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Abstract

Although real-coded dlierential evolution (DE) algorithms can perform well on donbus optimization problems
(CoOPs), it is still a challenging task to design dhaogent binary-coded DE algorithm. Inspired by the learning
mechanism of particle swarm optimization (PSO) algorithme propose a binary learningfiirential evolution
(BLDE) algorithm that canféiciently locate the global optimal solutions by learningifrthe last population. Then,
we theoretically prove the global convergence of BLDE, ammhpare it with some existing binary-coded evolutionary
algorithms (EASs) via numerical experiments. Numericaliissshow that BLDE is competitive to the compared EAs,
and meanwhile, further study is performed via the changeesuof a renewal metric and a refinement metric to
investigate why BLDE cannot outperform some compared EAsdueral selected benchmark problems. Finally, we
employ BLDE solving the unit commitment problem (UCP) in maveystems to show its applicability in practical
problems.

Keywords: Binary differential evolution algorithm, Convergence in probahilRgnewal metric, Refinement metric.

1. Introduction

1.1. Background

Differential evolution (DEjEG], a competitive evolutionatgarithm emerging more than a decade ago, has been
widely utilized in the science and engineering fieldd ﬁ4, Bhe simple and straightforward evolving mechanisms
of DE endow it with powerful capability of solving continuswptimization problems (CoOPs), however, hamper its
applications on discrete optimization problems (DOPS).

To take full advantage of the superiority of mutations inssla DE algorithms, Pampara and Engelbrecht [21]
introduced a trigonometric generating function to transféhe real-coded individuals of DE into binary strings, and
proposed an angle modulatedtdrential evolution (AMDE) algorithm for DOPs. Comparedhwihe binary difer-
ential evolution (BDE) algorithms that directly manipwdtinary strings, AMDE was much slower but outperformed
BDE algorithmsx with respect to accuracy of the obtaineditsmhs [7]. Meanwhile, Gong and Tuson proposed a
binary DE algorithm by forma analysis [9], but it cannot merh well on binary constraint satisfaction problems due
to its weak exploration abiIit@Z]. Trying to simulate tbperation mode of the continuous DE mutation, Kaséan
al. [@] design a dissimilarity basedftirential evolution (DisDE) algorithm incorporating a megesof dissimilarity
in mutation. Numerical results show that DisDE is competito some existing binary-coded evolutionary algorithms
(EAS).

Moreover, the performances of BDE algorithms can also beodrga by incorporating recombination operators
of other EAs. Hota and PdﬂlZ] proposed an adaptive quatmsgpired diferential evolution algorithm (AQDE)
applying quantum computing techniques, while He and Ehimﬂ)duced the negative selection in artificial immune
systems to obtain an artificial immune system basé@rmintial evolution (AIS-DE) algorithm. With respect to the
fact that the logical operations introduced in AlIS-DE tetmgroduce “1” bits with increasing probability, Wu and
Tseng [Eb] proposed an modified binaryfdrential evolution strategy to improve the performance@ERalgorithms
on topology optimization of structures.
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1.2. Motivation and Contribution

Existing researches tried to incorporate the recombinagtoategies of various EAs to geffieient BDESs for
DOPs, whereas there are still some points to be improved:

e AMDE [ﬂ] has to transform real values to binary strings, ethlieads to the explosion of computation cost for
function evaluations. Meanwhile, the mathematical prapsof the transformation function can also influence
its performances on various DOPs;

e BDE algorithms directly manipulating bit-strings, suchbasDE [3], AIS-DE [ﬂ)] and MBDEEb], etc., cannot
effectively imitate the mutation mechanism of continuous Dgodthms. Thus, they cannot perform well on
high-dimensional DOPs due to their weak exploration aesit

e DisDE [14], which incorporates a dissimilarity metric inetimutation operator, has to solve a minimization
problem during the mutation process. As a consequencegthputation complexity of DisDE is considerably
high.

Generally, it is a challenging task to design dhcgent BDE algorithm perfectly addressing the aforemergtbn
points. Recently, variants of the particle swarm optini@a{PSO) aIgorithm|_L_1|5] have been successfully utilized
in real applications|[6,/1, 23] £,117]. Although DE algorithmperform better than PSO algorithms in some real
world applications 8@@2}, it is still promising to imgve DE by incorporating PSO in the evolving process
[E, 18, 119]. Considering that the learning mechanism of P&® accelerate the convergence of populations, we
propose a hybrid binary-coded evolutionary algorithmnéag from the last population, named as the binary learning
differential evolution (BLDE) algorithm. In BLDE, the searchiprocess of population is guided by the renewed
information of individuals, the dissimilarity between iadluals and the best explored solution in the population. B
this means, BLDE can performance well on DOPs.

The remainder of the paper is structured as follows. Se&ipnesents a description of BLDE, and its global
convergence s theoretically proved in Section 3. ThengietiBn 4 BLDE is compared with some existing algorithms
by numerical results. To test performance of BLDE on realgroblems, we employ it to solve the unit commitment
problem (UCP) in Section 5. Finally, discussions and casiolus are presented in Section 6.

2. The binary learning differential evolution algorithm

2.1. Framework of the binary learningf#rential evolution algorithm
For a binary maximization problem (BOR)

max f(x) = f(X,..., %), Sc{0,1", 1)
Xe

the BLDE algorithm illustrated by Algorithil 1 possesses totiections ofu solutions, the populatioX® and the
archiveA®. At the first generation, the populatiot? and the archiv@® are generated randomly. Then, repeat the
following operations until the stopping criterion is sé&s.

For each individua € X® a trial solution is generated by three randomly selecteivimaalsx, y € X® and
z e A0, Atfirst, initialize the trial individuatx = {txi, ..., tx,} as the winner of two individualg € X andz € A®.
Y je{l,2,...,n},if yandz coincide on thg™ bit, the j™ bit of tx is changed as follows.

e If the j™ bit of x differs from that okgp, tX; is set to bexgsj, the j™ bit of xgp;
e otherwisetx; is randomly mutated with a preset probability

Then, replacev with tx if f(tx) > f(w). After the update of populatiok® is completed, sdt= t+1 andA® = XD,

1When a CoOP is considered, the real-value variables candseles bit-strings, and consequently, a binary optimiagiioblem is constructed
to be solved by binary-coded evolutionary algorithms.



Algorithm 1 The binary learning dierential evolution (BLDE) algorithm

1: Randomly generate two populatiod8) andA® of x individuals; Set := 1;
2: while the stop criterion is no satisfietb

3. LetXgh = (Xghts - - - » Xghn) = arg maxf(x)};
xeX®

4:  forallw € X® do

5: Randomly select = (X, ..., X)) andy = (y1,...,Yn) from X, aswell az = (z, . . ., z,) from A®;

6: tx = (tx, ..., tx,) = argmaxf(y), f(2)};

7: for j=1,2,---,n do

8: if y; = zj then

o: if Xgnj # X;j then

10: tXj = Xgb,j;

11: else

12: if rand(0, 1) < pthen L

15 x; = 0  with probab|I|ty2,
1 otherwise.

14 end if

15: end if

16: end if

17: end for

18: if f(tx) > f(w)then

19: w = tX;

20: end if

21: end for

22: ti=t+1;
23 A® = x-D):
24; end while

2.2. The positive functions of the learning scheme

Generally speaking, the trial solutidxi is generated by three randomly selected individuals. Médewit also
incorporates conditional learning strategies in the niorgirocess.

e By randomly selectingy € X®, BLDE can learn from any member in the present populationcaBse the
elitism strategy is employed in the BLDE algorithm, BLDE tablearn from anypbestsolution in the popula-
tion, unlike that particles in PSO can only learn from theungbestindividuals.

¢ By randomly selecting € A®, BLDE can learn from any member in the last population. Atéhey stage
of the iteration process, individuals in the populatdéf? are usually dierent with those ilPA® = X1,
Combined with the first strategy, this scheme actually enbsithe exploration ability of the population, and to
some extent, accelerates convergence of the population.

e When bits ofy coincide with the corresponding bits pftrial solutions learn from thgbeston condition that
randomly selecteat € X differs fromxg, on the these bits. This scheme imitates the learning syraieg
PSO, and meanwhile, can also prevent the population frongtggverned by dominating patterns, because the
increase of probabilitP{xgyj = x;} will lead to the random mutation performed bq preventing the duplicate
of the dominating patterns in the population.

In PSO algorithms, each particle learns from gieest(the best solution it has obtained so far) and ghest
(the best solution the swarm has obtained so far), and feriic the swarm only exchange information via fieest
solution. The simple and unconditional learning strateigy®0 usually results in its fast convergence rate, however,
sometimes leads to its premature convergence to local aptifhe BLDE algorithm learning froX® as well as
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A® can explore the feasible region in a better way, and meaewbyi conditionally learning fromygy it will not be
attracted by local optimal solutions.

3. Convergence analysis of BLDE
Denotex* to be an optimal solution of BOIP](1), the global convergerfd d®E can be defined as follows.

Definition 1. Let{X®, t =1, 2, dotg be the population sequence of BLDE. It is said to convergedhability to the
optimal solutiorx* of BOP [1), if it holds that

ymmﬁexmzl

To confirm the global convergence of the proposed BLDE allgorj we first show that any feasible solution can be
generated with a positive probability.

Lemma 1. In two generations, BLDE can generate any feasible solutioBOP [1) with a probability greater than
or equal to a positive constant c.

Proof: Denotex®(i) = (x(i),...,x{(i)) anda®(i) = @), ..., a(i)) to be thei™ individuals of X® andA®,
respectively. Letx®(i) = (txXU(i), .., tx{(i)) be thei™ trial individual generated at th# generation. There are two
different cases to be investigated.

1. 1If X® andA® include at least one common individual, the probabiRty = z} is greater than or equal to
;%’ wherey € X® andz € A® are selected randomly frodd® and A®, respectively. Then, the random

mutation illustrated by Lines 12 - 14 of Algorithm 1 will beta@ted with probabilityl%, which is the minimum

probability of selectingk to be xg,)J the best individual in the present populatigf). For this case, both

P{tx; = 0} andP{tx; = 1} are greater than or equal §§5 Then, any feasible solution can be generated with a
positive probability greater than or equal(tgg)n.

2. If all individuals inX® differ from those ilA®, two different solutiony € X® andz € A® are located at the

same indexg with probability
1

Ply = x(i0), 2= a%o)) = el

Sincey # z, 11 = {];y; # z;} is not empty. Moreover, the elitism update strategy ensagthe trial individual
txO(ig) is initialized to betxO(ip) = y. Then,

tx%(i0) =y = x(io).  Vijels,

andVj ¢ Iy, txO(io) will keep unchanged with a probability greater th%g#, the probability of selecting

X = Xgp @and not activating the mutation illustrated by Lines 12-LAlgorithm 1. That is to say, the probability
of generating a trial individuak®(io) = y = x%(io) is greater than or equal 199‘3—"

For this case, th%“ individual of the population will keep unchanged at thegeneration, and at the next gener-
ation (generation+ 1), xXt*3(ig) will coincide witha®™(ip). Then, it comes to the first case, and consequently,
the trial individualtx®3(i) can reach any feasible solution with a positive probabgiteater than or equal to

( P )n. For this case, any feasible solution can be generated vaitblzability greater thaﬁI;—p (%)n

26
In conclusion, in two generations the trial individwalwill reach any feasible solution with a probability greattesn
. _ n
or equal to a positive constaaitwherec = % (%) . O

Theorem 1. BLDE converges in probability to the optimal solutighof OP [3).



Proof: Lemma 1 shows that there exists a positive hunthel0 such that
Pix* e X2 |x* ¢ XDy > ¢, Vi1

Denoting
P = P{x* e X&) | x* ¢ XO},

we know that
Pix* ¢ X®I|x* ¢ XUy =1 - P,

Thus,
Pix* € XU} = 1 - P{x* ¢ XU} = 1 - P{x* ¢ XOx* ¢ X2},
If tis even,
lim Pix" e X0} = 1 lim Px" ¢ X9}
= 1-lim(1-p"?Px" ¢ XO)
= 1
otherwise,
lim Pix" € X0y = 1- lim Pix" ¢ X0y
= 1-lim@-p"2Pix ¢ XW)
= 1
In conclusion, BLDE converges in probability to the optirsalutionx* of BOP [1). O

4. Numerical experiments

Although Theorem 1 validates the global convergence of thBB algorithm, its convergence characteristics
have not been investigated. In this section, we try to shewadimpetitiveness to existing algorithms by numerical
experiments.

4.1. Benchmark problems

Tab.[1 illustrates the selected benchmark problems, ptiepend settings of which are listed in Tab. 2. As for the
continuous problemB; — P, all real variables are coded by bit-strings. For the mldtimapsack problem (MKMg,
we test BLDE via five test instances characterized by daw‘fileing6.dat, sent02.dat, weish14.dat, weish22.dat and
Weish30.dat”|r3|1], termed &1, Pg_», Ps_3, Ps_4 andPg_s, respectively. When a candidate solution is evaluated, it
is penalized byPT(x) = =152 . max {max; (wi ;X; — W), O} [27].

minitj Wi j

4.2. Parameter settings

For numerical comparisons, BLDE is compared with the anglduated particle swarm optimization (AMPSO)
[@], the angle modulated filerential evolution (AMDE)|_[_2|1], the dissimilarity artifial bee colony (DisABC) algo-
rithm ﬂﬁ], the binary particle swarm optimization (BPSQ@gaithm [E], the binary dterential evolution (binDE)
[IQ] algorithm and the self-adaptive quantum-inspiretittential evolution (AQDE) aIgorithrﬁiZ]. As is suggested b
the designers of the algorithms, the parameters of AMPSODENMDISABC, BPSO, binDE, and AQDE, are listed in
Table3. Prerun for BLDE shows that when the mutation abjitg less than 0.05, its weak exploration ability leads
to its premature to the local optima of multi-modal problemkile whenp is greater than mii®.15, 10/n}, it cannot
efficiently exploit the local region of global optima. Thus, inst paper we sgb = max0.05 min{0.15, 10/n}} to keep
a balance between exploration and exploitation. All coragaigorithms are tested with a population of size 50, and
the results are compared after 3B FEs, except that numerical results are compared afteix3®& m function
evaluations (FEs) for MKPs, whergs the bitstring lengthmis the number of constraints for MKP.
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Table 1: Descriptions of the selected benchmark problems.

Problems Descriptions.

n i
P;: max fi(x)= > [1%, xj€{0,1,j=1....n
i=1j=1
P,: Long Path Problem RooRpath[11]
Ps: max f3(X) = — max x|, X €[-10,10],i=1,...,D.
i=

1,..m

.....

D D
Pa: max  fa(x) = —ﬁ_zloq — 100¥ + _r[l cos(’“’—\%oo) -1, x €[-300,300}i=1,...,D.
I= 1=

Ps: max fs(x) = - _Elixi“ —rand0,1), x €[-1.28128]i=1,...,D.
i=
Ps: max fg(x) = — I?g)ll(lOO(le - X%+ (1-%)%), X €[-2.0482048]i=1,...,D.
P max f7(x) = —20+ 20 exp(0.2 %igl x2) + exp@ igl cog2rx)) -e x €[-30,30i=1,...,D.
Ps : max fg(X)zmanZil:lijj,S.t. J_Zi]lvvi,jxj <W, i=1---,mx€{01, j=1,....n

4.3. Numerical comparisons

Implemented by the MATLAB package, the compared algoritlamesrun on a PC with a INTEL(R) CORE(R)
CPU, running at 2.8GHZ with 4 GB RAM. After 50 independentsdar each problem, the results are compared in
Tab.[4 via the average best fitness (AveFit), the standaridtitmv of best fitness (StdDev), the success rate (SR) and
the expected runtime (RunTime). Taking AveFit and StdDethasorting indexes, the overall ranks of the compared
algorithms are list in Talg.]5.

Numerical results in Tali] 4 show that BLDE is generally cotitipe to the compared algorithms for the selected
benchmark problems, which is also illustrated by Tab. 5, &8l DE averagely ranks first for the benchmark
problems. Meanwhile, because it contains no time-consgmperations, for most cases BLDE spends less CPU
time for the selected benchmark problems. ConsideringAli@Fit and StdDev are two overall statistical indexes
of the numerical results, we also perform a Wilcoxon rank $eist E$] with a significance level of 0.05 to compare
performances of the tested algorithms, and the resultsstee in Tab[b.

The results of Wilcxon rank sum tests demonstrate that BP&mns significantly better oRs and P, the
nosiy quadric problem and the maximization problem of Agldéunction, respectively. Because BPSO imitates the
evolving mechanisms of PSO by simultaneously changingitlds the individuals, it can quickly converge to the
global optimal solutions. However, BLDE sometimes mutdtiédby bit, and consequently, its evolving process is
more vulnerable to be influenced by noises and the multimaddscapes of benchmark problems. Thus, BPSO also
performs better than BLDE oRs andP5. For similar reasons, BPSO outperform BLDE B# 1, a low-dimensional
MKP.

Meanwhile, binDE obtains better results than BLDE on the-thmensional MKPsPg_; — Pg_3, but performs
worse than BLDE on the other problems, which is attributethefact that the exploitation ability of binDE de-
scend with the expansion of the searching space. Conséygu#nDE cannot perform well on the high-dimensional
problems. Similarly, AQDE, which is specially designed Kmapsack problems, only outperforms BLDE for the
low-dimensional MKPPg_;, and cannot perform better than BLDE for other selected f@ack problems.

4.4. Further comparison on the exploration and exploitatabilities

To further explore the underlying causes resulting in BLREEf@rming worse than the BPSO, binDE and AQDE
on several given test problems, we try to investigate how ghloration and exploitation abilities change during th
evolving process. Thus, a renewal metric and a refinememta@ee defined to respectively quantify the exploration
and exploitation abilities.



Table 2: Properties and settings of the benchmark problems

Problem BinaryReal Dimension Bit-length Constraints Maximum Objectiadé

P1
P2
Ps
P4
Ps

Binary 30 30 - 30
Binary 29 29 - 49992
Real 30 180 - 0
Real 30 480 - 0
Real 30 240 - 0
Real 30 300 - 0
Real 30 300 - 0
Binary 28 28 2 130623
Binary 60 60 30 8722
Binary 60 60 5 6954
Binary 80 80 5 8947
Binary 90 90 5 11191

Table 3: Parameter settings for the tested algorithms

Algorithm  Parameter settings

AMPSO
AMDE
DisABC

BPSO
binDE
AQDE
BLDE

c; = 1.49618Qc; = 1.49618Q¢ = 0.729844 Vmax = 4.0.
CR=025F =1
dmax = 0.9, dmin = 0.5, ps = 0.5, Nigcal = 50, Piocai = 0.01
C = 2,Vmax= 6.0.

F =0.8,CR=0.5.
F=01xry%r;,CR=05+0.0375+r3,r1,r, ~U(0,1),r3 ~ N0, 1).
p = max(Q05, min(0.15, 10/n)).




Table 4: Numerical results of AMPSO, AMDE,DisABC and BLDE thre 12 test problems. The best results for each problem ghtigitited by boldface

type.
AMPSO AMDE DisABC BPSO binDE AQDE BLDE
Problem AveFit+ StdDev AveFit StdDev AveFit StdDev AveFit StdDev AveFit StdDev AveFit StdDev AveFit StdDev
(SR,Runtime) (SR,Runtime) (SR,Runtime) (SR,Runtime) ,BRtime) (SR,Runtime) (SR,Runtime)
p 3.00E+01+0.00E+00  3.00E+01+0.00E+00  3.00E+01+0.00E+00  3.00E+01+0.00E+00 2.94E+01+3.14E-01 2.34E01+2.88E+00  3.00E+01+0.00E+00
1 (100 3.01E-01) 100, 2.78E-01) 100, 1.60E+01) (100, 2.95E-01) (96, 4.07E-01) (4, 2.44E-01) 100 2.15E-0)
p 5.0E+04+0.00E+00 5.0E+04+1.54E+02 4.53E-04+7.19E+03 3.96E-04+1.65E+04 4.52E-04+8.92E+03 3.46E-04+1.37E+04 5.00E-04+6.09E+01
2 (100, 2.34E+02) (88, 2.03E+02) (34, 2.92802) (66, 2.81802) (40, 2.79802) (16, 2.96E02) (96, 3.07E02)
p -8.92E+00+2.15E+00  -5.48E-00+3.21E+00  -6.88E-00+2.86E-01 -4.88E00+7.39E-01 -6.34E00+3.04E-01 -6.55E00+3.68E-01  -3.22E+00+8.74E-01
3 (0, 3.45E+02) (2, 3.47E+02) (0, 3.75E-02) (0, 3.53202) (0, 3.532-02) (0, 3.55E-02) (0, 3.532-02)
P -4.55E+01+3.536+01  -1.12E-01+1.99E+01  -5.70E-01+5.48E+00 -6.18E-00+2.40E+00 -4.07E-01+4.27E+00 -1.57E-01+3.79E+00  -1.12E+00+1.10E-01
4 (0, 1.03E+03) (48, 1.04E+03) (0, 1.21E-03) (0, 1.06E-03) (0, 1.04E-03) (0, 1.05E-03) (0, 1.05E-03)
p -1.13E+01+1.15E+01  -1.27E-00+3.67E+00  -3.11E-01+5.55E+00  -1.90E-02:8.20E-03  -2.35E+01+3.91E+00 -2.32E-01+4.37E+00 -5.79E-022.24E-02
5 (22, 4.72E+02) (22, 4.76E+02) (0, 5.21E-02) (10, 4.82E802) (0, 4.832-02) (0, 4.852-02) (0, 4.84E-02)
P -2.94E+03+9.26E+02  -1.18E-02+3.51E+02  -4.23E-03+4.05E+02  -5.54E-02+2.82E+02  -3.58E-03+2.92E+02  -2.02E-03+4.17E+02  -4.55E+01+9.68E+01
6 (0,6.37E+02) (8, 6.41E+02) (0, 7.008-02) (0, 6.49E02) (0, 6.48E-02) (0, 6.51E02) (0, 6.45E-02)
p -7.87E+00+3.29E+00  -4.57E-00+2.84E+00  -1.10E-01+3.19E-01 -1.67E+00+5.40E-03  -1.06E+01+2.74E-01 -1.00E01+6.43E-01 -1.93E00+3.84E-02
7 (0, 6.02E+02) (0, 6.08E-02) (0, 6.72E-02) (0, 6.22E2-02) (0, 6.20E-02) (0, 6.19E-02) (0, 6.20E-02)
P 1.21E+05+4.61E+03 1.23E-05+2.70E+03 1.28E-05+1.14E+03 1.29E-05+2.99E+03  1.30E+05+2.04E+02  1.30E+05+2.89E+02 1.28E-05+2.66E+03
-1 (0, 7.35E-01) (06.85E-0) (2, 3.28E-00) (18, 9.82E-01) 52, 1.25E+00) (20, 9.39E-01) (10, 8.97E-01)
P 7.62E+03+4.80E+02 8.02E-03+1.19E+02 8.49E-03+4.21E+01 8.66E-03+3.56E+01  8.72B+03+4.45E+00  8.70E+03+1.47E+01 8.70E-03+1.62E+01
8-2 (0, 2.71E-01) (0,2.61E+01) (0, 1.20E-02) (0, 3.65E-01) (84, 4.41E+01) (4, 3.43201) (4, 3.25ER-01)

P 5.30E+03+2.12E+02 5.24E-03+1.83E+02 6.01E-03+1.19E+01 6.87E-03+7.85E+01  6.95E+03+0.00E+00  6.84E+03+7.11E+01 6.93E-03+3.66E+01
-3 (0, 4.29E-00) (0,4.13E+00) (0, 1.92E-01) (26, 5.88200) (100, 7.16E+00) (2, 5.51200) (58, 5.23=00)

P 6.52E+03+4.14E+02 6.43E-03+2.22E+02 7.19E-03+1.89E+02 8.81E-03+1.02E+02 8.71E-03+1.06E+02 8.70E-03+9.21E+01  8.87E+03+5.43E+01
8-4 (0, 6.04E-00) (0,5.90E+00) (0, 2.75E-01) (8, 8.31E+00) (0, 1.01E-01) (0, 7.73200) (4, 7.28E-00)

P 8.10E+03+5.96E+02 8.37E-03+2.87E+02 9.33E-03+2.29E+02 1.11E-04+4.40E+01 1.09E-04+7.01E+01 1.10E-04+8.22E+01  1.12E+04+1.86E+01
8-5 (0, 7.09E-00) (0,6.91E+00) (0, 3.28E-01) (2, 9.64E200) (0, 1.17&-01) (0, 8.87E-00) (6, 8.29E+00)




Table 5: Ranks on the performances of the compared algasitonthe selected benchmark problems.

Problem. AMPSO AMDE DisABC BPSO binDE AQDE BLDE

p1
P2
P3
P4
Ps
Pe
p7
Ps-1
Ps-2
Ps-3
Ps-4
Ps-5
Average 5.3
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Definition 2. Denote the population of an EA at th& generation to bex®, which consists of n-bit individuals.
Let HammDisfx, y) to be the Hamming distance between two binary veoct@sdy. Therenewal metricof an EA
at the t" generation is defined as

A1 & . .
alt) 2 o ; Ham(x® (i) — tx®()), )

wherex®(i) is the " individual in X®, andtx®(i) is the corresponding candidate solution. Tleéinement metricof
an EA at the't' generation is defined as

1

'B(t)é;rni

(n— Ham(xV(i) - xgn(1))) (3)
=1

wherexgy(t) is the best explored solution before tHegeneration.

The Hamming distance betwegfi(i) and the corresponding trial vectio(i) denotes the the overall changes that
is performed on the bit-string by the variation strategi@scordingly, the average value over the whole population
can indicate the overal changes of the population. Thét), properly reveals the exploration abilities of EAs at
generatiort. Meanwhile, an EA which harbors a big valuegff) can intensely exploit the local region around the
best explored solutiorg, and thus, it harbors powerful exploitation ability.

For the comparison, we illustrate the changing curves of¢éhewal metric and the refinement metric for BLDE,
BPSO, AQDE and binDE by Figufé 1. Hig-J(a) and [Fig.jL(b) shoat when BPSO is employed to sol?& andP7,
the renewal metric quickly descend to about zero, and theeneent metric ascend to a high level, which demonstrates
that the population of PSO quickly converges. Meanwhile,diversity of the population rapidly descend to a low
level, and the population focuses on local search aroundtitened best solution. Since the intensity of noise in
Ps is small, the convergence of BPSO is not significantly infeezh ForP;, the massive local optimal solutions
are regularly distributed in the feasible region, BPSO daa quickly locate the global optimal solution. However,
BLDE tries to keep a balance between exploration and exioit, and the bit-by-bit variation strategies make it
more vulnerable to be frustrated by the noisdPgfas well as the multi-modal landscape®f As a consequence,
BPSO performs better than BLDE & andP5.

However, the local optimal solutions of MKPs are not reglyldistributed. Thus, toféiciently explore the feasible
regions, it is vital to keep a balance between exploratiahexploitation. Figs[_1{(¢), I(H), 1{e) ahd 1(f) demonstrate
binDE and AQDE can keep a balance between exploration arldigatipn for the compared algorithms. Thus, AQDE
performs better than BLDE on the test probl®m;, and binDE performs better than BLDE &g_1, Ps_» andPg_s.



Table 6: Wilcoxon rank sum tests of the compared algorithmshe benchmark problems. The notatie+) means the algorithm for comparison is

significantly superior to (inferior to) BLDE with significae level 0.05x means the compared algorithm is not significantijedtient with BLDE.

Algorithm HBPD Algorithm HBPD
+:0 +:0

AMPSO =~:P.,P> AMDE ~: Py, Py, P4, Ps
— : P3,P4,Ps5,Pg,P7,Pg_1,Pg 5, Pg_3,Pg 4,Pg 5 — : P3,Pg,P7,Pg_1,Pg_2,Pg_3,Pg 4, Pg_s
+:0 + . P5, P7

DisABC ~: Py, Pg_1, BPSO ~: Py, Pg1
— 1 P2, P3, P4, Ps, Pg, P7,Pg_2, Pg_3, Pg_4, Pg_s — 1 P2, P3,P4,Pe, Pg_2, Pg_3,Pg_4,Pg 5
+: Pg_1,Pg 2, Pg_3 +:Pg1

binDE ~: Py AQDE ~: Pg_»

. P2, P3, P4, Ps, Ps, P7, Pg_4,Pg 5

. Pls PZ’ P39 P49 P53 P63 P79 5 P8—3’ P8—4s P8—5
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Figure 1: Comparisons of the renewal and refinement mewidgét problem®s, P7, Ps_1, Pg_», Pg_3.
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5. Performance of BLDE on the unit commitment problem

In this section, we employ BLDE solving the unit commitmentdem (UCP) in power systems. To minimize
the production cost over a daily to weekly time horizon, U@®lves the optimum scheduling of power generating
units as well as the determination of the optimum amountwefgy to be generated by committed Lﬂiﬁ]. Thus,
UCP is a mixed integer optimization problem, the decisionaldes of which are the binary string representing the
oryoff statuses of units and the real variables indicating thergée power of units.

5.1. Objective function of UCP
The objective of UCP is to minimize the total production cost

N

.
Z Z [¢i(Pit) - Uit + it - (1 = Uig-1) - Uiy 4

=1 i=1

F

—

whereN is the number of units to be scheduled and T is the time horidren the™ unit is committed to generate
powerP;; at timet, the binary variabley; is set to be 1; otherwisey = 0. The functiong;(P;;) represents the fuel
cost of uniti at timet, which is frequently approximated by

¢i(Pr) = & + bipi + 6P ()

wherea;, b; andc; are known cofficients of uniti. If the i unit has beenfd prior to start-up, there is a starff@ost

of f (6)

w_dhnwwxﬁ”gﬁmni
it —
e, ifrg >TO+f

whered;, g, f; andl"fIOWn are the hot start cost, cold start cost, cold start time amdnmim down time of unit,
respectivelyrﬁff, the continuously f§ time of uniti, is determined by

0, if ui =1
1, if uy =0,t=1ando; >0
7' = - (7
it 1-o, if uy =0,t=1andoj <0
1+ Tstf_fl, if uy =1andt>1

whereo; is the initial status of unit, which shows for how long the unit was /foff prior to the start of the time
horizon.

5.2. Constraints in UCP
The minimization of the total production cost is subjectie following constraints.

Power balance constraints: The total generated at tinienust meet the power demand at that time instant, i.e.,
N
ZuiIPiI:Dt» t=1,2,...,T (8)
i=1

whereDy is the power demand at timiePractically, it is hardly possible to exactly meet the podemand, an
errore is allowed for the generated power, i.e.,
Zi’\il Uit Pit
D

~1l<e t=12....T. (9)

2To compare with the work reported {d [5], we employ similatatimns and descriptions in this section.
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Spinning reserve constraints: Due to possible outages of equipments, it is necessary foepsystems to satisfy
the spinning reserve constraints. Thus, the sum of the maxripower generating capacities of all committed
units should be greater than or equal to the power demandh@usinimum spinning reserve requirement, i.e.,

N
D wPM =D+ R, t=12...,T (10)
i=1

where P"®* is the maximum power generating capacity of uniandR; is the minimum spinning reserve
requirement at time

Minimum up time constraints: If unit i is on at timet and switched fi at timet + 1, the continuous up time"
should be greater than or equal to the minimum up m{h"eof uniti, i.e.,

" >TP, ifur=Lup=0andt<T, i=1...,N (11)

where the continuously up time is

0, if ui =0
on 1, ifur=1t=1ando; <0 (12)
V110, fug=1t=1andoi >0

1+, if up=1andt>1

Minimum down time constraints: If unit i is off at timet and switched on at time+ 1, the continuous up timq‘:ff
should be greater than or equal to the minimuiitime I“?OW” of uniti, i.e.,

2> rdownif y =0, uya=landt<T, i=1,...,N (13)

Range of generated power:The generated power of a unit is limited in an interval, i.e.,
PMN< Py <PM™X  j=1,2,...,Nandt=1,2,...,T (14)
whereP™" andP"3Xjs the minimum power output and the maximum power output @fiunespectively.

5.3. Implement of BLDE for UCP

The optimal commitment of power units in UCP is obtained bynbming BLDE with real-coded DE operations.
In BLDE, each binary individual represents araffischeduling plan of units, accompanied with a real-codeitidd
ual representing the specific power outputs of units. Wherbthary individuals are recombined during the iteration
process, the real-coded individuals are recombined vi®@and/1l mutation and binary crossover strategies of the
real-coded DE. Then, binary individuals and the correspanceal individuals are integrated together for evalua-
tion. If the combined mixed-integer individuals violateethonstraints in UCP, they are repaired via the repairing
mechanisms proposed I [5].

The performance of BLDE is tested via a 10-unit power systemparameters and forecasted power demands of
which are respectively listed in Tdh. 7 and Tab. 8. To faidynpare BLDE with the method proposed|ﬂ1 [5], we also
set the population size to be 100, and the results are coohpfiez 30 independent runs of 2500 iterations, where the
scalar factoF is set to be 0.8. The statistical results are listed in Thb. 9.

The comparison results show that when the power balanceeis@mall, performance of BLDE is a bit worse
than that of the binary-real-codedfi@irential evolution (BRCDE) algorithm proposed ifh [5]. Howee when the
power balance is relaxed to a relatively great extent, BLDEperform BRDE for UCP of the 10-unit power system.
The reason could be that crossover operation for real Vagab not appropriately regulated for UCP, and accord-
ingly, simultaneous variations on all real variables ulgulglad to violations of constraints. Thus, BLDE can only
outperforms BRCDE when the constraints are relaxed greatly

13



Table 7: Unit parameters for the 10-unit power system.

Unit() PP(MW) PT(MW) _a($/h) b(&/MWH o@/MW2h) d® a@®) i) T°(h) Do) o)
1 455 150 1000 16.19 0.00048 4500 9000 5 8 8 8
2 455 150 970 17.26 0.00031 5000 10000 5 8 8 8
3 130 20 700 16.60 0.00200 550 1100 4 5 5 -5
4 130 20 680 16.50 0.00211 560 1120 4 5 5 -5
5 162 25 450 19.70 0.00398 900 1800 4 6 6 -6
6 80 20 370 22.26 0.00712 170 340 2 3 3 -3
7 85 25 480 27.74 0.00079 260 520 2 3 3 -3
8 55 10 660 25.92 0.00413 30 60 0 1 1 -1
9 55 10 665 27.27 0.00222 30 60 0 1 1 -1
10 55 10 670 27.79 0.00173 30 60 0 1 1 -1
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Table 8: Forecasted power demands for the 10-unit systemildvk time horizon.

Hour 1 2 3 4 5 6 7 8 9 10 11 12
Demand (MW) 700 700 850 950 1000 1100 1150 1200 1300 1400 14%3DO 1

Hour 13 14 15 16 17 18 19 20 21 22 23 24
Demand (MW) 1400 1300 1200 1050 1000 1100 1200 1400 1300 11000 9800

Table 9: Results comparison between BLDE and BRdeE[S] fer@-unit power system.“-” means that the corre-
sponding item was not presented in the literature.

Method Power balance errer Bestcost Average Cost Worst Cost Standard deviation

BRCDE 0.0% 563938 - - -
0.1% 563446 563514 563563 30

0.5% 561876 - - -

1% 559357 - - -
BLDE 0.0% 563977 564005 564088 24
0.1% 563552 563636 563745 49
0.5% 561677 561847 - 50
1% 559155 559207 559426 48

6. Discussions

In this paper, we propose a BLDE algorithm appropriatelpiporating the mutation strategy of binary DE and
the learning mechanism of binary PSO. For majority of theceld benchmark problems, BLDE can outperform
the compared algorithms, which indicate that BLDE is corntipetto the compared algorithms. However, statistical
test results show that BPSO performs better than BLDPpandP7, AQDE is more éicient for Pg_;, and binDE
obtains better results oRg_1, Pg_12 as well asPg_3. When generating a candidate solution, BLDE first initidte i
as the winner of two obtained solutions, and then, regutdig iearning from the best individual in the population.
This strategy simultaneously incorporates the synchrsiyothanging strategy and the bitwise mutation strategy
of candidate generation. Thus, BLDE can performs well ontmbshe high-dimensional benchmark problems.
However, when BLDE is employed to solfgs and P;, the global optimal solutions of which are easy to be locate,
it performs worse than BPSO; meanwhile, when it is implereéid solve the low-dimensional probleg 1, Pg_»
andPg_3, the local optimal solutions of which are irregularly dilstrited in the feasible regions, it cannot perform

better than binDE.

7. Conclusions

Generally, the proposed BLDE is competitive to the exisbimgary evolutionary algorithms. However, its perfor-
mance can been improved. Thus, future work will focus ongfésg an adaptive strategy appropriately managing
the synchronously changing strategy and the bitwise nantatrategy employed in BLDE. Meanwhile, we will try to
further improve its performances on mixed-integer optatian problems byf&ciently incorporate it with real-coded

recombination strategies.
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