template estimation converges even
faster, due to the smaller variability. Nevertheless, in order to avoid being potentially biased
with respect to a healthier/earlier state, it is recommended, if possible, to recreate the
template from all time points and reprocess all data until further studies investigate this issue
more thoroughly.

Results and discussion
Data

TT-115—Two different sets of test–retest data are analyzed below. The first set consists of
115 controls scanned twice within the same session and will be referred to as TT-115. Two
full head scans (1 mm isotropic, T1-weighted multi-echo MPRAGE (van der Kouwe et al.,
2008), Siemens TIM Trio 3T, TR 2530 ms, TI 1200 ms, multi echo with BW 650 Hz/px and
TE=[1.64 ms, 3.5 ms, 5.36 ms, 7.22 ms], 2 × GRAPPA acceleration, total acq. time 5:54
min) were acquired using a 12 channel head coil and then gradient unwarped. The two scans
were separated by a 60 direction 2 mm isotropic EPI based diffusion scan and
accompanying prior gradient echo field map (2:08 min, 9:45 min), not used here. The two
multi-echo MPRAGE images are employed to evaluate the reliability of the automatic
segmentation and surface reconstruction methods. It can be assumed that biological variance
and variance based on the acquisition is minimized, therefore, this data will be useful to
reveal differences in the two processing streams (independent processing versus longitudinal
processing).

TT-14—We also evaluate a second test–retest set consisting of 14 healthy subjects with two
time points acquired 14 days apart (TT-14). The images are T1-weighted MPRAGE full
head scans (dimensions 1 mm× 1 mm×1.33 mm, Siemens Sonata 1.5T, TR 2730 ms, TI
1000 ms, TE 3.31 ms). Each time point consists of two within session scans that were
motion corrected and averaged to increase signal to noise ratio (SNR). This data set exhibits
a lower SNR than the TT-115 above, since it was acquired using a volume coil and at a
lower field strength of 1.5T. Because of this and the larger time difference it therefore better
reflects the expected variability of a longitudinal study and will be used for power analyses
below.

OA-136—To study group discrimination power in dementia in both processing streams we
analyze a disease dataset: the Open Access Series of Imaging Studies (OASIS)3 longitudinal
data. This set consists of a longitudinal collection of 150 subjects aged 60 to 96. Each
subject was scanned on two to five visits, separated by approximately one year each for a
total of 373 imaging sessions. For each subject and each visit, 3 or 4 individual T1-weighted
MPRAGE scans (dimensions 1 mm× 1 mm× 1.25 mm, TR 9.7 ms, TI 20 ms, TE 4 ms) were
acquired in single sessions on a Siemens Vision 1.5T. For each visit two of the scans were
selected based on low noise level in the background (indicating high quality, i.e., no or little
motion artifacts). These two scans were then registered and averaged to increase signal to
noise ratio and used as input. The subjects are all right-handed and include both men and
women. 72 of the subjects were characterized as non-demented for the duration of the study
and 64 subjects as demented. Here we do not include the third group of 14 converters who
were characterized as non-demented at the time of their initial visit and were subsequently
characterized as demented at a later visit. The dataset therefore only includes 136 subjects
and will be called OA-136.

3http://www.oasis-brains.org/.
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HD-54—To highlight improvements in situations with less statistical power, a second and
smaller disease data set is employed containing 10 healthy controls (C), 35 pre-symptomatic
Huntington's disease subjects of which 19 are near (PHDnear) and 16 far (PHDfar) from
estimated onset of symptoms, and 9 progressed symptomatic Huntington's patients (HD).
The near and far groups where distinguished based on the estimated time to onset of
symptoms using CAG repeat length and age (Langbehn et al., 2004) where far means
expected onset in more than 11 years. Each subject has image data from three visits
approximately half a year to a year apart (dimensions 1 mm× 1 mm× 1.33 mm, T1-weighted
MPRAGE, Siemens Avanto 1.5T, TR 2730 ms, TI 1000ms, TE 3.31 ms, 12 channel head
coil). Scanner software versions have changed for several subjects between the visits and in
the HD group two subjects even have 1–2 of their scans on an older Siemens Sonata
scanner, which adds potential sources of variability. This data will be referred to as HD-54.

Bias in longitudinal processing
Yushkevich et al. (2010) demonstrated that interpolation asymmetries can bias longitudinal
processing. As mentioned above, our method prevents interpolation and other asymmetry
induced bias by treating all time points equivalently. In Reuter and Fischl (2011) we argue
that avoiding only resampling bias may not be sufficient as different sources of bias exist,
such as informing processes in follow-up images with information from baseline. To
demonstrate the effect we introduce asymmetry by using information from one of the time
points (segmentation and surfaces) to initialize processing of the other on the TT-115
dataset. To remove any potential change in the images, the order of time points is previously
randomized for this test. Note, that none of the inputs are mapped or resampled to baseline
or a common space but stay in their native spaces, only label maps and surfaces are
transferred. As a dimensionless measure of change we compute the symmetrized percent
change (SPC) of the volume of a structure with respect to the average volume,4 defined as:

(3)

where Vi is the volume at time point i. Fig. 4 shows the SPC for different structures when
processing the test–retest data both forward (initializing time point 2 with results from time
point one) [BASE1] and backward [BASE2]. One can expect average zero change in each
structure as both images are from the same session, but instead the processing bias can
clearly be seen, even for the cortical volumes where no interpolation is used at all when
mapping the surfaces. It can be assumed that the bias is introduced by letting the results
evolve further in the other time point. It should be noted that the bias affects different
structures differently, and although it is strong, it cannot, for example, be detected in the left
thalamus. Furthermore, it can be observed in Fig. 4 that the proposed processing stream,
[FS-LONG] and [FS-LONG-rev] where time points are passed in reversed order when
constructing the template, shows no bias. The remaining small differences can be accounted
to subtle numerical instabilities during the template estimation.

Robustness, precision and accuracy
For the following synthetic tests only the first time point of data set TT-14 is taken as
baseline. It is resliced to 1 mm isotropic voxels, intensity scaled between 0 and 255. The
synthetic second time point is a copy of that image, but artificially modified to test
robustness with respect to noise and measurement precision of the longitudinal stream. As
Rician noise is nearly Gaussian at larger signal to noise ratios, robustness with respect to

4See Berry and Ayers (2006) for advantages (such as symmetry and increase of power) of using the average for normalization rather
than the volume at baseline to compute the percent change.
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noise is tested by applying Gaussian noise (σ= 1) to the second time point. Fig. 5 shows the
percent change with respect to the original in the hippocampal volume for both hemispheres
for cross-sectional and longitudinal processing. The longitudinal stream is more robust and
reduces the variability (increased precision).

In order to assess precision and accuracy of the longitudinal analysis we applied
approximately 2% simulated atrophy to the hippocampus in the left hemisphere and took
this synthetic image as the second time point. The atrophy was automatically simulated by
reducing intensity in boundary voxels of the hippocampus with partial ventricle volume
(labels as reported by FreeSurfer). See Appendix C for details. Note, that real atrophy is
more complex and variates among individuals and diseases. The well defined atrophy used
here should be accurately detected by any automatic processing method. It can be seen in
Fig. 6 that the longitudinal analysis detects the atrophy more precisely and also shows less
variability around the zero mean in the right hemisphere. Based on these results neither
method can be determined to be biased and both accurately find the ground truth, but
longitudinal processing with higher precision.

Test–retest reliability
In order to evaluate the reliability of the longitudinal scheme we analyze the variability of
the test–retest data sets (focusing on TT-115). Variability of measurements can have several
sources. Real anatomical change can occur in controls, e.g. due to dehydration, but is
unlikely in within-session scans. More likely, there will be variability due to acquisition
procedures (motion artifacts, change of head position inside the scanner etc.). In TT-115, for
example, head position has changed significantly as subjects sink into the pillow and relax
their neck muscles (mean: 1.05 mm, p < 10−8) during the 12 min diffusion scan separating
the test–retest. Acquisition variability is of course identical for both processing methods.
Finally there is variability due to the image processing methods themselves, that we aim to
reduce.

As a dimensionless measure of variability, similar to Eq. (3), we compute the absolute
symmetrized percent change (ASPC) of the volume of a structure with respect to the average
volume:

(4)

The reason is that estimating a mean (here of ASPC) is more robust than estimating the
variance of differences or symmetrized percent change when not taking the absolute value.
Fig. 7 shows the reliability of subcortical, cortical and white matter segmentation on the
TT-115 data set, comparing the independently processed time points [CROSS] and the
longitudinal scheme [LONG]. It can be seen that [LONG] reduces variability significantly in
all regions. Morey et al. (2010) also report higher scan–rescan reliability of subcortical
volume estimates in our method compared to independent processing in FreeSurfer and
compared to FSL/FIRST (Patenaude et al., 2011), even before we switched the longitudinal
processing to a common voxel space. Instead of processing time points in their native spaces
(Long 5.0, and earlier versions), having all images co-registered to the common template
space (Long 5.1b) significantly improves reliability in several structures (see Fig. 8 for a
comparison using TT-14).

Note, that often the intraclass correlation coefficient (ICC) (Shrout and Fleiss, 1979) is
reported to assess reliability, which is nearly identical to Lin's concordance correlation
coefficient (Lin, 1989; Nickerson, 1997), another common reliability measure. Table A.3 in
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the Appendix, reports ICC among other measures for subcortical volumes in TT-14. We
decided to report ASPC here, as it has a more intuitive meaning.

A comparison of Dice coefficients to test for overlap of segmentation labels L1 and L2 at the
two time points is reported in Table 1. Dice's coefficient:

(5)

measures the amount of overlap with respect to the average size (reaching 1 for perfect
overlap). For the Dice computation the segmentation labels need to be aligned across time.
In [LONG] the time points are automatically resampled to the subject template space during
processing and labels can be directly compared. For the [CROSS] results the same
transforms are used with nearest neighbor interpolation on the label map to also align both
segmentations in the subject template space for the Dice computation. Therefore it is likely
that resampling the label map has an additional detrimental effect on the [CROSS] results
due to partial voluming effects. The longitudinal stream improves the Dice in all regions
(see Table 1) and in each individual subject (not shown). The reported differences are all
significant (p < 0.001 based on the Wilcoxon signed rank test).

Finally we analyze reliability of cortical thickness maps. In order to compare repeated
thickness measures at each vertex, a pointwise correspondence needs to be constructed on
each hemisphere within each subject and across time. Similar to Han et al. (2006) the
surfaces in [CROSS] are rigidly aligned first, but here using the robust registration of the
images as created for the [BASE] (described above). In [LONG], images and thus surfaces
are in the same geometric space across time and don't need to be aligned. Then, to construct
correspondence on the surfaces, the nearest neighbor for each vertex is located on the
neighboring surface. This is done for both [CROSS] and [LONG] to treat them the same for
a fair comparison, in spite of the fact that [LONG] implicitly creates a point-wise
correspondence of surfaces across time. The nearest neighbor approach makes use of the
fact that surfaces are very close, which can be assumed for the same subject across time in
this test–retest study, and thus avoids the complex nonlinear spherical registration, that is
commonly used when registering surfaces across subjects.

Fig. 9 (left) depicts the average vertex wise ASPC as a measure of variability in [CROSS]
(in yellow regions at 6%). Still the thickness differences between the two time points is
mainly around 0.1 mm and rarely above 0.2 mm (not shown) and therefore smaller than in
Han et al. (2006), which can be expected as the processing methods have improved and the
TT-115 data is higher quality (multi-echo MPRAGE 3T as compared to MPRAGE 1.5T,
volume coil). Fig. 9 (middle) shows plots of the difference ([CROSS]-[LONG]) of absolute
symmetrized percent change for each vertex averaged across all subjects (smoothing kernel
with 15 mm full width at half maximum). The orange/yellow color indicates regions where
the longitudinal stream improves reliability, most prominently in the frontal and lateral
cortex (where improvements are more than 4%). Dark red and blue regions are small
magnitudes and basically noise. They have not been clipped to present the full picture and
are not significant. The false discovery rate corrected (at p = 0.05) significance maps in Fig.
9 (right) demonstrate that only the improvements are significant.

Improvements in reliability are summarized in Table 2, showing the average of the absolute
symmetrized percent change in each hemisphere across all subjects. LONG(cor) is based on
the implicit correspondence across time constructed in the longitudinal steam, and
LONG(reg) uses nearest neighbor registration. [LONG] improves reliability significantly.
The difference of [LONG] (either version) and [CROSS] yields a p < 0.001 in the Wilcoxon
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signed rank test. Furthermore, nearest neighbor surface registration (reg) in [LONG] and the
implicit correspondence constructed by the longitudinal stream (cor) yields almost the same
results. The remaining difference is significant only for TT-115 (at p < 0.01 based on
Wilcoxon signed rank test). Note, that the nearest neighbor registration (reg) is used here for
a fair comparison of the test–retest results across methods ([CROSS] vs. [LONG]) and is not
recommended in general, as it is not constrained along the surface. Surfaces may move due
to atrophy, potentially causing the nearest neighbor approach to incorrectly pair vertices
from different sides of a sulcus.

Sample size reduction
The lower variability in the longitudinal processing is particularly important for detecting
small effects, such as in drug trials, or for studies with a small number of subjects.

Instead of reporting an exemplary power analysis, we will more generally provide the
fraction of subjects needed in the [LONG] method compared to [CROSS]. The reason is that
such fractions will be valid independent of the specific underlying parameters, which can
differ depending on the specific situation, e.g. number of time points, their variance, effect
size, p-value, power. According to Diggle et al. (2002) longitudinal sample size calculations
of a continuous response for detecting a difference in the rate of change across time in two
groups (each containing m subjects) are usually of the form:

(6)

• where σ2 denotes the assumed common variance measuring the unexplained
variability in the response,

• ρ the correlation of the repeated observations,

• N the number of time points (assumed to contain no missing values and to be
spaced the same for all subjects),

• zp the pth quantile of a standard Gaussian distribution,

• α the type I error rate (the probability to reject the null hypothesis when it is
correct),

• d = βB−βA smallest meaningful difference in the mean slope (rate of change)
between group A and B to be detected (effect size),

• P the power of the test (the probability to reject the null hypothesis when it is
incorrect),

• and sx = Σj (xj−x̄)2 /N the within-subject variance of the time points (more
specifically of the explanatory variable, usually the duration between the first and
the j-th visit, assumed to be the same for all subjects).

Eq. (6) shows that the sample size can be reduced by increasing the number of time points
N, by increasing the correlation of repeated measures or by reducing the variability of the
response. As the variability between subjects is usually fixed and cannot be influenced, one
aims at decreasing within-subject variability by using a more reliable measurement
instrument or method. To analyze the effect of switching from independent image
processing [CROSS] to longitudinal processing [LONG], it becomes clear that all values
except σ and ρ are fixed for the two different methods and the requisite number of subjects
decreases with decreasing variance and increasing correlation. For a power analysis usually
these values are estimated from earlier studies with similar samples. Here we can compute
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them based on the test–retest results TT-14, as 14 days between the scans sufficiently model
the variability of follow-up scans on a different day (using the same scanner).

The fraction of necessary sample sizes when choosing [LONG] over [CROSS] is determined
by the fraction of variances and correlation:

(7)

This ratio specifies what percent of subjects is needed when processing the data
longitudinally as opposed to independent processing.

Based on variance and correlation results from TT-14, Fig. 10 shows the ratio for several
subcortical regions. Given this single test population to compute variance and correlation,
we estimate stability of these results via bootstrapping (1000 resamples). Fig. 10 therefore
depicts the median, the error bars extend from the 1st to the 3rd quartile. The results indicate
that sample size can usually be reduced in [LONG] to less than half the size assuming same
power, p-value, effect size and number and variance of time points. The small reduction in
the left caudate is due to the fact that in [CROSS] the correlation of the measures is very
high and almost the same as in [LONG], which is not true for the other hemisphere and most
of the other structures where the correlation in [CROSS] is usually much lower. Even larger
improvements can be expected when switching to modern acquisition hardware and
methods, for example as used in the TT-115 dataset (see improvements in Fig. 7). However,
we cannot base this sample size estimation onTT-115 since within-session scans do not
model the noise induced by removing and re-positioning a subject in the scanner, nor
variability due to hydration levels, etc.

Note that the number of subjects m and the number of time points n can be swapped in Eq.
(6), thus Fig. 10 can also be understood as showing the reduction in the necessary number of
time points in a longitudinal design when keeping the number of subjects (and variance of
time points) constant. The reduced number of subjects or necessary time points in the
longitudinal stream can constitute a significant reduction in costs for longitudinal studies
such as drug trials. Several other relevant statistics on TT-14 are reported in Table A.3 in the
Appendix for different structures to establish individual power analyses. Of course these
results are specific to the acquisition in TT-14 and may not be transferable to other studies.

Sensitivity and specificity in neurodegeneration
Since no longitudinal data set with manual labels is freely available that could be taken as
“ground truth”, we analyze a set of images of different disease groups and demonstrate that
longitudinal processing improves discrimination among the groups. Here we are interested
in detecting differences in the yearly volume percent change.

The longitudinal OASIS dataset OA-136 was selected to analyze behavior of the processing
streams in a disease study where subjects have differently many visits (2–5). Fig. 11
highlights the improvements of longitudinal processing: more power due to higher precision
to distinguish the demented from the non-demented group based on the percent volume
change with respect to baseline volume mainly in the hippocampus and entorhinal cortex.
Baseline volume was not taken directly from the results of the first time point, but instead
we used the value of the linear fit within each subject at baseline to obtain more robust
baseline volume estimates for the percent change computation (for both [CROSS] and
[LONG]). Again the red ‘.’ denotes a p ≤ 0.05, the ‘+’: p ≤ 0.01 and the ‘*’: p ≤ 0.001 in the
Mann–Whitney-U (also Wilcoxon rank-sum) test. Note that the Mann–Whitney-U test is
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closely related to the area under the Receiver Operator Characteristic (ROC) (Mason and
Graham, 2002). For a binary classifier the ROC curve plots the sensitivity vs. the false
positive rate (1-specificity). The area under the curve therefore measures the performance of
the classifier. Thus the significant differences across the groups above imply both improved
sensitivity and specificity to distinguish the different disease stages based on atrophy rate.

The other disease data set HD-54 was selected as it describes a small study with images
from different scanner software versions, where statistical power is relatively low. Fig. 12
(left and middle) shows plots of percent change averages (and standard errors) for thalamus,
caudate and putamen in both hemispheres. Percent change is computed with respect to the
baseline volume here, where baseline volume is taken from the linear fit within each
subjects as a more robust estimate. For the PHDfar we test difference from controls, for
PHDnear difference from PHDfar and for the HD difference from PHDnear. Because of the
large variability in the measurements, the cross-sectional stream cannot distinguish well
between the groups. [LONG], however, is capable of differentiating PHDfar from controls
based on atrophy rates in the caudate and putamen and PHDfar from PHDnear based on the
left caudate. Caudate and putamen are structures that are affected very early (in PHDfar
more than 11 years from expected onset of symptoms) while other structures such as the
thalamus seem to be affected later in the disease and show a faster atrophy rate in the HD
group. In HD the small atrophy rate in the caudate seem to indicate a floor effect (or
difficulties with the automatic segmentation as most of the caudate is lost).

To visualize group volume differences Fig. 12 (right) depicts the mean volumes of thalamus,
caudate and putamen at baseline (tp1) after intracranial volume (ICV) normalization. Even
though here we analyze volume at a single time point, each structure's volume and ICV are
taken from the results obtained via longitudinal processing and should therefore be more
robust than independent processing. Due to large between-subject variability in anatomical
structures, it is often not possible to distinguish groups simply based on structure size (even
after head size correction). In longitudinal studies, however, the additional temporal
information within each subject (atrophy rate) is computed with respect to average or
baseline structure size (i.e. percent change) within each subject. This removes between
subject variability and, at the same time, increases power to distinguish groups based on the
anatomical change in addition to size. For example the atrophy rate in the putamen differs
significantly between controls and pre-symptomatic subjects far from disease onset, while
baseline putamen volume does not.

Conclusion
The robust subject template yields an initial unbiased estimate of the location of anatomical
structures in a longitudinal scheme. We demonstrated that initializing processing of
individual time points with common information from the subject template improves
reliability significantly as compared to independent processing. Furthermore, our approach
to treat all inputs the same removes asymmetry induced processing bias. This is important as
the special treatment of a specific time point such as baseline, e.g. to inform follow-up
processing, induces bias even in the absence of resampling asymmetries. Moreover we avoid
imposing regularization or temporal smoothness constraints to keep the necessary flexibility
for detecting large deviations. Therefore, in our framework, the order of time points is not
considered at all and individual segmentation and deformation procedures are allowed to
evolve freely. This reduces over-regularization and thus the risk of consistently
underestimating change.

We have shown, that our method significantly improves precision of the automatically
constructed segmentations with respect to volume and location, and of the cortical thickness
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measures. Thus, statistical power is increased, i.e. the necessary number of subjects or time
points reduced (at same effect size and significance level). This may have a profound
clinical impact particularly in drug trials where small effect sizes need to be detected or
disease processes quantified early in the course, when therapeutic intervention is still
possible. The presented methodology is capable of precisely and accurately detecting
differences as demonstrated in simulated hippocampal atrophy and in evaluating complex,
subtle changes that occur in neurodegenerative disorders.

A common challenge of longitudinal analyses is change in scanner hardware or software.
Due to scanner drift and calibration, images cannot be assumed to be sized exactly the same.
Any change in preprocessing can bias results and potentially void a study trying to establish
absolute measures such as the rate of change in a specific disease. Group comparisons may
still be possible, if both groups underwent the same processing changes, but even then it is
likely that the processing change influences one group more than the other and that
influences are regional. To account for calibration effects, we include optional affine
template creation into our framework. However, potential image contrast changes cannot
easily be removed retrospectively. This is of course true for both longitudinal and
independent processing, where variability will be even higher. A consistent change in input
images, independent of the source, is supposed to be detected by an accurate and precise
analysis tool. Longitudinal methods may actually reveal these kinds of consistent acquisition
differences, because they are more sensitive and need less subjects to detect them. It is
therefore essential to control scanner hardware and software or to model upgrades as
potential shifts when running a statistical analysis on the results.

Future work will include procedures to jointly estimate or optimize results in all time points
simultaneously without necessarily relying on the subject template. In unbiased
simultaneous processing memory usage is scaled at least linearly by the number of time
points (Gaussian classifiers scale with the square if full covariance estimation is used),
which implies that hardware requirements may not be met by standard desktop computers.
However, this is a direction we intend to pursue. For example, a joint intensity normalization
and bias correction can employ all the imaging data across time to estimate a high SNR
image at each time point while retaining regions that display temporal change. It is also
possible to generate an unbiased initial estimate of the average surface locations for both the
gray/white and the pial surfaces by minimizing the distance to each of the individual cross-
sectional surfaces directly. Furthermore, it is expected that variational approaches for the
thickness computation in each time point will improve reliability compared to the current
method, which estimates and averages the shortest distance from the gray to white matter
surface and vice versa.

The presented longitudinal scheme is freely available in the software package FreeSurfer at
www.freesurfer.net and has been successfully applied in our lab and by others in various
studies of e.g. Huntington's, Alzheimer's disease and aging.
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Appendix A. Probabilistic fusion
For the following discussion we assume for each subject the N normalized and skull stripped
images {Ii} to be registered and resampled to the common template space, together with
their initial label maps {Li}, i = 1, …,N, where we use nearest neighbor interpolation. The
goal is to construct a fused segmentation L̃i for each time point containing the label with the
highest probability at each location based on all inputs {Ii} and initial segmentations {Li}.
This procedure is designed for N ≥ 3 time points, for N = 2 it reduces to selecting the label
from the initial label map of the specific time point. Here we just discuss one selected time
point and call its image I without subscript, note that it is an element of the set {Ii} although
we assume it was generated from all inputs later:

(A.1)

(A.2)

(A.3)

where Ω denotes the set of all voxels and assuming that the labels at each voxel are
conditionally independent from each other. This allows us to work on each voxel separately.
By assuming that the current image I is generated with equal probability from the {Ii} and
dropping 1/N we obtain:

(A.4)

(A.5)

(A.6)

where we further assumed I and L to be conditionally independent (not meaning
independent, see Sabuncu et al., 2010). We specify a simple voting model for the label prior:

(A.7)

While for the image likelihood we choose a normal distribution with stationary variance σ2:

(A.8)

The above procedure basically describes a kernel density estimation with a Gauss kernel
(Parzen window). Each initial label map votes on the label based on the intensity difference
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to the current image. With constant image likelihood (σ→∞) this reduces to majority
voting. The image likelihood that we use above can be seen as temporal smoothing of the
label maps. In the kernel density estimation the free smoothing parameter σ is called the
bandwidth and has been selected to be σ= 3 here based on the possible intensity values and
noise level. This value is relative conservative, for example it needs 5 time points that agree
on a different label and have an intensity difference of at most 5 out of 0…255 to convince a
label to switch over. For larger intensity differences this number rapidly increases, see Fig.
A.13.

Note that, as mentioned above, the fused segmentation L̃ needs to be constructed for each
time point. It is not the final segmentation, but is used only to initialize the segmentation
algorithm in the longitudinal processing. We presented the probabilistic approach above to
highlight what design choices have been made. Possible modifications are:

• to use a non rigid higher dimensional warp to align the images for this purpose.

• to allow for different probabilities of the {Ii}, for example, to account for distances
in time and/or neighborhood intensities.

• to employ a more complex model for the label prior, e.g., based on neighboring
voxels or the signed distance transform.

However, since the fused segmentation is only an initialization, the above approach is
sufficient in that it allows flexibility of detecting large change across time, as opposed to
using the segmentation of the template to initialize all time points.

Appendix B. Mean space
Here we discuss, how to compute the average location from a set of N-1 rigid
transformations (step 2 in Improved template estimation section). For this a new coordinate
system is defined with its origin at the center of the random target image Ĩ with axes aligned
to the right, anterior, superior directions (RAS). The first step is to find the location and
orientation (translation and rotation) of each of the other images in this space, so that the
average location can be computed.

A rigid transformation consists of a rotation and translation and is usually written as φ (x⃗) ≔
Rx⃗ + t⃗, where R is a 3 × 3 rotation matrix. R and t⃗ are returned when registering image Ii to
image Ĩ. Equivalently the order can be reversed, so that the translation will be executed
before the rotation:

(B.1)

Note that the inverse of the rotation matrix is simply the transpose R−1 = RT. The rotation

remains the same, while the translation becomes  (registering image i to the first
via transform φi). The − v⃗i directly give the translation offset of each image with respect to
image Ĩ (located at the origin). Therefore the average:

(B.2)

marks the mean of all locations. For rotations different averages can be defined (Moakher,
2002; Sharf et al., 2010). Since rotational differences are rather small, it will be sufficient to
compute the projected arithmetic mean. This is the usual arithmetic mean of 3 × 3 matrices,
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orthogonally projected back to SO (3), the space of rotation matrices, via a polar
decomposition. To find the rotation from Ĩ to the average position, the inverse rotations
obtained from the registration above are averaged:

(B.3)

Note that both sums run over all images, where the translation of Ĩ with respect to itself is of
course zero and the rotation matrix is identity. Since the matrix mean Q is not a rotation
matrix in general, its polar decomposition Q = US into an orthogonal rotation matrix U and a

symmetric matrix S needs to be computed. S is always unique and given by .
Because the head positions in the images are sufficiently close to each other,5 Q is invertible
and then U is also unique. It can be computed through a singular value decomposition of Q
= WDVT and is given6 by U = WVT.

Once the mean location p⃗ and orientation U are determined, we construct the transform φ̂ (x⃗)
≔ U x⃗ + p⃗ from image Ĩ to the average location. The other transforms of each image to the
average location are then created by composition φ̂i ≔ φ̂∘φi. All images are averaged at that
location and serve as high quality input to the intrinsic mean algorithm.

Appendix C. Simulated atrophy
In order to simulate atrophy in the hippocampus (see Robustness, precision and accuracy
section) we reduce the intensity of boundary voxels adjacent to ventricle CSF. Let H denote
the set of all hippocampus voxels and B the subset of boundary voxels containing partial
ventricle, then we have Vhippo (B) = Σx∈B Vhippo (x) the sum of partial hippocampus
volumes for all voxels in B, and total hippocampal volume Vhippo (H). For atrophy rate p
(here p = 0.02) we compute the boundary scaling factor as:

(C.1)

necessary for adjusting partial volume of boundary voxels to achieve the desired volume
reduction. For this we first estimate local mean hippocampus intensity IH (x) and ventricle
intensity IV(x) in a 153 box centered at x. Then we compute the partial hippocampal volume
at x

(C.2)

and update intensity according to

(C.3)

5i.e. sufficiently less than 180° away from each other to prevent the average from becoming ill conditioned or even singular.

6  using VTV = WTW = I
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Table A.3

Statistics based on test–retest data (14 subjects, two time points). Columns: mean and
standard deviation at both time points, correlation across time, intraclass correlation
coefficient icc(2,1), standard deviation of the difference (tp2 − tp1),standard deviation of the
symmetrized percent change (diff/avg). The icc and std of SPC are reported also for cross-
sectional processing to show improvements of the longitudinal stream.

Volume stats. [LONG]: [CROSS]:

Structure Mean 1 std 1 Mean 2 std 2 corr icc std (diff) std (spc) icc std (spc)

L corticalGM 192,866 20,512 190,918 20,157 0.987 0.983 3336.69 1.760 0.983 2.070

R corticalGM 194,939 21,068 192,368 21,966 0.978 0.972 4571.14 2.449 0.971 2.825

L thalamus     5680.7     616.4     5672.4     583.1 0.979 0.979   128.03 2.153 0.873 4.861

R thalamus     5733.6     544.5     5705.0     526.9 0.951 0.953   167.89 2.841 0.841 4.810

L caudate     3224.4     378.9     3197.7     393.1 0.982 0.980     74.55 2.208 0.967 2.558

R caudate     3333.0     440.2     3331.3     443.5 0.993 0.994     51.56 1.551 0.971 3.056

L putamen     4664.1     898.9     4694.7     865.4 0.985 0.985   155.35 3.808 0.951 6.048

R putamen     4534.5     701.4     4536.1     729.4 0.991 0.991     98.15 2.266 0.962 3.536

L pallidum     1632.2     219.4     1625.4     196.1 0.943 0.941     73.99 4.372 0.823 7.320

R pallidum     1442.9     205.8     1436.6     205.0 0.948 0.951     65.96 4.534 0.861 8.158

L hippocampus     3075.2     384.2     3089.6     390.2 0.958 0.960   112.07 3.583 0.922 4.537

R hippocampus     3173.1     421.8     3190.0     438.8 0.981 0.981     85.14 2.781 0.964 3.352

L amygdala     1142.8     150.0     1167.0     176.5 0.923 0.907     69.06 5.801 0.776 9.810

R amygdala     1168.9     185.7     1161.4     183.4 0.933 0.937     67.48 5.967 0.860 7.954
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Fig. 1.
Simplified diagram of the three steps involved in longitudinal processing, showing
information flow at a single longitudinal run. Dashed line: information is used for
initialization. Solid line: information is copied.
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Fig. 2.
Unbiased template estimation for a subject with neurodegenerative disease and significant
atrophy: All time points are iteratively aligned to their median image with an inverse
consistent robust registration method, resulting in a template image and simultaneously a co-
registration of all time points.
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Fig. 3.
Comparison of mean and median template image for a series of 18 images (7 years) of a
subject with neurodegenerative disorder (Huntington's disease). The difference image (top
row) between median and mean reveals large differences in regions that change over time
(e.g. ventricles, corpus callosum, eyes, neck, scalp). Below are close-ups of the mean image
(left, softer edges) and the median image (right, crisper edges).
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Fig. 4.
Initializing time point 2 with results from time point 1 [BASE1] and vice-versa [BASE2]
shows a bias in symmetrized percent change. Using our method [FS5.1] and passing time
points in reverse order [FS5.1rev] does not show a processing bias. Significant differences
from zero are denoted by a red plus: p<0.01 and red star: p<0.001 in Wilcoxon signed rank
test. Error bars show a robust standard error where standard deviation is replaced by σ≈
1.4826 median absolute deviation. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 5.
Effect of simulated noise (σ= 1) on hippocampal volume measurements. The longitudinal
processing is less affected.
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Fig. 6.
Simulated 2% atrophy in the left hippocampus. The longitudinal processing manages to
detect the change more precisely and at the same time reduces the variability in the right
hemisphere.
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Fig. 7.
Test–retest comparison of independent [CROSS] versus longitudinal [LONG] processing on
TT-115 data (left hemisphere).Subcortical (left), cortical gray matter (middle), and white
matter segmentations (right). The mean absolute volume difference (as percent of the
average volume) is shown with standard error. [LONG] significantly reduces variability.
Red dot: p<0.05, red plus: p<0.01, red star: p<0.001. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8.
Test–retest comparison of [CROSS] versus [LONG] on TT-14 data (subcortical volumes,
left hemisphere). See also Fig. 7 for description of symbols. Additionally here reliability
improvements of using a common voxel space (Long 5.1b) over previous method (Long 5.0)
can be seen.
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Fig. 9.
Left: Average absolute symmetrized percent thickness change at each vertex for TT-115
using [CROSS]. Some regions (yellow) show 6% ASPC and above. Middle: Comparison:
([CROSS]-[LONG]) of average absolute symmetrized percent thickness change at each
vertex for TT-115. Blue: [LONG] has larger variability, red/yellow [CROSS] has larger
variability. [LONG] improves reliability in most regions, especially in the frontal and lateral
cortex (yellow: more than 2% reduction of variability, frontal and lateral even more than
4%). Blue and red regions are mainly noise. Right: corresponding significance map, false
discovery rate corrected at 0.05. [LONG] improves reliability significantly in most regions.
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Fig. 10.
Percent of subjects needed in [LONG] with respect to [CROSS] to achieve same power at
same p to detect same effect size. In most regions less than 40% of the subjects are needed.
Equivalently this figure shows the reduction in necessary time points when keeping the
number of subjects and within-subject variance of time points the same. Variance of
measurements and correlation were estimated based on TT-14 using bootstrap with 1000
samples. Bars show median and error bars depict 1st and 3rd quartile.
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Fig. 11.
Percent volume change per year with respect to baseline of the OA-136 dataset (2 to 5 visits
per subject) for both independent [CROSS] (top) and longitudinal [LONG] (bottom)
processing. [LONG] shows greater power to distinguish the two groups and smaller error
bars (higher precision).
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Fig. 12.
Symmetric percent volume change per year of several subcortical structures. Left: [CROSS]
almost no significant differences due to high variability (small group sizes). Middle:
[LONG] significant differences between pre-symptomatic (PHD far from onset) and
controls and between PHD far and PHD near (left caudate). Right: Volume means (ICV
normalized) at baseline (tp1). While baseline volume distinguishes groups in several cases,
the significant difference between controls and PHDfar in atrophy rate in the putamen
cannot be detected in the baseline volumes.
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Fig. A.13.
Votes that need to agree on a different label to convince a time point to swap at σ= 3 for a
given intensity difference.
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Table 1

Dice coefficient averaged across subjects for subcortical structures for both test–retest data sets (TT-14 and
TT-115). Longitudinal processing (L-prefix) improves results significantly in all instances.

Structure C-14 L-14 C-115 L-115

L WM 0.904 0.948 0.904 0.955

R WM 0.902 0.948 0.902 0.956

L corticalGM 0.888 0.944 0.909 0.962

R corticalGM 0.885 0.944 0.909 0.963

Subcortical GM 0.889 0.948 0.887 0.957

L lat vent 0.922 0.968 0.904 0.966

R lat vent 0.916 0.966 0.896 0.964

L hippocampus 0.872 0.933 0.875 0.948

R hippocampus 0.870 0.936 0.880 0.952

L thalamus 0.906 0.956 0.910 0.971

R thalamus 0.908 0.957 0.915 0.974

L caudate 0.849 0.928 0.861 0.943

R caudate 0.840 0.928 0.858 0.944

L putamen 0.864 0.929 0.874 0.943

R putamen 0.868 0.932 0.875 0.948

L pallidum 0.829 0.916 0.796 0.934

R pallidum 0.830 0.927 0.800 0.937

L amygdala 0.815 0.895 0.850 0.919

R amygdala 0.802 0.881 0.848 0.923

3rd ventricle 0.860 0.949 0.868 0.957

4th ventricle 0.860 0.929 0.847 0.941

L inf lat vent 0.700 0.843 0.705 0.860

R Inf lat vent 0.684 0.841 0.715 0.864

Mean 0.853 0.927 0.859 0.942

StD 0.062 0.034 0.058 0.030
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Table 2

Average across subjects of the average vertex wise absolute symmetrized percent thickness change between
time points 2 and 1 for the different methods in both data sets. Skipping the surface registration (reg) in
[LONG] and using the implicit correspondence across time constructed by the longitudinal stream (cor) yields
similar results.

Hemi CROSS(reg) LONG(reg) LONG(cor)

L TT-14 4.04 3.39 3.44

R TT-14 4.60 3.76 3.80

L TT-115 4.00 3.21 3.26

R TT-115 4.07 3.29 3.33
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