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Abstract

Although real-coded differential evolution (DE) algorithms can perform well on continuous optimization problems
(CoOPs), it is still a challenging task to design an efficient binary-coded DE algorithm. Inspired by the learning
mechanism of particle swarm optimization (PSO) algorithms, we propose a binary learning differential evolution
(BLDE) algorithm that can efficiently locate the global optimal solutions by learning from the last population. Then,
we theoretically prove the global convergence of BLDE, and compare it with some existing binary-coded evolutionary
algorithms (EAs) via numerical experiments. Numerical results show that BLDE is competitive to the compared EAs,
and meanwhile, further study is performed via the change curves of a renewal metric and a refinement metric to
investigate why BLDE cannot outperform some compared EAs for several selected benchmark problems. Finally, we
employ BLDE solving the unit commitment problem (UCP) in power systems to show its applicability in practical
problems.
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1. Introduction

1.1. Background
Differential evolution (DE) [26], a competitive evolutionary algorithm emerging more than a decade ago, has been

widely utilized in the science and engineering fields [24, 4]. The simple and straightforward evolving mechanisms
of DE endow it with powerful capability of solving continuous optimization problems (CoOPs), however, hamper its
applications on discrete optimization problems (DOPs).

To take full advantage of the superiority of mutations in classic DE algorithms, Pampará and Engelbrecht [21]
introduced a trigonometric generating function to transform the real-coded individuals of DE into binary strings, and
proposed an angle modulated differential evolution (AMDE) algorithm for DOPs. Compared with the binary differ-
ential evolution (BDE) algorithms that directly manipulate binary strings, AMDE was much slower but outperformed
BDE algorithmsx with respect to accuracy of the obtained solutions [7]. Meanwhile, Gong and Tuson proposed a
binary DE algorithm by forma analysis [9], but it cannot perform well on binary constraint satisfaction problems due
to its weak exploration ability [32]. Trying to simulate theoperation mode of the continuous DE mutation, Kashanet
al. [14] design a dissimilarity based differential evolution (DisDE) algorithm incorporating a measure of dissimilarity
in mutation. Numerical results show that DisDE is competitive to some existing binary-coded evolutionary algorithms
(EAs).

Moreover, the performances of BDE algorithms can also be improved by incorporating recombination operators
of other EAs. Hota and Pat [12] proposed an adaptive quantum-inspired differential evolution algorithm (AQDE)
applying quantum computing techniques, while He and Han [10] introduced the negative selection in artificial immune
systems to obtain an artificial immune system based differential evolution (AIS-DE) algorithm. With respect to the
fact that the logical operations introduced in AIS-DE tendsto produce “1” bits with increasing probability, Wu and
Tseng [30] proposed an modified binary differential evolution strategy to improve the performance of BDE algorithms
on topology optimization of structures.
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1.2. Motivation and Contribution

Existing researches tried to incorporate the recombination strategies of various EAs to get efficient BDEs for
DOPs, whereas there are still some points to be improved:

• AMDE [21] has to transform real values to binary strings, which leads to the explosion of computation cost for
function evaluations. Meanwhile, the mathematical properties of the transformation function can also influence
its performances on various DOPs;

• BDE algorithms directly manipulating bit-strings, such asbinDE [9], AIS-DE [10] and MBDE [30], etc., cannot
effectively imitate the mutation mechanism of continuous DE algorithms. Thus, they cannot perform well on
high-dimensional DOPs due to their weak exploration abilities;

• DisDE [14], which incorporates a dissimilarity metric in the mutation operator, has to solve a minimization
problem during the mutation process. As a consequence, the computation complexity of DisDE is considerably
high.

Generally, it is a challenging task to design an efficient BDE algorithm perfectly addressing the aforementioned
points. Recently, variants of the particle swarm optimization (PSO) algorithm [15] have been successfully utilized
in real applications [6, 1, 23, 2, 17]. Although DE algorithms perform better than PSO algorithms in some real
world applications [28, 25, 22], it is still promising to improve DE by incorporating PSO in the evolving process
[3, 18, 19]. Considering that the learning mechanism of PSO can accelerate the convergence of populations, we
propose a hybrid binary-coded evolutionary algorithm learning from the last population, named as the binary learning
differential evolution (BLDE) algorithm. In BLDE, the searching process of population is guided by the renewed
information of individuals, the dissimilarity between individuals and the best explored solution in the population. By
this means, BLDE can performance well on DOPs.

The remainder of the paper is structured as follows. Section2 presents a description of BLDE, and its global
convergence is theoretically proved in Section 3. Then, in Section 4 BLDE is compared with some existing algorithms
by numerical results. To test performance of BLDE on real-life problems, we employ it to solve the unit commitment
problem (UCP) in Section 5. Finally, discussions and conclusions are presented in Section 6.

2. The binary learning differential evolution algorithm

2.1. Framework of the binary learning differential evolution algorithm

For a binary maximization problem (BOP)1

max
x∈S

f (x) = f (x1, . . . , xn), S ⊂ {0, 1}n, (1)

the BLDE algorithm illustrated by Algorithm 1 possesses twocollections ofµ solutions, the populationX(t) and the
archiveA(t). At the first generation, the populationX(1) and the archiveA(1) are generated randomly. Then, repeat the
following operations until the stopping criterion is satisfied.

For each individualw ∈ X(t) a trial solution is generated by three randomly selected individualsx, y ∈ X(t) and
z ∈ A(t). At first, initialize the trial individualtx = {tx1, . . . , txn} as the winner of two individualsy ∈ X(t) andz ∈ A(t).
∀ j ∈ {1, 2, . . . , n}, if y andz coincide on thejth bit, the jth bit of tx is changed as follows.

• If the jth bit of x differs from that ofxgb, tx j is set to bexgb, j , the jth bit of xgb;

• otherwise,tx j is randomly mutated with a preset probabilityp.

Then, replacew with tx if f (tx) ≥ f (w). After the update of populationX(t) is completed, sett = t+1 andA(t) = X(t−1).

1When a CoOP is considered, the real-value variables can be coded as bit-strings, and consequently, a binary optimization problem is constructed
to be solved by binary-coded evolutionary algorithms.
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Algorithm 1 The binary learning differential evolution (BLDE) algorithm

1: Randomly generate two populationsX(1) andA(1) of µ individuals; Sett := 1;
2: while the stop criterion is no satisfieddo
3: Let xgb = (xgb,1, . . . , xgb,n) , arg max

x∈X(t)
{ f (x)};

4: for all w ∈ X(t) do
5: Randomly selectx = (x1, . . . , xn) andy = (y1, . . . , yn) from X(t), as well asz = (z1, . . . , zn) from A(t);
6: tx = (tx1, . . . , txn) , arg max{ f (y), f (z)};
7: for j = 1, 2, · · · , n do
8: if y j = zj then
9: if xgb, j , x j then

10: tx j = xgb, j ;
11: else
12: if rand(0, 1)≤ p then

13: tx j =



















0 with probability
1
2

;

1 otherwise.
14: end if
15: end if
16: end if
17: end for
18: if f (tx) ≥ f (w) then
19: w = tx;
20: end if
21: end for
22: t := t + 1;
23: A(t) = X(t−1);
24: end while

2.2. The positive functions of the learning scheme

Generally speaking, the trial solutiontx is generated by three randomly selected individuals. Meanwhile, it also
incorporates conditional learning strategies in the mutation process.

• By randomly selectingy ∈ X(t), BLDE can learn from any member in the present population. Because the
elitism strategy is employed in the BLDE algorithm, BLDE could learn from anypbestsolution in the popula-
tion, unlike that particles in PSO can only learn from their own pbestindividuals.

• By randomly selectingz ∈ A(t), BLDE can learn from any member in the last population. At theearly stage
of the iteration process, individuals in the populationX(t) are usually different with those inA(t) = X(t−1).
Combined with the first strategy, this scheme actually enhances the exploration ability of the population, and to
some extent, accelerates convergence of the population.

• When bits ofy coincide with the corresponding bits ofz, trial solutions learn from thegbeston condition that
randomly selectedx ∈ X(t) differs fromxgb on the these bits. This scheme imitates the learning strategy of
PSO, and meanwhile, can also prevent the population from being governed by dominating patterns, because the
increase of probabilityP{xgb, j = x j} will lead to the random mutation performed ontx, preventing the duplicate
of the dominating patterns in the population.

In PSO algorithms, each particle learns from thepbest(the best solution it has obtained so far) and thegbest
(the best solution the swarm has obtained so far), and particles in the swarm only exchange information via thegbest
solution. The simple and unconditional learning strategy of PSO usually results in its fast convergence rate, however,
sometimes leads to its premature convergence to local optima. The BLDE algorithm learning fromX(t) as well as
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A(t) can explore the feasible region in a better way, and meanwhile, by conditionally learning fromxgb it will not be
attracted by local optimal solutions.

3. Convergence analysis of BLDE

Denotex∗ to be an optimal solution of BOP (1), the global convergence of BLDE can be defined as follows.

Definition 1. Let {X(t), t = 1, 2, dots} be the population sequence of BLDE. It is said to converge in probability to the
optimal solutionx∗ of BOP (1), if it holds that

lim
t→∞

P{x∗ ∈ X(t)} = 1.

To confirm the global convergence of the proposed BLDE algorithm, we first show that any feasible solution can be
generated with a positive probability.

Lemma 1. In two generations, BLDE can generate any feasible solutionof BOP (1) with a probability greater than
or equal to a positive constant c.

Proof: Denotex(t)(i) = (x(t)
1 (i), . . . , x(t)

n (i)) anda(t)(i) = (a(t)
1 (i), . . . , a(t)

n (i)) to be theith individuals ofX(t) andA(t),
respectively. Lettx(t)(i) = (tx(t)

1 (i), . . . , tx(t)
n (i)) be theith trial individual generated at thetth generation. There are two

different cases to be investigated.

1. If X(t) andA(t) include at least one common individual, the probabilityP{y = z} is greater than or equal to
1
µ2 , wherey ∈ X(t) and z ∈ A(t) are selected randomly fromX(t) and A(t), respectively. Then, the random

mutation illustrated by Lines 12 - 14 of Algorithm 1 will be activated with probability1
µ
, which is the minimum

probability of selectingx to be x(t)
gb, the best individual in the present populationX(t). For this case, both

P{tx j = 0} andP{tx j = 1} are greater than or equal top2µ3 . Then, any feasible solution can be generated with a

positive probability greater than or equal to
(

p
2µ3

)n
.

2. If all individuals inX(t) differ from those inA(t), two different solutionsy ∈ X(t) andz ∈ A(t) are located at the
same indexi0 with probability

P{y = x(t)(i0), z = a(t)(i0)} = 1
µ2
.

Sincey , z, I1 = { j; y j , zj} is not empty. Moreover, the elitism update strategy ensure that the trial individual
tx(t)(i0) is initialized to betx(t)(i0) = y. Then,

tx(t)
j (i0) = y j = x(t)

j (i0), ∀ j ∈ I1,

and∀ j < I1, tx(t)(i0) will keep unchanged with a probability greater than1−p
µ

, the probability of selecting
x = xgb and not activating the mutation illustrated by Lines 12-14 of Algorithm 1. That is to say, the probability
of generating a trial individualtx(t)(i0) = y = x(t)(i0) is greater than or equal to1−p

µ3 .

For this case, theith0 individual of the population will keep unchanged at thetth generation, and at the next gener-
ation (generationt + 1), x(t+1)(i0) will coincide witha(t+1)(i0). Then, it comes to the first case, and consequently,
the trial individualtx(t+1)(i) can reach any feasible solution with a positive probability greater than or equal to
(

p
2µ3

)n
. For this case, any feasible solution can be generated with aprobability greater than1−p

µ3

(

p
2µ3

)n
.

In conclusion, in two generations the trial individualtx will reach any feasible solution with a probability greaterthan
or equal to a positive constantc, wherec = 1−p

µ3

(

p
2µ3

)n
.

Theorem 1. BLDE converges in probability to the optimal solutionx∗ of OP (1).
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Proof: Lemma 1 shows that there exists a positive numberc > 0 such that

P{x∗ ∈ X(t+2) | x∗ < X(t)} ≥ c, ∀ t ≥ 1.

Denoting
P = P{x∗ ∈ X(t+2) | x∗ < X(t)},

we know that
P{x∗ < X(t+2)|x∗ < X(t)} = 1− P.

Thus,
P{x∗ ∈ X(t)} = 1− P{x∗ < X(t)} = 1− P{x∗ < X(t)|x∗ < X(t−2)}.

If t is even,

lim
t→∞

P{x∗ ∈ X(t)} = 1− lim
t→∞

P{x∗ < X(t)}

= 1− lim
t→∞

(1− p)t/2P{x∗ < X(0)}

= 1;

otherwise,

lim
t→∞

P{x∗ ∈ X(t)} = 1− lim
t→∞

P{x∗ < X(t)}

= 1− lim
t→∞

(1− p)(t−1)/2P{x∗ < X(1)}

= 1.

In conclusion, BLDE converges in probability to the optimalsolutionx∗ of BOP (1).

4. Numerical experiments

Although Theorem 1 validates the global convergence of the BLDE algorithm, its convergence characteristics
have not been investigated. In this section, we try to show its competitiveness to existing algorithms by numerical
experiments.

4.1. Benchmark problems

Tab. 1 illustrates the selected benchmark problems, properties and settings of which are listed in Tab. 2. As for the
continuous problemsP3−P7, all real variables are coded by bit-strings. For the multiple knapsack problem (MKP)P8,
we test BLDE via five test instances characterized by data files “weing6.dat, sent02.dat, weish14.dat, weish22.dat and
weish30.dat” [31], termed asP8−1, P8−2, P8−3, P8−4 andP8−5, respectively. When a candidate solution is evaluated, it
is penalized byPT(x) = 1+maxj pi

mini, j wi, j
·maxi{maxj(wi, j x j −Wi), 0} [27].

4.2. Parameter settings

For numerical comparisons, BLDE is compared with the angle modulated particle swarm optimization (AMPSO)
[20], the angle modulated differential evolution (AMDE) [21], the dissimilarity artificial bee colony (DisABC) algo-
rithm [13], the binary particle swarm optimization (BPSO) algorithm [16], the binary differential evolution (binDE)
[9] algorithm and the self-adaptive quantum-inspired differential evolution (AQDE) algorithm[12]. As is suggested by
the designers of the algorithms, the parameters of AMPSO, AMDE, DisABC, BPSO, binDE, and AQDE, are listed in
Table 3. Prerun for BLDE shows that when the mutation abilityp is less than 0.05, its weak exploration ability leads
to its premature to the local optima of multi-modal problems; while whenp is greater than min{0.15, 10/n}, it cannot
efficiently exploit the local region of global optima. Thus, in this paper we setp = max{0.05 min{0.15, 10/n}} to keep
a balance between exploration and exploitation. All compared algorithms are tested with a population of size 50, and
the results are compared after 300× n FEs, except that numerical results are compared after 300× n × m function
evaluations (FEs) for MKPs, wheren is the bitstring length,m is the number of constraints for MKP.
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Table 1: Descriptions of the selected benchmark problems.

Problems Descriptions.

P1: max f1(x) =
n
∑

i=1

i
∏

j=1
x j , x j ∈ {0, 1}, j = 1, . . . , n.

P2: Long Path Problem: Root2path[11]

P3: max f3(x) = − max
i=1,...,m

|xi |, xi ∈ [−10, 10], i = 1, . . . ,D.

P4: max f4(x) = − 1
4000

D
∑

i=1
(xi − 100)2 +

D
∏

i=1
cos( xi−100√

i
) − 1, xi ∈ [−300, 300], i = 1, . . . ,D.

P5: max f5(x) = −
D
∑

i=1
ix4

i − rand[0, 1), xi ∈ [−1.28, 1.28], i = 1, . . . ,D.

P6: max f6(x) = −
D−1
∑

i=1
(100(xi+1 − x2

i )2 + (1− xi)2), xi ∈ [−2.048, 2.048], i = 1, . . . ,D.

P7: max f7(x) = −20+ 20 exp(−0.2

√

1
m

m
∑

i=1
x2

i ) + exp(1
m

m
∑

i=1
cos(2πxi)) − e, xi ∈ [−30, 30], i = 1, . . . ,D.

P8 : max f8(x) = max
n
∑

j=1
p j x j , s.t.

n
∑

j=1
wi, j x j ≤Wi , i = 1, · · · ,m, x j ∈ {0, 1}, j = 1, . . . , n.

4.3. Numerical comparisons

Implemented by the MATLAB package, the compared algorithmsare run on a PC with a INTEL(R) CORE(R)
CPU, running at 2.8GHZ with 4 GB RAM. After 50 independent runs for each problem, the results are compared in
Tab. 4 via the average best fitness (AveFit), the standard deviation of best fitness (StdDev), the success rate (SR) and
the expected runtime (RunTime). Taking AveFit and StdDev asthe sorting indexes, the overall ranks of the compared
algorithms are list in Tab. 5.

Numerical results in Tab. 4 show that BLDE is generally competitive to the compared algorithms for the selected
benchmark problems, which is also illustrated by Tab. 5, where BLDE averagely ranks first for the benchmark
problems. Meanwhile, because it contains no time-consuming operations, for most cases BLDE spends less CPU
time for the selected benchmark problems. Considering thatAveFit and StdDev are two overall statistical indexes
of the numerical results, we also perform a Wilcoxon rank sumtest [8] with a significance level of 0.05 to compare
performances of the tested algorithms, and the results are listed in Tab. 6.

The results of Wilcxon rank sum tests demonstrate that BPSO performs significantly better onP5 and P7, the
nosiy quadric problem and the maximization problem of Ackley’s function, respectively. Because BPSO imitates the
evolving mechanisms of PSO by simultaneously changing all bits of the individuals, it can quickly converge to the
global optimal solutions. However, BLDE sometimes mutatesbit by bit, and consequently, its evolving process is
more vulnerable to be influenced by noises and the multimodallandscapes of benchmark problems. Thus, BPSO also
performs better than BLDE onP5 andP7. For similar reasons, BPSO outperform BLDE onP8−1, a low-dimensional
MKP.

Meanwhile, binDE obtains better results than BLDE on the low-dimensional MKPsP8−1 − P8−3, but performs
worse than BLDE on the other problems, which is attributed tothe fact that the exploitation ability of binDE de-
scend with the expansion of the searching space. Consequently, binDE cannot perform well on the high-dimensional
problems. Similarly, AQDE, which is specially designed forKnapsack problems, only outperforms BLDE for the
low-dimensional MKPP8−1, and cannot perform better than BLDE for other selected benchmark problems.

4.4. Further comparison on the exploration and exploitation abilities

To further explore the underlying causes resulting in BLDE performing worse than the BPSO, binDE and AQDE
on several given test problems, we try to investigate how their exploration and exploitation abilities change during the
evolving process. Thus, a renewal metric and a refinement metric are defined to respectively quantify the exploration
and exploitation abilities.
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Table 2: Properties and settings of the benchmark problems

Problem Binary/Real Dimension Bit-length Constraints Maximum Objective Value

P1 Binary 30 30 - 30

P2 Binary 29 29 - 49992

P3 Real 30 180 - 0

P4 Real 30 480 - 0

P5 Real 30 240 - 0

P6 Real 30 300 - 0

P7 Real 30 300 - 0

P8−1 Binary 28 28 2 130623

P8−2 Binary 60 60 30 8722

P8−3 Binary 60 60 5 6954

P8−4 Binary 80 80 5 8947

P8−5 Binary 90 90 5 11191

Table 3: Parameter settings for the tested algorithms

Algorithm Parameter settings

AMPSO c1 = 1.496180, c2 = 1.496180, φ = 0.729844,Vmax= 4.0.

AMDE CR= 0.25, F = 1.

DisABC φmax= 0.9, φmin = 0.5, ps = 0.5,Nlocal = 50, plocal = 0.01.

BPSO C = 2,Vmax= 6.0.

binDE F = 0.8,CR= 0.5.

AQDE F = 0.1 ∗ r1 ∗ r2,CR= 0.5+ 0.0375∗ r3, r1, r2 ∼ U(0, 1), r3 ∼ N(0, 1).

BLDE p = max(0.05,min(0.15, 10/n)).
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Table 4: Numerical results of AMPSO, AMDE,DisABC and BLDE onthe 12 test problems. The best results for each problem are highlighted by boldface
type.

Problem
AMPSO AMDE DisABC BPSO binDE AQDE BLDE

AveFit± StdDev AveFit± StdDev AveFit± StdDev AveFit± StdDev AveFit± StdDev AveFit± StdDev AveFit± StdDev
(SR,Runtime) (SR,Runtime) (SR,Runtime) (SR,Runtime) (SR,Runtime) (SR,Runtime) (SR,Runtime)

P1
3.00E+01±0.00E+00 3.00E+01±0.00E+00 3.00E+01±0.00E+00 3.00E+01±0.00E+00 2.94E+01±3.14E-01 2.34E+01±2.88E+00 3.00E+01±0.00E+00

(100, 3.01E-01) (100, 2.78E-01) (100, 1.60E+01) (100, 2.95E-01) (96, 4.07E-01) (4, 2.44E-01) (100, 2.15E-01)

P2
5.0E+04±0.00E+00 5.0E+04±1.54E+02 4.53E+04±7.19E+03 3.96E+04±1.65E+04 4.52E+04±8.92E+03 3.46E+04±1.37E+04 5.00E+04±6.09E+01

(100, 2.34E+02) (88, 2.03E+02) (34, 2.92E+02) (66, 2.81E+02) (40, 2.79E+02) (16, 2.96E+02) (96, 3.07E+02)

P3
-8.92E+00±2.15E+00 -5.48E+00±3.21E+00 -6.88E+00±2.86E-01 -4.88E+00±7.39E-01 -6.34E+00±3.04E-01 -6.55E+00±3.68E-01 -3.22E+00±8.74E-01

(0, 3.45E+02) (2, 3.47E+02) (0, 3.75E+02) (0, 3.53E+02) (0, 3.53E+02) (0, 3.55E+02) (0, 3.53E+02)

P4
-4.55E+01±3.53E+01 -1.12E+01±1.99E+01 -5.70E+01±5.48E+00 -6.18E+00±2.40E+00 -4.07E+01±4.27E+00 -1.57E+01±3.79E+00 -1.12E+00±1.10E-01

(0, 1.03E+03) (48, 1.04E+03) (0, 1.21E+03) (0, 1.06E+03) (0, 1.04E+03) (0, 1.05E+03) (0, 1.05E+03)

P5
-1.13E+01±1.15E+01 -1.27E+00±3.67E+00 -3.11E+01±5.55E+00 -1.90E-02±8.20E-03 -2.35E+01±3.91E+00 -2.32E+01±4.37E+00 -5.79E-02±2.24E-02

(22, 4.72E+02) (22, 4.76E+02) (0, 5.21E+02) (10, 4.82E+02) (0, 4.83E+02) (0, 4.85E+02) (0, 4.84E+02)

P6
-2.94E+03±9.26E+02 -1.18E+02±3.51E+02 -4.23E+03±4.05E+02 -5.54E+02±2.82E+02 -3.58E+03±2.92E+02 -2.02E+03±4.17E+02 -4.55E+01±9.68E+01

(0, 6.37E+02) (8, 6.41E+02) (0, 7.00E+02) (0, 6.49E+02) (0, 6.48E+02) (0, 6.51E+02) (0, 6.45E+02)

P7
-7.87E+00±3.29E+00 -4.57E+00±2.84E+00 -1.10E+01±3.19E-01 -1.67E+00±5.40E-03 -1.06E+01±2.74E-01 -1.00E+01±6.43E-01 -1.93E+00±3.84E-02

(0, 6.02E+02) (0, 6.08E+02) (0, 6.72E+02) (0, 6.22E+02) (0, 6.20E+02) (0, 6.19E+02) (0, 6.20E+02)

P8−1
1.21E+05±4.61E+03 1.23E+05±2.70E+03 1.28E+05±1.14E+03 1.29E+05±2.99E+03 1.30E+05±2.04E+02 1.30E+05±2.89E+02 1.28E+05±2.66E+03

(0, 7.35E-01) (0,6.85E-01) (2, 3.28E+00) (18, 9.82E-01) (52, 1.25E+00) (20, 9.39E-01) (10, 8.97E-01)

P8−2
7.62E+03±4.80E+02 8.02E+03±1.19E+02 8.49E+03±4.21E+01 8.66E+03±3.56E+01 8.72E+03±4.45E+00 8.70E+03±1.47E+01 8.70E+03±1.62E+01

(0, 2.71E+01) (0,2.61E+01) (0, 1.20E+02) (0, 3.65E+01) (84, 4.41E+01) (4, 3.43E+01) (4, 3.25E+01)

P8−3
5.30E+03±2.12E+02 5.24E+03±1.83E+02 6.01E+03±1.19E+01 6.87E+03±7.85E+01 6.95E+03±0.00E+00 6.84E+03±7.11E+01 6.93E+03±3.66E+01

(0, 4.29E+00) (0,4.13E+00) (0, 1.92E+01) (26, 5.88E+00) (100, 7.16E+00) (2, 5.51E+00) (58, 5.23E+00)

P8−4
6.52E+03±4.14E+02 6.43E+03±2.22E+02 7.19E+03±1.89E+02 8.81E+03±1.02E+02 8.71E+03±1.06E+02 8.70E+03±9.21E+01 8.87E+03±5.43E+01

(0, 6.04E+00) (0,5.90E+00) (0, 2.75E+01) (8, 8.31E+00) (0, 1.01E+01) (0, 7.73E+00) (4, 7.28E+00)

P8−5
8.10E+03±5.96E+02 8.37E+03±2.87E+02 9.33E+03±2.29E+02 1.11E+04±4.40E+01 1.09E+04±7.01E+01 1.10E+04±8.22E+01 1.12E+04±1.86E+01

(0, 7.09E+00) (0,6.91E+00) (0, 3.28E+01) (2, 9.64E+00) (0, 1.17E+01) (0, 8.87E+00) (6, 8.29E+00)
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Table 5: Ranks on the performances of the compared algorithms for the selected benchmark problems.

Problem. AMPSO AMDE DisABC BPSO binDE AQDE BLDE
p1 1 1 1 1 6 7 1
p2 1 3 4 6 5 7 2
p3 7 3 6 2 4 5 1
p4 5 2 6 7 4 3 1
p5 4 3 7 1 6 5 2
p6 5 2 7 3 6 4 1
p7 7 3 6 1 5 4 2

p8−1 7 6 5 3 1 2 4
p8−2 7 6 5 4 1 2 3
p8−3 6 7 5 3 1 4 2
p8−4 6 7 5 2 3 4 1
p8−5 7 6 5 2 4 3 1

Average 5.3 4.1 5.2 2.9 3.8 4.2 1.8

Definition 2. Denote the population of an EA at the tth generation to beX(t), which consists ofµ n-bit individuals.
Let HammDist(x, y) to be the Hamming distance between two binary vectorsx andy. Therenewal metricof an EA
at the tth generation is defined as

α(t) ,
1
µ · n

µ
∑

i=1

Ham(x(t)(i) − tx(t)(i)), (2)

wherex(t)(i) is the ith individual inX(t), andtx(t)(i) is the corresponding candidate solution. Therefinement metricof
an EA at the tth generation is defined as

β(t) ,
1
µ · n

µ
∑

i=1

(

n− Ham(x(t)(i) − xgb(t))
)

, (3)

wherexgb(t) is the best explored solution before the tth generation.

The Hamming distance betweenx(t)(i) and the corresponding trial vectortx(i) denotes the the overall changes that
is performed on the bit-string by the variation strategies.Accordingly, the average value over the whole population
can indicate the overal changes of the population. Then,α(t) properly reveals the exploration abilities of EAs at
generationt. Meanwhile, an EA which harbors a big value ofβ(t) can intensely exploit the local region around the
best explored solutionxgb, and thus, it harbors powerful exploitation ability.

For the comparison, we illustrate the changing curves of therenewal metric and the refinement metric for BLDE,
BPSO, AQDE and binDE by Figure 1. Fig.1(a) and Fig.1(b) show that when BPSO is employed to solveP5 andP7,
the renewal metric quickly descend to about zero, and the refinement metric ascend to a high level, which demonstrates
that the population of PSO quickly converges. Meanwhile, the diversity of the population rapidly descend to a low
level, and the population focuses on local search around theobtained best solution. Since the intensity of noise in
P5 is small, the convergence of BPSO is not significantly influenced. ForP7, the massive local optimal solutions
are regularly distributed in the feasible region, BPSO can also quickly locate the global optimal solution. However,
BLDE tries to keep a balance between exploration and exploitation, and the bit-by-bit variation strategies make it
more vulnerable to be frustrated by the noise ofP5 as well as the multi-modal landscape ofP7. As a consequence,
BPSO performs better than BLDE onP5 andP7.

However, the local optimal solutions of MKPs are not regularly distributed. Thus, to efficiently explore the feasible
regions, it is vital to keep a balance between exploration and exploitation. Figs. 1(c), 1(d), 1(e) and 1(f) demonstrate
binDE and AQDE can keep a balance between exploration and exploitation for the compared algorithms. Thus, AQDE
performs better than BLDE on the test problemP8−1, and binDE performs better than BLDE onP8−1, P8−2 andP8−3.
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Table 6: Wilcoxon rank sum tests of the compared algorithms on the benchmark problems. The notation+(−) means the algorithm for comparison is
significantly superior to (inferior to) BLDE with significance level 0.05;≈ means the compared algorithm is not significantly different with BLDE.

Algorithm HBPD Algorithm HBPD

AMPSO
+ : ∅

AMDE
+ : ∅

≈: P1,P2 ≈: P1,P2,P4,P5

− : P3,P4,P5,P6,P7,P8−1,P8−2,P8−3,P8−4,P8−5 − : P3,P6,P7,P8−1,P8−2,P8−3,P8−4,P8−5

DisABC
+ : ∅

BPSO
+ : P5,P7

≈: P1,P8−1, ≈: P1,P8−1

− : P2,P3,P4,P5,P6,P7,P8−2,P8−3,P8−4,P8−5 − : P2,P3,P4,P6,P8−2,P8−3,P8−4,P8−5

binDE
+ : P8−1,P8−2,P8−3

AQDE
+ : P8−1

≈: P1 ≈: P8−2

− : P2,P3,P4,P5,P6,P7,P8−4,P8−5 − : P1,P2,P3,P4,P5,P6,P7, ,P8−3,P8−4,P8−5

1
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(a) P5 : BLDE vs. BPSO;
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(b) P7: BLDE vs. BPSO;
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(c) P8−1: BLDE vs. AQDE;
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(d) P8−1: BLDE vs. binDE;
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(e) P8−2: BLDE vs. binDE;
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(f) P8−3: BLDE vs binDE.

Figure 1: Comparisons of the renewal and refinement metrics for test problemsP5, P7, P8−1, P8−2, P8−3.
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5. Performance of BLDE on the unit commitment problem

In this section, we employ BLDE solving the unit commitment problem (UCP) in power systems. To minimize
the production cost over a daily to weekly time horizon, UCP involves the optimum scheduling of power generating
units as well as the determination of the optimum amounts of power to be generated by committed units2 [5]. Thus,
UCP is a mixed integer optimization problem, the decision variables of which are the binary string representing the
on/off statuses of units and the real variables indicating the generated power of units.

5.1. Objective function of UCP

The objective of UCP is to minimize the total production cost

F =
T
∑

t=1

N
∑

i=1

[

φi(Pit) · uit + ψit · (1− ui,t−1) · ui,t
]

(4)

whereN is the number of units to be scheduled and T is the time horizon. When thetth unit is committed to generate
powerPit at timet, the binary variableuit is set to be 1; otherwise,uit = 0. The functionφi(Pit) represents the fuel
cost of uniti at timet, which is frequently approximated by

φi(Pit) = ai + bi pit + ciP
2
it (5)

whereai , bi andci are known coefficients of uniti. If the ith unit has been off prior to start-up, there is a start-off cost

ψit =















di , if Γdown
i ≤ τo f f

it ≤ Γdown
i + fi

ei , if τo f f
it > Γdown

i + fi
(6)

wheredi , ei , fi andΓdown
i are the hot start cost, cold start cost, cold start time and minimum down time of uniti,

respectively.τo f f
it , the continuously off time of unit i, is determined by

τ
o f f
it =







































0, if uit = 1

1, if uit = 0, t = 1 andσi > 0

1− σi , if uit = 0, t = 1 andσi < 0

1+ τo f f
i,t−1, if uit = 1 andt > 1

(7)

whereσi is the initial status of uniti, which shows for how long the unit was on/off prior to the start of the time
horizon.

5.2. Constraints in UCP

The minimization of the total production cost is subject to the following constraints.

Power balance constraints:The total generated at timet must meet the power demand at that time instant, i.e.,

N
∑

i=1

uit Pit = Dt, t = 1, 2, . . . ,T (8)

whereDt is the power demand at timet. Practically, it is hardly possible to exactly meet the power demand, an
errorǫ is allowed for the generated power, i.e.,

∣

∣

∣

∣

∣

∣

∑N
i=1 uit Pit

Dt
− 1

∣

∣

∣

∣

∣

∣

≤ ǫ, t = 1, 2, . . . ,T. (9)

2To compare with the work reported in [5], we employ similar notations and descriptions in this section.
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Spinning reserve constraints: Due to possible outages of equipments, it is necessary for power systems to satisfy
the spinning reserve constraints. Thus, the sum of the maximum power generating capacities of all committed
units should be greater than or equal to the power demand plusthe minimum spinning reserve requirement, i.e.,

N
∑

i=1

uit P
max
i ≥ Dt + Rt, t = 1, 2, . . . ,T (10)

wherePmax
i is the maximum power generating capacity of uniti, and Rt is the minimum spinning reserve

requirement at timet.

Minimum up time constraints: If unit i is on at timet and switched off at time t + 1, the continuous up timeτon
it

should be greater than or equal to the minimum up timeΓup
i of unit i, i.e.,

τon
it ≥ Γ

up
i , if uit = 1, ui,t+1 = 0 andt < T, i = 1, . . . ,N (11)

where the continuously up time is

τon
it =







































0, if uit = 0

1, if uit = 1, t = 1 andσi < 0

1+ σi , if uit = 1, t = 1 andσi > 0

1+ τon
i,t−1, if uit = 1 andt > 1.

(12)

Minimum down time constraints: If unit i is off at timet and switched on at timet + 1, the continuous up timeτo f f
it

should be greater than or equal to the minimum off timeΓdown
i of unit i, i.e.,

τ
o f f
it ≥ Γdown

i , if uit = 0, ui,t+1 = 1 andt < T, i = 1, . . . ,N (13)

Range of generated power:The generated power of a unit is limited in an interval, i.e.,

Pmin
i ≤ Pit ≤ Pmax

i , i = 1, 2, . . . ,N andt = 1, 2, . . . ,T (14)

wherePmin
i andPmax

i is the minimum power output and the maximum power output of unit i, respectively.

5.3. Implement of BLDE for UCP

The optimal commitment of power units in UCP is obtained by combining BLDE with real-coded DE operations.
In BLDE, each binary individual represents an on/off scheduling plan of units, accompanied with a real-coded individ-
ual representing the specific power outputs of units. When the binary individuals are recombined during the iteration
process, the real-coded individuals are recombined via theDE/rand/1 mutation and binary crossover strategies of the
real-coded DE. Then, binary individuals and the corresponding real individuals are integrated together for evalua-
tion. If the combined mixed-integer individuals violate the constraints in UCP, they are repaired via the repairing
mechanisms proposed in [5].

The performance of BLDE is tested via a 10-unit power system,the parameters and forecasted power demands of
which are respectively listed in Tab. 7 and Tab. 8. To fairly compare BLDE with the method proposed in [5], we also
set the population size to be 100, and the results are compared after 30 independent runs of 2500 iterations, where the
scalar factorF is set to be 0.8. The statistical results are listed in Tab. 9.

The comparison results show that when the power balance error ǫ is small, performance of BLDE is a bit worse
than that of the binary-real-coded differential evolution (BRCDE) algorithm proposed in [5]. However, when the
power balance is relaxed to a relatively great extent, BLDE outperform BRDE for UCP of the 10-unit power system.
The reason could be that crossover operation for real variables is not appropriately regulated for UCP, and accord-
ingly, simultaneous variations on all real variables usually lead to violations of constraints. Thus, BLDE can only
outperforms BRCDE when the constraints are relaxed greatly.
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Table 7: Unit parameters for the 10-unit power system.

Unit(i) Pmax
i (MW) Pmin

i (MW) ai($/h) bi($/MWh) ci($/MW2h) di($) ei($) fi(h) Γ
ip
i (h) Γdown

i (h) σi(h)
1 455 150 1000 16.19 0.00048 4500 9000 5 8 8 8
2 455 150 970 17.26 0.00031 5000 10000 5 8 8 8
3 130 20 700 16.60 0.00200 550 1100 4 5 5 -5
4 130 20 680 16.50 0.00211 560 1120 4 5 5 -5
5 162 25 450 19.70 0.00398 900 1800 4 6 6 -6
6 80 20 370 22.26 0.00712 170 340 2 3 3 -3
7 85 25 480 27.74 0.00079 260 520 2 3 3 -3
8 55 10 660 25.92 0.00413 30 60 0 1 1 -1
9 55 10 665 27.27 0.00222 30 60 0 1 1 -1
10 55 10 670 27.79 0.00173 30 60 0 1 1 -1

1
4



Table 8: Forecasted power demands for the 10-unit system over 14-h time horizon.

Hour 1 2 3 4 5 6 7 8 9 10 11 12
Demand (MW) 700 700 850 950 1000 1100 1150 1200 1300 1400 1450 1500

Hour 13 14 15 16 17 18 19 20 21 22 23 24
Demand (MW) 1400 1300 1200 1050 1000 1100 1200 1400 1300 1100 900 800

Table 9: Results comparison between BLDE and BRCDE[5] for the 10-unit power system.“-” means that the corre-
sponding item was not presented in the literature.

Method Power balance errorǫ Best cost Average Cost Worst Cost Standard deviation
BRCDE 0.0% 563938 - - -

0.1% 563446 563514 563563 30
0.5% 561876 - - -
1% 559357 - - -

BLDE 0.0% 563977 564005 564088 24
0.1% 563552 563636 563745 49
0.5% 561677 561847 - 50
1% 559155 559207 559426 48

6. Discussions

In this paper, we propose a BLDE algorithm appropriately incorporating the mutation strategy of binary DE and
the learning mechanism of binary PSO. For majority of the selected benchmark problems, BLDE can outperform
the compared algorithms, which indicate that BLDE is competitive to the compared algorithms. However, statistical
test results show that BPSO performs better than BLDE onP5 andP7, AQDE is more efficient forP8−1, and binDE
obtains better results onP8−1, P8−12 as well asP8−3. When generating a candidate solution, BLDE first initiate it
as the winner of two obtained solutions, and then, regulate it by learning from the best individual in the population.
This strategy simultaneously incorporates the synchronously changing strategy and the bitwise mutation strategy
of candidate generation. Thus, BLDE can performs well on most of the high-dimensional benchmark problems.
However, when BLDE is employed to solveP5 andP7, the global optimal solutions of which are easy to be locate,
it performs worse than BPSO; meanwhile, when it is implemented to solve the low-dimensional problemsP8−1, P8−2

andP8−3, the local optimal solutions of which are irregularly distributed in the feasible regions, it cannot perform
better than binDE.

7. Conclusions

Generally, the proposed BLDE is competitive to the existingbinary evolutionary algorithms. However, its perfor-
mance can been improved. Thus, future work will focus on designing an adaptive strategy appropriately managing
the synchronously changing strategy and the bitwise mutation strategy employed in BLDE. Meanwhile, we will try to
further improve its performances on mixed-integer optimization problems by efficiently incorporate it with real-coded
recombination strategies.
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