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Abstract

After more than twenty years busily mapping the human brain, what have we learned from 

neuroimaging? This review (coda) considers this question from the point of view of structure–

function relationships and the two cornerstones of functional neuroimaging; functional segregation 

and integration. Despite remarkable advances and insights into the brain’s functional architecture, 

the earliest and simplest challenge in human brain mapping remains unresolved: We do not have a 

principled way to map brain function onto its structure in a way that speaks directly to cognitive 

neuroscience. Having said this, there are distinct clues about how this might be done: First, there is 

a growing appreciation of the role of functional integration in the distributed nature of neuronal 

processing. Second, there is an emerging interest in data-driven cognitive ontologies, i.e., that are 

internally consistent with functional anatomy. We will focus this review on the growing 

momentum in the fields of functional connectivity and distributed brain responses and consider 

this in the light of meta-analyses that use very large data sets to disclose large-scale structure–

function mappings in the human brain.

Introduction

Over the past twenty years, neuroimaging has become the predominant technique in 

behavioral and cognitive neuroscience. The volume of papers and number of fields it 

pervades are unrivaled. Despite this, it is curiously difficult to summarize its achievements 

in general terms. The simplest attempts falls back on the two principles that shaped brain 

mapping at its inception; namely functional segregation and integration: Neuroimaging has 

established functional segregation (the segregated or modular deployment of functional 

specialization within brain regions) as a fundament of brain organization (Fig. 1). However, 

the initial hope of associating each brain area with a particular function (Posner et al., 1998) 

has not been realized. While it is true that notions like the ‘motion sensitive center’ and 

‘fusiform face area’ are part of common imaging parlance, the functionally informed 

labeling of all but the smallest portion of cortex remains elusive. Indeed people now prefer 

to talk about processing hierarchies, intrinsic networks and default modes that have no clear 

association with discrete cognitive processing components. So can functional integration 

accommodate functional labels in the context of distributed processing?
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The premise we pursue in this review is that structure–function mappings can be defined and 

will lead to new cognitive ontologies that are grounded on the functional architectures that 

support them. However, to access the mappings and ontologies may require us to 

disassemble current views of cognition and use a more physiologically and anatomically 

informed approach. Interestingly, many of the tools and ideas required to establish 

distributed structure–function mappings are exactly those tools and concepts (e.g. standard 

anatomical spaces) that were essential in establishing brain mapping as the discipline we 

know today. However, we may now be able to exploit them in a different context, with new 

approaches to modeling distributed responses and advances in data-mining and meta-

analyses.

This review comprises two sections. In the first, we look at recent advances in the modeling 

of functional integration and network activity. We will cover approaches to both endogenous 

activity and experimentally evoked or induced responses. To illustrate the power of these 

approaches, this section focuses on processing hierarchies and the necessary distinction 

between forward and backward connections as revealed by neuroimaging. It concludes by 

considering recent advances in network discovery in the setting of hierarchical brain 

architectures. In the second section, we turn to the unmet challenge above; namely, how do 

we elaborate cognitive ontologies that map properly to distributed functional architectures in 

the brain. This section reviews the requisite standardization tools and recent advances in 

meta-analyses and related multivariate approaches. We conclude with a synthesis of the two 

sections and consider the application of meta-analytic approach to network discovery and 

structure–function mappings.

Modeling distributed neuronal systems

In this section, we address the different approaches to modeling neuronal dynamics. 

Biophysical models of neuronal dynamics are usually used for one of two things; either to 

understand the emergent properties of neuronal systems or as observation models for 

measured neuronal responses. In other words, they are used to simulate brain-like dynamics 

or are used explicitly to predict observed brain activity. We discuss examples of both: in 

terms of emergent behaviors, we will consider dynamics on structure (Freeman, 1994; 

Coombes and Doole, 1996; Robinson et al., 1997; Tsuda, 2001; Freeman, 2005; Bressler 

and Tognoli, 2006; Kriener et al., 2008; Rubinov et al., 2009; Buice and Cowan, 2009) and 

how this has been applied to characterizing autonomous or endogenous fluctuations in fMRI 

signals (e.g., Honey et al., 2007, 2009; Deco et al., 2009). We then consider dynamic causal 

models that are used to explain responses elicited in designed experiments. This section 

concludes with recent advances in causal modeling that means it can be applied to the study 

of endogenous fluctuations, in terms of directed neuronal interactions. The first half of this 

section is based on Friston and Dolan (2010), to which readers are referred for more details.

Modeling autonomous dynamics

There has been a recent upsurge in studies of fMRI signal correlations observed while the 

brain is at rest (Biswal et al., 1995). These patterns seem to reflect anatomical connectivity 

(Greicius et al., 2009) and can be characterized in terms of fluctuations of remarkably 

reproducible spatial patterns or modes (i.e., intrinsic or resting-state networks). One of these 
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modes recapitulates the pattern of deactivations observed across a range of activation studies 

(the default mode; Raichle et al., 2001). These studies highlight that, even at rest, 

endogenous brain activity is self-organizing and highly structured. There are many questions 

about autonomous (self sustaining) dynamics and the structures that support them. Some of 

the most interesting come from computational anatomy and neuroscience. The emerging 

picture is that endogenous fluctuations are a consequence of dynamics on anatomical 

connectivity structures with particular scale-invariant and small-world characteristics 

(Achard et al., 2006; Honey et al., 2007; Bassett et al., 2006; Deco et al., 2009). In other 

words, the pattern and strength of brain connections are sufficient to propagate dynamics 

over large distances, but not dense or strong enough to cause every brain area to synchronize 

vigorously. This self organized criticality is a well-studied and universal characteristic of 

complex systems and suggests that we may be able to understand the brain in terms of 

universal phenomena: phenomena that do not depend upon the biophysical details of the 

underlying system. For example, Buice and Cowan (2009) model neocortical dynamics 

using field-theoretic methods to describe both spontaneous neural fluctuations and responses 

to stimuli. In their models, the density and extent of lateral cortical interactions can be 

chosen to make the effects of fluctuations negligible. However, as the generation and decay 

of neuronal activity becomes more balanced, there is a transition into a regime of critical 

fluctuations. These models suggest that the scaling laws found in many measurements of 

neocortical activity, are consistent with the existence of phase-transitions at a critical point. 

They show how such properties lead to both random and rhythmic brain activity (Buice and 

Cowan, 2009) and speak to larger questions about how the brain maintains its dynamics near 

phase-transitions, where the patterns of activity changed quantitatively from one sort to 

another (i.e., self-organized criticality; Kitzbichler et al., 2009) and the putative role of 

cortical gain control (Abbott et al., 1997). This is an important issue, because self-

organization near phase-transitions shows universal patterns and structures, as studied in 

synergetics (e.g., Jirsa et al., 1994; Jirsa and Haken, 1996; Jirsa and Kelso, 2000; Tognoli 

and Kelso, 2009; Tschacher and Haken, 2007). Although there have been recent papers 

arguing for criticality and power law effects in large-scale cortical activity (e.g. Kitzbichler 

et al., 2009; Linkenkaer-Hansen et al., 2001; Stam and de Bruin, 2004; Freyer et al., 2009), 

there is also work that argues otherwise; at least at higher frequencies (e.g. Bedard et al., 

2006; Miller et al., 2007; Touboul and Destexhe, 2009). The important distinction appears to 

be that ‘slow’ fluctuations may contain critical oscillations, whereas high-frequency 

coherent oscillations may reflect other dynamical processes. In summary, endogenous 

fluctuations may be one way in which anatomy speaks to us through dynamics. They also 

suggest important questions about how fluctuations shape evoked responses (e.g., 

Hesselmann et al., 2008).

Dynamical approaches to understanding phenomena in neuroimaging data focus on 

emergent behaviors and the constraints under which brain-like behavior manifest (e.g., 

Breakspear and Stam, 2005; Alstott et al., 2009). In the remainder of this section, we turn to 

models that try to explain observed neuronal activity directly. This is a relatively new field 

that rests on model fitting or inversion. Model inversion is important: to date, most efforts in 

computational neuroscience have focused on models of neuronal dynamics (that define a 

mapping from causes to neuronal dynamics). The inversion of these models (the mapping 
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from neuronal dynamics to their causes) now allows one to test different models against 

empirical data. Put simply, this means one can compare different models or hypotheses 

about the generation of neuronal activity by evaluating the evidence for different models, 

where the evidence is just the probability of some neuroimaging data, under the model. This 

is known as model comparison or selection, which we will illustrate in the context of 

dynamic causal modeling.

Dynamic causal modeling

Dynamic causal modeling (DCM) refers to the (Bayesian) inversion and comparison of 

dynamic models that cause observed data. These models are formulated in continuous time 

(or frequency) and describe how underlying neuronal and physiological states evolve, in 

response to experimental inputs or endogenous fluctuations. Usually, but not necessarily, 

these formulations are in terms of differential equations that describe the motion or flow of 

hidden neurophysiologic states, while an observer function maps from hidden states to 

observed brain signals. This mapping is probabilistic and involves some observation noise. 

Noise at the level of the hidden states can model endogenous fluctuations in neural activity 

of the sort considered above (Friston et al., 2008); we will return to this later.

Differential equations are essential when modeling the dynamics of biological systems. The 

basic idea behind DCM is to formulate one or more models of how data are caused in terms 

of a network of distributed sources. These sources talk to each other through parameterized 

connections and influence the dynamics of hidden states that are intrinsic to each source. 

Model inversion provides probabilistic estimates of the model parameters; namely extrinsic 

connection strengths and intrinsic (synaptic) parameters. These estimates can then be used to 

evaluate the probability of the data given the model per se. This is the model evidence and is 

the key quantity that is used for model comparison. In one sense, this approach just 

formalizes the scientific process based on the evidence for different hypotheses.

DCM was originally introduced for fMRI using a simple model based upon a bilinear 

approximation to the underlying equations of motion that couple neuronal states in different 

brain regions (Friston et al., 2003). Crucially, DCMs are generalizations of the conventional 

convolution model used to analyze fMRI data and event-related potential (ERP) analyses in 

electrophysiological research. The only difference is that one allows for hidden neuronal 

states in one part of the brain to be influenced by neuronal states elsewhere. In this sense, 

they are biophysically informed multivariate analyses of distributed brain responses.

Most DCMs consider point sources both for fMRI and EEG data (c.f., equivalent current 

dipoles) and are formally equivalent to graphical models, which are used as generative or 

causal models of observed responses. Inference on the coupling within and between the 

nodes (brain regions) of these graphs or networks is generally based on perturbing the 

system experimentally and trying to explain the observed responses by optimizing the model 

parameters (e.g., connection strengths). This optimization furnishes posterior or conditional 

probability distributions over the unknown parameters (e.g., effective connectivity) and the 

evidence for the model. The evidence is tremendously important because it enables model 

comparison (Penny et al., 2004). The power of Bayesian model comparison, in the context 

of dynamic causal modeling, has become increasing apparent. This now represents one of 
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the most important applications of DCM and allows different hypotheses to be tested, where 

each DCM corresponds to a specific hypothesis about functional brain architectures (e.g., 

Acs and Greenlee, 2008; Allen et al., 2008; Grol et al., 2007; Heim et al., 2009; Smith et al., 

2006; Stephan et al., 2007; Summerfield and Koechlin, 2008). Although DCM is probably 

best known through its application to fMRI, more recent applications have focused on 

neurobiologically plausible models of electrophysiological dynamics. Furthermore, different 

data features (e.g., ERPs or induced responses) can be modeled with the same DCM. Figs. 2 

to 4 illustrate some key developments in DCM, which are reviewed briefly below.

These examples are chosen to illustrate how much information is latent in neuroimaging 

data and how it can be accessed by using increasingly detailed and biologically realistic 

models. One obvious question here is how detailed can these models be? The answer to this 

question is pragmatic: when models become too complex, there evidence actually starts to 

decrease (c.f., Occam’s razor). Crucially, the difference between the evidence for two overly 

complicated or detailed models disappears. This enables one to conclude that, for the data in 

hand, there is no evidence for one model over another. In other words, Bayesian model 

comparison allows one to find the right level of biophysical detail that is supported by the 

data available. Data from fMRI has exquisite spatial resolution but cannot differentiate 

between detailed models of temporal dynamics that are formulated in terms of realistic 

populations and synaptic processes. Conversely, electromagnetic data, although lacking 

precise spatial information can support very detailed physiological models, provided we 

know where in space the signals were generated. The biological plausibility of current 

models is illustrated by the neural mass models used in DCM for electromagnetic signals.

Neural-mass models

Most recent developments in modeling have focused on electromagnetic (EEG and MEG) 

data (David et al., 2006; Kiebel et al., 2006, 2007; Garrido et al., 2007a,b; Clearwater et al., 

2008; Chen et al., 2008; Garrido et al., 2008), with related developments to cover local field 

potential (LFP) recordings (Moran et al., 2007, 2008). These models are more sophisticated 

than the neuronal models for fMRI and are based upon neural-mass or mean-field models of 

interacting neuronal populations (see Deco et al., 2008). These models summarize the 

dynamics of neuronal populations in terms of their mean activity, which greatly simplifies 

the models by providing an abstraction that retains the basic behaviors but dispenses with 

the detailed dynamics of individual neurons. Typically, each source of electromagnetic 

activity is modeled as an equivalent current dipole (or ensemble of small cortical patches); 

whose activity reflects the depolarization of three populations (usually one inhibitory and 

two excitatory). Crucially, one can embed any neural-mass model into DCM. These can 

include models based upon second-order linear differential equations (c.f., Lopes da Silva et 

al., 1974; Jansen and Rit, 1995) or conductance-based models based on nonlinear 

differential equations (c.f., Morris and Lecar, 1981). This is useful, because there is an 

established literature and understanding about the behavior of these various neural mass 

models of neuronal dynamics.

As with DCM for fMRI, DCM for electromagnetic responses is just a generalization of 

conventional (equivalent current dipole) models that have been equipped with parameterized 
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connections among and within sources (David et al., 2006). These models fall into the class 

of spatiotemporal dipole models (Scherg and Von Cramon, 1985) and enable entire time-

series over peristimulus time to be modeled. Face validation of these models has used 

known electro-physiological phenomena and independent measures of coupling (e.g. David 

and Friston, 2003; David et al., 2004). Their predictive validity has been established using, 

for example, the mismatch negativity (Näätänen, 2003) as an exemplar sensory learning 

paradigm (e.g., Garrido et al., 2007a, 2008).

Developments in this area have been rapid and can be summarized along two lines. First, 

people have explored more realistic neural-mass models based upon nonlinear differential 

equations, whose states correspond to voltages and conductances (c.f., Morris and Lecar, 

1981). See Fig. 2. This allows one to formulate DCMs in terms of well-characterized 

synaptic dynamics and model different types of receptor-mediated currents explicitly. 

Furthermore, conventional neural-mass modeling (which considers only the average state of 

a neuronal ensemble) has been extended to cover ensemble dynamics in terms of probability 

distributions over the hidden states of neuronal populations. This involves modeling not just 

the average activity but also its dispersion and covariance among different neuronal 

populations (Marreiros et al., 2009). The second line of development concerns the particular 

data features the models try to explain. In conventional DCMs for ERPs, the time-course of 

voltage at the sensors is modeled explicitly. However, DCMs for spectral responses (Moran 

et al., 2007, 2008) can be applied to continuous recordings of arbitrary length. This 

modeling initiative rests on a linear systems analysis of the underlying neural-mass model to 

give a predicted spectral response for unknown but parameterized endogenous input. In 

other words, one can make the simplifying assumption that observed fluctuations in 

electromagnetic signals are caused by small endogenous perturbations to the system’s 

average state. This means that, given the spectral or frequency profile of 

electrophysiological recordings, one can estimate the coupling among different sources and 

the spectral energy of neuronal and observation noise generating observed spectra. This has 

proved particularly useful for LFP recordings and has been validated using animal models 

and psychopharmacological constructs (Moran et al., 2007, 2008). Indeed, this could be a 

potentially important tool in studies of receptor function and related learning paradigms. 

Finally, there are DCMs for induced responses (Chen et al., 2008). Like the steady-state 

models, these predict the spectral power of responses but as a function of peristimulus time. 

The underlying neural model here is based upon the simple bilinear approximation to any 

neuronal dynamics. The key benefit of these DCMs is that one can quantify the evidence for 

between-frequency coupling among sources, relative to homologous models restricted to 

within-frequency coupling. Coupling between frequencies corresponds to nonlinear 

coupling. Being able to detect nonlinear coupling is important because it speaks to nonlinear 

or modulatory synaptic mechanisms that might differentiate between forward and backward 

connections.

Forward and backward connections in the brain

To provide a concrete example of how DCM has been used to build a picture of distributed 

processing in the brain, we focus on the role of forward and backward message-passing 

among hierarchically deployed cortical areas (Felleman and Van Essen, 1991). Many current 
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formulations of perceptual inference and learning can be cast in terms of minimizing 

prediction error (e.g., predictive coding; Ballard et al., 1983; Mumford, 1992; Dayan et al., 

1995; Rao and Ballard, 1998; Murray et al., 2002) or, more generally, surprise (Friston et 

al., 2006). The predictive coding hypothesis suggests that prediction errors are passed 

forward from lower levels of sensory hierarchies to higher levels, to optimize 

representations in the brain’s internal model of its world. Predictions based upon these 

representations are then passed down backward connections to suppress or explain away 

prediction errors. This message-passing scheme rests upon reciprocal or recurrent self 

organized dynamics that necessarily involve forward and backward connections. There are 

some key predictions that arise from this scheme. First, top-down influences mediated by 

backward connections should have a tangible influence on evoked responses that are 

modulated by prior expectations induced by priming and attention. Second, the excitatory 

influences of forward (glutamatergic) connections must be balanced by the (polysynaptic) 

inhibitory influence of backward connections; this completes the feedback loop suppressing 

prediction error. Third, the backward connections should involve nonlinear or modulatory 

effects; because it is these, and only these, that model nonlinearities in the world that 

generate sensory input.

These functionally grounded attributes of forward and backward connections, and their 

asymmetries, are exactly the sort of things that current modeling of neuroimaging data can 

now test. A fairly comprehensive picture is now emerging from DCM studies using several 

modalities and paradigms: Initial studies focused on attentional modulation in visual 

processing. These studies confirmed that the attentional modulation of visually evoked 

responses throughout the visual hierarchy could be accounted for by changes in the strength 

of connections mediated by attentional set (see Friston et al., 2003). In other words, no extra 

input was required to explain attention-related responses; these were explained by recurrent 

dynamics among reciprocally connected areas, whose influence on each other increased 

during attentive states.

More recently the temporal anatomy of forward and backward influences has been 

addressed using DCM for event related potentials ERPs. Garrido et al. (2007b) used model 

comparison to show that the evidence for backward connections was more pronounced in 

later components of the ERP. Put another way, backward connections are necessary to 

explain late or endogenous response components in simple auditory ERPs. See Fig. 3. These 

results fit comfortably with the dynamics of reciprocally connected neuronal populations, 

whose time-constants are much greater than any single neuronal unit within each population. 

Garrido et al. (2008) then went on to ask whether one could understand repetition 

suppression in terms of changes in forward and backward connection strengths that are 

entailed by predictive coding. DCM showed that repetition suppression, of the sort that 

might explain the mismatch negativity (Näätänen, 2003), could be explained purely in terms 

of a change in forward and backward connections with repeated exposure to a particular 

stimulus. Furthermore, by using functional forms for the repetition-dependent changes in 

coupling strength, Garrido et al. (2009) showed that changes in extrinsic (cortico-cortical) 

coupling were formally distinct from intrinsic (within area) coupling. This was consistent 

with theoretical predictions about changes in post-synaptic gain and distinct changes in 
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synaptic efficacy associated with learning under predictive coding. Finally, Chen et al. 

(2009) addressed functional asymmetries in forward and backward connections during face 

perception, using DCM for induced responses. These asymmetries were expressed in terms 

of nonlinear or cross-frequency coupling; where high frequencies in a lower area excited 

low frequencies in a higher area, whereas the reciprocal influences where inhibitory. See 

Fig. 4. These results may be related to the differential expression of gamma activity in 

superficial and deep pyramidal cells that are the origin of forward and backward connections 

respectively (see Chrobak and Buzsaki, 1998; Roopun et al., 2008; Fries, 2009; Wang, 

2010). The emerging story here is that forward connections may employ predominantly fast 

(gamma) frequencies, while backward influences may be meditated by slower (beta) 

activity.

Recent electrophysiological evidence suggests that the top-down signals may be expressed 

predominantly in the beta frequency range. Conversely, the bottom up signals reporting 

prediction error may be expressed at higher (gamma) frequencies (see Wang, 2010 for a 

comprehensive review). This is asymmetry is exactly consistent with theoretical treatments 

of evidence accumulation in predictive coding; where “Principal cells elaborating 

predictions (e.g., deep pyramidal cells) may show distinct (low-pass) dynamics, relative to 

those encoding error (e.g., superficial pyramidal cells)” (Friston, 2008). The same theme 

emerges in adaptive resonance treatments of attentive learning by laminar thalamocortical 

circuits: prediction errors “cause gamma oscillations that support attention, resonance, 

learning, and … beta oscillations during reset and hypothesis testing operations that are 

initiated in the deeper cortical layers” (Grossberg and Versace, 2008). An empirical example 

here is the work of Zhang et al. (2008), who showed that prestimulus cortical activity is 

correlated with the speed (reaction time: RT) of visuomotor processing. These authors 

recorded local field potentials from macaque monkeys trained to perform a visuomotor 

pattern discrimination task. “In the prefrontal cortex, prestimulus power in the beta range 

(14–30 Hz) was negatively correlated with RT in two monkeys, suggesting a possible role of 

activity in this frequency range in the mediation of top-down control of visuomotor 

processing” (Zhang et al., 2008).

The implicit spectral asymmetry in forward and backward connections is a nice example of 

how far we have come in terms of characterizing structure–function relationships and the 

sorts of questions currently being addressed. In principle, the application of modern causal 

modeling techniques to characterize distributed electromagnetic responses is now in a 

position to address very detailed and specific hypotheses about the dynamics and structural 

architectures that underlie neuronal computations.

In conclusion, we have come some way, in terms of understanding the functional anatomy 

of forward and backward connections in the brain. Interestingly, some of the more 

compelling insights have been obtained by using biophysical models with simple paradigms 

(like the mismatch negativity) and simple non-invasive techniques (like EEG). All the 

examples so far have used evoked or induced responses to make inferences about distributed 

processing. Can we apply the same modeling principles to autonomous or endogenous 

activity and still find evidence for structured hierarchical processing?
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Network discovery

Dynamic causal modeling is usually portrayed as a hypothesis-led approach to 

understanding distributed neuronal architectures underlying observed brain responses 

(Friston et al., 2003). Generally, competing hypotheses are framed in terms of different 

networks or graphs, and model selection is used to quantify the evidence for one network 

(hypothesis) over another (Penny et al., 2004). However, in recent years, the number of 

models people consider has grown enormously; to the extent that DCM is now used to 

compare very large numbers of models (e.g., Stephan et al., 2008; Penny et al., 2004). Using 

DCMs based on stochastic differential equations, it is now possible to take this discovery 

theme one step further and throw away prior knowledge about the experimental causes of 

observed responses to make DCM entirely data-led. This enables network discovery using 

observed responses during both activation studies and (task-free) studies of autonomous or 

endogenous activity.

This form of network discovery uses model selection to identify the sparse network 

connections that best explains observed time-series (Friston et al., 2011). The connectivity 

specifies the form of the network (e.g., cyclic or acyclic) and its graph-theoretical attributes 

(e.g., degree distribution). Crucially, this form of network discovery can be applied to 

experimentally evoked responses (activation studies) or endogenous activity in task-free 

(resting state) fMRI studies. Unlike many conventional approaches to network discovery, 

DCM permits the analysis of directed and cyclic graphs. In other words, one can compare 

models with directed connections of a biologically plausible sort that can be recurrent or 

reciprocal. This modeling application furnishes a network description of distributed activity 

in the brain that is optimal in the sense of having the greatest evidence, relative to other 

networks.

To illustrate this approach, Fig. 5 shows an example of network discovery following a 

search over all combinations of connections among six nodes or regions. This example used 

DCM for fMRI and an attention to motion paradigm (see Friston et al., 2011 for details). Six 

representative regions were defined as clusters of contiguous voxels surviving an (omnibus) 

F-test for all effects of interest at p<0.001 (uncorrected) in a conventional SPM analysis. 

These regions were chosen to cover a distributed network (of largely association cortex) in 

the right hemisphere, from visual cortex to frontal eye fields. The activity of each region 

(node) was summarized with its principal eigenvariate to ensure an optimum weighting of 

contributions for each voxel with the ROI. Fig. 5 summarizes the results of post hoc model 

selection. The upper left panel shows the log of the evidence for the 32,768 models 

considered (reflecting all possible combinations of bidirectional edges among the six nodes 

analyzed). In this example, there is a reasonably clear optimum model. This is evident if we 

plot the probability of each model, given the data (assuming all models were equally likely a 

priori), as shown on the upper right. In this case, we can be over 80% certain that one 

network generated the observed fMRI data. Usually, one finds that subsets of models are, 

collectively, better than other subsets, where a subset can be defined by the presence or 

absence of a particular connection or attribute.
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The parameter estimates of the connections under the model with full connectivity (left) and 

the selected model (right) are shown in the lower panels. One can see that three connections 

have been ‘switched off’. This is a surprisingly dense network, in which all but three of the 

fifteen reciprocal connections appear to be necessary to explain observed responses. This 

dense connectivity may reflect the fact that we deliberately chose regions that play an 

integrative (associational) role in cortical processing (c.f., hubs in graph theory; Bullmore 

and Sporns, 2009).

Fig. 6 shows the underlying graph in anatomical and functional (spectral embedding) space. 

Note that these plots refer to undirected graphs (we will look at directed connections 

strengths below). The upper panel shows the six regions connected using the conditional 

means of the coupling parameters (in Fig. 5), under the selected (optimal) model. The color 

of the arrows reports the source of the strongest bidirectional connection, while its width 

represents its absolute (positive or negative) strength. This provides a description of the 

architecture in anatomical space. A more functionally intuitive depiction of this graph is 

provided in the lower panel. Here, we have used spectral embedding to place the nodes in a 

functional space, where the distance between them reflects the strength of bidirectional 

coupling. But what do these graphical representations tell us about putative hierarchical 

structure?

Asymmetric connections and hierarchies

Network analyses using functional connectivity (correlations among observed neuronal time 

series) or diffusion weighted MRI data cannot ask whether a connection is larger in one 

direction relative to another, because they are restricted to the analysis of undirected 

(simple) graphs. However, here we have the unique opportunity to exploit asymmetries in 

reciprocal connections and revisit questions about hierarchical organization (e.g., Capalbo et 

al., 2009; Hilgetal et al., 2000; Lee and Mumford, 2003; Reid et al., 2009). There are many 

interesting analyses that one could consider, given a weighted (and signed) connectivity 

matrix. Here, we will illustrate a simple analysis of functional asymmetries: There are 

several strands of empirical and theoretical evidence to suggest that, in comparison to 

bottom-up influences, the net effects of top-down connections on their targets are inhibitory 

(e.g., by recruitment of local lateral connections; cf., Angelucci and Bullier, 2003; Crick and 

Koch, 1998). Theoretically, this is consistent with predictive coding, where top-down 

predictions suppress prediction errors in lower levels of a hierarchy (see above). One might 

therefore ask which hierarchical ordering of the nodes maximizes the average strength of 

forward connections relative to their backward homologue. This can be addressed by finding 

the order of nodes that maximizes the difference between the average forward and backward 

conditional estimates of effective connectivity: The resulting order was vis, sts, pfc, ppc, ag, 

and fef, (see Fig. 6), which is not dissimilar to the vertical deployment of the nodes in 

functional embedding space (Fig. 6; lower panel). The middle panel shows the asymmetry 

indices for each connection, based on the estimates of the selected model. This is a pleasing 

result because it places the visual cortex at the bottom of the hierarchy and the frontal eye 

fields at the top, which we would expect from the functional anatomy of these regions. Note 

that there was no bias in the model or its specification toward this result. Furthermore, we 

did not use any of the experimental factors in specifying the model and yet the data tell us 
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that a plausible hierarchy is the best explanation for observed fluctuations in brain activity 

(Müller-Linow et al., 2008).

Summary

In summary, current modeling initiatives in neuroimaging call on biophysical models of 

neuronal dynamics by treating them as forward or generative models for empirical time-

series. The ensuing inferences pertain to the models per se and their parameters (e.g., 

effective connectivity) that generate observed responses. Using model comparison, one can 

search over wide model-spaces to find optimal architectures or networks. Having selected 

the best model (or subset of models), one then has access to the posterior density on the 

neuronal and coupling parameters defining the network. Of key interest here are changes in 

coupling that are induced experimentally with, for example, drugs, attentional set or time. 

These experimentally induced changes enable one to characterize the context-sensitive 

reconfiguration of brain networks and test hypotheses about the relative influence of top-

down and bottom-up signals. Recent advances in models based on stochastic differential 

equations can now accommodate hidden fluctuations in neuronal states that enable the 

modeling of autonomous or endogenous brain dynamics. Coupled with advances in post hoc 

model selection, we can now search over vast model-spaces to discover the most likely 

networks generating both evoked and spontaneous activity.

The examples in this section have been chosen to illustrate how models of neuronal 

dynamics can be used to exploit neuroimaging data that, on the surface, may have an 

apparently limited spatial temporal resolution. However, by using biologically plausible 

explanations for these data we can link processes at the synaptic scale to the globally 

distributed network responses we measure. The central role of models is not remarkable, in 

that it speaks to the crucial role of hypotheses or theories about functional brain 

architectures. Having considered the basic structures or architectures that are latent in 

neuroimaging data, we now turn to the functional attribution of these structures in terms of 

cognitive ontologies and task-analyses.

Meta-analytic approaches to neural system modeling

In this section, we discuss the rapidly evolving use of coordinate-based meta-analysis of 

functional and structural neuroimaging data to create graphical models of human neural 

systems. These models provide data-driven hypotheses to guide experimental designs and 

inform statistical modeling (e.g., by providing priors for DCM and other forms of graphical 

analysis). The neuroimaging community enjoys the enviable status of having developed 

analytic and reporting standards that not only provide excellent per-study sensitivity, but 

also enable a growing repertoire of spatial meta-analytic methods. Spatial normalization is 

the most fundamental analytic and reporting standard that enables spatial meta-analysis: 

Spatial normalization transforms a brain image from ‘native space’ into a standardized space 

defined by a reference brain (Fox, 1995a,b), where locations are addressed by x–y–z 

coordinates. The original motivation for introducing spatial normalization (Fox et al., 1985) 

was to allow the locations of task-induced functional activations to be reported in a “precise 

and unambiguous” manner, thereby “facilitating direct comparison of experimental results 

from different laboratories”; i.e., in anticipation of coordinate-based meta-analysis. The 
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power of this standard has been reinforced by the widespread adoption of voxel-wise 

analyses (rather than region-of-interest analysis) and the acquisition of imaging data sets that 

span the entire brain (or nearly so). Both of these advances reduce the bias inherent in 

spatially selective (region-of-interest) reporting. Collectively, these standards are enabling 

an evolving family of coordinate-based meta-analysis (CBMA) methods, several of which 

exhibit the ability to extract “emergent properties”, i.e., to discover classes of observations 

not reported in the source publications (Laird et al., 2009a).

Coordinate-based meta-analysis: Early efforts

Meta-analysis is most generally defined as the post hoc combination of results from 

independent studies. The original use of meta-analysis was to combine non-significant 

effects to reveal effects that were collectively significant (e.g., to determine which adverse 

events are rare but real drug side effects and which are random events). This application 

uses the implicit large sample sizes to increase statistical power (Pearson, 1904). In the 

neuroimaging community, however, the primary use of meta-analysis has been to synthesize 

the published literature for the purpose of generating constraints on the interpretation, design 

and analysis of subsequent studies (Fox et al., 1998). In the first neuroimaging meta-

analysis, coordinates from extant reports were tabulated and plotted to constrain 

interpretation of a primary (non-meta-analytic) study (Frith et al., 1991). Shortly thereafter, 

“stand-alone” neuroimaging meta-analyses began to appear (Tulving et al., 1994; Fox, 

1995a,b; Picard and Strick, 1996), serving as quantitative reviews and hypothesis 

generation. Although the first neuroimaging meta-analyses were statistically informal, this 

soon changed. The shift to quantitative CBMA perhaps began with Paus (1996), who 

computed and interpreted means and standard deviations of the x–y–z addresses in a review 

of studies of the frontal eye fields. Fox and colleagues extended this initiative by correcting 

raw estimates of spatial location and variance for sample size, to create scalable models of 

location probabilities (functional volumes models or FVM) and suggesting uses of such 

models for data analysis (Fox et al., 1997, 1999, 2001). To support systematic development 

of CBMA methods, Fox, Lancaster and colleagues developed the BrainMap database as an 

open-access repository of functional neuroimaging studies, providing both study results 

(activation locations) and coded experimental meta-data that necessarily entailed an 

evolving cognitive ontology (Fox and Lancaster, 2002; Laird et al., 2005b,c; Fox et al., 

2005a,b).

Activation likelihood estimation

Activation likelihood estimation (ALE) and related techniques (Turkeltaub et al., 2002; 

Chein et al., 2002; Wager et al., 2003) moved CBMA a quantum leap forward. ALE input 

data are activation–location coordinates from conceptually related studies; e.g., all Stroop 

tasks. ALE models the uncertainty in localization of activation foci using Gaussian 

probability density distributions. The voxel-wise union of these distributions yields the ALE 

value, an estimate of the likelihood that at least one of the foci in a dataset was truly located 

at a given voxel. As with FVM, a great advantage of ALE is that the tables of coordinates 

routinely reported by neuroimaging studies are its input data: “raw” data are not required. 

Unlike FVM, however, ALE requires no user selection of comparable coordinates for 

modeling: rather, once a set of experiments (e.g. a group of experiments using similar 
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paradigm) is selected for meta-analysis, the entire set of reported coordinates is used, 

thereby greatly increasing the reproducibility and objectivity of the analysis.

In the original implementation of ALE, there were several acknowledged limitations. For 

example, while applying false discovery rate (FDR) method to compute voxel-wise 

significance, Turkeltaub used a fixed-effect analysis that did not correct for multiple 

comparisons; the size of the modeled Gaussian distribution was rationalized based on the 

spatial resolution of the input images, rather than on a formal estimate of spatial uncertainty. 

In short, a method for comparing ALE maps was lacking; there were no correction for the 

variable number of activations reported per experiment or the number of experiments per 

paper. Many of limitations subsequently have been addressed by various investigators. Laird 

et al. (2005a) provided a correction for multiple comparisons and a method for ALE–ALE 

statistical contrast. Eickhoff et al. (2009) introduced empirical estimates of between-subject 

and between-template spatial variability (a modification of the FVM spatial probability 

model) in place of user-selected Gaussian filtering. In addition, the permutation test was 

modified to test for the above-chance clustering between experiments in an anatomically 

constrained space (gray-matter only), resulting in a transition from fixed-effects to random-

effects inference. Turkeltaub et al. (2012) introduced corrections for the variable numbers of 

foci per experiment and experiments per paper, to prevent undue weighting of ALE maps by 

individual experiments (e.g., with large numbers of foci) or individual papers (e.g., with 

multiple similar experiments.) Each of these additions increased statistical rigor and 

specificity without decreasing sensitivity.

Since its introduction, ALE has been applied to many aspects of normal brain function 

(Decety and Lamm, 2007; Costafreda et al., 2008; Spreng et al., 2009; Soros et al., 2009), as 

well as in studies of neuropsychiatric and neurological disorders, such as schizophrenia 

(Ragland et al., 2009; Minzenberg et al., 2009; Glahn et al., 2005), obsessive–compulsive 

disorder (Menzies et al., 2008), depression (Fitzgerald et al., 2008), and developmental 

stuttering (Brown et al., 2005). Recently, ALE has been extended to voxel-based 

morphometry (Schroeter et al., 2007; Glahn et al., 2008; Ellison-Wright et al., 2008) and 

diffusion tensor imaging studies (Ellison-Wright and Bullmore, 2009). The most interesting 

ALE applications do not merely merge previous results, but also identify previously 

unspecified spatial regions, resolve conflicting views, validate new paradigms and generate 

hypotheses (including spatial models, below) for experimental testing. A more 

comprehensive list of ALE studies and algorithms is available at www.brainmap.org/pubs.

Within-paradigm network discovery

As a voxel-based algorithm, ALE identifies foci having significant co-occurrence 

probabilities across studies. In graphical modeling, these foci serve as “nodes”. Having used 

ALE to identify nodes, it should be possible to use the co-occurrence patterns among nodes 

in a CBMA data set to compute “edges”, creating a fully meta-analytic neural system model. 

To explore this possibility, Neumann and colleagues applied replicator dynamics: a network 

discovery technique from theoretical biology. Replicator dynamics detects networks of 

strongly interacting entities using the principles of natural selection. In the context of fMRI 

data analysis, it can be employed to explore relations between voxels within the same 
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cortical areas and, most importantly, to reveal interdependencies between different cortical 

areas (Lohmann and Bohn, 2002). Neumann extended this strategy by developing Replicator 

Dynamics Network Analysis (RDNA), a meta-analytic method using an ALE dataset to 

define nodes and then computes edges from the per-experiment spatial probability density 

maps. RDNA was successfully applied to the Stroop task (using data drawn from the 

BrainMap database) to identify the dominant clique present in these data (Neumann et al., 

2005).

Because Neumann’s implementation of RDNA was limited to identification of a single 

dominant clique, Lancaster and colleagues modified the RDNA algorithm to provide 

multiple subnets (Lancaster et al., 2005). Lancaster also introduced fractional similarity 

network analysis (FSNA), which is based on a pattern-matching strategy using the Jaccard 

similarity measure. As applied to neuroimaging data, FSNA takes as input an ALE data set. 

The pattern-matching algorithm is applied at the per-experiment level to form similarity 

subnets. Similarity subsets are groupings of members that are most similar in their patterns 

of occurrence. The FSNA algorithm is a robust and general scheme that identifies similarity 

subsets, where set elements can be characterized using a fixed length binary feature pattern. 

The length or dimension of a binary feature pattern is the number of elements (nodes) used 

in forming the pattern. Lancaster also evaluated RDNA and FSNA (using the same Stroop 

CVM data sets used by Neumann) with varying thresholds and compared the two 

techniques. Note that both for these within-paradigm network modeling approaches and for 

the more advanced methods that followed (below), the “edges” are emergent properties, as 

the data meta-analyzed reported only activation sites (“nodes”), extracting “functional 

integration” information from “functional segregation” studies.

Between-paradigm meta-analytic connectivity modeling

While the approaches above are based on within-paradigm co-occurrence patterns, between-

paradigm co-occurrence patterns can also serve as a source of functional connectivity 

modeling. The basic argument behind this approach is that just as the correlation of 

activations between regions within a single study can be taken as evidence of inter-regional 

connectivity (e.g., in “traditional” functional connectivity analyses); and just as the 

probability of co-occurrence within paradigm but over studies can be taken as evidence of 

functional inter-regional connectivity (e.g., in RDNA and FSNA, above); so can the 

probability of co-occurrence over paradigms and studies be used to assess functional 

connectivity. The connectivity patterns derived by this class of analysis will not be specific 

to a single paradigm, but instead will yield more general (canonical) connectivity patterns 

that subserve a wider range of behavioral operations.

To pilot this approach, Koski and Paus (2000) assembled a database of 413 conditional 

contrasts (individual experiments). The number of experiments (conditional contrasts) 

yielding a peak in seven, pre-defined frontal subdivisions was tabulated and compared for 

experiments with and without anterior cingulate gyrus (ACG) activation. Frequency 

distributions were compared with a chi-squared test, to identify statistically significant co-

occurrences. While viewing their new approach as quite promising, Koski and Paus’s study 

lacked any form of validation. Acknowledging this shortcoming, they recommended further 
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explorations of the method using larger data sets (e.g., the BrainMap database), developing 

more sophisticated statistical approaches, and validating the approach against alternative 

connectivity measures (e.g., TMS/PET). Each of the recommendations has been adopted by 

one or more subsequent authors.

Postuma and Dagher (2006) were the first to generate synthetic, meta-analytic functional 

connectivity images. For this study, the authors compiled a database of activated locations 

from 539 experiments. They seeded this dataset with volumes bounding the caudate nucleus 

and putamen and observed co-activation patterns “consistent with the concept of spatially 

segregated corticostriatal connections as predicted by previous anatomical labeling studies 

in non-human primates”. As with the Koski and Paus study, no formal validations were 

reported.

The region-seeding (“structure-based”) strategy of Postuma and Dagher was adopted and 

extended by Robinson and colleagues in application to the amygdala (Robinson et al., 2010), 

using the Harvard/Oxford atlas to define the amygdala region of interest. To compute co-

occurrence probabilities, Robinson applied ALE, terming the output a “structure-based” 

(i.e., region seeded) “meta-analytic connectivity model” (MACM). By way of validation, 

Robinson compared the MACM amygdala-connectivity results with those obtained by tract-

tracing in rhesus monkeys, as reported in the CoCoMac database (Stephan et al., 2000). For 

the MACM analysis, the BrainMap database provided 170 and 156 experiments for the left 

and right amygdala, respectively and found startlingly good correspondence.

The first within-species validation of the MACM approach was provided by Eickhoff et al. 

(2010), using diffusion tensor imaging (DTI) probabilistic tractography to confirm MACM-

derived connectivity. For this validation, Eickhoff drew upon previously defined 

cytoarchitectonic subdivisions of the human parietal operculum (Eickhoff et al., 2010); a 

parcellation scheme believed to be homologous to that described in the rhesus monkey. The 

connectivity patterns of the two most well studied subdivisions (OP1 and OP4) were 

compared across techniques. For MACM, the regions of interest jointly extracted 245 

experiments from the BrainMap database. For DTI, 18 healthy normal volunteers were 

studied. Comparison of connectivity patterns between techniques showed close (but not 

perfect) correspondence. It should be noted that DTI tractography will provide connectivity 

limited to first-order (direct) connections, while MACM – showing all co-occurrences – 

would be expected to yield both direct and indirect connections. Further, DTI will be 

intrinsically biased toward heavily myelinated connections, while MACM should preclude 

this bias.

The second within-species validation of meta-analytic functional connectivity compared 

resting-state functional connectivity (using BOLD fMRI) to MACM in the nucleus 

accumbens (Cauda et al., 2011). For the nucleus accumbens region-of-interest, BrainMap 

provided 57 experiments, a relatively small input data set. For resting-state fMRI, 17 healthy 

subjects were studied. Despite the limited amount of BrainMap data utilized, the MACM 

proved robust (Fig. 7), as did the RSN map. Overall, the two techniques converged, with 

resting-state connectivity showing somewhat greater sensitivity than MACM. In this 

context, it is important to note that the sensitivity of MACM is strongly influenced by the 
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size of the seed region and the volume of data in the BrainMap database. As the database 

becomes more populated, the sensitivity of MACM will increase and allow progressively 

finer anatomical connectivity parcellations. It should also be noted that Eickhoff, Robinson 

and Cauda all made use of BrainMap behavioral domain and/or paradigm class metadata to 

interpret the functional roles of both the seed regions and their connections.

A third class of validation of the MACM strategy applies connectivity-based parcellation to 

BrainMap data, compared the resulting segmentation to borders defined by other methods. 

Connectivity-based parcellation has been shown to provide a close correspondence between 

structurally and functionally defined borders, using the boundary between SMA and pre-

SMA as a demonstration case (Johansen-Berg et al., 2004). Eickhoff et al. (2011) applied 

connectivity-based parcellation BrainMap data, for the same brain regions (SMA and pre-

SMA) obtaining the same borders. In an even more telling validation, Bzdok et al. (personal 

communication) applied connectivity-based parcellation to the BrainMap data for the 

amygdala, demonstrating a close correspondence to previously defined cytoarchitecture 

borders (Fig. 8).

Bayesian network discovery

A very recent advance in the use of CBMA for connectivity modeling was reported by 

Neumann et al. (2010), who built on the use of Bayesian networks for the representation of 

statistical dependencies. Bayesian networks are probabilistic graphical models representing 

a set of random variables and their probabilistic interdependencies. More formally, a 

Bayesian network is a directed acyclic graph (DAG) that comprises a set of nodes (vertices) 

and directed links (edges) connecting these nodes. Bayesian networks were chosen, for three 

reasons. First, they belong to the class of directed graphical models, which enables us to 

investigate directed interdependencies between the activation of different brain regions. 

Second, the structure of Bayesian networks can be inferred from observed data. In other 

words, we can learn the statistical interdependencies between the brain regions from 

activations observed across a number of imaging experiments. Third, the theory for learning 

Bayesian networks from data has been fully established.

In application to neuroimaging meta-analysis, Neumann’s approach used co-activation 

patterns of brain regions across imaging studies and learned the structure of the underlying 

directed acyclic graphs. This was done by first computing an ALE map of a large subset 

(2505 experiments) of the BrainMap data. This map first was restricted to the 49 most 

commonly occurring regions and then was further restricted to the 13 most commonly co-

occurring regions, using three separate applications of the replicator dynamics process, each 

of which identified sub-sets of regions. The regions included part of the posterior medial 

frontal cortex primarily covering supplementary and pre-supplementary motor areas, 

anterior cingulate cortex, posterior parts of the lateral prefrontal cortex bilaterally, dorsal 

premotor cortex bilaterally, left and right anterior insula, left and right thalamus, left and 

right anterior intraparietal sulcus and left cerebellum. For these regions, DAGs were 

computed for groupings provided by each run of replicator dynamics and for the collection 

of all regions. The DAG computed for a 10-node grouping (run 3) is illustrated in Fig. 9.
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Supplementing this real-world application with extensive simulations, Neumann 

demonstrated that structure learning for Bayesian networks can be used to infer partially 

directed functional networks from fMRI meta-analysis data. For small numbers of functional 

regions, directed and undirected statistical interdependencies (functional connectivity) can 

be reliably detected from a few tens or hundreds of observations. In larger networks, at least 

a subset of expected interdependencies is reliably detectable, given sufficient data. This is in 

keeping with the Bayesian discovery of networks using DCM, described above.

Independent component analysis

In the two preceding sections, we can see an emerging trend toward methods that exploit 

large data sets (i.e. using the entire Brain-Map database or large subsets thereof) even if they 

are behaviorally inhomogeneous (i.e., not based on the same paradigm). The most extreme 

examples of this trend are seen in the recent publications by Toro et al. (2008) and by Smith 

et al. (2009).

Toro and colleagues used the BrainMap database to generate a comprehensive “connectivity 

atlas”. At the time this atlas was generated, BrainMap included 3402 experiments 

(conditional contrasts) reporting a total of 27,909 activated locations. For each experiment, a 

binary, per-study activation volume was generated at a voxel-size of 4 mm3 isotropic. From 

these, the co-occurrence pattern likelihood was computed between all voxels, using 

likelihood ratios. This generated 45,000 unique co-activation maps (one for each 4 mm3 

voxel in the brain). Reproducibility of the co-activation map was assessed by estimating the 

similarity between pairs of partial co-activation maps that used disjoint random subsamples 

of experiments for group sizes of 500, 1000, 1500, 2000, 2500 and 3000. The correlation 

between maps was significant and increased asymptotically with the number of experiments, 

being reasonably high with only 500 experiments. Thus, the co-activation maps did not 

depend on a particular choice of experiments, and there existed a robust structure in the 

meta-analytic functional connectivity that can be recovered even with a moderate number of 

studies. This dataset was probed by selecting seed regions in three networks widely 

described in the functional neuroimaging literature and, in particular, in resting-state fMRI 

studies: the frontal/parietal “attention” network, the “default mode network”, and the 

cortical/diencephalic/cerebellar “motor” network (Fox et al., 2005a,b). In each case, the 

correspondence between the CBMA-derived connectivity maps and the resting-state fMRI-

derived networks was remarkable.

Stimulated by Toro’s observations, Smith and colleagues took this strategy a step further, 

and applied ICA to the entire BrainMap data (Smith et al., 2009). ICA has been widely used 

to demonstrate intrinsic connectivity networks in the resting brain using fMRI (i.e., resting-

state networks or RSNs). Although observed at rest, Fox and Raichle (2007) proposed that 

RSNs represent basic organizational units of the brain, being “functional networks” drawn 

upon during task performance. Smith tested this hypothesis by comparing ICA 

decompositions of resting-state fMRI to those derived from the entirety of the BrainMap 

data. At the time of this data extraction (2007), BrainMap contained 7432 experiments, 

representing imaging studies from 29,671 human subjects. In parallel, ICA analyses were 
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performed using resting-state fMRI data from 36 healthy volunteers. Decompositions were 

performed into both 20 and 70 components.

Of the 20 components generated separately from the two datasets, ten maps from each set 

were unambiguously paired between datasets, with a minimum correlation r=0.25 (p<10−5, 

corrected for multiple comparisons and for spatial smoothness.) These ten well-matched 

pairs of networks are shown in Fig. 10. With an ICA dimensionality of 70, the primary 

networks split into subnets in similar (but not identical) ways, continuing to show close 

correspondence between BrainMap and RSN components. This argues that the full 

repertoire of functional networks utilized by the brain in action (coded in BrainMap) is 

continuously and dynamically “active” even when at “rest” and, vice versa, that RSNs 

represent an intrinsic functional architecture of the brain that is drawn upon to support task 

performance.

Functional ontologies

For system modeling, meta-analysis has the substantial advantage of being able to filter its 

findings with the behavioral metadata associated with each experiment in the BrainMap 

database. Behavioral filtering has been widely used in selecting papers for inclusion in a 

meta-analysis (discussed in Fox et al., 2005b). A more recently developed use of behavioral 

metadata is to characterize the behavioral properties of a specific region, e.g., the target of a 

structure-based meta-analysis (Robinson et al., 2010; Cauda et al., 2011). Fig. 11 illustrates 

the use of behavioral domain field to categorize the functional specificity of the Amygdala 

in the context of structure-based MACMs. Statistical methods to test for between-region 

differences in behavioral domain profiles have been developed and will be released pending 

ongoing validations (J. Lancaster, S. Eickhoff, A. Laird, P. Fox and colleagues). Using this 

approach, it appears that –given sufficient numbers of experiments and well-developed 

behavioral metadata – unique behavioral characterization of individual brain regions is a 

viable possibility. This will be done, however, by means of complex behavioral profiles, 

rather than by assigning a concisely described (“put”, “get”, “move”), individual mental 

operation to each brain region, as Posner et al. (1998) had suggested. This approach is in 

keeping with the view of Price and Friston (2005), who argued that the mapping between 

mental operations and brain regions is a many-to-many mapping, in which a single region 

can be involved in many cognitive processes and a single elementary process engages 

multiple regions. It is also concordant with the argument put forward by Poldrack (2006), 

that the cognitive “reverse inference” (i.e., that a specific mental operation is necessarily 

engaged if a particular brain region is activated) is intrinsically weak due (in part) to 

participation of individual regions in multiple cognitive operations.

An extension of the behavioral domain profile approach is to extract profiles for multiple 

regions jointly, i.e., to characterize a functional network. This strategy was employed by 

Laird et al. (2009a,b,c), in work which behaviorally categorized the default mode network 

(DMN), examining behavioral domain profiles of individual areas and of groups of areas 

(i.e., sub networks). An extension of this concept, recently developed by J. Robinson, is 

using behavioral domains to filter meta-analytic connectivity models, creating models of 

functionally specific projections of individual brain structures. This is illustrated in Fig. 12, 
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in which the projections (co-activation patterns) of the caudate nucleus were filtered by 

BrainMap behavioral domains. Note that cortical components of the cognitive, motoric, 

perceptual and emotional networks are largely discrete. This strategy of mapping the 

behavioral specificity by pathway provides the additional benefit of a disclosing a 

previously undescribed functional sub-segregation of the human caudate nucleus which 

appears homologous to the non-human primate.

Another strategy for meta-analytic structure–function inference was pioneered by Smith et 

al. (2009), in the context of applying ICA to the BrainMap database. Fig. 12 (left side) is a 

“heat map” showing the respective contributions of BrainMap behavioral domains to 

individual components in the ICA shown in Fig. 9. Close inspection reveals that some 

components have very high behavioral specificity, while other components have 

contributions from a wide range of behavioral domains. The ICA-based strategy of Smith 

and colleagues has been extended by Laird and colleagues (manuscript in review) both by 

enriching the metadata included in the analysis and by applying hierarchical clustering 

analysis to sort components into functionally related groupings (Fig. 13, right side). While 

this approach provided a much more refined association of components with behaviors, 

some components still show limited behavioral specificity. The most likely explanation for 

this lack of behavioral specificity in some networks is two-fold: First, the behavioral 

specificity of some regions and networks (“hubs” in the terminology of Small World 

modeling) is almost certainly low. Hub regions are engaged in a wide variety of tasks and 

will defy precise behavioral characterization. Second, a more evolved functional ontology is 

needed, as has been argued (Price and Friston, 2005; Poldrack, 2006). Relative to the second 

cause, the approaches illustrated here, we would suggest, provide the tools for ontology 

development to proceed programmatically. This can be determined by targeting networks 

that show limited behavioral domain specificity and enriching the metadata, e.g., by adding 

levels to the coding hierarchy. This work is ongoing (Fox et al., 2005a,b; Laird et al., 2011). 

Ultimately, categorizations of behavior that are reflected in the network properties of the 

brain will have superior intrinsic validity and utility than those based solely on cognitive 

theory.

A closing point of some importance is that meta-analysis offers the most versatile, most 

powerful extant approach for discovering the behavioral significance of networks mapped 

using either DTI tractography or resting-state fMRI. DTI, being an anatomical technique, 

contains no behavioral information. Resting-state fMRI, being performed “at rest”, is not 

under experimental control, leaving the behavior unspecified. Both DTI and resting-state 

fMRI have been shown to provide very similar connectivity maps to MACM. Consequently, 

behavioral characterizations provided for MACM-defined pathways should be reasonably 

applied to pathways defined by the other techniques.

Meta-analyses as priors

The family of coordinate-based meta-analysis methods described above may appear to be 

conceptually discrete methods. In practice, however, they tend to be applied serially, with 

simpler forms of meta-analysis providing input for more advanced forms. For example, 

FSNA and RDA (above) take an ALE volume as input and compute a paradigm-specific 
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system-model. Similarly, Neumann et al. (2010) used ALE to identify nodes before doing 

Bayesian network discovery. The MACM approach of Robinson et al. (2010) used ALE to 

provide priors. While these are examples of CBMAs providing priors for CBMAs, the 

strategy is more general. Karlsgodt et al. (2010), for example, used ALE to select regions-

of-interest for analysis for an analysis of brain-behavior pleiotropy (one to many mapping) 

of visual working memory. The most advanced and impactful use of CBMA to provide 

priors is in the domain of graphical modeling, as follows.

System-level modeling approaches most commonly applied to functional neuroimaging data 

(SEM, DCM and Small World modeling), are confirmatory methods that require strong a 

priori hypotheses about the regions involved (nodes) and their interdependencies (edges). 

Otherwise stated, well-chosen priors improve model fit (Stephan et al., 2009). Given ability 

of the several approaches described above to provide fairly complete, data-driven models, 

their use as priors for graphical modeling seems quite promising. Perhaps the first 

application of this strategy was reported by Laird, who used an ALE meta-analysis of 

TMS/PET studies of primary motor cortex to inform an SEM analysis of a TMS/PET dataset 

(Laird et al., 2008). The goodness of fit of the model thus derived to the data was quite 

striking, endorsing the value of this strategy. A subsequent application of the strategy used 

previously published ALE meta-analyses of stuttered and non-stuttered speech (Brown et al., 

2005) as priors for fitting PET data during cued speech in persons with and without 

stuttering (Price et al., 2009). Again, the goodness-of-fit of the ALE-based models to 

datasets was striking. Further, this strategy allowed excellent between-group (stuttering vs. 

non-stuttering) discrimination with group sizes as small as 15 (power>0.8). This strongly 

suggests a role for this analysis and modeling approach to treatment trials, using graphical 

models to characterize the brain mechanisms of action of treatments in patient groups. This 

strategy is currently being explored in treatment trials of post-traumatic stress disorder in a 

military population (Fig. 14), in persistent developmental stuttering and in Parkinson’s 

disease by Fox and colleagues.

Summary

In summary, coordinate-based meta-analytic approaches have evolved rapidly over the past 

decade, becoming progressively more effective at mining the vast volume of the functional 

and structural neuroimaging literature. While early CBMA methods focused on activation 

likelihood estimation, subsequent methods have extended this approach to inter-regional 

dependencies and characterization of the behavioral properties of regions and networks. The 

networks extracted by CBMA have been repeatedly validated relative to those extracted by 

other connectivity imaging methods (e.g., DTI and RSNs), allowing the behavioral 

inferences uniquely provided by CBMA to be applied to these data sets. The ultimate goal of 

these meta-analytic methods is to inform subsequent studies, both by informing 

interpretation of observed results and by providing well-formulated, spatially specific 

hypotheses – including graphical models – to guide experimental design and statistical 

analysis, including construction of graphical models as priors for causal analysis (SEM, 

DEM) and other model-based analysis.
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Conclusion

In conclusion, we have reviewed some of the remarkable advances in imaging neuroscience 

over the past two decades, with a special focus on functional integration and distributed 

processing. In the first section, we covered developments in network discovery and the 

analysis of effective connectivity at a mechanistic and neural level. In the second section, we 

saw that the concepts of functional connectivity transcend measures of neuronal activity and 

can be used to characterize interregional dependencies at a much larger (meta-analytic) 

scale. In both settings, the deep questions pertain to how processing is distributed over 

neuronal networks and the effective or functional connectivity among their nodes.

From the point of view of this review, there has been a notable shift from early questions 

about functional segregation such as “Which area does my paradigm activate?” to questions 

about functional integration. In this context, the experimental paradigms and the associated 

cognitive constructs serve simply to elicit activations (and co-activations) that are then used 

to infer connectivity architectures. At the level of effective connectivity, this is self-evident 

in the way that various experimental factors are modeled in terms of influencing 

connections. In this context, we have also seen that cognitive constructs are not always 

necessary to disclose processing principles; for example, in the analysis of task-free 

paradigms and endogenous fluctuations. In meta-analyses, the paradigms and underlying 

cognitive ontology serve to delimit (filter) the data that are subject to co-activation analysis. 

In this sense, they provide a constraint or context, within which to understand the functional 

affiliations of the distributed patterns inherent in data. Perhaps surprisingly, some of the 

most interesting results were obtained with very large datasets, in which these constraints 

are relaxed completely and all brain activations are considered collectively.

In terms of structure–function relationships, the meta-analytic treatments described above 

clearly reflect a greater role for neurophysiology in defining meaningful brain systems. It is 

also evident that the way forward, in terms of quantifying structure function mappings, lies 

in assimilating large amounts of physiological and cognitive variables. One might anticipate 

that over the next few years people will apply the techniques described above, not just to the 

conditional contrasts encoding brain activations, but to concatenated vectors of data that 

encode the activations and the experimental factors (and implicit cognitive processing 

components) that elicit them. In other words, we can apply current techniques to look not 

just for connections between brain regions but for connections between regions and 

cognitive processes in (abstract) cognitive spaces. Conceptually, these connections are 

formally what we mean by a structure–function mapping.

In terms of integrating analyses of effective connectivity described in the first section and 

meta-analyses of functional connectivity described in the second, there are some potentially 

exciting avenues that suggest themselves: we have noted above that the role of meta-analysis 

is to provide constraints or prior beliefs that can inform more detailed modeling of within-

paradigm data. The mechanisms for this integration are largely in place and involve using 

the meta-analytic functional connectivity as priors on effective connectivity. This has 

already proven a fruitful strategy when combining probabilistic information from 

tractography and dynamic causal modeling. The idea here is to show models that are meta-
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analytically informed have more evidence than the equivalent model without meta-analytic 

priors. Not only would this nuance the study of effective connectivity but would provide 

definitive evidence for the large scale and generic constructs provided by meta-analyses. We 

are currently pursuing this.

In conclusion, we hope to have described the key trends and ideas that we have been 

pursuing since the inception of human brain mapping and comment upon the direction these 

ideas are taking us. We appreciate that this may be something of a colloquial perspective but 

it is one that engages us and a growing number of researchers in imaging neuroscience.
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Fig. 1. 
Publication rates pertaining to functional segregation and integration. Publications per year 

searching for Activation or Connectivity and functional imaging. This reflects the proportion 

of studies looking at functional segregation (Activation) and those looking at integration 

(Connectivity).

Source: PubMed.gov. U.S. National Library of Medicine.
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Fig. 2. 
Dynamical causal modeling of electromagnetic responses. Neuronally plausible, generative 

or forward models are essential for understanding how event-related fields (ERFs) and 

potentials (ERPs) are generated. DCMs for event-related responses measured with EEG or 

MEG use biologically informed models to make inferences about the underlying neuronal 

networks generating responses. The approach can be regarded as a neurobiologically 

constrained source reconstruction scheme, in which the parameters of the reconstruction 

have an explicit neuronal interpretation. Specifically, these parameters encode, among other 

things, the coupling among sources and how that coupling depends upon stimulus attributes 

or experimental context. The basic idea is to supplement conventional electromagnetic 

forward models, of how sources are expressed in measurement space, with a model of how 

source activity is generated by neuronal dynamics. A single inversion of this extended 

forward model enables inference about both the spatial deployment of sources and the 

underlying neuronal architecture generating them. Left panel: This schematic shows a few 

sources that are coupled with extrinsic connections. Each source is modeled with three 

subpopulations (pyramidal, spiny-stellate and inhibitory interneurons). These have been 

assigned to granular and agranular cortical layers, which receive forward and backward 

connections respectively. Right panel: Source model with a layered architecture comprising 
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three neuronal subpopulations, each with three states; voltage and (excitatory and inhibitory) 

conductances for each subpopulation. These neuronal state-equations are based on a Morris–

Lecar (Morris and Lecar, 1981) model and include random fluctuations on the neuronal 

states (see Marreiros et al., 2009). The effects of these fluctuations can be modeled in terms 

of the dynamics of the ensuing probability distribution over the states of a population; this is 

known as a mean-field model. These models can be contrasted with neural-mass models that 

only consider the expected (mean) state of the population.
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Fig. 3. 
Forward and backward connections (a DCM study of evoked responses). 

Electrophysiological responses to stimuli unfold over several hundred milliseconds. Early or 

exogenous components are thought to reflect a perturbation of neuronal dynamics by 

(bottom-up) sensory inputs. Conversely, later endogenous components have been ascribed to 

(top-down) recurrent dynamics among hierarchical cortical levels. This example shows that 

late components of event-related responses are indeed mediated by backward connections. 

The evidence is furnished by dynamic causal modeling of auditory responses, elicited in an 

oddball paradigm using electroencephalography (EEG). Here, we consider the evidence for 

models with and without backward connections in data gathered over increasing windows of 

peristimulus time. Left panel (Model specification and data): The upper graph shows the 

ERP responses to a deviant tone, from 0 to 400 ms peristimulus time (averaged over 

subjects). Sources comprising the DCM were connected with backward (gray) and/or 

forward (dark gray) connections as shown below. A1: primary auditory cortex, STG: 

superior temporal gyrus, IFG: inferior temporal gyrus. Two different models were tested, 

with and without backward connections (FB and F respectively). Sources (estimated 

posterior moments and locations of equivalent dipoles) are superimposed on an MRI of a 

standard brain in MNI space (upper left). Right panel (Bayesian model selection): The upper 

graph shows the differences in log-evidence when comparing the model with backward 

connections (FB) against the model without (F). It shows that the evidence for the model 

with backward connections is substantially greater when, and only when, we consider the 

evidence in data late in peristimulus time (after about 220 ms). The lower graphs show 

predicted (solid) and observed (broken) responses (of the principal spatial mode in channel 

space). The improved fit afforded by backward connections is evident. This sort of result 

links a generic feature of brain responses to recurrent dynamics; which are a cornerstone of 
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most modern theories of perceptual inference and learning. See Garrido et al. (2007b) for 

further details.
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Fig. 4. 
Forward and backward connections (a DCM study of induced responses). This example 

provides evidence for functional asymmetries between forward and backward connections 

that define hierarchical architectures in the brain. It exploits the fact that modulatory or 

nonlinear influences of one neuronal system on another (i.e., effective connectivity) entail 

coupling between different frequencies. Functional asymmetry is addressed here by 

comparing dynamic causal models of MEG responses induced by visual processing of faces. 

Bayesian model comparison indicated that the best model had nonlinear forward and 

backward connections. Under this model, there is a striking asymmetry between these 

connections; in which high (gamma) frequencies in lower cortical areas excite low (alpha) 

frequencies in higher areas, while the reciprocal effect is suppressive. Left panel: (Above): 

Log-evidence (pooled over subjects) for four DCMs with different combinations of linear 

and nonlinear (N vs. L) coupling in forward and backward (F vs. B) connections. It can be 

seen that the best model is FNBN, with nonlinear coupling in both forward and backward 

connections. (Below): Location of the four sources (in MNI coordinates) and basic 

connectivity structure of the models. LV and RV; left and right occipital face area; LF and 

RF; left and right fusiform face area. Right panel: (Above): SPM of the t-statistic (p>0.05 

uncorrected) testing for a greater suppressive effect of backward connections, relative to 

forward connections (over subjects and hemisphere). (Below): Subject and hemisphere-

specific estimates of the coupling strengths at the maximum of the SPM (red arrow). See 

Chen et al. (2009) for further details.
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Fig. 5. 
Model selection and network discovery. This figure summarizes the results of model 

selection using fMRI data. The upper left panel shows the log-evidence profile over all 

models considered (encoding different combinations of edges among the six nodes). The 

implicit model posterior (assuming flat priors over models), is shown on the upper right and 

suggests that we can be over 80% certain that a particular architecture generated these data. 

The parameter estimates of the connections under a model with full connectivity (left) and 

selected model (right) are shown in the lower panels. We can see that certain connections 

have been switched off as the parameter estimates are reduced to their prior value of zero. It 

is these anti-edges that define the architecture we are seeking. This architecture is shown 

graphically in the next figure.
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Fig. 6. 
The selected graph (network) in anatomical space and functional space. This figure shows 

the graph selected (on the basis of the posterior probabilities in the previous figure) in 

anatomical space and functional (spectral embedding) space. The upper panel shows the six 

regions connected using the conditional means of the coupling parameters, under the model 

selected (see Fig. 5). The color of the arrow reports the source of the strongest bidirectional 

connection, while its width represents its absolute (positive or negative) strength. This 

provides a description of the architecture or graph in anatomical space. A more functionally 

intuitive depiction of this graph is provided in the lower panel. Here, we have used spectral 

embedding to place the nodes in a functional space, where the distance between them 
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reflects the strength of bidirectional coupling. Spectral embedding uses the eigenvectors 

vectors (principle components) of the weighted graph Laplacian to define a small number of 

dimensions that best capture the proximity or conditional dependence between nodes. Here, 

we have used the first three eigenvectors to define this functional space. The weighted 

adjacency matrix was, in this case, simply the maximum (absolute) conditional estimate of 

the coupling parameters. The middle panel shows the asymmetry strengths based on the 

conditional estimates of the selected model. This provides a further way of characterizing 

the functional architecture in hierarchical terms, based on (bidirectional) coupling. vis —

visual cortex; sts — superior temporal sulcus; pfc — prefrontal cortex; ppc — posterior 

parietal cortex; ag — angular gyrus; fef — frontal eye fields.
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Fig. 7. 
Meta-analytic connectivity modeling (MACM). The co-occurrence-based functional 

connectivity of the nucleus accumbens is shown. Colors from red to yellow indicate a 

prevalent right lateralization. Colors from blue to green indicate a prevalent left 

lateralization. Despite being computed from a relatively small volume of interest (containing 

activations from only 57 experiments from the BrainMap database), validation by 

comparison to a region-seeded analysis of resting-state BOLD fMRI showed excellent 

correspondence. For more details, see Cauda et al. (2011).
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Fig. 8. 
Connectivity-based parcellation. Connectivity-based parcellation of the amygdala, using the 

BrainMap database (right) shows good spatial contiguity and localization in accordance with 

microscopically observed parcellation (left) (Amunts et al., 2005). Blue = corresponds to 

laterobasal nuclei group, red = corresponds to centromedial nuclei group, and green = 

corresponds to superficial nuclei group. Images were rendered using Mango (multi-image 

analysis GUI; http://ric.uthscsa.edu/mango/). Figure courtesy of Danilo Bzdok.
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Fig. 9. 
Bayesian network discovery. A Bayesian network extracted from the BrainMap database is 

shown. Bayesian networks are directed acyclic graphs (DAGS) computed by the conditional 

probabilities of co-occurrences. The nodes of the graph were selected by a step-wise 

filtering of the database to identify the thirteen most commonly co-occurring regions among 

the 49 most commonly occurring regions. The regions include part of posterior medial 

frontal cortex (pMFC), anterior cingulate cortex (ACC), lateral prefrontal cortex (LPFC), 

dorsal premotor cortex bilaterally (dPMC), insula (Ins), and anterior intraparietal sulcus 

(IPS). While this analysis required an exceptional volume of data, it demonstrates the 

suitability of the BrainMap database for Bayesian inferential approaches including discovery 

of directed graphs. For more details, see Neumann et al. (2010).
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Fig. 10. 
Independent component analysis. Ten well-matched pairs of networks from the 20-

component analysis of the 29,671-subject BrainMap activation database and (a completely 

separate analysis of) the 36-subject resting FMRI dataset. This figure shows the 3 most 

informative orthogonal slices for each pair. (Left column of each pair) Resting fMRI data, 

shown superimposed on the mean fMRI image from all subjects. (Right column of each 

pair). For more details, see Smith et al. (2009).
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Fig. 11. 
Behavioral domain profiles. Behavior domain profiles are shown for amygdala. The 

difference in the behavioral domain profiles of the amygdala (Row B) and the whole-brain 

(whole-database; Row A) is apparent, with a much greater participation of the amygdala in 

tasks categorized as involving “Emotion”. Further, there may be a difference in behavioral 

profile of the right and left amygdala, when the specific types of emotion are considered 

(Row C). For more details, see Robinson et al. (2010).
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Fig. 12. 
Behavioral domain filtering. A MACM of the caudate nucleus filtered by the top tier of the 

behavioral domain hierarchy is illustrated. Caudate-connected regions differed in their 

behavioral specificity, ranging from having a single dominant domain to having four well-

represented domains. The projection patterns closely matched those established in the 

primate literature and were confirmed by DTI tractography.

Figure courtesy of Jennifer Robinson.
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Fig. 13. 
Behavioral domain ICA and hierarchical clustering. Mapping of BrainMap metadata onto 

ICA components are shown. On the left panel, twenty (of 66) of the behavioral domain 

categorization were correlated with ten of the primary functional networks in a heat-map 

representation of a 20-component ICA of the BrainMap database. (See Smith et al., 2009 for 

more details.) On the right, the metadata analysis has been extended to include 50 behavioral 

domain categories and 75 paradigm class categories. Hierarchical clustering was used to 

group the ICA into spatially and behaviorally related clusters for all 20 ICA components. 

For more details, see Laird et al. (2011).

Fox and Friston Page 45

Neuroimage. Author manuscript; available in PMC 2016 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 14. 
Meta-analytic neural system models. Meta-analytically derived graphical models are 

illustrated. In the left panel, a graphical model of the default mode network (DMN) is 

represented, divided into behaviorally specific cliques. Nine nodes in the model were 

determined by ALE meta-analysis of “task-negative” responses from 119 experiments, 

following the original description of the DMN (Shulman et al., 1997). For each of the nine 

nodes, behavioral domain profiles were generated, to characterize the “task-positive” 

functions of the nodes and to inform grouping into behaviorally related cliques. MACM was 

then performed on each of the nine nodes, to yield per-node connectivity maps. Path 

directionality indicates that an endpoint region was observed in the region-seeded MACM of 

a starting-point region. (For more detail, see Laird et al., 2009a,b,c). In the right panel, a 

graphical model of the scenario-based trauma recall task as performed in patients with post-

traumatic stress disorder (PTSD) is illustrated. The model was generated using procedures 

similar to those described for the right panel, but limiting input to studies reporting 

activations induced by the trauma recall task in PTSD patients and normal volunteers.

Figure courtesy of Amy Ramage.
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