
Bid Optimization using Maximum Entropy

Reinforcement Learning

Mengjuan Liua,∗, Jinyu Liua, Zhengning Hua, Yuchen Gea, Xuyun Niea

aNetwork and Data Security Key Laboratory of Sichuan Province, University of
Electronic Science and Technology of China, Chengdu, 610054, China

Abstract

Real-time bidding (RTB) has become a critical way of online advertising. In RTB,
an advertiser can participate in bidding ad impressions to display its advertise-
ments. The advertiser determines every impression’s bidding price according to
its bidding strategy. Therefore, a good bidding strategy can help advertisers im-
prove cost efficiency. This paper focuses on optimizing a single advertiser’s bidding
strategy using reinforcement learning (RL) in RTB. Unfortunately, it is challenging
to optimize the bidding strategy through RL at the granularity of impression due
to the highly dynamic nature of the RTB environment. In this paper, we first uti-
lize a widely accepted linear bidding function to compute every impression’s base
price and optimize it by a mutable adjustment factor derived from the RTB auc-
tion environment, to avoid optimizing every impression’s bidding price directly.
Specifically, we use the maximum entropy RL algorithm (Soft Actor-Critic) to
optimize the adjustment factor generation policy at the impression-grained level.
Finally, the empirical study on a public dataset demonstrates that the proposed
bidding strategy has superior performance compared with the baselines.

Keywords: Real-time bidding, bidding strategy, maximum entropy
reinforcement learning

1. Introduction

Online advertising has developed into the most primary way of ad deliv-
ery in recent years [1]. As a new marketing channel of online advertising,
real-time bidding (RTB) has received extensive attention from industry and

∗Corresponding author: Mengjuan Liu
Email address: mjliu@uestc.edu.cn (Mengjuan Liu)

Preprint submitted to Elsevier October 12, 2021

ar
X

iv
:2

11
0.

05
03

2v
1

 [
cs

.L
G

]
 1

1
O

ct
 2

02
1

1. bid request

4. auction

user
6. display ads

2.bid request

3.bid price

ADX

DSP

DSP

7. tracking click/conversion

2.bid request

3.bid price

5.winning notify advertisers

advertisers

Value Estimator

Determine bid price

Observe Environment

Bidding Agent

Figure 1: Typical Process of an Ad Delivery in RTB

academia since it significantly improves the efficiency and transparency of the
online advertising ecosystem. Figure 1 illustrates the typical process of an
advertiser buying an ad impression through RTB [2]. When a user browses a
web page, the script of the ad slot embedded on the page will initiate a bid-
ding request to the ad exchange (ADX). Then the ADX delivers the bidding
request to the connected demand-side platforms (DSPs). The bidding agent
running on each DSP calculates the bidding price of the auctioned impres-
sion for each advertiser based on its utility [3]. The highest bidding price
within each DSP is fed back to the ADX, and the ADX determines the final
winner according to the generalized second pricing (GSP) mechanism [4].
The winning notice is then sent to the winner, and its advertisement will be
displayed to the user on the web page. Usually, the DSP will track the user’s
click or conversion behavior to optimize the advertiser’s utility estimator and
bidding strategy [5].

In RTB, each advertiser can dynamically adjust the bidding price based
on the utility of the ad impression to itself. Therefore, an advertiser can
maximize revenue under a limited budget by optimizing its bidding strat-
egy. This paper focuses on optimizing a single advertiser’s bidding strategy.
The advertiser’s revenue in RTB usually refers to the user’s click or conver-
sion behavior after the ad is displayed [6]. The more clicks (conversions)
the advertiser gets in an ad delivery period, the greater the revenue. There-
fore, the goal of the bidding strategy is to make a bidding decision for each
auctioned ad impression so that a single advertiser can get the maximum
number of clicks (or conversions) in an ad delivery period. To achieve this
goal, the bidding agent should determine the bidding price based on the value
of the impression to the advertiser, conforming to the optimal auction theory
[2]. Usually, the bidding agent in RTB uses the predicted click-through rate
(pCTR) to measure the value of the impression and makes a bidding decision

2

based on pCTR. So we can formalize the optimal bidding strategy of a single
advertiser as the formula (1), maximizing the total value of purchased ad
impressions in an ad delivery period under a given budget.

b∗(i) = max
b(·)

T∑
i=1

w(i) · v(i)

s.t.

T∑
t=1

w(i) · cost(i) ≤ B

(1)

In the formula (1), v(i) is the estimated value of an ad impression [7], and
w(i) is a binary indicator whether the ad impression is purchased successfully
using the bidding strategy b(·). The optimal bidding strategy b∗(·) maximizes
the total value of all purchased ad impressions in the whole delivery period.
In the constraint, cost(i) refers to the cost of purchasing ad impression i,
and the total cost of purchasing all impressions should not exceed the given
budget B.

Among the existing bidding strategies, linear bidding strategy (called
LIN) is one of the most representative schemes. It first designs a bidding
function with pCTR as the variable and learns the parameters from the sam-
ples of historical periods via maximizing the total pCTR of all purchased
impressions. Linear bidding strategy is static, simple, and easy to deploy,
so it is widely employed on many DSP platforms. Unfortunately, the static
bidding strategy does not work well when the RTB environment changes
significantly between the historical and the new ad delivery periods. In the
static bidding strategy, the bidding price is only related to the pCTR of an
ad impression and cannot adapt to changes of the RTB auction environ-
ment. Intuitively, an ideal bidding strategy ought to be associated with the
pCTR of ad impression and the real-time auction environment, such as the
advertiser’s available budget, remaining life time, and the intensity of market
competition.

To make bidding price change with the RTB environment, the authors
in [8] proposed using reinforcement learning (RL) [9] to learn the optimal
bidding strategy (called RLB). Through RL, the bidding agent considers not
only the immediate reward from a single ad impression but also the cumu-
lative benefit from all purchased impressions during the whole ad delivery
period [10]. However, RLB is a model-based RL bidding strategy that needs

3

to establish the state transition probability matrix. When the number of
states reaches billions, establishing this matrix requires substantial compu-
tational and storage costs, which fails to deploy in real RTB applications [11].
A promising improvement is to use the latest model-free RL (DQN) algorithm
to model bidding decisions [12]. The new bidding strategy (called DRLB)
not only enables bidding price to be correlated with both the impression’s
pCTR and RTB environment, but also does not need to compute the state
transition probability matrix. Yet, the experimental results demonstrate that
DRLB does not outperform LIN and RLB. Its performance depends heavily
on the initial value of the bidding factor and the design of discrete action
space (the detailed explanation refers to Section 2).

Indeed, it is still challenging for the bidding agent to learn the optimal
bidding strategy at the impression-grained level using the model-free RL al-
gorithm. The difficulties are as follows. Firstly, the bidding agent located on
the DSP only obtains incomplete information about the RTB environment.
For example, it neither knows the lost ad impressions’ market prices nor how
many advertisers participate in bidding the impression. The agent only rep-
resents the state by some observable statistical metrics, which may cause the
bidding agent to make a non-optimal bidding decision. Secondly, RL guides
the bidding agent to learn the optimal bidding strategy through the reward
mechanism. But defining an appropriate immediate reward is a tough job
in RTB. For instance, RLB directly uses the pCTR of the purchased ad im-
pression as the immediate reward, which easily guides the agent to learn to
bid with an exorbitant price to obtain the pCTR without considering the
cost. As a result, the agent buys plenty of low value impressions, resulting
in budget waste.

Thirdly, the GSP auction is widely adopted in RTB, which means the
advertiser who bids greater or equal to the second-highest bidding price wins
the ad impression but is only charged the second-highest price. That is to say,
for a single ad impression, multiple bidding prices are corresponding to the
same benefit and cost, expressing there are multiple optimal actions at every
state. However, the current mainstream model-free RL algorithms (such
as DQN [12] and DDPG [13]) are deterministic, in which there is only one
optimal action at every state, and they only maximize the probability of the
optimal action being selected during the learning process. This inconsistency
may prevent the bidding agent from learning the optimal bidding price at
each state.

To overcome the above difficulties, we design a new bidding function

4

to calculate the bidding price for a single ad impression in this paper. As
shown in formula (2), it contains a base price and an adjustment value. The
base price is computed by a linear bidding function derived by a heuristic
algorithm. The adjustment value is obtained by multiplying the optimal
adjustment factor (generated by the RL agent) by the range of bidding ad-
justment. Thus, through formula (2), the bidding agent no longer selects an
optimal bidding price from a discrete price space but generates a continuous
adjustment factor with a given range. This bidding function ensures that the
bidding price does not deviate too much from its estimated value and can be
adjusted according to the real-time RTB environment.

b(i) = bLIN(i) + ∆b(i)

= bLIN(i)︸ ︷︷ ︸
base price

+ ai︸︷︷︸
adjustment factor

×min(pricemax − bLIN(i), bLIN(i)− pricemin)︸ ︷︷ ︸
bidding adjustment range

(2)

Furthermore, we model the adjustment factor decisions of ad impressions
in an ad delivery period as an MDP [14]. Therefore, the RL agent’s task
is to learn the optimal adjustment factor generation policy. Specifically, we
introduce a maximum entropy RL algorithm, Soft Actor-Critic (SAC) [15],
to generate each ad impression’s adjustment factor. Unlike the deterministic
RL algorithms, SAC has a strong self-learning ability and can balance the
probabilities of multiple optimal actions being selected in the same state.
Thus, our bidding strategy can solve the third difficulty mentioned above
effectively using SAC. Besides, SAC expands the scope of the agent to explore
the optimal action to avoid falling into the local optimum. The contributions
of our work can be summarized as follows:

• We design a new bidding function by improving the linear one, which
considers both the impression’s estimated value and the real-time RTB
environment. Specifically, we introduce an adjustment factor into the
bidding function, which can be adjusted according to the real-time
RTB environment dynamically. Thus, the RL agent in our strategy
only needs to learn the optimal adjustment factor generation policy,
avoiding generating the bidding price directly. This greatly reduces
the difficulty of the RL agent learning the optimal action generation
policy.

5

• To generate the optimal adjustment factor for each impression, we
model the adjustment factor decisions as an MDP and optimize the
adjustment factor generation policy through SAC. Using SAC not only
overcomes the problem of multiple optimal actions for each impression
but also expands the exploration space of the optimal action to avoid
falling into the local optimum. Concretely, we redefine the state repre-
sentation and reward function in the MDP for enabling the RL agent
to understand the optimization objective better. It is the first bidding
strategy at an impression-grained level through stochastic reinforce-
ment learning to the best of our knowledge.

• We evaluate the proposed scheme and several baselines on a bench-
mark dataset, and the results demonstrate our method outperforms
other baselines. Specially, we are the first to quantitatively validate
the impact of the dynamic RTB environment on the performance of
static bidding strategy (e.g., LIN). Furthermore, we discuss the de-
tailed differences between our approach and LIN.

2. Related Work

Recently, research on bidding strategies in RTB mainly focuses on static
strategy, designing a linear or non-linear bidding function about impression’s
pCTR, derived by heuristics algorithm or optimization method from the
historical data. Then, the bidding agent directly uses this learned bidding
function to bid for each ad impression in the new ad delivery period. The
representative static bidding strategies are LIN [16] with linear function and
ORTB [17] with non-linear function, as shown in formula (3) and formula (4).
Here base bid is a fixed base bid, and avg pctr is the average value of all ad
impressions’ pCTRs on the training set. In LIN, we set the base bid from 1 to
300 (increased one by each time) and calculate each ad impression’s bidding
price according to (3). Finally, the base bid that maximizes the total clicks
on the training set is recorded as the optimal base bid and is used in the new
ad delivery period. In ORTB, the parameters c and λ are both learned from
the training set. So, during a new ad delivery period, the bidding price in
ORTB only depends on the pCTR of the impression.

6

bidLIN(i) = pctr(i)× base bid

avg pctr
(3)

bidORTB(i) =

√
c

λ
pctr(i) + c2 − c (4)

The static bidding strategies described above have obvious flaws, as bid-
ding price is only related to the pCTR of the ad impression in the new ad
delivery period, and it cannot adapt to changes in the RTB environment. For
example, when the market competition intensifies, the bidding agent should
appropriately increase the bidding price and vice versa. Intuitively, we hope
that strategy can dynamically allocate the budget to all ad impressions dur-
ing the entire delivery period to maximize the total clicks or the cumulative
pCTR of the purchased ad impressions. This requires the bidding agent to
adjust the bidding strategy dynamically according to the real-time RTB envi-
ronment. Reinforcement learning may be a promising solution to accomplish
this task because it can achieve excellent decision-making. In RTB, the RL
agent considers not only the benefit of the single ad impression but its impact
on long-term profits.

RLB is a typical bidding strategy based on a model-based RL framework
[8]. The author creatively modeled the bidding decision for each ad impres-
sion within an ad delivery period as a sequential MDP [18]. The entire RTB
system is regarded as the environment. Each impression reaches the DSP
triggers state transfer. The bidding agent first observes the state from the
RTB environment and then selects an action from the pre-designed discrete
action (price) space [0, 1, ..., 300] (10−3 Chinese FEN) as its bidding price. If
the agent wins the ad impression, the environment will feedback the pCTR of
the winning ad impression as the immediate reward. RLB utilizes a dynamic
programming algorithm to optimize the optimal action selection policy based
on a model-based RL model. The disadvantage of model-based RL is that
it is necessary to establish a state transition probability matrix. For a real-
world RTB system with billions of ad impressions, the establishment of this
matrix requires huge computational and storage overhead, which makes it
impossible to deploy on a real DSP.

As an improvement, researchers seek to solve the MDP by using model-
free RL algorithms. Model-free RL is particularly suitable for scenarios where
the agent cannot obtain complete environmental information. It does not
need to establish a state transition probability matrix. Instead, the agent

7

in model-free RL learns the optimal action selection policy from experience.
However, not as expected, it is challenging to use typical model-free RL
algorithms such as DQN and DDPG to learn the optimal action selection
policy for a single ad impression. In extreme cases, the bidding agent can
only learn to bid with a single high/low price or fall into a locally optimal
solution for a long time and cannot explore a larger price space. We have
analyzed the causes of this situation in detail in the introduction.

Because of the above problems, the authors in [11] proposed DRLB, which
gave up bidding directly on a single ad impression but introduced a time-
related adjustment factor based on the linear bidding function. As shown in
formula (5), where bid(i, t) represents the bidding price for i -th ad impression
in t-th time slot, pctr(i) represents the estimated value of the ad impression
i, λ(t) represents the scale bidding factor in each time slot. The greedy
algorithm is used to obtain the initial bidding factor λ(0). By observing each
time slot’s RTB environment, the bidding agent selects an optimal action as
the adjustment factor for the new time slot and adjusts the bidding price
of the ad impression that reaches in this time slot. In DRLB, the bidding
price is related to the pCTR of the impression and the RTB environment of
the current time slot. DRLB uses the value-based model-free RL algorithm
(DQN) to learn the bidding factor’s adjustment value for each time slot.

bid(i, t) = pctr(i)/λ(t)

λ(t) = λ(t− 1)× (1 + βα(t))

βα(t) ∈ {−8%,−3%,−1%, 0%, 1%, 3%, 8%} t = 1, 2, · · · , T
(5)

The problem with DRLB is how to design a suitable discrete action space
and the initial value of the bidding factor (the value of the first time slot).
Therefore, based on DRLB, literature [19] generates the optimal adjustment
factor for each time slot by introducing a deterministic policy algorithm —
Twin Delayed Deep Deterministic policy gradient (TD3). Unlike the discrete
action space used by DRLB, the action space designed by [19] is a continuous
value in (-1, +1).

In this paper, we follow the idea of DRLB, which does not directly model
the bidding decision, but models the bidding adjustment factor decision.
Further, we implement the adjustment of a single ad impression. The bidding
agent learns the bidding adjustment factor of the current state and adjusts
the bidding price derived from a static bidding strategy. Simultaneously, for

8

Table 1: Characteristics of Typical Bidding Strategies

Strategy Static/Dynamic Method Adaptiveness Granularity Action Action Space

LIN Static Linear/Heuristic Not support Impression / /

ORTB Static
Non-linear

Optimization
Not support Impression / /

RLB Dynamic
Model-based RL

Dynamic programming
Support Impression Bidding price Discrete value

DRLB Dynamic Model-free RL/DQN Support Time slot
Bidding factor’s
regulating value

Discrete value

OURS Dynamic Model-free RL/SAC Support Impression Bidding factor Continuous value

the agent to better understand the phenomenon of multiple optimal actions
led by the GSP mechanism, we use the RL algorithm based on maximum
entropy (SAC) to train the bidding agent to make the optimal adjustment
factor generation at each ad impression. Besides, SAC also overcomes the
problem of narrow exploration scope caused by deterministic policy. As far
as we know, our scheme is the first to apply the maximum entropy stochastic
policy RL algorithm to optimize RTB bidding strategy. Table 1 summarizes
the differences between several representative bidding strategies and ours.

3. Problem and Formulation

In this paper, to avoid directly learning the optimal bidding price for
individual impression, we first design a new bidding function, as shown in
formula (2). Its first part is the base price, and the second part is the optimal
adjustment value generated by the RL agent according to the real-time RTB
auction environment. To be specific, we use LIN [16] to generate the base
price and obtain the optimal adjustment factor ai for each ad impression
by using SAC-based RL algorithm. It is noted that we use min(pricemax −
bLIN(i), bLIN(i)− pricemin) to limit the range of the adjustment value, where
pricemax and pricemin are the maximum and minimum bidding prices for an
impression preset by the advertiser.

We regard an ad delivery period as an episodic process in this paper. The
decision-making of bidding adjustment factors for all sequential ad impres-
sions in the entire delivery period is modeled as a MDP. In the model-free
RL framework, the agent observes a state directly from the environment, so
it is no longer necessary to calculate the state transition probability matrix.
MDP can be represented by 〈S,A,R〉, where S is the state space (st ∈ S),
and A is the action space (at ∈ A). And R is the reward function that de-

9

Environment

(market and user)

Bidding Agent

(policy)

Environment

(market and user)

Bidding Agent

(policy)

1s 1a 1r Ts Ta Tr

Reward

1
()

T

ii
R r


maximize

       , , _ _ _ts avg pctr t avbudget ratio t avimps ratio t：

 ta：the bidding adjustment factor of each impression

change

update

2r 3r1r Tr

Figure 2: Interaction process between the bidding agent and the RTB environment

cides the immediate reward received after taking action at under the state st.
The interaction process between the bidding agent and the RTB environment
can be shown in Figure 2.

Next, we describe the key components of our MDP as follows:
State: The bidding agent observes the state from the environment and uses
statistical information to represent the state, as shown in (6):

st = (avg pctr(t), avbudget ratio(t), avimps ratio(t)) (6)

where each parameter is described as:

• avg pctr(t): the average pCTR of the received impressions, as defined
in formula (7). It reflects the average quality of ad impressions in the
new ad delivery period.

avg pctr(t) =
1

t

t∑
i=1

pctr(i) (7)

• avbudget ratio(t): the ratio of the advertiser’s available budget to the
allocated budget, as defined in formula (8). In our algorithm, the
impressions of the entire delivery period are divided into several slots
for every 1000 impressions. When a new slot begins, the agent allocates
the budget for the incoming slot with CPM × 1000, where CPM is the

10

average market price of all purchased impressions in the new delivery
period. The cost of the current slot should not exceed its budget.

avbudget ratio(t) = avbudget(t)/budget(t) (8)

• avimps ratio(t): the ratio of the number of remaining ad impressions
to 1000 in the slot at which the t-th ad impression arrives, as shown in
formula (9).

avimps ratio(t) = avimps num/1000 (9)

Action: We defined a new bidding function to calculate the bidding price
for each ad impression. Based on this design, the agent’s task is to generate
action (adjustment factor) at suitable for the current state at the impression-
grained level. The agent first generates a probability distribution about ac-
tion according to the state and then samples an action randomly on this
distribution. Finally, the action value is restricted to (-1, 1) using the tanh
function [20].
Reward: The reward function is defined as (10). Different from the defini-
tion of RLB and DRLB, we combine our bidding, linear bidding (reflecting
the value of ad impression), and the actual market price together to deter-
mine the immediate reward. As shown in formula (10), bLIN(t) represents
the linear bidding of the t-th ad impression, market(t) represents the mar-
ket price (second-highest price) of this ad impression, and b(t) represents the
bidding price according to our bidding.

reward(t) =



pctr(t), if bLIN (t) < market(t) & b(t) ≥ market(t)

pctr(t)× avbudget(t)
|b(t)−bLIN (t)|+1

, if bLIN (t) ≥ market(t) & b(t) ≥ market(t)

pctr(t)× (at − 1), if bLIN (t) < market(t) & b(t) < market(t)

pctr(t)× at, if bLIN (t) ≥ market(t) & b(t) < market(t)

−pctr(t), if avbudget(t) < b(t)

(10)

The specific rules are designed as:

• If our bidding can win the ad impression, and linear bidding cannot
win, the environment feedbacks a positive reward.

11

• If both our bidding and linear bidding can win the ad impression, the
environment also feedbacks a positive reward. Because the market
price of the impression is roughly positively correlated with its value,
this design makes our bidding close to the linear bidding based on the
impression’s value.

• If neither our bidding nor the linear bidding can win the ad impression,
the environment feedbacks a negative reward. This design is to enable
at → 1 to increase our bidding price to win this ad impression as much
as possible.

• If the linear bidding can win the auction, and our bidding cannot win,
the environment feedbacks a negative reward. This design is to enable
at → 1 to increase our bidding price to win this ad impression.

• If the budget of the current slot is insufficient or it is spent out in
advance, considering that all arriving subsequent ad impressions can-
not be purchased. In this case, the environment feedbacks a negative
reward. Because the budget spent out in advance will cause the adver-
tiser to lose all subsequent impressions at the slot, we use the negative
rewards to make the bidding agent avoid such situation as much as
possible.

4. Solution based on SAC

Different from the previous RL bidding strategy, we use the stochastic
policy algorithm (SAC) to optimize adjustment factor generation policy. SAC
is based on the Actor-Critic framework, drawing on the structural design in
DDPG [13], setting up a Target network and an Eval network to enhance the
stability of the model, and also using two Q networks to solve the problem
of bias caused by overestimation in RL following the technology in TD3
[21]. Additionally, SAC introduces the policy entropy proposed in Soft Q
learning [22] to balance the stochasticity of action selection to deal with the
problem of multiple optimal actions for each ad impression caused by the
GSP mechanism in RTB.

In the basic RL framework, we use the Temporal-Difference (TD) method
to optimize the strategy, and the optimization goal is represented by the
formula (11), where r(st, at) represents the immediate reward brought by
performing the action at under the state st.

12

Table 2: Key Parameters of Figure 3

Variable Description

α
The temperature parameter determines the relative importance
of the entropy term versus the reward, thus controlling the
stochasticity of the optimal policy.

ât+1 ∼ πφ(st+1)
Generate action distribution on the state st+1 through the Actor
network and randomly sample to generate action ât+1.

log πφ(a|s) The entropy of action a generated by the Policy network on the
state s, where φ represents the parameters of the Policy network.

Qθi(st, at), i = 1, 2
An Eval Critic network used to calculate the Q value upon the
state st and the action at, where θi means the parameters of the
Eval Critic network i.

π∗ = arg max
π

E(st,at)∼ρπ [
∑T

t=1
r (st, at)] (11)

SAC introduces the policy entropy, which is defined asH(P) = E
x∼P

[− logP (x)].

P (x) represents the probability distribution of x. Entropy term usually repre-
sents the degree of confusion in action selection. Here we hope to enhance the
self-learning ability of this model. That is, let actions with the same reward
have the same probability of being selected as much as possible. Therefore,
the optimization goal is modified to formula (12), where π(·|st) represents the
probability distribution of actions based on the RL policy under the current
environment state st, α is the temperature parameter used to balance entropy
and reward, thereby controlling the stochasticity of the optimal strategy.

π∗ = arg max
π

E(st,at)∼ρπ [
∑T

t=1
r (st, at) + αH(π(·|st))] (12)

According to [23], we automatically adjust the temperature parameter when
it is not less than the minimum policy entropy threshold and maximize
the original reward. The optimization goal is defined in the formula (13),
where H0 is the preset minimum policy entropy threshold, we also set H0 =
− dim(A) according to [23]. The entire process is shown in Figure 3, and we
describe some critical parameters in detail in Table 2.

max
π0,··· ,πT

E[
∑T

t=0
r(st, at)] s.t.∀t,H(πt) ≥ H0 (13)

13

Train RL Agent Process

Observation Process

Replay buffer M

Agent Sample Environment

Gaussian

Distribution

Store Transitions

State S

Reward S

Policy Net

Critic Net

Target CriticEval CriticTarget CriticTarget Critic

Automating

Entropy

Adjustment

Actor U

Sample a mini-batch from replay buffer

Update

Update

Update

Soft

update

tr

()ts

~ ()t ta s

1, , ,t t t ts a r s  

1ts 

1ts ts

ˆ ~ ()t ta s



1 1
ˆ ~ ()t ta s 

1 1
ˆlog (|)t ta s  

ˆlog (|)t ta s



ˆ ~ ()t ta s

1 1
ˆ ~ ()t ta s 

ˆlog (|)t ta s

~ 0]() lo ()g |[
t t ta t tJ sa    

 
2

(,)~D

1
() (,) _ , 1,2

2i t t iQ s a t tJ Q s a target Q i
 

   
 

~D
ˆ ˆ() min(,) 2) log(1,()| ,

t is t t t tJ sQ a a s i     
   

1ts  ts ta

ˆQ


Q

ˆ 1 1(), 2ˆ ,, 1
i

t taQ s i
   

,), 1, 2(
i t ta iQ s 

,ˆ,() 1, 2
i t taQ s i 

tr

 ˆ 1 1 1 1
ˆ ˆmin (,) log ()

i
t t t tttarget_Q r Q s a a s


       

Figure 3: Structure of our learning algorithm based on SAC

As shown in Figure 3, there are observation and training processes in
our algorithm. Before training, we first need to initialize a replay buffer,
recorded as M . The replay buffer is a fixed-sized cache. Transitions were
sampled from the interaction process between agent and environment. Specif-
ically, upon each ad impression’s arrival, the agent generates a Gaussian dis-
tribution πφ(st) according to the current state st. And then samples a bidding
adjustment factor at ∼ πφ(st) from the distribution to adjust the base price

14

of each ad impression according to formula (2). After that, the agent uses
our bidding and linear bidding to compute the immediate reward based on
the formula (10). At the same time, the agent computes the environment’s
statistics as the next state st+1. Finally, each transition 〈st, at, rt, st+1〉 is
stored in the replay buffer. Whenever k new transitions are added to the
replay buffer, the agent performs a training.

Then, enter the training process. As shown in Figure 3, the architecture
consists of two parts: Policy Net and Critic Net. The Policy Net is the Actor
network for generating each impression’s bidding adjustment factor. The
Critic Net includes two Eval Critic networks and two Target Critic networks.
The two Eval Critic networks are used to compute the Q value given a state
and an action. And the two Target Critic networks help update two Eval
Critic networks. In our algorithm, the parameters of Actor Net and Eval
Critic networks are updated based on training; the parameters in Target
Critic networks are updated from the corresponding networks in Eval Critic
networks by using soft update.

Now, we introduce the details of the training. We use neural network to
fit Actor and Critic Net. Whenever k pieces of new transition are stored in
the replay buffer, the agent will train for L rounds. As shown in Algorithm 1,
for each round, the agent first randomly sample N transitions from the replay
buffer to form a mini-batch for training. For each transition 〈st, at, rt, st+1〉,
st is input into the Policy network to generate the probability distribution
of the action, πφ(st), where φ is the parameters of the Policy network. Then
the agent samples an action ât from the distribution πφ(st) and feed it into
two Eval Critic networks respectively to compute two Q values, recorded as
Qθi(st, ât), where i = 1, 2. Here, θi are two Eval Critic networks’ parame-
ters. α log πφ(ât|st) is the entropy term, and the temperature parameter is
automatically adjusted by formula (16) to control the stochasticity of the
optimal strategy. So we can update the Policy network’s parameters by us-
ing unbiased gradient estimator proposed in SAC, as shown in formula (14).
It is worth noting that the agent chooses the smaller Q value to update the
Policy network to avoid overestimation.

Jπ(φ) = Est∼D [min(Qθi(st, ât))− α log πφ(ât|st)] , i = 1, 2 (14)

At the same time, the agent inputs (st, at) into two Eval Critic networks
respectively to compute two Q values, recorded as Qθi(st, at), where i = 1, 2.
We update two Eval Critic networks’ parameters by minimizing TD error, as

15

Algorithm 1 Learning algorithm in our bidding strategy

Initialize Qθi , πφ with random parameters θi, i = 1, 2 and φ

Initialize target networks θ̂i ← θi and φ̂← φ
Initialize empty replay buffer M
for episode = 1 to E do
for t = 1 to T do

Get the base price according to (3)
Observe state st and get at from at ∼ πφ(st)
Execute at to adjust the bidding price shown in (2)
Obtain the reward rt from (10) and observe next state st+1

Store transition 〈st, at, rt, st+1〉 in M
if t mod k do
for l = 1 to L do

Sample a mini-batch of N transitions 〈st, at, rt, st+1〉 from M

θi ← θi − λQ∇̂θiJQ(θi), i = 1, 2 .Update the Q-function parameters

φ← φ− λπ∇̂φJπ(φ) .Update the policy weights

α← α− λ∇̂αJ(α) .Adjust temperature
if l mod d do

θ̂i ← τθi + (1− τ)θ̂i, i = 1, 2 .Update target network
end if

end for
end if

end for
end for

shown in formula (15). Where rt comes from the input 〈st, at, rt, st+1〉, γ is
the discount factor, Qθ̂1

(st+1, ât+1) and Qθ̂2
(st+1, ât+1) are Q values computed

by two Target Critic networks upon the next state st+1 and the action ât+1.
Here, ât+1 is the action sampled from distribution πφ(st+1). As with the
update of Actor network, in order to prevent overestimation, we use the
smaller Q value to update the gradient. The entropy term is also considered
in the update formula.

JQi(θ) = E(st,at)∼D

[
1

2
(Qθi(st, at)− target Q)2

]
, i = 1, 2

target Q = rt + γmin
(
Qθ̂i

(st+1, ât+1)
)
− α log π(ât+1|st+1)

(15)

As with [23], we use the following formula (16) to calculate the gradient

16

for α.

J(α) = Eat∼πt
[
−α logπt(at|πt)− αH0

]
(16)

As with [13], we use soft-update to update two Target Critic networks,
as shown in formula (17), where τ is the update weight.

θ̂i ← τθi + (1− τ)θ̂i, i = 1, 2 (17)

5. Experimental Setup

5.1. Dataset

We perform the experiments on a benchmark dataset — iPinYou, which
comes from a well-known DSP company and contains logs of impressions,
bids, clicks, and final conversions. In iPinYou, DSP adopts a fixed bidding
strategy and bids 300 (10−3 Chinese FEN) for each arriving ad impression.
Then ADX determines the winner according to the GSP auction mechanism.
The winner needs to pay the second-highest price to ADX to purchase the
impression, which we call the second-highest price the market price. As a
result, DSP cannot know the lost impression’s market price and click (conver-
sion) behavior. So we only use the logs of winning impressions to construct
the dataset in our experiments, which makes the number of ad impressions
in the dataset far less than the actual number. In detail, we select three
datasets with advertiser IDs of 1458, 3358, and 3427. Each dataset contains
ten days of advertising logs (from 2013/6/6 to 2013/6/15). We use the data
of the first seven days (6/6-6/12) as the training set and the data of the last
three days (6/13-6/15) as the testing set. The statistics of the three datasets
are shown in Table 3. We regard every day as an ad delivery period and set
the daily budget separately. Therefore, the training set includes seven ad
delivery periods, and the testing set includes three ad delivery periods.

From Table 3, we first observe that click behaviors are very sparse in both
training and testing sets. For example, the CTR of the 1458 training set is
0.7959 ×10−3, and the CTR of the testing set is 0.838×10−3. It seriously
weakens the performance of the CTR prediction model and reduces the cred-
ibility of the estimated value of each ad impression. Secondly, we observe
that the average market prices (CPMs) of the training set and the testing
set change greatly on three datasets, indicating that the RTB environment
does have significant differences in different ad delivery periods. It may affect

17

Table 3: Statistics on the Training and Testing Sets

1458 3358 3427

Training Set Testing Set Training Set Testing Set Training Set Testing Set

Imps 3083056 614638 1742104 300928 2593765 536795
Clicks 2454 515 1358 260 1926 366
Cost 212400241 45216454 160943087 34159766 210239915 46356518

CTR(10−3) 0.7959 0.8378 0.7795 0.8639 0.7425 0.6818
CPM 68.892 73.565 92.384 113.514 81.055 86.357
CPC 86552.665 87798.939 118514.791 131383.715 109158.834 126657.153

Im
ps

 (
1e

5)

C
os

t
(1

e7
)

Day

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

6/6 6/7 6/8 6/9
6/10

6/11
6/12

6/13
6/14

6/15

Imps
Cost

C
lic

ks

C
TR

(1
e-
3)

Day

100

150

200

250

300

350

400

450

500

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

6/6 6/7 6/8 6/9
6/10

6/11
6/12

6/13
6/14

6/15

Clicks
CTR

C
PM

C
PC

(1
e3
)

Day

62

64

66

68

70

72

74

76

78

80

75

78.125

81.25

84.375

87.5

90.625

93.75

96.875

100

103.125

6/6 6/7 6/8 6/9
6/10

6/11
6/12

6/13
6/14

6/15

CPM
CPC

Figure 4: Statistics of Various Indicators in Ten Days of 1458 Dataset

the performance of the static bidding strategy in the new ad delivery period.
Furthermore, Figure 4 gives the statistics of various indicators in ten days of
the 1458 dataset. We can see that there are large fluctuations in all kinds
of statistics during ten delivery periods. Thus the static optimal bidding
strategy derived from the historical training periods is likely unsuitable for
the new ad delivery period.

5.2. Click-Through Rate Prediction Model

In this paper, all bidding strategies are based on the estimated pCTR
of the ad impression to the advertiser. We use three representative models
(LR [6], FM [24], and FNN [25]) to train three CTR estimators for each
advertiser and choose the best one as the estimator used in our experiments.
Table 4 lists the CTR prediction models we choose for three advertisers and
their AUC values. In our experiments, each advertiser’s bidding agent first
computes the pCTR of the new arriving impression using its CTR estimator
and decides the bidding price based on the pCTR. It should be noted that
some click behaviors are quite inconsistent with the impressions’ pCTRs due
to the uncertainty of user click behavior.

18

Table 4: AUC Values of CTR Estimators

Advertiser ID Model AUC

1458 FNN 0.7944
3358 FM 0.8675
3427 FM 0.8334

5.3. Baseline Bidding Strategies

In this subsection, we introduce some representative bidding strategies as
baselines.

• LIN: The linear bidding strategy is defined as (3).

• RLB: The bidding strategy is learned based on a model-based RL
framework proposed in [8], which can directly select an optimal bidding
price for each impression.

• DRLB: The bidding strategy is learned based on a model-free RL
framework proposed in [11]. Primarily, it uses the DQN algorithm
to train the optimal action selection policy that can help choose the
regulating value to adjust each time slot’s bidding factor.

• OURS: The bidding strategy is learned based on a model-free maxi-
mum entropy (SAC) RL framework proposed in this paper.

5.4. Hyper-Parameters Setting

In our algorithm, both Actor and four Critic networks use the feed-
forward, fully connected neural network. Each network contains two hid-
den layers, and each hidden layer contains 128 neurons. The algorithm uses
the Adam optimizer [26] to optimize the neural network parameters, and
the output layer uses the tanh activation function to constrain the output
adjustment factor. We have described the detailed learning process of the
algorithm in Section 4. Some hyper-parameters setting in our experiments
are given in Table 5. It should be noted that the hyper-parameters setting
of SAC mainly refers to the parameters setting in [23].

19

Table 5: Key Hyper-parameter Implementation

Parameter Setting Description

γ 1 Discount factor for TD in formula (15).
τ 0.0005 Soft-update parameter in formula (17).
M 1000000 Size of replay buffer in Algorithm 1.
N 256 Size of mini-batch in Algorithm 1.
k 30000 Training once after k pieces of experience has been stored in Algorithm 1.
L 128 Number of rounds per training in Algorithm 1.
d 4 Update frequency for soft updates in Algorithm 1.

6. Experimental Results

In this section, we first evaluate the performance of LIN (a typical static
bidding strategy) on three datasets and discuss the impact of the RTB en-
vironment dynamics on the performance of LIN. Then, we compare our
scheme with LIN and two dynamic RL-based bidding strategies (i.e., RLB
and DRLB). Finally, we discuss the advantages and disadvantages of our
scheme and LIN from the number of purchased impressions, the average
market price, cost ratio, and the reasons for losing clicks. In order to eval-
uate the adaptability of the bidding strategy to budget changes, we set four
different daily budgets for each set of experiments. Since the number of ad
impressions and the actual cost vary from day to day in the dataset, we
set the daily budget as 1/2, 1/4, 1/8, and 1/16 of the actual cost of each
advertiser. Table 6 lists the actual costs of three advertisers on ten days.

6.1. Performance of the Static Linear Bidding Strategy

In this subsection, we discuss the impact of the dynamic RTB environ-
ment on the performance of the static bidding strategy. To this end, we per-
form LIN, the most representative static bidding strategy, on three datasets
under four daily budget constraints. We run two groups of experiments for
comparison. In the first group of experiments, we learn the optimal base bid
to win the most clicks on the training set via a greedy heuristic algorithm.

Table 6: Actual Daily Costs of three Advertisers on Ten Days(10−3 Chinese FEN)

Advertiser ID
Training set Testing set

6/6 6/7 6/8 6/9 6/10 6/11 6/12 6/13 6/14 6/15

1458 30096630 30228554 30615541 30548604 30303929 30309883 30297100 15036900 15045650 15133904

3358 17068590 17155542 16219705 14571538 40071957 23340047 32515710 10864298 12143044 11152426

3427 30644030 23930230 29840853 32019674 31232220 30918866 31654042 15185670 15325090 15845760

20

Table 7: Total Number of Clicks that the Linear Bidding Strategy Received on the Testing
Set

Advertiser
ID

Base bid
learned on

1/2 1/4 1/8 1/16

6/13 6/14 6/15 Total 6/13 6/14 6/15 Total 6/13 6/14 6/15 Total 6/13 6/14 6/15 Total

1458
Training set 155 119 136 410 96 81 89 266 66 55 58 179 39 40 47 126

Testing Set 167 140 160 467 103 107 117 327 68 67 73 208 39 44 49 132

3358
Training set 68 79 82 229 55 70 66 191 48 62 60 170 43 50 44 137

Testing Set 67 78 82 227 63 74 70 207 54 63 61 178 45 52 49 146

3427
Training set 99 103 114 316 80 82 90 252 63 58 69 190 49 47 54 150

Testing Set 100 103 116 319 84 84 92 260 67 67 76 210 57 52 61 170

Then, we use the learned optimal base bid to calculate the bidding price for
each ad impression on the testing set. As listed in Table 7, we record the
results of the first group of experiments as Base bid learned on Training
Set, which represents that the optimal base bid is learned on the training
set and the clicks are obtained on the testing set.

In the second group of experiments, we assume that the testing set is
known and learn the optimal base bid on the testing set. Then, we still use
the learned optimal base bid to compute the bidding price for each impression
on the testing set and record the results as Base bid learned on Testing
Set since both optimal base bid and clicks are obtained on the testing set.
The clicks received in the second group of experiments are the best results
obtained by LIN under the environment of the testing periods. Therefore, we
can analyze the adaptability of static bidding strategy to the environment
changes quantitatively by comparing the click numbers obtained by the two
groups of experiments.

Obviously, all click numbers in the first group of experiments are lower
than those in the second group of experiments, proving that the base bids
learned on the historical training periods are not the best for the testing
periods due to the dynamic changes of the RTB environment. Especially
on the 1458 dataset, when we set the daily budget 1/2 and 1/4 of the cost,
the click numbers are 410 and 266 in the first group of experiments, 12.20%
and 18.65% lower than the ideal clicks (obtained in the second group of
experiments). The results reveal that the RTB environment does change
dramatically between the training and the testing periods and harms the
performance of the static bidding strategy.

Moreover, we observe that the gaps between the actual and ideal clicks de-
crease with the daily budget declining. When we set the daily budget 1/16 of
the cost, the gap is reduced to 6 clicks. Intuitively, we list the learned optimal

21

Table 8: Optimal Base Bid(based on the maximum number of clicks)

Advertiser ID

1/2 1/4

Training set Testing set Training set Testing set

6/6-6/12 6/13 6/14 6/15 6/6-6/12 6/13 6/14 6/15

1458 298 184 173 194 111 64 59 62
3358 182 227 293 280 70 183 143 139
3427 212 228 207 220 80 92 82 94

Advertiser ID

1/8 1/16

Training set Testing set Training set Testing set

6/6-6/12 6/13 6/14 6/15 6/6-6/12 6/13 6/14 6/15

1458 48 35 33 33 25 23 25 21
3358 45 94 80 78 30 57 46 26
3427 44 50 49 54 27 33 32 36

base bids based on both training and testing sets in Table 8, demonstrating
the optimal base bids fluctuating with the RTB environment changes. We
find a common phenomenon that the optimal base bids decrease with the
budget shrinking, which reveals a conservative bidding strategy is beneficial
to maximize the overall clicks in the iPinYou dataset when the budget is in-
sufficient. To sum up, through the experimental results in this subsection, we
prove that the dynamic RTB environment does hinder the performance of the
static bidding strategy and confirm the necessity of introducing a real-time
adjustment scheme into the bidding strategy.

6.2. Performance Comparison of RL Bidding Strategies

In this subsection, we evaluate our scheme with two typical RL-based
bidding strategies. We still run each bidding strategy on three datasets
under four budget constraints. Table 9 outlines the total number of clicks
obtained by each bidding strategy in the testing periods. Also, we add the
clicks received by LIN in Table 9 for comparison. First of all, we find that
our scheme achieves the highest clicks in most experiments among three RL-
based bidding strategies, with significant advantages compared with RLB
and DRLB. Among three RL-based bidding strategies, RLB and DRLB get
the least clicks respectively in the six experiments. Only when the budget
is set to 1/8 of cost, the click number obtained by our scheme is slightly
lower than that of DRLB on the 3358 dataset. In addition, our strategy
is also superior to LIN. Especially when the daily budgets are 1/2 and 1/4

22

Table 9: Number of Clicks Received by Four Bidding Strategies under Different Budget
Constraints

Advertiser ID
1/2 1/4

LIN RLB DRLB OURS LIN RLB DRLB OURS

1458 410 415 442 461 266 294 294 296
3358 229 221 228 235 191 187 195 200
3427 316 304 281 317 252 246 234 263

Advertiser ID
1/8 1/16

LIN RLB DRLB OURS LIN RLB DRLB OURS

1458 179 176 172 184 126 112 106 119
3358 170 147 164 162 137 112 132 131
3427 190 198 164 202 150 144 134 155

of the cost, our scheme can obtain 461 and 296 clicks on the 1458 dataset,
12.44% and 11.28% higher than LIN. Similar results are found on the 3358
and 3427 datasets. Such results show that our scheme can adjust the bidding
price adaptively according to the RTB environment in real-time so that the
bidding price of each ad impression can match its environment as much as
possible. Furthermore, the results also prove that it is feasible to introduce
the adjustment factor into the bidding function of LIN.

Table 10 presents the sum of pCTR won by each bidding strategy in the
testing periods. Firstly, we observe that, similar to the number of clicks,

Table 10: Sum of pCTR Won by Four Bidding Strategies under Different Budget Con-
straints

Advertiser ID
1/2 1/4

LIN RLB DRLB OURS LIN RLB DRLB OURS

1458 330.07 355.02 350.84 368.22 230.91 275.09 246.96 249.90
3358 307.14 294.42 306.89 309.96 258.49 246.83 265.28 259.36
3427 413.49 393.03 353.03 404.86 328.89 313.06 321.43 327.22

Advertiser ID
1/8 1/16

LIN RLB DRLB OURS LIN RLB DRLB OURS

1458 177.72 191.56 179.09 182.50 140.29 129.71 103.98 115.80
3358 225.53 188.5 217.58 213.97 181.88 140.55 174.79 163.80
3427 249.77 237.47 230.49 251.46 184.63 182.13 167.94 188.92

23

Table 11: Numbers of Ad Impressions Purchased by LIN and Our Scheme

Advertiser ID
1/2 1/4 1/8 1/16

LIN OURS LIN OURS LIN OURS LIN OURS

1458 337559 327855 186698 187135 110719 119257 65456 60501
3358 158301 172912 74835 79779 44594 43978 22662 19720
3427 309703 314510 161316 171027 84099 93411 40969 46986

our scheme achieves the largest pCTR in most experiments among the three
RL-based bidding strategies. Moreover, we note that when the budget is
1/4 of cost, the pCTR won by our scheme is marginally lower than that of
DRLB on the 3358 dataset while our scheme obtained more clicks. The same
happens on the 1458 dataset when the budget is set to 1/8 and 1/16. This
results show that our scheme purchased more valuable ad impressions that
generate clicks.

6.3. Detailed Comparison of Our Scheme with LIN

In the last subsection, we discuss the advantages and disadvantages of our
scheme and LIN in detail. First, Table 11 gives the numbers of impressions
purchased by two strategies on the testing set. From this table, we observe
that our scheme buys more ad impressions than LIN in eight experiments be-
cause our scheme can adjust its bidding price for every auctioned impression
dynamically according to the environment of the testing periods. In contrast,
LIN is a static bidding strategy in which the optimal base bid is only learned
from the training periods and cannot be adjusted according to the real-time
RTB environment. If the learned optimal base bid is significantly lower than
that in the testing periods, it will lead the advertiser to bid with low price
and lose many available impressions. As a result, there will be a massive
budget surplus. For example, all budgets have not been spent out in four
experiments on the 3427 dataset.

Table 12 shows the average market prices of our strategy and LIN. In most
cases, the results reflect that our scheme’s average market prices are higher
than those of LIN since our scheme adopts an aggressive bidding strategy.
Therefore, our scheme can work well when the budget is sufficient. However,
it performs marginally poorly when the budget is seriously inadequate. In
particular, when the budget is only 1/16 of the cost, the click numbers on the
1458 and 3358 datasets are slightly lower than those of LIN. In the following

24

Table 12: Average Costs of Buying an Ad Impression in LIN and Our Scheme (10−3

Chinese FEN)

Advertiser ID
1/2 1/4 1/8 1/16

LIN OURS LIN OURS LIN OURS LIN OURS

1458 66.975 68.806 60.547 60.406 51.048 47.393 43.174 46.710
3358 96.821 97.792 91.488 96.040 90.143 97.002 92.571 108.264
3427 72.888 73.535 62.219 67.617 54.940 62.032 46.198 52.563

Table 14, we further analyze the main reason why advertisers lose clicks.
Furthermore, we discuss the cost ratio of our scheme and LIN, where the

cost ratio is the ratio of the actual cost to the budget. Ideally, we hope to
obtain the most clicks in an ad delivery period within a given budget. In
this subsection, we only give the experimental results on the 3427 dataset
in Table 13. First, we observe that the cost ratios of LIN are significantly
lower than those of our scheme. Because LIN is a static bidding strategy,
the bidding agent cannot adjust its base bid according to the environment in
real-time. Specifically, on the 3427 dataset, the learned base bid is relatively
low compared to the environment of testing periods, leading to the bidding
price for an impression usually lower than its market prices. Therefore, the
advertiser loses many impressions and has a lot of money left at the end of the
ad delivery period. On the other hand, the advertiser 3427 loses substantial
impressions that may bring clicks, which will hurt the advertiser’s revenue in
the testing periods.

In contrast, our scheme can get higher cost ratios under various cases due
to supporting adjust the bidding price at the impression-grained level. In
addition, we note that the cost ratio of LIN decreases as the budget shrinks.
This happens because the optimal base price learned by LIN is reduced with
the budget narrows to capture the impressions of the whole period as much

Table 13: Cost Ratios and Winning Impressions Obtained by LIN and Our Scheme on
3427

1/2 1/4 1/8 1/16

LIN OURS LIN OURS LIN OURS LIN OURS

Cost ratio 97.392% 99.782% 86.607% 99.787% 78.286% 99.999% 65.326% 85.244%
Win imps 309703 314510 161316 171027 84099 93411 40969 46986

25

Table 14: Number of Lost Clicks and Reason in 1458 Dataset

Reason
1/2 1/4 1/8 1/16

LIN OURS LIN OURS LIN OURS LIN OURS

Early stop 89 11 175 119 158 121 67 105

Bid lower than
market price

16 43 74 100 178 210 322 291

as possible, avoiding the budget being spent out in advance. According to
the bidding function of LIN, the lower the base bid is, the lower the bidding
price is. Therefore, the number of impressions successfully purchased by LIN
is greatly reduced. When the budget is 1/16 of the cost, only 65.33% of the
budget has been spent by LIN.

In RTB, there are two reasons why advertisers lose clicks. One is that the
bidding price is less than the market price, and the other is that the advertiser
has no money to buy impressions due to its budget has been wiped out in
advance, resulting in losing all subsequent impressions. In RTB, we call the
latter case as early stop. Here, we take the experimental results on the
1458 dataset to make detailed statistics of why LIN and our strategy lose the
clicks. Table 14 presents the missing click numbers caused by each reason.
We observe that when the budgets are 1/2, 1/4, and 1/8 of the cost, LIN
loses more clicks than our scheme for early stop, but it loses fewer clicks than
ours for its bidding price lower than the market price.

The reason for the above results is that the optimal base bid learned
by LIN in 1458 training periods is obviously high for the environment of the
testing periods. Consequently, LIN’s bidding price for each impression during
the testing periods is much higher than its market price, resulting in LIN
winning a large number of ad impressions. Among the ad impressions that
LIN has bought, more of them are no-click impressions. Buying these useless
ad impressions wastes a lot of money and can easily cause advertisers to spend
out their budgets in advance and cannot purchase subsequent ad impressions.
Our scheme introduces a dynamic adjustment factor into LIN. The bidding
price of each impression can be adjusted dynamically to match the real-time
environment of the testing periods, avoiding spending the budget out too
quickly or too slowly. When the budget is set to 1/16 of the cost, in LIN, the
optimal base bid learned on the training set fits the environment of testing

26

periods. Hence, the number of lost clicks caused by budget depletion reduces
significantly.

Based on the above analyses, we can draw the following conclusions.
Firstly, the environment dynamics do have a negative impact on the perfor-
mance of the static bidding strategy. Still, it has little impact on our dynamic
bidding strategy based on maximum entropy RL. Secondly, the new bidding
function designed by us is practical, which can adjust the bidding price for
each impression according to the real-time environment by introducing an
adjustment factor into LIN. Finally, learning the optimal adjustment factor
generation policy utilizing the maximum entropy RL is superior to other RL
models.

7. Conclusions

In this paper, we focus on using model-free RL to optimize advertisers’
bidding strategies. Specifically, we first design a new bidding function that
uses LIN to compute the base price of each ad impression, and adjusts the
base price to fit the real-time RTB environment by introducing a bidding
adjustment factor. To this end, we model the adjustment factor decision
as an MDP, and then use the stochastic policy SAC to solve the optimal
adjustment factor generation policy. Unlike the widely used deterministic
model-free RL algorithm, SAC can address the problem of multiple optimal
actions for a single impression brought by GSP mechanism. Secondly, SAC
also extends the scope of the RL agent to explore the optimal action, enabling
the algorithm to converge to the global optimum more quickly. In particular,
we design a new reward function that enables the RL agent to better learn
the optimal action by comparing it with the results of bidding using LIN,
thus maximizing the probability of the optimal action being selected. Finally,
we validate our improvements on lots of experiments. The work in this paper
focuses on bid optimization for a single advertiser. In real RTB applications,
advertising platforms usually need to optimize the total revenue of multiple
advertisers, and we hope to use reinforcement learning solutions to solve this
challenge in the future. Undoubtedly, this will be a more valuable work.

Acknowledgements

This work was supported in part by 1) the National Natural Science
Foundation of China under Grant 61202445; 2) the Fundamental Research
Funds for the Central Universities under Grant ZYGX2016J096.

27

References

[1] J. Xu, X. Shao, J. Ma, K.C. Lee, H. Qi, Q. Lu, Lift-based bidding in
ad selection, in: 30th AAAI Conf. Artif. Intell. AAAI 2016, 2016: pp.
651–657.

[2] J. Wang, W. Zhang, S. Yuan, Display advertising with real-time bidding
(RTB) and behavioural targeting, Found. Trends Inf. Retr. 11 (2017)
297–435. https://doi.org/10.1561/1500000049.

[3] J. Wang, S. Yuan, Real-Time Bidding: A New Frontier of Computa-
tional Advertising Research, Proc. Eighth ACM Int. Conf. Web Search
Data Min. (2015) 415–416.

[4] Y. Yuan, F. Wang, J. Li, R. Qin, A survey on real time
bidding advertising, in: Proc. 2014 IEEE Int. Conf. Serv.
Oper. Logist. Informatics, SOLI 2014, 2014: pp. 418–423.
https://doi.org/10.1109/SOLI.2014.6960761.

[5] W. Zhang, J. Wang, Statistical arbitrage mining for display advertising,
in: Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., 2015:
pp. 1465–1474. https://doi.org/10.1145/2783258.2783269.

[6] M. Richardson, E. Dominowska, R. Ragno, Predicting clicks:
Estimating the click-through rate for new ads, in: 16th Int.
World Wide Web Conf. WWW2007, 2007: pp. 521–530.
https://doi.org/10.1145/1242572.1242643.

[7] P. Grigas, A. Lobos, Z. Wen, K. chih Lee, Profit maximization for online
advertising demand-side platforms, in: 2017 AdKDD TargetAd - Con-
junction with 23rd ACM SIGKDD Conf. Knowl. Discov. Data Mining,
KDD 2017, 2017. https://doi.org/10.1145/3124749.3124761.

[8] H. Cai, K. Ren, W. Zhang, K. Malialis, J. Wang, Y. Yu, D. Guo,
Real-time bidding by reinforcement learning in display advertising, in:
WSDM 2017 - Proc. 10th ACM Int. Conf. Web Search Data Min., 2017:
pp. 661–670. https://doi.org/10.1145/3018661.3018702.

[9] R.S. Sutton, Introduction: The challenge of reinforcement learning,
Mach. Learn. 8 (1992). https://doi.org/10.1007/BF00992695.

28

[10] D.L. Poole, A.K. Mackworth, Artificial intelligence: Foundations of com-
putational agents, 2010. https://doi.org/10.1017/CBO9780511794797.

[11] D. Wu, X. Chen, X. Yang, H. Wang, Q. Tan, X. Zhang, J. Xu, K.
Gai, Budget constrained bidding by model-free reinforcement learning
in display advertising, in: Int. Conf. Inf. Knowl. Manag. Proc., 2018:
pp. 1443–1452. https://doi.org/10.1145/3269206.3271748.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G.
Bellemare, A. Graves, M. Riedmiller, A.K. Fidjeland, G. Ostro-
vski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg, D. Hassabis, Human-level con-
trol through deep reinforcement learning, Nature. 518 (2015) 529–533.
https://doi.org/10.1038/nature14236.

[13] T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Sil-
ver, D. Wierstra, Continuous control with deep reinforcement learning,
in: 4th Int. Conf. Learn. Represent. ICLR 2016 - Conf. Track Proc.,
2016.

[14] M. Du, R. Sassioui, G. Varisteas, R. State, M. Brorsson, O. Cherkaoui,
Improving real-time bidding using a constrained markov decision pro-
cess, in: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif.
Intell. Lect. Notes Bioinformatics), 2017. https://doi.org/10.1007/978-
3-319-69179-4 50.

[15] T. Haarnoja, A. Zhou, P. Abbeel, S. Levine, Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor,
in: 35th Int. Conf. Mach. Learn. ICML 2018, 2018.

[16] C. Perlich, B. Dalessandro, R. Hook, O. Stitelman, T. Raeder, F.
Provost, Bid optimizing and inventory scoring in targeted online adver-
tising, in: Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.,
2012: pp. 804–812. https://doi.org/10.1145/2339530.2339655.

[17] W. Zhang, S. Yuan, J. Wang, Optimal real-time bidding for display
advertising, in: Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data
Min., 2014: pp. 1077–1086. https://doi.org/10.1145/2623330.2623633.

29

[18] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Intro-
duction, IEEE Trans. Neural Networks. 9 (1998) 1054–1054.
https://doi.org/10.1109/tnn.1998.712192.

[19] M. Liu, L. Jiaxing, Z. Hu, J. Liu, X. Nie, A Dynamic
Bidding Strategy Based on Model-Free Reinforcement Learning
in Display Advertising, IEEE Access. 8 (2020) 213587–213601.
https://doi.org/10.1109/ACCESS.2020.3037940.

[20] B.L. Kalman, S.C. Kwasny, Why tanh: choosing a sigmoidal function,
in: Proceedings 1992 IJCNN Int. Jt. Conf. Neural Networks, IEEE,
2003: pp. 578–581. https://doi.org/10.1109/IJCNN.1992.227257.

[21] S. Fujimoto, H. Van Hoof, D. Meger, Addressing Function Approxima-
tion Error in Actor-Critic Methods, in: 35th Int. Conf. Mach. Learn.
ICML 2018, 2018.

[22] T. Haarnoja, H. Tang, P. Abbeel, S. Levine, Reinforcement learning
with deep energy-based policies, in: 34th Int. Conf. Mach. Learn. ICML
2017, 2017.

[23] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J.
Tan, V. Kumar, H. Zhu, A. Gupta, P. Abbeel, S. Levine,
Soft Actor-Critic Algorithms and Applications, ArXiv. (2018).
https://arxiv.org/abs/1812.05905.

[24] S. Rendle, Factorization Machines with libFM, ACM Trans. Intell. Syst.
Technol. 3 (2012) 1–22. https://doi.org/10.1145/2168752.2168771.

[25] W. Zhang, T. Du, J. Wang, Deep learning over Multi-Field categorical
Data - A case study on user response prediction, in: Lect. Notes Comput.
Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformat-
ics), 2016: pp. 45–57. https://doi.org/10.1007/978-3-319-30671-1 4.

[26] D.P. Kingma, J.L. Ba, Adam: A method for stochastic optimization, in:
3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., 2015.

30

	1 Introduction
	2 Related Work
	3 Problem and Formulation
	4 Solution based on SAC
	5 Experimental Setup
	5.1 Dataset
	5.2 Click-Through Rate Prediction Model
	5.3 Baseline Bidding Strategies
	5.4 Hyper-Parameters Setting

	6 Experimental Results
	6.1 Performance of the Static Linear Bidding Strategy
	6.2 Performance Comparison of RL Bidding Strategies
	6.3 Detailed Comparison of Our Scheme with LIN

	7 Conclusions

