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Abstract

Graph Neural Networks (GNNs) are powerful in learning rich network rep-
resentations that aid the performance of downstream tasks. However, recent
studies showed that GNNs are vulnerable to adversarial attacks involving
node injection and network perturbation. Among these, node injection at-
tacks are more practical as they don’t require manipulation in the existing
network and can be performed more realistically. In this paper, we propose
a novel problem statement – a class-specific poison attack on graphs in which
the attacker aims to misclassify specific nodes in the target class into a dif-
ferent class using node injection. Additionally, nodes are injected in such
a way that they camouflage as benign nodes. We propose NICKI, a novel
attacking strategy that utilises an optimization-based approach to sabotage
the performance of GNN-based node classifiers. NICKI works in two phases
– it first learns the node representation and then generates the features and
edges of the injected nodes. Extensive experiments and ablation studies on
four benchmark networks show that NICKI is consistently better than four
baseline attacking strategies for misclassifying nodes in the target class. We
also show that the injected nodes are properly camouflaged as benign, thus
making the poisoned graph indistinguishable from its clean version w.r.t var-
ious topological properties.
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1. Introduction

The network is often used as a simple abstraction of a complex system to
solve various real-world tasks such as node classification (Kipf and Welling,
2017; Hamilton et al., 2017), link prediction (Kipf and Welling, 2016) and
community detection (Jin et al., 2019). Recent studies have mainly focused
on obtaining a rich representation of networks using graph representation
learning (GRL) that further improves the performance of the downstream
tasks. Of late, graph neural networks (GNNs) have dominated the literature
of GRL by showing remarkable performance in tasks such as node classifica-
tion. With the increasing usage of GNNs, another body of literature (Zügner
et al., 2018; Dai et al., 2018; Sun et al., 2020) alerted their limitations by
showing how they are vulnerable to adversarial attacks on graphs.

Adversarial attacks on graphs. Adversarial attacks on graph em-
bedding algorithms are challenging due to their discrete and combinatorial
nature (Bojchevski and Günnemann, 2019). The majority of studies on ad-
versarial graph attacks assume that the attacker gains access to an existing
node and then manipulates its adjacent edges (Zügner et al., 2018; Dai et al.,
2018). If the network is attributed, then the features of the corresponding
nodes are also manipulated. The attack is generally carried out in a restricted
setting, limiting the number of perturbations allowed. A few studies argued
that such an attacking strategy is infeasible as it requires a high authority
to compromise an existing node (e.g., a user account in a social network)
(Zügner et al., 2018). Recent studies introduced a new setting wherein the
attacker injects new nodes into the network and performs network pertur-
bations restricted to them (Wang et al., 2018; Sun et al., 2020), which is
more realistic as the attacker would have complete command on the injected
nodes. For instance, injecting a new node into social networks is equivalent to
creating a fake user profile, which is comparatively easier than compromising
an existing user account.

Evasion vs poison attacks. Graph adversarial attacks can be classified
into two broad categories – evasion attack and poison attack. In an evasion
attack (Dai et al., 2018), the attack takes place on the test data; this is
in contrast to the poison attack, which makes changes to the training data
(Zügner and Günnemann, 2019; Bojchevski and Günnemann, 2019). Once
poisoned, the graph is trained again, which requires solving a bi-level opti-
mization function, making the poison attack more difficult than the evasion
attack. Due to the dynamic nature of networks like social networks and
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transaction networks, graph poisoning attack seems realistic and challenging
since these networks require models to be retrained more frequently as new
data appears over time.

Contribution I: Class-specific network poisoning – A novel prob-
lem statement. Our attack aims to misclassify specific target class nodes
into a different class using node injection. We call this different class our base
class. Many real-world scenarios back such an attack – (i) Misguiding any
fraud detection algorithm in a two-class network of transactions with classes
denoting ‘fraudulent’ and ‘legitimate’ users. The goal of the attacker would
be to get fraudulent users labelled as legitimate. (ii) Misclassifying low credit
users to high credit ones in a network where user relationships are leveraged
for credit risk assessment. (iii) Injection of spies by a counter-terrorism squad
into a network of ‘terrorists’, ‘civilians’ and ‘soldiers’ so as to baffle the node
classifier in identifying the spies in the ‘terrorist’ target class.

Shafahi et al. (2018) defined a similar problem statement for the image
domain which works only for continuous spaces. However, we overcome the
challenge of discrete space in graph and introduce a novel optimisation based
method. During network poisoning, it is equally important that an injected
node and an existing node look alike so that the defender won’t trivially spot
the attacker node. To address this, we also take measures to ensure that the
injected nodes replicate both the topological structure as well as the features
of the nodes present in the base class. This eventually helps in polarising the
target nodes into the base class. Continuing with the above examples, in the
transaction network, the attacking users will be disguised as legitimate users
(base class) and make the model misclassify fraudulent users as legitimate.

Contribution II: NICKI – A novel graph poisoning model. We
propose NICKI, an optimization-based node injection approach to hinder the
class-specific network poisonoing task within a budget constraint. We further
provide a method to hide the attacker nodes under the hood of base class so
as to confuse the annotator and the node classifier

Contribution III: Extensive evaluation. We demonstrate the efficacy
of NICKI on different datasets – discrete and continuously attributed, small
and medium scale. NICKI outperforms four network poisoning methods with
significant margins with up to 42% drop in node classification accuracy even
with tighter constraints. We empirically show the working of our hiding
module by studying the generated features and edges, and evaluating them
under robust models and homophily defenders.
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Reproducibility. The source codes and datasets and other execution-
related information can be found at https://github.com/rahulk207/nicki.

2. Related Work

In general, deep learning algorithms have been shown to be vulnerable to
adversarial attacks (Goodfellow et al., 2015; Jia and Liang, 2017). In graph
learning, GNNs have achieved fascinating results in a variety of graph-based
tasks, such as node classification (Kipf and Welling, 2017; Hamilton et al.,
2017; Veličković et al., 2017; Xu et al., 2019b,a), drug design (Jiang et al.,
2020) and social recommendation (Ying et al., 2018; Fan et al., 2019). Of late,
various studies (Zügner et al., 2018; Dai et al., 2018; Zügner and Günnemann,
2019; Bojchevski and Günnemann, 2019; Sun et al., 2020; Wang et al., 2020)
pointed out that GNNs too are susceptible to adversarial attacks, such as
their counterparts in the vision and language domains.

Adversarial attack on graphs. Adversarial attack on graphs has re-
cently been explored to show the robustness of GNNs. Dai et al. (2018)
proposed different attacking strategies on both node and graph classifica-
tion tasks. These strategies include a greedy attack based on gradients
(GradArgmax), a genetic algorithm-based attack (GeneticAlg), and a hi-
erarchical Q-learning attack (RL-S2V). Zügner et al. (2018) introduced ad-
versarial attacks on attributed graphs by following a greedy approximation
scheme while making unnoticeable perturbations. Zügner and Günnemann
(2019) used a meta-learning-based attack and showed a significant perfor-
mance drop in classification accuracy even with small perturbations. In con-
trast to the above methods which attack node classifiers, Bojchevski and
Günnemann (2019) attempted to attack unsupervised embedding algorithms
like Deepwalk Perozzi et al. (2014) and node2vec Grover and Leskovec (2016)
by perturbing the adjacency matrix. All the aforementioned attacks make
a common assumption that the attacker has access to the existing nodes
in the graph; therefore, the attacker can perturb edges/features associated
with those nodes. Gaining complete access to already existing nodes is a
hard assumption and impractical. Therefore, there have been recent studies
(Wang et al., 2018; Sun et al., 2020; Wang et al., 2020), which attack via
node injection.

Node injection attacks. Owing to the more realistic setting of attack,
node injection attacks have gained popularity in the adversarial learning
paradigm. Similar to RL-S2V, NIPA (Sun et al., 2020) used hierarchical Q-
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learning to generate labels and edges of the injected nodes. AFGSM (Wang
et al., 2020) provides an approximate closed-form solution for generating new
features and edges of the injected nodes. AFGSM is a scalable method, which
works well on both small and large-scale graphs and has shown performance
at par, if not improved, against methods proposed in Zügner et al. (2018);
Zügner and Günnemann (2019) when changed according to node injection
strategies. G-NIA (Tao et al., 2021) introduces an attack with the extreme
setting of a single-node injection using an optimization-based method and
can even work with continuous attributed graphs, unlike previous methods.
Later, TDGIA (Zou et al., 2021) utilizes a topological edge selection strategy
and a smooth feature optimization objective to generate new edges and fea-
tures of the injected nodes, respectively. Recently, there has been a study in
node injection attacks which focuses on homophily preservation. Fang et al.
(2022) is a genetic algorithm based attack, trying to make unnoticeable per-
turbations in both structural and feature domains. The methods proposed
by Chen et al. (2022) and Tao et al. (2022) are developed as plug-ins on al-
ready existing graph injection attacks to improve their unnoticeability. With
respect to the time of perturbation, an adversarial attack can be classified
into two types – evasion and poison attacks. In an evasion attack (Dai et al.,
2018), the attack takes place on the test graph after the model has been
trained. On the other hand, poison attack (Zügner and Günnemann, 2019;
Bojchevski and Günnemann, 2019) occurs on the training graph, and there-
fore, is comparatively harder to solve because the graph learning protocol is
compromised due to the attack. Both poison (Wang et al., 2020; Sun et al.,
2020) and evasion (Tao et al., 2021; Zou et al., 2021; Fang et al., 2022; Chen
et al., 2022; Tao et al., 2022) attacks have been studied for node injection.

Here we propose a node-injection-based poison attacking strategy that
is capable of learning both discrete and continuous attributes through opti-
mization. Unlike existing methods which mostly attack specific nodes, our
attack is class-specific, attempting to misclassify nodes present in a given
target class. A similar type of attack has been studied in the vision domain
(Shafahi et al., 2018).

3. Preliminaries

Let G(V,A,X) be an undirected, unweighted and attributed network,
whereA ∈ {0, 1}N×N is the adjacency matrix of the graph andX ∈ {0, 1}N×D

is the feature matrix such that XT = [x1, x2, . . . , xN ], where xi ∈ {0, 1}D is
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Table 1: Useful notations used throughout the paper.

Notation Denotation

G = (V,A,X) Original graph
G′ = (V ′, A′, X ′) Poisoned graph

L Set of class labels
V Set of original nodes
VL Set of labelled nodes
VA Set of attacker nodes
Vb Set of base class nodes (b de-

notes the base class)
X ′ Poisoned featured matrix
k Number of injected attacker

nodes
∆e,∆x Budgets for edge and feature

perturbations
ZA Latent representation of at-

tacker nodes
Ce, Cx Candidate edges and features

set
Fe, Fx Multilayer Perceptrons
Se, Sx Scored edges and features

the D-dimensional feature vector of ith node. Let V be the set of nodes with
|V |=N and VL (VL ⊂ V ) be the set of labelled nodes where each node u ∈ VL

is assigned a class li such that li ∈ L = {l1, l2, . . . , l|L|}. In semi-supervised
node classification, the goal of a classifier g : V → L is to correctly classify
the nodes present in V \VL. The objective of the node classification task can
then be defined as:

θ′ = argmin
θ

∑
v∈VL

L(gθ(G, v), l(v)) (1)

Here θ is the set of parameters for the classifier g, l(v) is the ground-truth
class of node v, and L is the node classification loss (typically a cross-entropy
function).

Table 1 summarizes useful notations. We define a few important termi-
nologies below:

Definition 3.1 (Attacker Nodes). Given an original network G, a set of
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attacker nodes VA are injected by an attacker A to poison the original network
so as to deteriorate the performance of the downstream node classifier g.

Definition 3.2 (Target Class). Given the original network G and a set of
labels L, the target class lt ∈ L is a class whose associated nodes are targeted
by an attacker A.

Definition 3.3 (Class-specific Poison Attack). Given an original network G,
a target class lt, attacker A injects nodes VA along with their vicious features
and edges to generate a poisoned network G′. The node classifier g is trained
on G′. The aim of the attacker is to let g misclassify the nodes in the target
class as much as possible.

4. Problem Formulation

In a network poison attack, we inject VA, a set of k attacker nodes. We

then obtain a poisoned graph G′(V ′, A′, X ′) with V ′ = V ∪VA, A
′ =

[
A B
BT C

]
and X ′ =

[
X
XA

]
. Here B is a submatrix containing the links between nodes

in VA and V , and C contains internal edges among nodes in VA. XT
A =

[xa1 , xa2 , . . . , xak ] denotes the feature matrix of the attacker nodes. Note
that we start with B = 0, C = I, and XA = 0 and use the obtained G′ as
input to our framework pipeline. We iteratively update G′.

Problem 1 (Node miscalssification). The goal is to learn B, C and XA such
that g misclassifies nodes in Vt ⊂ V having class lt. The objective function of
our poison attack can be defined as a bi-level optimization problem as follows:

max
B,C,XA

∑
v∈Vt

I(gθ′(G′, v) ̸= lt) (2)

: ∥A′∥0 − ∥A∥0 ≤ 2∆e, ∥X ′∥0 − ∥X∥0 ≤ ∆x (3)

Here I is the indicator function. Equation 2 maximizes the number of mis-
classified nodes belonging to the target class. θ′ are the optimal parameters
we receive from Equation 1, by tuning the classifier g on the poisoned graph
G′. Equation 3 provides an upper bound to the total number of updates in
B, C and XA. Note that we do not modify existing adjacency matrix A and
features X. Since ours is a poisoning attack, the evaluation of the model is
conducted after training g on the poisoned graph.
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Figure 1: A Schematic diagram of NICKI. The two modules, Inference and Generator,
run in series to produce the poisoned graph G′(V ′, A′, X ′). The Surrogate is trained at
every iteration to solve the bi-level optimization, and the loss thus obtained is minimized
using gradient descent.

The goal of a poison attack is to infect the training set, thereby making
an assumption that all the attacker nodes in VA also belong to the training
set. However, an attacker does not have control over labelling, which poses a
major challenge. If not accounted for, the attacker nodes have a high chance
of being detected as an outlier and consequently, removed from the network.
We address this challenge by making the adversaries belong to a benign class.

Problem 2 (Hiding attacker nodes). The goal is to camouflage the attacker
nodes VA into a class lb which we call our “base class”. The objective can be
defined as follows:

argmin
λ

Imλ(VA, Vb) (4)

Here Vb denotes the set of nodes in the base class. Imλ measures the visual
distance between VA and Vb with λ denoting a set of parameters. Here vi-
sual distance is used to quantify the closeness of both feature and topological
properties of the given two sets of nodes.

The above formulation restricts the nodes in VA to look similar to those
in Vb. This would help mislead the annotator in labelling the attacker nodes
as the base class.

5. Proposed Framework

Here we describe our proposed attack framework, NICKI (Node Injection
for Class-specific NetworK PoIsoning). The attack takes place in a poison
setting, i.e., the node classifier would misclassify nodes in the target class on
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the poisoned graph. The proposed model, as shown in Figure 1, is a two-part
network – (i) inference model, and (ii) generator model. The inference model
is a graph encoder which learns a latent representation for each attacker node
injected in the graph. The generator model comprises two modules that run
sequentially to construct the poisoned graph – (i) a scoring module which
scores each edge and feature such that their combination results in misclassi-
fication, and (ii) a top-m selector which chooses the best edges/features from
scores generated by the scoring module.

The top-m module is used to ensure a differentiable method to impose
two constraints on the number of perturbations – ∆e and ∆x, which are
maximum number of permissible changes in edges and features, respectively.

Even though we impose a budget constraint, our injected attacker nodes
could be exposed and subsequently be removed from the graph. Therefore,
we also propose sophisticated hiding techniques, which camouflage’s attacker
nodes with the nodes of a chosen base class. Once we have the attacker
nodes labelled as lb, we leverage it to misclassify our target nodes into lb.
We, therefore, update Equation 2 as:

max
B,C,XA

∑
v∈Vt

I(gθ′(G′, v) = lb) (5)

Post hiding, we use Equation 16 to bring close the embeddings of attacker
nodes and base class nodes so that when the classifier is retrained on the
poisoned graph, the decision boundary in the embedding space would be
expected to rotate such that the attacker nodes are labelled as base class.
The target nodes being close to the attacker nodes would also be included in
the base class, resulting in misclassification.

5.1. Inference Model

For our implementation, we introduce an intermediate graphGP (V
′, AP , XP ),

with AP ∈ {0, 1}(N+k)×(N+k) and XP ∈ {0, 1}(N+k)×D defined as:

(AP )i,j =

{
A′

i,j, 0 ≤ i, j < N

1, otherwise
(6)

(XP )i,j =

{
X ′

i,j, 0 ≤ i < N, 0 ≤ j < D

1, otherwise
(7)
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We use AP and XP as two inputs to the inference model.
We use Graph Autoencoders (GAEs) Kipf and Welling (2016) to learn

a joint representation of AP and XP given by the latent variable Z which
is parameterized by a two-layer Graph Convolutional Network (GCN) as
follows:

Z = σ2(ÂPσ1(ÂPXPW
(0))W (1)) (8)

Here ÂP represents the normalized adjacency matrix, described as ÂP =
D̂− 1

2 (AP + In)D̂
− 1

2 , D̂ is a diagonal matrix with D̂ii =
∑

j(AP + In)ij, and

In is the nth-order identity matrix. W (l) denote the lth-layer weights of the
GCN. σ1 and σ2 are activation functions.

The inference model is essentially a GCN which propagates knowledge
through edges. Therefore, making all the candidate edges and features as 1s
in AP and XP , respectively (Equations 6 and 7) allows the attacker nodes to
indirectly have access to the entire graph during encoding. This eventually
results in more meaningful and useful latent embeddings for the attacker
nodes.

5.2. Generator Model

Once we encode AP and XP into Z, our objective is to use the latent
representation of the attacker nodes ZA to generate both feature and edge
perturbations. This is done by using two modules – scoring and top-m se-
lector. The scoring module generates scores for each edge and feature in the
candidate set, defined as Ce and Cx, respectively. The top-m module enforces
the budget with a differentiable method and selects the edges and features
with the highest scores.

5.2.1. Scoring Module

We derive our set of candidate edges from the submatrices B and CU in
A′, where CU is the upper triangle of C not including the diagonal elements.
We define (Bij = 0 or Cij = 0) =⇒ eij ∈ Ce, where eij denotes an edge
between nodes i and j. On the other hand, all the attributes present in XA
constitute our candidate features. Therefore, xij ∈ XA ⇐⇒ xij ∈ Cx,
where xij denotes the jth feature entry for node i. The scoring of features
and edges is performed in series as described below:

ZA is fed to a Multilayer Perceptron (MLP) Fx as:

Sx = Fx(ZA), where ZA, Sx ∈ Rk×D (9)
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Here k is the number of attacker nodes, and Fx is a one-to-one mapping
with Sx representing the score for each candidate feature. Sx is then passed
through the top-m selector, which selects ∆x candidate values to be switched
to 1s. The following equation represents the same:

XA = TOPM∆x(Sx),where XA ∈ Rk×D (10)

where TOPM∆x(Sx) denotes top-m selector for selecting the top ∆x features
according to their scores. Once XA is generated, we use it to score the
candidate edges as follows:

Se = Fe(X
′ ⊙XA), where Se ∈ R(k+N)×k (11)

Se = Se − {se} ∀e /∈ Ce (12)

where X ′ =

[
X
XA

]
, ⊙ denotes Vector-wise Dot-product for each pair of vec-

tors, se denotes the obtained score for an edge e, and Fe is an MLP. Equation
11 is used to score all candidate edges by element-wise multiplying the fea-
tures of the pair of nodes connecting each edge. Post scoring, top-m selector
is used to select ∆e edges as follows:

Te = TOPM∆e(Se), where Te ∈ Rk(k/2+N)×1

Te is further reshaped to matrix form A′ by concatenating with original
adjacency matrix A.

We use a GCN-based model to evaluate our attack’s performance. We
call this our surrogate model which aims to mimic the original classifier g.

5.2.2. Top-m Selector

Given a vector s = [s1, s2, s3, . . . , sn] of n scores, the goal of top-m selector
is to provide a differentiable method, which samples a binary vector t of size
n with exactly m 1s denoting the m-highest scores in s.

We adapt Relaxed Subset Sampling Xie and Ermon (2019) for our use
case. The algorithm aims to iteratively select the ith maximum element in
the ith iteration. In every iteration, first the score vector is updated as:

ŝi+1 = ŝi + log(1− pi); with ŝ0 = log s+Gumbel(0, 1, n)

where Gumbel(0, 1, n) is an n-dimensional vector sampled from the gum-
bel distribution. The maximum score is then selected from the updated

11



Algorithm 1: TOP-m Selector

Input : s = [s1, s2, s3...sn],m, τ
Output: Relaxed k-hot vector t = [t1, t2, t3, ...tn]

1 ŝ = log s+Gumbel(0, 1, n)
2 p = [0, 0, ...0](n− times)
3 t = [0, 0, ...0](n− times)
4 for i← 1 to m do
5 ŝ = ŝ+ log(1− p)
6 p = softmax(ŝ/τ)
7 t = t+ p

8 end

vector using tempered softmax to obtain a probability distribution pi =

{p1i , p2i , ...pni } where, pji = e(ŝ
j
i
/τ)∑

r e
(ŝr

i
/τ) . Here pji denotes the probability of the

jth element of our input vector s being the ith maximum element. τ is
the temperature parameter. After m iterations, we obtain our resultant bi-
nary vector t =

∑m
i=1 pi. Algorithm 1 shows the pseudo-code of the Top-m

module.

5.3. Hiding Attackers

We define a hiding module to solve Problem 2 (Section 4) by camouflaging
the attacker nodes into a base class lb, which allows them to be both included
and labelled during the training process. We achieve the same by initialising
the nodes in VA with some pretend edges and features, assuring that they
belong to the base class lb. Our hiding framework is applied before the attack
framework (Figure 2). Therefore, it can be understood as a pre-processing
strategy.

5.3.1. Pretend Edges

Our goal is to make any node i ∈ VA look like it belongs to Vb. To
achieve this, we sample di, the degree of node i from the power-law degree
distribution of nodes in Vb, which we obtain by fitting their Complementary
Cumulative Distribution Function (CCDF). If i ∈ VA, we add a certain frac-
tion of di edges from i to nodes in Vb. The connections are made based on the
Barabási–Albert model (Barabási and Albert, 1999), where the probability
of connection is directly proportional to the degree of nodes in Vb. We repeat
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the process for every node i ∈ VA and add all such pairs (i, j), where j ∈ Vb,
to our final set of pretend edges, PE. Note that we sample di such that
di > dµ, where dµ is the average degree of the input graph. This is to ensure
that we have enough edges to connect with the nodes in Vb.

5.3.2. Pretend Features

For pretend features, our objective is to initialise all u ∈ VA with features
xu ∈ XP such that u pretends to belong to Vb. All nodes belonging to the
same class ought to have some feature commonalities that differentiate them
from the nodes in other classes. The idea is to fit the features of nodes in lb
class to a distribution Pb(X), from which we can sample Xu, ∀u ∈ VA. We
achieve the same by using the Conditional VAE (CVAE) (Sohn et al., 2015))
architecture. In contrast to VAEs, CVAEs have their output conditioned on
li-class label which prevents repeating the training process for different base
classes. The CVAE objective can be formulated as,

L(ϕ, θ,X, li) = −KL(qϕ(z|X, li) ∥ pθ(z|li))
+ Eqϕ(z|X, li)[logpθ(X|z, li)] (13)

During testing or generative phase, we give our desired base class lb as li and
use the decoder to generate xu, ∀u ∈ VA. We stack all such x′

us to form
our pretend features matrix PF such that PF ∈ {0, 1}k×D. We sample the
features for each attacker node independently. Once we obtain our pretend
edges PE and pretend features PF , we replace and re-initialise the input to
our attack pipeline, A′ and X ′, as,

A′
i,j =


A′

i,j , 0 ≤ i, j < N

1 , (i, j) or (j, i) ∈ PE

0 , otherwise

(14)

X ′
i,j =

{
X ′

i,j , 0 ≤ i < N, 0 ≤ j < D

PF(i−N),j , otherwise
(15)

We use these matrices, A′ and X ′, as inputs to our inference model,
instead of what is defined in Section 4. Note that according to the definition
of Ce in Section 5.2.1, this also changes our candidate edge set as the obtained
pretend edges are to be masked from the attack pipeline as well.

Algorithm 2 shows the pseudo-code for NICKI.
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Algorithm 2: Attack Model

Input : Clean graph G(A,X), label set L, budgets ∆e,∆xA, base
class lb, target class lt, pre labeled set VL, HIDE

Output: Poisoned graph G(A′, X ′), and updated labeled set V ′
L

1 if HIDE then
2 Connect nodes in VA with base class nodes to hide.
3 Assign features to each node i ∈ VA from the distribution of

features in base class.
4 Update A and X with attacker nodes.

5 repeat
6 Compute embeddings of A,X using Equation 8.
7 Calculate scores for each candidate features as Sx ← Fx(ZA)
8 Select top scorers with a constraint on budget using TOP-m

Selector as described in Equation 10.
9 Update the feature matrix as X ′ ← [XT , XT

A]
T

10 Use updated features to generate candidate edges as
Se ← Fe(X

′ ⊙X ′)
11 Pass scores through TOPM module to get the updated adjacency

matrix as A′ ← reshape(TOPM∆e(Se))
12 Train the surrogate model from the updated Adjacency and

feature matrix Lm ← Surrogate(A′, X ′)
13 if HIDE then
14 Calculate change in feature using Equation 17

15 until iterations < Max iterations ;

5.4. Loss Function

We use average cross-entropy for misclassification and hiding feature loss.
For misclassification loss (Lm), we compare embeddings of attacker and mean
target class nodes as:

Lm =
k∑

i=1

−
∑D

j=1Qµtj logQij

k
(16)

where Qµt is the mean embedding (surrogate model) of the nodes belonging
to target class lt, and Qi is ith attacker node’s embedding (surrogate). While
in hiding feature loss (Lf ), we minimize the distance between matrices PF
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Figure 2: (a) Clean graph just after node injection. (b) Resultant graph post hiding
injected attacker nodes. The attacker nodes pretend to be in base class (yellow) using
pretend edges and features. (c) Graph after attack where new poison edges are introduced
along with pretend edges. Note that the attributes of attacker nodes have changed a little
owing to the regularization loss Lf .

and XA using cross-entropy as follows:

Lf = −
k∑

i=1

X̄i log P̄F i

k
(17)

where X̄i is the ith normalized feature vector of XA we obtain from the
generator module, and P̄F i is the corresponding normalized pretend feature
vector.

We train our adversarial attack network by minimising the following loss
function L,

L = Lm + αLf (18)

Note that α ̸= 0 when we employ our hiding framework.

5.5. Time Complexity

The model architecture constitutes GCNs, MLPs and top-m modules
with some time consumed by pre-processing in the hiding module. (i) For
a single-layer GCN, we need to compute Z = f(X,A) = σ(ÂXW (0)). If
Â ∈ RN×N , X ∈ RN×D and W (0) ∈ RD×H , then Z ∈ RN×H . The time
complexity of the matrix multiplication before the activation function σ can
be computed in O(ED +NDH), where E is the number of edges in matrix
A. The time complexity of executing an activation function is linear in the
size of input. Given an input x ∈ Rm1×m2 , a hidden layer h ∈ Rm2×m3 ,
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and an output layer o ∈ Rm3 , the complexity for a forward pass in an MLP
is simply the time to compute the matrix multiplication, i.e., O(m1m2m3),
with activation function executing in linear time on the input. The time
complexity of the top-m selector is m times the size of input, as it executes
tempered softmax at each iteration which runs in linear time. So given an
input x ∈ Rn, the time complexity would be O(mn). (ii) The complexity of
a 2-layer GCN in the inference model will take O(2(ED+ND2)). There are
two MLPs – Fx and Fe. The time complexity of Fx and Fe would beO(3kD2+
2kD) and O(5NkD2+6NkD), respectively. The time complexity of 2 top-m
selectors, TOPM∆x and TOPM∆e would be O(∆xkD) and O(∆ek(N + k)),
respectively.

Therefore, the overall complexity of NICKI is O(D(E + k(ND +∆x)) +
∆ek(N + k)).

6. Experiments

6.1. Datasets

We use four widely-used benchmark datasets for our experiments.
■ Cora (McCallum et al., 2000) is a citation network wherein nodes are

scientific papers, and edges indicate citation relationships among them. Each
node has a bag-of-word attribute vector obtained from processing the text
in the corresponding document. The set of publications is divided into 7
different classes.

■ Citeseer (Giles et al., 1998) is also a citation network, similar to Cora.
Here papers are divided into 6 classes.

■ PolBlogs (Adamic and Glance, 2005) is a network of political weblogs
in the US with nodes representing blogs and edges referring to hyperlinks
among blogs. Each blog has an associated political orientation, representing
its class. There are two classes - Democratic and Republican.

■ TheReddit (Hamilton et al., 2017) network contains posts represented
by nodes and edges showing post-to-post relationships. The nodes are divided
into 41 different classes representing the subreddit the corresponding posts
are part of. The attribute vector is obtained from the GloVe (Pennington
et al., 2014) word embedding on the title and comments. Table 2 shows the
statistics of the datasets.

We train GCN for node classification before and after graph poisoning
to study the performance of NICKI. The citation networks have discrete at-
tributes; therefore, showing our performance on them validates the working

16



Table 2: Network statistics. PolBlog is a featureless graph.

Dataset N |E| davg D |L|
Cora 2708 6632 4.898 1433 7

Citeseer 2110 3694 3.501 3703 6
PolBlogs 1086 9502 17.499 - 2
Reddit 10004 31754 6.348 602 41

of our top-m selector module. We convert them into undirected networks.
Polblogs is an attribute-less network, thus providing the efficacy of NICKI’s
malicious edge generation. The Reddit dataset has continuous attributes,
which shows NICKI’s adaptability to work on continuous attribute space. It
also contains large number of nodes, which checks our model’s scalability.

6.2. Baseline Methods

NICKI is a node injection based poison attack and hence, we choose base-
line attacking strategies based on two conditions – (i) poison, and (ii) node
injection. We compare NICKI against two heuristic and two recent methods.

■ Random. This attack follows the Erdos-Rényi model (Erdos et al.,
1960) for generating new edges. Each new edge is selected with probability
p = ||A||0/|V |2, which is the normalized total degree of G. The process
continues until the budget is exhausted. For feature generation, attributes
of existing nodes are averaged, and the resultant vector defines the attribute
of the attacker nodes.

■Preferential. The attack is based on Barabási–Albert model (Barabási
and Albert, 1999). Nodes are injected sequentially, and edges connecting the
new node to the rest are selected through preferential attachment. We follow
a feature generation procedure identical to that of a random attack.

■ NIPA. This is a node injection poison attack, which employs hier-
archical Q-learning to generate adversarial edges (Sun et al., 2020). The
adjacency matrix learnt by NIPA is used as it is. For attribute generation,
it takes an average over the feature vectors of pre-existing nodes and adds
some Gaussian noise to it. NIPA is a global attack, and therefore, we modify
the test set to contain nodes only belonging to the target class.

■ AFGSM. This is a greedy attack, which uses an approximate closed-
form solution for generating edges and attributes making it scalable w.r.t the
size of the network (Wang et al., 2020). Since AFGSM is a single-node target
attack, we modify it to suit our setting by measuring scores corresponding to
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each target node. We then sum the obtained scores corresponding to all the
target nodes followed by adversarial selection. Therefore, the perturbation
which has a higher total score is more likely to be chosen depending on the
budget. We train the adaptive variant of AFGSM since it trains the surrogate
dynamically during training, thus mimicking a poison attack.

Table 3: Accuracy of GCN-based node classification after adversarial attack, across varying
budgets. r controls the budget (Section 6.3). Red (blue) color represents the best (second
ranked) model. Lower value indicates better attack. Values within [.] in the first column
indicate the classification accuracy on clean graph. See Table 4 for the same using GAT
and GraphSAGE as node classifiers.

Dataset Method r = 0.03 r = 0.07 r = 0.10 r = 0.15

Cora
[0.8189]

Random 0.7911 0.8050 0.8078 0.7994
Preferential 0.7967 0.7911 0.8106 0.7939

NIPA 0.7632 0.7465 0.7716 0.7994
AFGSM 0.8161 0.7855 0.7827 0.7437
NICKI 0.6741 0.5070 0.4345 0.3983

NICKI (hide) 0.7409 0.7270 0.7103 0.7214

Citeseer
[0.7395]

Random 0.7474 0.7500 0.7553 0.7316
Preferential 0.7526 0.7605 0.7579 0.7342

NIPA 0.7500 0.7474 0.7447 0.7579
AFGSM 0.7421 0.7947 0.7421 0.7342
NICKI 0.6632 0.5632 0.5500 0.4526

NICKI (hide) 0.7131 0.7263 0.7316 0.7316

Polblogs
[0.9316]

Random 0.9203 0.9227 0.9034 0.8913
Preferential 0.9251 0.9275 0.9203 0.9300

NIPA 0.9058 0.8986 0.8551 0.8937
AFGSM 0.9420 0.9420 0.9203 0.9565
NICKI 0.8164 0.7657 0.7657 0.6522

NICKI (hide) 0.9109 0.9082 0.9034 0.8527

Reddit
[0.9348]

Random 0.9144 0.9125 0.9163 0.9240
Preferential 0.9183 0.9144 0.9144 0.9221

NIPA 0.9144 0.9240 0.9202 0.9259
AFGSM 0.8821 0.8460 0.8441 0.8536
NICKI 0.8954 0.7529 0.8213 0.7795

NICKI (hide) 0.9049 0.8935 0.9182 0.8631

6.3. Experimental Setup

To measure the performance of our model, we use the poisoned graph to
obtain the classification accuracy w.r.t nodes in the target class, and compare
the same with that of the clean graph. The lower the accuracy, the better
the attack. Note that we report the accuracy of the node classifier w.r.t only
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Table 4: We repeat the experiment shown in Table 3, but with GAT and GraphSAGE as
our node classifiers. We do not show the results of random and preferential models as they
are the worst among all. Values within [x, y] in the first column indicate the classification
accuracy on the clean graphs obtained from GAT (x) and GraphSAGE (y).

GAT GraphSAGE
Dataset Method r = 0.03 r = 0.07 r = 0.10 r = 0.15 r = 0.03 r = 0.07 r = 0.10 r = 0.15

Cora
[0.8134, 0.8078]

NIPA 0.7961 0.7701 0.7725 0.8144 0.7658 0.8006 0.7697 0.7950
AFGSM 0.8056 0.7313 0.8324 0.7452 0.7750 0.7486 0.8464 0.7928
NICKI 0.6500 0.6096 0.4266 0.5311 0.7806 0.6994 0.6441 0.6130

NICKI (hide) 0.7000 0.7331 0.7345 0.7288 0.7556 0.7640 0.7006 0.7853

Citeseer
[0.8000, 0.7947]

NIPA 0.8449 0.7506 0.7747 0.7755 0.7834 0.7224 0.7696 0.7807
AFGSM 0.8080 0.7242 0.7519 0.7727 0.7314 0.7010 0.7114 0.7424
NICKI 0.7325 0.5349 0.6211 0.3368 0.7377 0.6925 0.7010 0.6247

NICKI (hide) 0.7844 0.8062 0.7655 0.7558 0.7766 0.7726 0.7758 0.7635

Polblogs
[0.9444, 0.9444]

NIPA 0.8846 0.9502 0.8744 0.9329 0.8918 0.9005 0.8814 0.8472
AFGSM 0.9231 0.9151 0.9372 0.9425 0.9591 0.9599 0.9721 0.9264
NICKI 0.8155 0.8019 0.8406 0.7745 0.8762 0.7971 0.8092 0.7623

NICKI (hide) 0.8835 0.9469 0.8188 0.9461 0.9417 0.8575 0.9058 0.9069

Reddit
[0.9087, 0.9563]

NIPA 0.9032 0.8960 0.8807 0.8639 0.9279 0.9357 0.9545 0.9565
AFGSM 0.8539 0.8623 0.8617 0.8480 0.9336 0.9302 0.9034 0.9212
NICKI 0.8740 0.7699 0.7211 0.7324 0.8836 0.7965 0.7381 0.7154

NICKI (hide) 0.9103 0.8918 0.8710 0.8368 0.9103 0.9013 0.7780 0.8273

the lt-labelled nodes in the test set. We inject k = r|Vt| nodes, where the
controlling parameter r denotes the ratio of injected nodes to target class
nodes.

Since ours is a poison attack, we evaluate the accuracy after training our
surrogate on the poison graph. We split each dataset into 10%, 10%, 80% of
the total nodes for training, validation, and testing, respectively, and use a
two-layer GCN with a structure same as the one described in Section 5.1 as
our surrogate model. Following the definition of poison attack, we include
our attacker nodes VA into the training set.

We trained our models for 50 epochs and used the learnt graph with
minimum classification accuracy as our attack graph. There are 6 layers in
Fe with 5D/4, D, D/2, D/2, D/2, and D/16 being the respective number
of hidden nodes in layers. In Fx, we have 3 layers with number of hidden
nodes being 5D/4 and 5D/4. For NICKI (hide), we used 0.7 as parameter for
internal degree. α is set to 0.1. We use Adaptive Moment Estimation (Adam)
as the gradient descent optimizer. Our code is written in PyTorch. Due to
the unavailability of NIPA’s original source code, we used DeepRobust (Li
et al., 2020) library’s implementation.

Budget. We use two budgets ∆e and ∆x for constraining edge and
feature perturbations, respectively. Formally, we set ∆e = kdavg, where davg
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denotes the average degree of nodes in the graph. Such a formulation helps
in retaining the average degree of nodes in the clean graph to that in the
poisoned graph, which is more indicative of a real-world attack. For discrete

datasets, we set ∆x =
∑N

i=1

∑D
j=1 Xij

N
, where Xij denotes the jth attribute of

node i. For continuous datasets like Reddit, we limit feature perturbations
by enforcing the original features’ range over them. We do this by replacing
TOPM∆x from Equation 10 with a sigmoid function followed by mapping
the values from [0, 1] to the target range. PolBlogs, being a featureless graph,
does not require feature generation. Therefore, we directly use the output
of our inference model Z to score the edges in Equation 11. Note that for
Polblogs, we use an identity matrix I of size N + k as our feature matrix
throughout the framework. To demonstrate our efficiency, we choose r =
{0.03, 0.07, 0.1, 0.15}.

Default target and base classes. We select a target class, which has
at least 100 nodes in the test set. This ensures that we have enough attacker
nodes even in a parsimonious setting – very few attacker nodes w.r.t the
target class nodes in test set. However, in Table 5, we show that our model
consistently outperforms other baselines with varying choices of base and
target classes.

Node classifier. Throughout the paper, we consider GCN as the default
node classifier. We also consider two other neural node classifiers – GAT
(Veličković et al., 2017) and GraphSAGE (Hamilton et al., 2017), and report
their results in Table 4.

Hiding setup. We use our hiding framework as a pre-processing strat-
egy. As described in Section 5.3, the added pretend edges connect the at-
tacker nodes to nodes in Vb. Once added, we mask them in the attack mod-
ule to prevent them from further modification. On the other hand, we use
CVAE (Sohn et al., 2015) to generate pretend features. However, CVAE does
not guarantee discrete features; therefore, for discrete datasets, we define a
threshold δ such that PFi,j = I(PF ′

i,j > δ), where PF ′ denotes the feature
matrix obtained from CVAE. For both Cora and Citeseer, we set δ = 0.1 as
it best mimics the average number of 1s per vector in the original feature
matrix X.

For Reddit, we do not need features to be discrete; hence, we skip the
thresholding technique. In case of Polblogs, there is no feature matrix in
the network; therefore, the pretend feature module is not required. For each
network, we select the class containing the maximum number of nodes as
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our base class lb since injecting new nodes to the already large set (Vb) would
make the attack unnoticeable.

6.4. Performance Comparison

We present results for two versions of our model – NICKI and NICKI

(hide). The former represents our core attacking strategy described till Sec-
tion 5.2, while the latter attaches the hiding framework on top of this. The
experimental settings for both the versions are described Section 6.3. Table 3
shows the accuracy of the node classifier on different datasets across varying
budgets.

Cora, Citeseer and Polblogs. NICKI performs consistently better than
every baseline by a considerable margin. The performance difference between
NICKI and the best baseline is around 7−9% for the lowest budget and goes as
high as 23−35% for a comparatively higher budget. AFGSM, as described in
(Wang et al., 2020), uses a closed-form solution which is optimised to attack
only a single target node. AFGSM scores each candidate perturbation w.r.t
to misclassification of the target node. We adopt AFGSM to our multi-target
setting by selecting perturbations that have a higher sum of scores for each
node in the target class. The poor performance of AFGSM is indicative of
its closed-form solution not being generalizable for attacking multiple target
nodes. As expected, random and preferential models do not perform well; the
misclassification increases as we increase the budget and in some cases gets
better than AFGSM. NIPA, on the other hand, is a global attack, and hence,
is better suited for our setting. The superior performance of NIPA compared
to AFGSM on Cora and Polblogs can be attributed to the above fact. NICKI
(hide), as expected, has an inferior performance than NICKI. However, for
Cora and Citeseer, it still outperforms other baselines by a significant margin.
We can observe that the baselines do not necessarily show improvement in
performance with increasing budget. It is attributed to the fact that these
algorithms are not optimized for low-budget settings like ours. NICKI, on
the other hand, although not fully consistent due to probabilistic nature of
gradient based algorithms, shows an upward trend in misclassification with
increasing budget. The parameter α in Equation 18 controls the extent of
hiding, and in turn, balances the trade-off between better misclassification
and better hiding. For Cora, we also observe the reclassification of target
nodes after the attack. From Figure 3, we can infer that majority of the
nodes are reclassified as base class nodes. This stands as a testament to the
working of NICKI towards fulfilling our objective defined in Equation 5.
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Figure 3: Fraction of target nodes in their respective predicted classes post network attack
for Cora. Green indicates nodes misclassified as the base class (our goal). Blue indicates
nodes correctly classified in target class, and Red indicates nodes misclassified into a class
other than base class.

Reddit. For the lower budget at r = 0.03, AFGSM performs marginally
better than NICKI. However, as the budget increases, NICKI outperforms
AFGSM by a significant margin (around 7%). AFGSM only generates dis-
crete features, whereas Reddit is a continuous dataset. We still evaluate on
discrete features to allow AFGSM to reach its full-attack potential, which we
think might be the reason for its superior performance in some cases. NIPA
gives random features to attacker nodes which doesn’t work well for Reddit,
given its continuous features. NICKI (hide) performs better than random and
preferential but is not able to outperform AFGSM. We feel that the restric-
tion on feature generation given by the hiding feature loss does not allow our
model to reach its attack potential in this case.

Varying base and target classes. Table 3 shows the results for varying
budgets but fixed target and base classes. To demonstrate the performance
of our model for any given pair of target and base classes, we randomly
select four such pairs for Cora and present the node classification accuracy
in Table 5 for r = 0.07. We observe that our model outperforms the best
baseline AFGSM across all choices.
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Figure 4: 2D t-SNE plot of Deepwalk embedding for Citeseer. Attacker nodes are black.
Nodes in the base and target classes are violet and orange, respectively (see Figure 5 in
Appendix for the feature embedding of Citeseer).

6.5. Hiding Efficiency

We test the effectiveness of our hiding strategy by checking the closeness
of both features and topological structure assumed by attacker nodes to the
nodes in the base class.

For features, we reduce dimensionality using t-SNE. Figure 5 displays the
2D t-SNE plot of representation of the nodes in Citeseer network. As visible,
the attacker nodes (black) tend to be near the base class nodes (violet).
Since the attack aims to bring the target and base class nodes together, the
attacker nodes seem to bridge the nodes belonging to two classes. We can
change the position of attacker nodes by tuning α in Equation 18.

For the topological structure, we use Deepwalk (Perozzi et al., 2014) to
obtain node embeddings, and then pass it to t-SNE (Figure 4). As visible,
our injected attacker nodes seem to lay towards the pre-existing base class
nodes’ distribution and are good at picking up the topological structure of
base class nodes, and thus can be easily camouflaged with them.

Although removing the hiding framework increases the attack perfor-
mance of NICKI in all cases, there is a trade-off with imperceptibility. With-
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Figure 5: 2D t-SNE plot showing the feature embedding of Citeseer. Attacker nodes are
black. Nodes in the base and target classes are violet and orange, respectively.

Table 5: Classification accuracy of target class nodes in test set across randomly selected
base and target classes on Cora with r = 0.07. Lower value indicates better attack.

Base
Class
ID

Target
Class
ID

Clean NICKI NICKI

(hide)
AFGSM NIPA

5 0 0.818 0.507 0.727 0.785 0.746
0 2 0.841 0.722 0.837 0.819 0.770
1 6 0.821 0.805 0.793 0.818 0.805
3 4 0.728 0.585 0.685 0.667 0.650

out the hiding framework, the injected nodes might be detected easily since
there is no mechanism to ensure their camouflage. Also, our assumption that
the injected nodes will be labelled as base-class nodes will become more fea-
sible with hiding since it essentially tries to camouflage injected nodes with
base-class nodes only. Better hiding strategy can be explored in the future
to improve NICKI (hide)’s performance.

7. Comparison with Unnoticeable Evasion Attacks

We also compare our model with start-of-the-art unnoticeable evasion
attacks – HAO Chen et al. (2022) and GANI Fang et al. (2022). We evaluate
them in a posison setting by simply training a vanilla GCN once on the
attacked graph before evaluating target class accuracy. The idea is to emulate
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Table 6: Comparison with Unnoticeable Evasion attacks. Interpretation of results is same
as that of Table 3

Dataset Method r = 0.03 r = 0.07 r = 0.10 r = 0.15

Cora
[0.8189]

GANI 0.7966 0.7688 0.7966 0.7715
AGIA + HAO 0.7855 0.7855 0.8245 0.7910
NICKI (hide) 0.7409 0.7270 0.7103 0.7214

Citeseer
[0.7395]

GANI 0.7368 0.7447 0.7236 0.7368
TDGIA + HAO 0.7473 0.8184 0.8105 0.8289
NICKI (hide) 0.7131 0.7263 0.7316 0.7316

baselines in a real-world poison setting in which perturbations happen prior
to training. For this purpose, we use two datasets – Cora and Citeseer as
both baselines scale well on them. Since HAO Chen et al. (2022) works as an
unnoticeability inducing extension for other node-injection attacks, we use
AGIA Chen et al. (2022) and TDGIA Zou et al. (2021) as base attacks for
Cora and Citeseer, respectively, since they worked best in Chen et al. (2022)
for the respective datasets. Additionally, we convert GANI Fang et al. (2022)
into a targeted attack by optimising its genetic loss function only on target-
class nodes. We present the results in Table 6. To conduct a fair comparison
in terms of unnoticeable attacks, we only include NICKI (hide) results in
Table 6.

7.1. Performance Comparison

We can observe from the Table 6 that NICKI (hide) outperforms in almost
every case, showing that even in the presence of unnoticeability strategies,
our model works better and compromises on accuracy much lesser than the
other two baselines. GANI Fang et al. (2022) still performs at-par with our
model; however HAO performs significantly worse. This can be attributed to
two reasons - (i) HAO works on a significantly higher feature perturbation
budget which we limited by taking the top-k scores, leading to a reduction
in performance. (ii) Evasion attacks in general perform worse in a poison
setting as they are not optimised for training like NICKI is (Equation 17).

8. Transferability of Attack

In our approach, we choose GCN (Kipf and Welling, 2017) as our surro-
gate model and use it to evaluate the poisoned graph, the results of which are
presented in Table 3. However in a real-world scenario, an attacker has no
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Table 7: Evaluation of attacks under robust defenses. Base, target class and the interpre-
tation of results are same as that of Table 4.

G NNGuard E GNNGuard
Dataset Method r = 0.03 r = 0.10 r = 0.03 r = 0.10

Cora
[0.4484, 0.8161]

GANI 0.4568 0.4540 0.8161 0.8077
AGIA + HAO 0.3231 0.3454 0.7688 0.7883

NICKI 0.3788 0.1838 0.7493 0.4038
NICKI (hide) 0.2228 0.1559 0.5515 0.0863

Citeseer
[0.8973, 0.7289]

GANI 0.8947 0.8789 0.7236 0.7078
TDGIA + HAO 0.8973 0.9 0.7289 0.7421

NICKI 0.6763 0.3421 0.6868 0.0473
NICKI (hide) 0.3421 0 0.0473 0

prior knowledge of the classifier being used. Therefore, it only makes sense
to verify the efficacy of our attack on other widely-used node classifiers, for
which we select GAT (Veličković et al., 2017) and GraphSAGE (Hamilton
et al., 2017). Note that since ours is a poison attack, we first train the ob-
tained poisoned graph on the above mentioned classifiers and then evaluate
the accuracy of target nodes. Results can be found in Table 4. We can
observe that NICKI performs best in most cases followed by NICKI (hide);
this shows that our attack can be effectively transferred to other GNN based
classifiers.

9. NICKI Against Defense

In Table 4, we evaluate our attack on common GNN techniques - GAT
and GraphSage. Realistically, institutions often employ more robust algo-
rithms to prevent adversarial attacks from happening. Motivated by Chen
et al. (2022) that homophily defenders work well against node-injection at-
tacks, we also evaluate the efficacy of our attack against more robust GNN
algorithms and homophily defenders - GNNGuard Zhang and Zitnik (2020)
and EGNNGuard Chen et al. (2022).

■ GNNGuard. This is a general algorithm used to improve robustness
of any GNN model. GNNGuard assigns higher weightage to edges between
similar nodes and prunes edges between dissimilar nodes. The new edges
provide robust message passing to mitigate the effect of attacks.

■ EGNNGuard. This is a more scalable version of GNNGuard based
on similar ideology and tries to maintain homophily in the graph. It uses
a different pruning method as it simply puts a threshold and removes edges
between neighbour nodes with low similarity.
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(a) r = 0.03 (b) r = 0.10

(c) r = 0.03 (d) r = 0.10

Figure 6: Plots to measure homophily change for different attacks on Cora and Citeseer.
Note that for NICKI we presented results with hide. For Cora, HAO is used with AGIA
and with TDGIA for Citeseer.

Table 7 shows that our attack is not affected by the above mentioned
robust defenses. In fact, the accuracies are in most cases lower (better attack)
than the ones in Table 6 in which we used a vanilla GCN. Since both these
methods purge edges based on node similarities, we further plot pairwise
node similarities and perform a homophily analysis to investigate further.

9.1. Homophily Analysis

We plot node similarity for the graphs generated by all the unnoticeable
attacks on Cora and Citeseer on two different budgets in Figure 6. As ex-
pected at lower budgets, each plot seems to move towards the clean graph.
GANI does an excellent job at keeping the distributions almost overlapped
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Table 8: Statistics – Gini coefficient (GC), distribution entropy (DE), power-law exponent
(PE), and triangle count (TC) of different graphs after poisoning (NICKI;AFGSM). The
values at r = 0 indicate the statistics of the clean graph.

r GC DE PE TC
C
or
a

0 0.405 0.360 1.932 1630
0.03 0.403;0.405 0.361;0.361 1.926;1.927 1633;1636
0.07 0.402;0.405 0.364;0.364 1.918;1.921 1634;1642
0.1 0.401;0.406 0.365;0.366 1.911;1.917 1635;1640
0.15 0.399;0.408 0.367;0.369 1.902;1.911 1634;1640

C
it
es
ee
r

0 0.427 0.352 2.058 1083
0.03 0.424;0.428 0.354;0.352 2.047;2.062 1084;1083
0.07 0.424;0.430 0.357;0.354 2.037;2.058 1086;1083
0.10 0.424;0.431 0.360;0.355 2.031;2.054 1085;1086
0.15 0.429;0.432 0.355;0.357 2.044;2.045 1114;1086

P
ol
b
lo
gs

0 0.599 0.842 1.478 25649
0.03 0.593;0.587 0.848;0.852 1.472;1.466 25811;25653
0.07 0.588;0.576 0.856;0.858 1.465;1.458 25954;25661
0.10 0.568;0.569 0.867;0.862 1.446;1.453 25742;25665
0.15 0.558;0.560 0.873;0.869 1.437;1.446 25864;25681

R
ed
d
it

0 0.479 0.439 1.693 6850
0.03 0.479;0.479 0.439;0.439 1.692;1.692 6850;6853
0.07 0.477;0.478 0.440;0.439 1.689;1.691 6855;6855
0.10 0.476;0.478 0.440;0.440 1.688;1.690 6856;6857
0.15 0.475;0.478 0.441;0.440 1.686;1.689 6855;6862

across both graphs and budgets. However, in case of HAO, the graph is left
shifted for Cora, i.e., node injection is destroying homophily. Interestingly,
NICKI (hide) either creates a peak (in Cora) or shifts right (in Citeseer).
Shifting right is analogous to an increase in homophily which is unexpected
by graph injection attacks and thus fools the defense model. Similarly peak
creation leads to most node pairs centred around the same similarity value
and makes it difficult to pick the notorious edges. In fact, we believe that
because of this nature, the GNN defenses purge benign edges which leads to
even better attack efficacy and sometimes complete disruption of the graph.
We can verify these findings from Table 7 as well.

10. Post Attack Statistics

Following Sun et al. (2020), we obtain the poisoned graphs from NICKI

and AFGSM, and compare them with their corresponding clean graphs by
presenting some key network statistics in Table 8. The change in the degree
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distribution of a graph is considered as an important metric to measure
unnoticeability of an attack (Zügner et al., 2018). It is interesting to observe
that for our attack, the power-law exponent of the poisoned graph is similar
to that of the clean graph. This shows that our pre- and post-attack graphs
have similar degree distributions; indicating unnoticeability. As expected,
the triangle count increases as more nodes are injected. However, note that
the increment is minor in most cases, which can be attributed to our very
small budget, leading to less number of new triangles being induced by the
attacker nodes. AFGSM shows a similar trend, which is interesting since
NICKI is able to achieve much better results (Table 8) while maintaining
statistics similar to that of AFGSM. For the other statistics, we can observe
that the numbers remain almost consistent even when the budget increases.
Again, we impute this consistency to our minimal budget, which as we can
see, helps in the overall unnoticeability of our attack.

11. Conclusion

In this paper, we introduced a novel problem – class-specific network poi-
soning, which unlike existing methods, aims to poison a network in such a
way that the nodes in the target class get misclassified. We addressed this
problem by introducing NICKI, a novel attacking strategy that leverages an
optimization-based approach to deteriorate the performance of a node clas-
sifier. Extensive experiments on four real-world datasets showed significant
performance gain over four baselines in terms of misclassifying the nodes in
the target class. We also showed that the attack graph and clean graph
look alike in terms of the several topological properties of the networks. We
further empirically showed that the attacker nodes resemble benign nodes.
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