
Optimizing Dense Feed-Forward Neural Networks∗

Luis Balderas †1, Miguel Lastra2, and Jose M. Beńıtez1

1Department of Computer Science and Artificial Intelligence,
DiCITS, iMUDS, DaSCI, E.T.S.I.I.T. University of Granada, Spain
2Department of Software Engineering, DiCITS, iMUDS, DaSCI,

E.T.S.I.I.T. University of Granada, Spain

December 19, 2023

Abstract

Deep learning models have been widely used during the last decade
due to their outstanding learning and abstraction capacities. However,
one of the main challenges any scientist has to face using deep learning
models is to establish the network’s architecture. Due to this difficulty,
data scientists usually build over complex models and, as a result, most of
them result computationally intensive and impose a large memory foot-
print, generating huge costs, contributing to climate change and hindering
their use in computational-limited devices. In this paper, we propose a
novel feed-forward neural network constructing method based on pruning
and transfer learning. Its performance has been thoroughly assessed in
classification and regression problems. Without any accuracy loss, our ap-
proach can compress the number of parameters by more than 70%. Even
further, choosing the pruning parameter carefully, most of the refined
models outperform original ones. We also evaluate the transfer learn-
ing level comparing the refined model and the original one training from
scratch a neural network with the same hyper parameters as the optimized
model. The results obtained show that our constructing method not only
helps in the design of more efficient models but also more effective ones.

1 Introduction

Over the last decade, deep neural networks have become the state-of-art tech-
nique on several challenging tasks such as computer vision [1], speech recogni-
tion [2] or natural language processing [3]. Due to the huge amount of data
and hardware development and innovation in the field, larger and deeper learn-
ing models have been employed to face more complex problems and learn more

∗Accepted manuscript in Neural Networks. DOI:10.1016/j.neunet.2023.12.015
†Corresponding author. luisbalru@decsai.ugr.es

1

ar
X

iv
:2

31
2.

10
56

0v
1 

 [
cs

.L
G

] 
 1

6 
D

ec
 2

02
3



elaborated patterns from data. Concretely, feed-forward neural networks, which
represented the beginning of the era of neural networks, are still an extraordi-
nary and widely used tool in solving machine learning problems with tabular
data not only in the industry but also in academia. More than 58000 articles
and more than 51000 patents can be found in Scopus related with this type of
neural networks.

One of the main challenges any scientist has to face when using deep learning
models is to establish the network’s topology and its hyper parameters. Assum-
ing that we have millions of parameters, it can be intricate to design a suitable
structure for profitable learning, as we would need to choose the number of
layers, the number of units and their distribution. Generally, machine learning
engineers come up with enormous neural networks to assure their models are
complex enough to find the correct patterns in the learning tasks they are facing.
Many problems can be addressed by this methodology and modern hardware
developments facilitate it (it is known that when training deep learning neural
networks, graphical processing units, GPUs, can be more than two orders of
magnitude faster than CPUs). However, this solution might not be the most
efficient one, due to the fact that these high capacity networks have signifi-
cant inference and energetic costs [4]. In 2019, researchers at the University
of Massachusetts found that training several large Artificial Intelligence models
(including neural architecture search) can emit more than 284019 kilograms of
carbon dioxide, in other words, nearly five times the lifetime emissions of the
average American car (including the manufacture of the car itself) [5].

There are some ways of designing efficient deep neural networks and gener-
ating effective solutions for a given learning task. For example, using memetic
algorithms to find a good architecture to fit the task or, provided an archi-
tecture, using alternative optimization algorithms to fine-tune the connection
weights. However, pruning is one of the most used methods to reduce neural
networks complexity. In fact, pruning techniques have been extensively studied
for model compression since 1990, when Optimal Brain Damage (OBD) [9] and
Optimal Brain Surgery (OBS) [10] where designed. Along the past years, many
other approaches have been presented in order to generate more efficient and
effective neural networks in all their representations (dense, convolutional or
recurrent).

Motivated by that general interest, we have developed a new feed-forward
neural network constructing method calledOptimizing Dense Feed-Forward Neu-
ral Network Algorithm (ODF2NNA), based on pruning and transfer learning
which requires minimal tuning. For each supervised learning problem, either
classification or regression, we build a model to address the learning task but
with a very general topology (the same number of neurons for each layer). Then,
inspired by [7], we define our pruning algorithm. This algorithm is designed to
find an optimal subnet embedded in the original one, reducing the number of
parameters and maintaining, or even improving, the accuracy results. The pre-
sented technique has only one parameter ϵ, which represents the pruning level
depending on the variability of each unit in a layer. A refining phase is carried
out afterwards. Our experiments show that this method is effective: it produces

2



neural networks with improved learning and generalization capabilities through
the use of knowledge transfer from large networks to the pruned and refined
ones.

The rest of this paper is structured as follows: In Section 2, we introduce the
state-of-art of different approaches for designing efficient deep neural networks.
In Section 3, we describe our proposal. In Section 4 our methodology is exper-
imentally analyzed In Section 5 we discuss the results and Section 6 highlights
the conclusions.

2 Previous work

Designing a well-generalized architecture for deep neural networks is an impor-
tant task. One approach that must be considered is neuroevolution. Neuroevo-
lution enables important capabilities such as including learning neural network
building blocks, hyperparameters, architectures and even the algorithms for
learning themselves. Besides, it enables extreme exploration and massive par-
allelization due to the fact that neuroevolution maintains a population of solu-
tions during the search ([15]). In [24] NEAT algorithm is described as a classical
neuroevolution approach. More recently, [25] took inspiration from NEAT and
evolved deep neural networks by starting small and adding complexity through
mutations. In consequence, entire layers of neurons are added achieving im-
pressive performance on the CIFAR dataset. In [26] we find a variant approach
which improved performance by evolving small neural network modules that
are repeatedly used in larger hand-coded blueprint, which consists in stacking
the same layer module to make a DNN, like Inception, DenseNet and ResNet
architectures ([15]). Another approach to be considered is Neural Architecture
Search (NAS), which aims to automate the architecture designs of Deep Neural
Networks. Mathematically, NAS can be modeled by an optimization problem.
Based on the optimizer used, the existing NAS algorithms can be classified into
three categories: reinforcement learning based NAS algorithms, gradient-based
NAS algorithms and evolutionary NAS algorithms (ENAS). ENAS algorithms
are particularly effective and they might be used in many different real-world
applications, such as image classification, speech recognition, language model-
ing or traffic flow forecasting between others. In [27] we find a complete ENAS
algorithms survey. In order to enhance the hyper-parameter selection process in
Deep Neural Networks, biologically-inspired approaches should be considered.
In particular, [28] deploys a Particle Swarm Optimization method as a wrapper
to the training process to retrieve hyper-parameters that minimize the classi-
fication error. In fact, they present an extensive experimental study involving
convolutional neural networks and LeNet-4 network on the MNIST dataset and
some very small DNN models optimized using PSO for the CIFAR-10 dataset.
Hardware optimizations for accelerating Deep Neural Networks should be con-
sidered too ([29])

Although the aforementioned methods show very promising results, they
demand heavily computational resources ([30], [31]). Pruning approaches are

3



generally more efficient for deep neural networks and, as a result, they are exten-
sively used for convolutional neural networks and feed-forward neural network
optimization. More details about CNN pruning and quantization methods can
be found in [32]. Nonetheless, as ODF2NNA is designed only for feed-forward
networks, CNN optimization methods are not comparable with ODF2NNA, so
they are out of the scope of this paper. We will focus on feed-forward neural
network optimization methods. Sensitivity-based methods ([8]) try to under-
stand how important each weight or node is in the network to prune those which
have the least effect on the objective function. The most important pruning al-
gorithms of this kind are OBD and OBS. The basic idea of OBD ([9]) is to
use second-derivative information to find a trade-off between network complex-
ity and training set error. The OBD procedure can be carried out as follows:
First, choose a network architecture and train it until an accurate solution is
obtained. Then, compute the second derivatives and the salience for each pa-
rameter. Finally, sort the parameters by salience, delete the lowest ones and
start training again. On the other hand, OBS ([10]) trains a neural network
minimizing the error. After that, computes the inverse Hessian matrix, in order
to find the parameter which gives the smallest salience. If this increment in the
candidate error is much smaller than the Tailor’s error function (E), then this
weight should be deleted and the remaining weights are updated. Otherwise,
we may have found that no more weights can be deleted without a large in-
crease in E, so it may be desirable to retrain the network. Consequently, OBD
permits pruning more weights than other methods and thus yields better gener-
alization. Dong et al. [11] borrow ideas from OBS and OBD presenting L-OBS
(Layer-wise OBS), whose intention is restrict the computation on second order
derivative, i.e., the Hessian matrix is only computed for the parameters of an
specific layer, making the computations tractable (resp. OBD, where the in-
verse of the Hessian matrix is calculated over all the parameters). Besides, they
reduce computational complexity of the inverse operation of the Hessian matrix
by using characteristics of back-propagation for dense layers in deep networks.

LWC [4] begins learning which connections are important via regular network
training. Then, they prune the low-weight connections, in other words, connec-
tions with weights below a threshold are removed from the network. Finally,
the network is retrained to learn the final weights for the remaining connections.
Guo et al. [12] propose to sever redundant connections by what they call dy-
namic network surgery (DNS). This method involves pruning and splicing. The
pruning operation is made to compress the network but over pruning or incor-
rect pruning might be responsible for accuracy loss. In order to compensate it,
they incorporate the splicing operation so as to recover connections once the
pruned connections are found to be important any time.

Engelbrecht [13] proposed a modified approach to perform sensitivity analy-
sis. Instead of directly using the sensitivity value, Engelbrecht uses the average
sensitivity of the network parameters which is computed over all the patterns
and then a new measure called variance nullity is applied. As a result, the Vari-
ance Nullity Pruning (VNP) method allows pruning both nodes and weights.
Hagiwara [14] presented a Magnitude Based Pruning (MBP) method suggesting

4



three strategies called Goodness factor, Consuming energy and Weights power
for detecting redundant hidden neurons. Augasta et al. [16] proposed the Neu-
ral Network Pruning by Significance (N2PS) pruning method. N2PS is based
on a measure which is calculated by the sigmoidal activation value of the node
and all the weights of its outgoing connections. Every node whose significance
value is below a threshold is considered insignificant and therefore eliminated.
Xing et al. [17] proposed a two-phase construction approach for pruning input
and hidden units of dense neural networks based on mutual information.

Han et al. [18] presented a three-stage pipeline to reduce the storage required
by neural networks. First, they prune the network by removing redundant
connections. Next, the weights are quantized so that multiple connections share
the same weights. Finally, they apply Huffman coding to take advantage of
the biased distribution of effective weights. Manessi et al. [19] introduced the
following compressing method: given a neural network N , they build a sibling
network Ns that is explicitly able to shrink the trainable weights of N . Then,
they train Ns by means of a gradient descent-based technique introducing a
regularization term; and finally, they build Np from Ns, (pruned version of
the original network N). Guo et al. [20] proposed a learning automata-based
method to train deep neural networks prepared to prune the weakly connected
units. For all models, they allocate 1000 units for each layer, and use the ReLU
activation function and Gaussian initialization.

Despite the great number of existing research papers focused on Neural Net-
works pruning, the state of the literature is such that it is not possible yet
to answer crucial questions such as ’which techniques achieve the best accu-
racy/efficiency trade off?’ or ’are there strategies that work best on specific
architectures or datasets?’ The reason is that we are suffering a lack of stan-
dardized benchmarks and metrics [21].

3 Proposal

In this paper, we address the challenge of establishing the network’s topology.
Thus, we introduce Optimizing Dense Feed-Forward Neural Network Algorithm
(ODF2NNA), a new feed-forward neural network construction method based
on pruning and transfer learning. In this section we pay special attention to the
process that performs the identification and extraction of relevant units (called
useful units) and finally the construction of the refined model.

3.1 ODF2NNA

ODF2NNA is the neural network construction method we propose. It can be
used for classification and regression problems and employs a three-step process:
construct a general model, train it and build a new one pruning and refining the
general model (Algorithm 1, Figure 1). It receives two arguments: a dataset,
which feeds a supervised learning task to address, in our case, building feed-
forward neural networks, and a pruning tolerance parameter, ϵ > 0.

5



Algorithm 1 ODF2NNA

function ODF2NNA(dataset, ϵ)
Construct a general model for addressing the dataset learning task.
Train the general model
Build a new model by pruning and refining the general model using ϵ.

end function

Our procedure begins by receiving a dataset, which represents a classification
or regression problem. Once we know the number of examples available in the
dataset, we establish the number of parameters as the number of examples and
build a general model composed by layers and the same number of neurons per
layer. There are no restrictions imposed for the number of layers. The number of
parameters of the general model depends on the number of layers chosen. Each
problem requires a different number of layers to acquire an accurate model. We
have used between three and ten of them.

Figure 1: Algorithm 1. Flowchart

The number of neurons per layer is determined as follows: For any hidden
layer, the number of parameters is equal to the sum of the connections between
layers and the bias values in every layer. In consequence, if we define

• NL: number of layers.

• NP: number of parameters. (1)

6



• NU: number of units. (2)

• D: input dimension.

• NC: number of classes

We know that

NP = D ×NU +NL(NU ×NC) +NL×NU +NC (1)

As a result, we can determine the number of neurons per layer:

NU =
NP −NC

D +NL(NC + 1)
(2)

Note that when addressing a regression problem, NC = 1, for unidimen-
sional output regression problems. It is straightforward to generalize this for
multidimensional regression problems. As a result, we build a rectangular model
whose complexity, in terms of the number of parameters, is enough to success-
fully complete the learning task.

After the aforementioned model (with NU units per layer) has been trained,
based on [7], we apply a pruning method which employs a three-step process
(Algorithm 2, Figure 2). It receives two arguments: a feed-forward neural net-
work, which has already been trained and whose predictions are accurate for a
given problem, and a pruning tolerance parameter, ϵ > 0.

The process starts with the extraction of the useful units or neurons from
the model, in other words, those units which are indispensable for the network
to acquire the real nature and patterns from data.

Algorithm 2 Neural network refining procedure

function RefiningNN(model, ϵ)
Extract the useful units per layer from model applying ϵ.
Construct the new model with the useful units and layers.
Model refinement.

end function

The second step is to construct a new model integrating all the layers, com-
posed only of useful units, to evaluate the prediction capacities of the pruned
neural network. The obtained model may under-perform the results compared
to the original one. To overcome this problem, the pruned model is lightly
retrained using a low number of epochs compared to the number of epochs em-
ployed by the training process of the original model. In consequence, the pruned
model obtains competitive results and, in some cases, it may even outperform
the original model.

7



Figure 2: Algorithm 2. Flowchart

3.2 Extracting useful units

The key idea behind the process that performs the extraction of useful units is
to find the “important” neurons for the learning task. This process is completed
to enhance the model by reducing its size and raising the accuracy level. The
resulting model, due to its reduced size, will be more efficient, not only in terms
of memory footprint but also runtime.

Algorithm 3 (Figure 4) shows the extraction process if performed layer-wise
examining each neuron. The inputs are a model, an evaluation dataset and a
pruning tolerance level ϵ.

8



Algorithm 3 Extracting useful units

function usefulUnits(model, evalData, ϵ)
layers = []
biasExtra = []
Append to layers the original input layer from model
for each hidden layer in model, feed-forward wise, do

new-layer = []
bias = 0
accumulated-bias = 0
for each unit in layer do

Create a subnet with unit as its output layer
result ← Evaluate subnet on evalData
if Standard-deviation(result) > ϵ then

Append the unit to new-layer
else

bias = bias + mean(result)
end if

end for
Append new-layer to layers
if new-layer is not empty then

Append bias+accumulated-bias to biasExtra
accumulated-bias = 0

else
Append 0 to biasExtra
accumulated-bias = bias

end if
end for
Append to layers the original output layer from model
return layers, biasExtra

end function

9



Figure 3: Implicit subnet for the candidate unit (red)

To better expose the aforementioned algorithm, let us present an example.
Let us consider the network shown in Figure 3. For the selected unit, its implicit
subnet is bounded by the red pentagon.

Supposing that we are keen on evaluating the relevance of the unit in red,
it is necessary to define a strategy to isolate the unit and its implicit subnet, in
other words, the neural network formed by every unit belonging to the previous
layers and whose output layer is the unit in red.

Once we have a subnet which characterizes a neuron, we need to measure its
importance within the whole model. The importance of a subnet is measured
by its outputs, which are evaluated for different input examples (evalData). If
the output of the subnet varies sufficiently for different input examples, then the
subnet is considered to contribute valuable insights to the overall information
flow across the network. Conversely, if the output of the subnet is uniform
for different input examples, then the neuron is deemed to be unimportant for
the final prediction of the network. Thus, a metric is needed to encapsulate
the variability of the output of a subnet. The standard deviation is chosen as
the metric due to its simplicity and widespread use in statistics. The standard
deviation over the evalData outputs’ is measured and if it is greater than ϵ, the
unit is classified as significant (useful unit). In consequence, it will form part of
the refined model. Otherwise, this unit will not appear in the new model.

10



Figure 4: Algorithm 3. Flowchart

However, even if the variation of the predictions in a given subnet might
be subtle, it could have an important and global effect on the neural network.
Therefore, these results should be taken into consideration. Bearing that in
mind, for those units that will be discarded in the new model, we add the mean
of their outputs to the layer’s bias. As a result, we take into account all the
information from the neurons but we only compute those which produce enough
variability.

In Algorithm 4 (Figure 5), we can see how a subnet is built using a specific
neuron as the only output unit. First, we create a new model and add the input
layer from the original model. Then, we add to the new model all the previous
layers before the one which contains the neuron being considered for evaluation.
Once we find the neuron, we add a layer with this single neuron as the output
layer to the subnet. No possible conflict arises in the construction since the
useful units are selected feed-forward wise.

11



Algorithm 4 Creating a subnet with a specific output final unit

function SubNet(model, final-layer, final-unit)
Create a new model (new-model)
Add the input layer from the original model
for each layer in model previous to final-layer do

Add layer to new-model and set weights to new-model
end for
Add a final layer with an unique output unit (final-unit from final-layer)

to new-model
return new-model

end function

Figure 5: Algorithm 4. Flowchart

Each of these sub networks gather a part of the knowledge captured by the
initial large network. Actually, a rather relevant part of the overall knowledge
since it has been selected as useful. By reusing this part of the network the user
is achieving knowledge transfer.

3.3 Building and retraining the refined model

Once we have defined the useful unit list, we build the refined model using
those units which are in the list (whose outputs present enough variability) and
adding them to the new network respecting the original topology related to the
useful units. Careful update of the weights and shape is crucial in this phase,
due to the fact that our method may detect the inoperability of a complete
layer in the original model and thus, the layer would be completely disregarded
in the process of building the refined model. In this case, if the nth layer is
discarded, the (n− 1)th and the (n+ 1)th layers will be connected. Therefore,

12



an adjustment of shapes is needed. The only layers which are kept immutable
are the input and the output layers. Hidden layers from the original model may
change completely.

However, as we have said above, the refined model may underperform the
results compared to the original one. Therefore, a retraining phase (model
refinement) is necessary to finish the process. We have tried to retrain as less
as possible so as to carry out small adjustments and avoid overfitting. In other
words, we set the number of epochs to 15% of the original number of epochs
at the beginning of the process. Hyper parameters like activation functions,
optimizer or batch size are maintained constant in both learning tasks.

Our method could be at first considered only as an effective way to only find
a neural network optimal topology for a specific learning task. Nonetheless,
we have found that building a network with the topology identified by our
algorithm and then setting random initial weights and training (with any of
the currently available learning algorithms) is not enough to reach the same
performance as that achieved with the refined model. Therefore, our method is
not only guiding us in the selection of the neural network topology but also it is
transferring knowledge from the original model to the refined one. In short, our
methodology implements a particular kind of transfer learning. Thus, we could
see this method simply as a neural network design procedure characterized by
transfer learning.

4 Empirical Evaluation

We have thoroughly evaluated our neural network building scheme, considering
the two broad classes of problems —classification and regression—, detailing the
study throughout diverse categories of classification categories. ODF2NNA has
been compared with the principal state-of-art approaches mentioned in Section
II using the datasets proposed in the research papers which presented those tech-
niques. Additionally, two additional standard classification problems (Spambase
and Poker) and one large-scale dataset (Hepmass) from the UCI Machine Learn-
ing Repository have been utilized to evaluate the performance and quality of
our dense neural network optimization algorithm. Finally, we consider three re-
gression datasets (Ailerons, Compactiv and Pole) to evaluate the effectiveness of
our method not only in classification but also in regression. In each experiment,
several values for ϵ were used to evaluate the learning capacity of the refined
model obtained and its effectiveness. We measured the prediction performance
with accuracy (ACC) metrics for classification and mean squared error (MSE)
for regression. In addition, we registered the number of parameters and the
number of layers of the model to assess the efficiency in terms of memory re-
quirements and runtime (the lower the number of parameters, the higher the
efficiency). We compared the accuracy (or MSE, respectively) in three differ-
ent stages: original model, pruned model without retraining and refined model
(retrained pruned model). As a result, we are able to understand if the original
model was too complex. In other words, if the original model had more param-

13



eters than actually needed. Finally, we can notice the pruned model’s learning
capacity by comparing the accuracy (or MSE) before and after retraining. The
process of retraining is very light in terms of epochs (10% - 15% of the original
number or epochs) and, thus, we avoid overfitting.

In summary, we compared ODF2NNA with 15 different techniques for prun-
ing feed-forward neural networks. Additionally, we extended the experimenta-
tion to problems that have not been addressed, to the best of our knowledge,
in the literature, such as dividing the experimentation according to the size of
the dataset (medium-scale datasets, large-scale datasets) and facing regression
problems.

We implemented the proposal using Keras-Tensorflow 2.1. We carried out
the experiments on the following pieces of hardware: AMD Ryzen 7 3800X 8-
Core Processor, NVIDIA GeForce GTX 1650 SUPER and NVIDIA GeForce
RTX 2080 ti.

4.1 Classification experiments

To illustrate the generality of our method we test it on a core set of common
benchmark datasets and fully connected network architectures. In all of these
experiments, we measure the accuracy (or the classification error rate) before
and after applying the optimization method and the complexity reduction in
terms of the remaining number of parameters or layers. Nonetheless, we have
adapted our metrics (and the way we show them) to the ones used in the state-
of-art references to achieve an accurate comparison between ODF2NNA and the
state-of-art references.

4.1.1 Experiment 1: Well-known datasets

In this section, the proposed algorithm is evaluated on four well known datasets
from UCI Machine Learning Repository and compared to other pruning methods
such as VNP [13], Xing-Hu’s method [17], MBP [14], OBD [9], OBS [10] and
N2PS [16]. The datasets used in this experiment are:

• Iris dataset (iris): 150 instances, four attributes and three categories: se-
tosa, versicolor and virginica.

• Wisconsin-breast-cancer dataset (cancer): It contains 699 instances with
9 real value attributes and two classes.

• Hepatitis domain dataset (hepatitis): 155 instances, 19 attributes. Binary
classification.

• Pima Indians Diabetes dataset (diabetes): Binary classification problem
with 500 instances and 8 attributes.

Table 1 shows the comparison results of our method on the four datasets
compared to the other pruning methods:

14



Dataset Original N2PS VNP Xing-Hu OBD OBS MBP
Our

approach
NN ACC NN ACC NN ACC NN ACC NN ACC NN ACC NN ACC NN ACC

Iris 4-10-3 96 3-3-3 98.67 2-2-3 97.7 3-2-3 98.67 4-4-3 98 4-4-3 98 4-4-3 98 3-4-3 98.5
Cancer 9-10-2 95.4 3-2-2 97.1 9-1-2 97.8 3-3-2 96.78 9-8-1 92.5 9-7-1 90 9-7-1 90 5-3-2 97.86
Hepatitis 19-25-2 80.2 2-3-2 86.4 4-4.2 83.3 3-8-2 84.62 19-9-1 78.7 19-16-1 73.8 19-18-1 80.3 7-11-2 87.21
Diabetes 8-40-2 68.6 5-3-2 70.3 6-8-2 69.1 6-8-2 74.22 8-16-1 68.6 8-26-1 65.4 8-26-1 68.9 5-17-2 73.62

Table 1: Comparison results of ODF2NNA on iris, cancer, hepatitis and dia-
betes. NN: Neural Network Architecture (< #units layer 1>-< #units layer
2> · · · < #units layer n >)
. Best accuracy results are highlighted in bold.

As we can see, ODF2NNA outperforms the accuracy results for Cancer and
Hepatitis compared to the other state-of-art methods reducing the architecture
widely.

Table 2 shows the F1-Score obtained for Iris, Wisconsin-breast-cancer, Hep-
atitis and Diabetes datasets. We cannot compare F1-Score with the other state-
of-art methods because it is not included in their results.

Iris Cancer Hepatitis Diabetes
F1-Score 0.98 0.86 0.79 0.66

Table 2: F1-Score value

4.1.2 Experiment 2: Modifying the number of layers

We tested our method on deep neural networks with different numbers of hidden
layers (from 2 to 6) on the MNIST dataset. The MNIST dataset consists of
28 × 28 pixel handwritten digit images from 0 to 9. The task is to classify the
images into ten digit classes. There are 60 000 examples in the training set
and 10 000 in the test set. For all models, we allocate 1000 units and compare
the results with the Learning Automata-Based SGD [20]. Table 3 shows the
classification error percentage with different number of hidden layers (columns
2, 3 and 4). The Sparseness column denotes the rates of remaining weights after
pruning with respect to the initial number of weights (less is better). F1-Score
value is also added. As mentioned before, we cannot compare F1-Score with
the other state-of-art methods because it is not included in their investigation
results.

Hidden layers SGD SGD+LA ODF2NNA Sparseness - Guo et al. ODF2NNA sparseness ODF2NNA F1-Score
1000× 2 1.45 1.43 1.87 43% 5% 0.79
1000× 3 1.56 1.52 1.49 62% 32% 0.94
1000× 4 1.61 1.49 1.51 60% 27% 0.81
1000× 5 1.79 1.47 1.68 44% 13% 0.84
1000× 6 2.4 1.58 1.52 54% 19.8% 0.87

Table 3: Classification error and sparseness. Best results are highlighted in
bold.

The least error measure values obtained are for 1000× 3 and 1000× 6 hid-
den layers. Besides, we are able to reduce the sparseness in each architecture

15



compared to Guo et al. [20].

4.1.3 Experiment 3: LeNet300-100

In this experiment we verify the effectiveness of our optimization method on
MNIST using a deep neural network architecture called LeNet-300-100, which
is a fully connected neural network made of four layers: the input layer, the
output layer and two hidden layers with 300 and 100 neurons respectively.

First of all, we compare our method with Han et al. [18] and Manessi et al.
[19]. Table 4 shows the percentage prediction error (∆1) for the pruned networks
and their respective non-pruned implementation. We also show the pruning
performance, measured by the number of weights’ compression. Similarly, Han
et al. [18] and Manessi et al. [19] results are considered. Note that there are
N/A values, which mean that the original research paper did not specified any
value for this item.

Method ∆1 Weights Pruning Performance
LeNet-300-100 reference N/A 266K N/A
LeNet-300-100 pruned (Han et al.) 0.1% 21K 12x
LeNet-300-100 pruned (Manessi et al.) 0.1% 14K 19x
LeNet-300-100 pruned (ODF2NNA) 0.2% 5K 40x

Table 4: LeNet-300-100 (I) Comparison with [18] and [19]. Best results are
highlighted in bold.

As we can see, the number of weights is widely reduced, improving the
pruning performance.

Finally, we compare our method with randomly pruning [11], Layer-wise
OBS [11], OBD [9], LWC [22] and DNS [12]. In this case, we contemplate
the original classification error, the error rate after pruning, the error rate after
retraining (Re-Error), the number of iterations to complete the retraining phase
(#Re-Iters) and the compression ratio (CR), which is the ratio of the number of
preserved parameters to that of original parameters (lower is better) [11]. Table
5 shows the obtained results:

Method Original Error CR Err. After Pruning Re-Error #Re-Iters
Random 1.76% 8% 85.72% 2.25% 3.5e5
OBD 2.76% 8% 86.72% 1.96% 8.1e4
LWC 3.76% 8% 81.32% 1.95% 1.4e5
DNS 4.76% 1.8% N/A 1.99% 3.4e4
L-OBS 5.76% 7% 3.1% 1.82% 510

L-OBS (iterative) 6.76% 1.55% 2.43% 1.96% 643
ODF2NNA 2% 2.46% 92% 1.78% 50

Table 5: LeNet-300-100 (II). Comparison with [11], [9], [22] and [12]. Best
results are highlighted in bold.

16



Even if ODF2NNA’s compression rate is higher than L-OBS (iterative) and
DNS, the error rate after the retraining phase is lower. In addition, a significant
difference can be observed in the number of epochs required by ODF2NNA to
fine-tune the pruned optimized network (50) compared to its closest competitor
in error rate after retraining, L-OBS (iterative), which required 643 retraining
epochs. This indicates not only that ODF2NNA is a more effective method for
optimizing the original network but also that it is much more efficient in terms
of runtime and energy consumption. Additionally, F1-Score obtained is 0.77.
Again, we cannot compare it with the other state-of-art methods because it is
not included in their investigation results.

4.1.4 Experiment 4: Other UCI datasets

In order to complete our empirical evaluation, we chose two extra datasets
from the UCI Machine Learning Repository which are more complex than the
datasets used in Experiment 1. These datasets are Spambase (4597 examples,
57 real attributes, and binary classification) and Poker (1025010, 10 integer
attributes, multi classification). To the best of our knowledge, these datasets
have not been used to evaluate dense neural network optimization algorithms.
Table 6 (Spambase) and Table 7 (Poker) show the original accuracy rate (OC),
the accuracy rate after pruning without retraining (PWR) and the accuracy
rate after retraining (PR). Each table shows the original number of parameters
(OR), the number of preserved parameters after pruning (P) and the reduction
percentage.

ACCURACY N. PARAM
ϵ OR PWR PR OR P % Reduc
0.1 75% 76% 91% 1262 993 21.32%
0.3 75% 77% 93% 1262 861 31.77%
0.5 75% 39% 93% 1262 836 33.76%
0.7 75% 39% 93% 1262 824 34.71%
0.9 75% 39% 92% 1262 810 35.82%

Table 6: Spambase dataset results (OR = original, PWR = Pruning without
retraining, PR = Pruned and retrained, P = pruned)

17



ACCURACY N. PARAM
ϵ OR PWR PR OR P % Reduc
0.1 53% 50% 59% 374261 137141 63.36%
0.3 53% 42% 66% 374261 55791 85.09%
0.5 53% 0% 74% 374261 7 21776 94.18%
0.7 53% 0% 41% 374261 9477 97.47%
0.9 53% 0% 86% 374261 3837 98.97%

Table 7: Poker dataset results (OR = original, PWR = Pruning without re-
training, PR = Pruned and retrained, P = pruned)

It should be remarked that the pruned and retrained model produces more
accurate predictions than the original model in every case. Besides, the re-
duction in the number of parameters is enormous for the Poker dataset. The
best Spambase F1-Score obtained is 0.89 (ϵ = 0.7) and the best Poker F1-Score
obtained is 0.65 (ϵ = 0.5).

4.1.5 Experiment 5: Large-scale dataset

The experiments above show that our method can be successfully applied to
small and medium-scale datasets and deep neural architectures. After thor-
oughly reviewing the literature, we have not found any fully connected neu-
ral network optimization method evaluated on large-scale datasets. We have
selected Hepmass from the UCI Machine Learning Repository to verify that
ODF2NNA is also effective for large-scale datasets (10,500,000 instances, 28
attributes).

ϵ #Layers # Parameters #Epochs train/retrain Accuracy %Reduction
Original 17 3773002 1000 81% 0%
5e-5 17 2287537 100 82% 39.37%
1e-5 17 2283005 100 85.6% 39.49%

0.0001 17 2224246 100 83.49% 41.05%
0.0004 17 2114143 100 80.35% 43.96%
0.01 17 1274437 100 76.47% 66.22%
0.04 13 597337 100 78.51% 84.17%
0.2 10 396290 100 56.21% 89.5%
0.8 8 257858 100 53.9% 93.17%
1 7 230417 100 50% 93.89%

Table 8: Hepmass dataset results

As we can see, the value ϵ = 1e − 5 produces the best results, including
F1-Score (0.72).

In addition, we have selected Higgs from the UCI Machine Learning Repos-
itory as another example of learning task based on a large dataset (11,000,000
instances, 28 attributes). This dataset size is comparable in terms of instance

18



number to the widely considered Imagenet benchmark. The Higgs dataset was
used in [33], as a semi-realistic case, for showing that deep learning can improve
the power of collider searches for exotic particles, concluding that deep-learning
techniques discover powerful nonlinear feature combinations and provide better
discrimination power than other classifiers.

In [33] a feed-forward network architecture is presented, formed by five lay-
ers with 300 hidden units in each layer, a learning rate of 0.05 and a weight
decay of 1e − 5, obtaining an area under the curve (AUC) value of 0.885. We
have replicated this architecture and conditions to apply ODF2NNA, with a
retraining phase of 50 epochs.

ϵ #Layers # Parameters #Epochs train/retrain Accuracy %Reduction
Original 5 370502 1000 88% 0%
0.0001 5 283895 50 91.3% 23.38%
0.0002 17 282055 50 93% 23.87%
0.0003 17 280309 100 89% 24.34%
0.0004 17 247669 100 83.6% 33.15%
0.001 13 192351 100 76.13% 48.08%
0.01 10 95363 100 69.87% 74.26%

Table 9: The Higgs dataset results

ODF2NNA is able to reduce by more than 23% the number of parameters
and increases in a 5% the accuracy compared to the original model. As we can
see in Figure 6, the AUC for the best ϵ is 0.93, compared to the 0.885 reported
in [33]. Again, it is clear that ODF2NNA is an accurate optimization method
for learning tasks based on large datasets.

Figure 6: ROC Curve for the Higgs Dataset optimization ϵ = 0.0002

19



4.2 Regression

We evaluated ODF2NNA not only on classification problems but also on regres-
sion ones. For this reason, we chose three regression datasets from UCI Machine
Learning Repository: Ailerons, Compactive and Pole. The result tables of this
section present the values of Mean Squared Error (MSE) and the number of
parameters (N.PARAM) for each dataset.

MSE N. PARAM
ϵ OR PWR PR OR P % Reduc

0.002 3.07e−6 4.06e−5 3.28e−6 2809 1148 59.13%
0.008 3.07e−6 0.0009 1.42e−5 2809 771 72.55%
0.014 3.07e−6 6.68e−5 2.64e−6 2809 757 73.05%
0.020 3.07e−6 2.66e−5 2.74e−6 2809 757 73.05%
0.026 3.07e−6 2.65e−5 3.04e−6 2809 757 73.05%

Table 10: Ailerons dataset results (OR = original, PWR = Pruning without
retraining, PR = Pruned and retrained, P = pruned)

MSE N. PARAM
ϵ OR PWR PR OR P % Reduc

0.002 2.63e−7 2.19e−6 1.24e−6 1958 1279 34.68%
0.008 2.63e−7 1.14e−5 4.81e−6 1958 513 73.8%
0.014 2.63e−7 3.86e−5 5.55e−7 1958 438 77.63%
0.020 2.63e−7 3.86e−5 6.38e−7 1958 438 77.63%
0.026 2.63e−7 3.86e−5 8.61e−7 1958 438 77.63%

Table 11: Compactiv dataset results (OR = original, PWR = Pruning without
retraining, PR = Pruned and retrained, P = pruned)

MSE N. PARAM
ϵ OR PWR PR OR P % Reduc

0.002 6.35e−5 7.43e−5 1.76e−6 4159 973 76.6%
0.008 6.35e−5 5.64e−5 5.66e−6 4159 815 80.4%
0.014 6.35e−5 5.94e−5 7.05e−6 4159 650 84.37%
0.020 6.35e−5 5.72e−5 7.35e−6 4159 617 85.16%
0.026 6.35e−5 7.32e−5 6.87e−6 4159 540 87.02%

Table 12: Pole dataset results (OR = original, PWR = Pruning without re-
training, PR = Pruned and retrained, P = pruned)

It should be remarked that a high reduction in the number of parameters is
achieved without a relevant increase in the error measure.

20



5 Empirical result analysis and Discussion

We start this section analyzing the classification results. The classification ex-
periments are divided into five sections, where the size of the datasets is varied
to verify the robustness of ODF2NNA when facing different learning tasks. In
total, the results of ODF2NNA are compared with 13 techniques from the state
of the art. The following presents the different proposed experiments.

Experiment 1 was designed to evaluate ODF2NNA on small-scale datasets.
We compared its performance to other pruning methods which were built to
face this kind of learning tasks. We found that ODF2NNA outperforms all the
other approaches, in terms of neural network complexity (NN) and accuracy
for the Cancer dataset. For Hepatitis and Diabetes, we obtained the highest
accuracy after optimizing the model.

Experiment 2 measured the classification error after retraining and the op-
timized model sparseness, in other words, the rates of remaining weights after
pruning. Using the same number of hidden layers (from 2 to 6) as the original
work [23], ODF2NNA obtained very similar classification error rates while gen-
erating a model whose complexity in terms of the number of parameters was
reduced by more than 60% compared to [23]. In fact, for two hidden layers, the
rate of remaining weights after pruning dropped to one tenth (43% vs 5%); for
three and four hidden layers, around half as much (62%-32%, 60%-27%); for five
hidden layers, it dropped to three tenth (44%-13%); and for six hidden layers,
the number of remaining weights dropped to one third (54%-19.8%). In conse-
quence, in this test ODF2NNA showed an outstanding capacity of reducing deep
learning models and robustness even when the neural network architecture is
heavily modified. Experiment 3 endorsed this statement too, since we managed
to reduce the LeNet 300-100’s number of parameters from 266000 to 5000, in
other words, the amount of parameters dropped by 98% without worsening the
performance in prediction. Experiment 3 also showed that ODF2NNA is effec-
tive not only finding a new optimized model from an original one given a learning
task, but also highly efficient due to the low amount of iterations to complete
the retraining phase (#Re-Iters in Table 5) compared to other approaches.

Experiment 4 showed that Spambase (Figure 7a) and Poker (Figure 7b) are
two examples which illustrate how effective pruning and retraining a model can
be, increasing by more than 15%, in the case of Spambase, and by more than
40% for certain values of ϵ, in the case of Poker, the accuracy with respect to
the original model. Besides, we reduced the number of parameters by more
than 35% for Spambase. As a result, we obtained, for all ϵ ∈ (0, 1], a much
more effective and efficient refined model to solve the Spambase learning task
compared to the original model. For Poker, ODF2NNA reduced the number
of parameters by more than 90%. Nonetheless, for ϵ = 0.7, the refined model
underperforms the original one, in other words, there are some ϵ values which
generate a refined model less accurate than the original model. Therefore, it is
clear that ϵ ought to be carefully chosen.

21



(a) Spambase (b) Poker

Figure 7: Accuracy performance vs. N. Parameters

We finished the classification phase with Experiment 5, in which we faced
two large-scale learning tasks: Hepmass and Higgs classification problems. In
the case of Hepmass, the original model, which had more than 3.7 million of
parameters, obtained an 81% of accuracy in prediction. We found that, for
ϵ = 1e− 5, the number of parameters was reduced by almost 40% (2.28 million
of parameters) and the accuracy was increased by more than 4.5% (85.6% in
test). For the Higgs dataset, we used the architecture proposed in [33] in order
to compare the ODF2NNA results and the original ones. A 93% of accuracy in
prediction, reducing in more than 23% the number of parameters, and a 0.93
in AUC is obtained, compared to the 0.885 that can be found in the original
paper. In other words, ODF2NNA is effective in large-scale learning tasks too.

On the other hand, regression results are similar to classification ones. We
can notice the importance of retraining the model again, obtaining in almost
every case smaller mean square error values if a light retraining is applied.

The complexity of the original models for regression problems is reasonable
(they are not oversized), taking into account their acceptable original perfor-
mance in contrast to the poor MSE results obtained after the simplification
procedure without retraining. This can be considered in the classification ex-
amples given above, too. We found many examples where our construction
method generates models with less than 70% of the original number of param-
eters without affecting their performance in prediction. That is the case of
Ailerons (Figure 8a), House (Figure 8b) and Compactiv (Figure 9a).

22



(a) Ailerons (b) House

Figure 8: MSE performance vs. N. Parameters

(a) Compactiv (b) Pole

Figure 9: MSE performance vs. N. Parameters

Again, we emphasize the necessity of carefully choosing the value of ϵ. In
our sensitivity study we can see again that, for some values of the pruning
parameter, it is possible not only to maintain the original MSE in the refined
model but also to improve it. That is the case of ϵ = 0.01 in Pole (MSE value
of 7·10−6 versus 6.35·10−5 and 80% of reduction of the number of parameters)
(Figure 9b).

Finally, it could seem reasonable to think that the refining method could be
used only to find the optimal topology, namely, the number of layers and unit
distribution over them (most challenging parameters for the data scientist),
and that a model with this topology built from scratch would reach the same
performance as the refined model. However, our experiments show that this is
not true at least with the currently available training algorithms.

23



We have selected Spambase (classification) and Pole (regression), two datasets
where, for certain values of ϵ, the refined method outperforms the original one.
In the case of Spambase, the optimal number of parameters after pruning is
around 800 (35.82% reduction compared to the original model). We have built
a neural network with 800 parameters, Adam optimizer and 240 epochs and
early stopping with patience of 20 (the same hyper parameters as the original
model). We obtained 75% of accuracy in prediction, which is smaller than the
refined one (92%). On the other hand, for Pole, we built a model with 815
parameters (the optimal number of parameters as we can see in the above sec-
tion), Adam optimizer and 1000 epochs and early stopping with patience of
50 (same parameters as the original model) obtaining a mean squared error of
6.35·10−5, more than ten times greater than the MSE attained with the refined
model (5.66·10−6). Similar results have been obtained on other classification
and regression problems.

As a result, our refined method is not only guiding us in the construction
of more efficient models but also it is generating more accurate neural networks
compared to others conceived from the beginning. The high performance of
this –longer path– approach may be supported by the fact that effective trans-
fer knowledge is being achieved by composing a final model from the most
meaningful components of a larger and well-performing initial model.

In summary, based on the empirical results, we believe that optimizers de-
rived from back propagation are not powerful enough to find an optimal function
given a neural network topology (which represents a functional subspace). In
consequence, methods optimizing dense feed-forward neural networks, like the
one we have proposed, might be the best way to lead the data scientist to design
efficient and effective deep neural networks for a learning task.

6 Conclusion

Deep learning models have been widely used during the last decade due to their
learning and generalization capacities. However, these neural networks entail
significant energetic costs and are hard to design efficiently. In this paper, we
propose ODF2NNA, a new building method for feed-forward neural networks
based on a three-step process: constructing a general model to address the
learning task, train it properly and refine the model by finding the useful units
per layer, removing the irrelevant ones (according to a parameter ϵ) and finally,
lightly retraining the new model. The proposal has been evaluated through a
thorough empirical study on both classification and regression problems, includ-
ing small, medium and large-scale datasets and learning tasks and comparing
with 15 different techniques for pruning feed-forward neural networks. The
experimental results confirm that simpler and more accurate models can be ob-
tained. So the proposed method does not only allow to define effective topologies
but drives to build well-performing neural networks based on knowledge transfer
from relevant subnetworks.

24



Acknowledgment

This research has been partially supported by the Spanish Ministry of Economy,
Industry and Competitiveness (TIN2016-81113-R and PID2020-118224RB-I00)
and the Industry Andalusian Council (Consejeŕıa de Transformación Económica,
Industria, Conocimiento y Universidades de la Junta de Andalućıa, P18-TP-
5168), with the cofinance of the European Union (FEDER).

References

[1] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with
deep convolutional neural networks, Commun. ACM 60 (6) (2017) 84–90.
doi:10.1145/3065386.
URL https://doi.org/10.1145/3065386

[2] A. Graves, J. Schmidhuber, Framewise phoneme classification with
bidirectional lstm and other neural network architectures, Neu-
ral Networks 18 (5) (2005) 602 – 610, iJCNN 2005. doi:https:

//doi.org/10.1016/j.neunet.2005.06.042.
URL http://www.sciencedirect.com/science/article/pii/

S0893608005001206

[3] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, P. Kuksa,
Natural language processing (almost) from scratch (2011). arXiv:1103.

0398.

[4] S. Han, J. Pool, J. Tran, W. J. Dally, Learning both weights and connec-
tions for efficient neural networks (2015). arXiv:1506.02626.

[5] E. Strubel, A. Ganesh, A. McCallum, Energy and policy considerations
for deep learning in nlp, Association for Computational Linguistics (2019)
3645–3650.

[6] Passalis, N., Tzelepi, M. & Tefas, A. Chapter 8 - Knowledge distillation.
Deep Learning For Robot Perception And Cognition. pp. 165-186 (2022),
https://www.sciencedirect.com/science/article/pii/B9780323857871000130

[7] J. Siestma, R. J. Dow, Creating artificial neural networks that generalize 4
(1991) 67–79.

[8] S. J. W. Y. e. a. Zeng, X., A sensitivity-based approach for pruning archi-
tecture of madalines, in: Neural Comput and Applic, Vol. 18, 2009.

[9] Y. LeCun, J. S. Denker, S. A. Solla, Optimal brain damage, in: D. S.
Touretzky (Ed.), Advances in Neural Information Processing Systems 2,
Morgan-Kaufmann, 1990, pp. 598–605.
URL http://papers.nips.cc/paper/250-optimal-brain-damage.pdf

25

https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
http://dx.doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
http://www.sciencedirect.com/science/article/pii/S0893608005001206
http://www.sciencedirect.com/science/article/pii/S0893608005001206
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2005.06.042
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2005.06.042
http://www.sciencedirect.com/science/article/pii/S0893608005001206
http://www.sciencedirect.com/science/article/pii/S0893608005001206
http://arxiv.org/abs/1103.0398
http://arxiv.org/abs/1103.0398
http://arxiv.org/abs/1506.02626
http://papers.nips.cc/paper/250-optimal-brain-damage.pdf
http://papers.nips.cc/paper/250-optimal-brain-damage.pdf


[10] B. Hassibi, D. G. Stork, G. J. Wolff, Optimal brain surgeon and general
network pruning, in: IEEE International Conference on Neural Networks,
1993, pp. 293–299 vol.1.

[11] X. Dong, S. Chen, S. J. Pan, Learning to prune deep neural networks via
layer-wise optimal brain surgeon (2017). arXiv:1705.07565.

[12] Y. Guo, A. Yao, Y. Chen, Dynamic network surgery for efficient dnns
(2016). arXiv:1608.04493.

[13] A. P. Engelbrecht, A new pruning heuristic based on variance analysis
of sensitivity information, Trans. Neur. Netw. 12 (6) (2001) 1386–1399.
doi:10.1109/72.963775.
URL https://doi.org/10.1109/72.963775

[14] M. Hagiwara, A simple and effective method for removal of hidden units
and weights, Neurocomputing 6 (2) (1994) 207–218, backpropagation,
Part IV. doi:https://doi.org/10.1016/0925-2312(94)90055-8.
URL https://www.sciencedirect.com/science/article/pii/

0925231294900558

[15] K. Stanley, J. Clune, J. Lehman, R. Miikkulainen, Designing neural
networks through neuroevolution, Nature Machine Intelligence 1 (1) (2019)
24-35 doi:10.1038/s42256-018-0006-z.
URL https://www.nature.com/articles/s42256-018-0006-z/

[16] M. Augasta, T. Kathirvalavakumar, A novel pruning algorithm for opti-
mizing feedforward neural network of classification problems, Neural Pro-
cessing Letters 34 (2011) 241–258.

[17] H.-J. Xing, B.-G. Hu, Two-phase construction of multilayer perceptrons
using information theory, IEEE Transactions on Neural Networks 20 (4)
(2009) 715–721. doi:10.1109/TNN.2008.2005604.

[18] S. Han, H. Mao, W. J. Dally, Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding (2016).
arXiv:1510.00149.

[19] F. Manessi, A. Rozza, S. Bianco, P. Napoletano, R. Schettini, Automated
pruning for deep neural network compression, in: 2018 24th International
Conference on Pattern Recognition (ICPR), 2018, pp. 657–664. doi:10.

1109/ICPR.2018.8546129.

[20] H. Guo, S. Li, B. Li, Y. Ma, X. Ren, A new learning automata-based
pruning method to train deep neural networks, IEEE Internet of Things
Journal 5 (5) (2018) 3263–3269. doi:10.1109/JIOT.2017.2711426.

[21] D. Blalock, J. J. G. Ortiz, J. Frankle, J. Guttag, What is the state of neural
network pruning? (2020). arXiv:2003.03033.

26

http://arxiv.org/abs/1705.07565
http://arxiv.org/abs/1608.04493
https://doi.org/10.1109/72.963775
https://doi.org/10.1109/72.963775
http://dx.doi.org/10.1109/72.963775
https://doi.org/10.1109/72.963775
https://www.sciencedirect.com/science/article/pii/0925231294900558
https://www.sciencedirect.com/science/article/pii/0925231294900558
http://dx.doi.org/https://doi.org/10.1016/0925-2312(94)90055-8
https://www.sciencedirect.com/science/article/pii/0925231294900558
https://www.sciencedirect.com/science/article/pii/0925231294900558
https://www.nature.com/articles/s42256-018-0006-z/
https://www.nature.com/articles/s42256-018-0006-z/
https://www.nature.com/articles/s42256-018-0006-z/
http://dx.doi.org/10.1109/TNN.2008.2005604
http://arxiv.org/abs/1510.00149
http://dx.doi.org/10.1109/ICPR.2018.8546129
http://dx.doi.org/10.1109/ICPR.2018.8546129
http://dx.doi.org/10.1109/JIOT.2017.2711426
http://arxiv.org/abs/2003.03033


[22] S. Han, J. Pool, J. Tran, W. J. Dally, Learning both weights and connec-
tions for efficient neural networks (2015). arXiv:1506.02626.

[23] Y. Guo, A. Yao, Y. Chen, Dynamic network surgery for efficient dnns
(2016). arXiv:1608.04493.

[24] Stanley, K. & Miikkulainen, R. Evolving Neural Networks Through
Augmenting Topologies. Evolutionary Computation. 10, 99-127 (2002),
http://nn.cs.utexas.edu/?stanley:ec02

[25] Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y., Tan, J., Le, Q.
& Kurakin, A. Large-Scale Evolution of Image Classifiers. Proceedings Of
The 34th International Conference On Machine Learning. 70 pp. 2902-2911
(2017,8,6), https://proceedings.mlr.press/v70/real17a.html

[26] Real, E., Aggarwal, A., Huang, Y. & Le, Q. Regularized Evo-
lution for Image Classifier Architecture Search. Proceedings Of The
AAAI Conference On Artificial Intelligence. 33, 4780-4789 (2019),
https://ojs.aaai.org/index.php/AAAI/article/view/4405

[27] Liu, Y., Sun, Y., Xue, B., Zhang, M., Yen, G. & Tan, K. A Survey on
Evolutionary Neural Architecture Search. IEEE Transactions On Neural
Networks And Learning Systems. pp. 1-21 (2021)

[28] Lorenzo, P., Nalepa, J., Kawulok, M., Ramos, L. & Pastor, J. Particle
Swarm Optimization for Hyper-Parameter Selection in Deep Neural Net-
works. Proceedings Of The Genetic And Evolutionary Computation Con-
ference. pp. 481-488 (2017), https://doi.org/10.1145/3071178.3071208

[29] Capra, M., Bussolino, B., Marchisio, A., Masera, G., Martina, M. &
Shafique, M. Hardware and Software Optimizations for Accelerating Deep
Neural Networks: Survey of Current Trends, Challenges, and the Road
Ahead. IEEE Access. 8 pp. 225134-225180 (2020)

[30] Ding, Y., Wu, Y., Huang, C., Tang, S., Wu, F., Yang,
Y., Zhu, W. & Zhuang, Y. NAP: Neural architecture
search with pruning. Neurocomputing. 477 pp. 85-95 (2022),
https://www.sciencedirect.com/science/article/pii/S0925231221018361

[31] Bian, Y., Song, Q., Du, M., Yao, J., Chen, H. & Hu, X. Subarchitecture
Ensemble Pruning in Neural Architecture Search. IEEE Transactions On
Neural Networks And Learning Systems. pp. 1-9 (2021)

[32] Liang, T., Glossner, J., Wang, L., Shi, S. & Zhang, X.
Pruning and quantization for deep neural network acceler-
ation: A survey. Neurocomputing. 461 pp. 370-403 (2021),
https://www.sciencedirect.com/science/article/pii/S0925231221010894

[33] Baldi, P., Sadowski, P. & Whiteson, D. Searching for exotic particles in
high-energy physics with deep learning. Nature Communications. 5, 4308
(2014,7), https://doi.org/10.1038/ncomms5308

27

http://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1608.04493

	Introduction
	Previous work
	Proposal
	ODF2NNA
	Extracting useful units
	Building and retraining the refined model

	Empirical Evaluation
	Classification experiments
	Experiment 1: Well-known datasets
	Experiment 2: Modifying the number of layers
	Experiment 3: LeNet300-100
	Experiment 4: Other UCI datasets
	Experiment 5: Large-scale dataset

	Regression

	Empirical result analysis and Discussion
	Conclusion

