
Open-Pose 3D Zero-Shot Learning: Benchmark and

Challenges

Weiguang Zhaoa,b,1, Guanyu Yangf,1, Rui Zhangb,∗, Chenru Jiangf,
Chaolong Yanga,c, Yuyao Yand, Amir Hussaine, Kaizhu Huangf,∗

aDepartment of Computer Science, University of Liverpool, Liverpool L69 7ZX, UK.
bDepartment of Foundational Mathematics, Xi’an Jiaotong-Liverpool University, Suzhou,

215123, China.
cDepartment of Mechatronics and Robotics, Xi’an Jiaotong-Liverpool University, Suzhou,

215123, China.
dSchool of Robotic, Xi’an Jiaotong-Liverpool University, Suzhou, 215123, China.
eSchool of Computing, Edinburgh Napier University, Edinburgh, EH11 4BN, UK.

fData Science Research Center, Duke Kunshan University, Kunshan, 215316, China.

Abstract

With the explosive 3D data growth, the urgency of utilizing zero-shot

learning to facilitate data labeling becomes evident. Recently, methods

transferring language or language-image pre-training models like Contrastive

Language-Image Pre-training (CLIP) to 3D vision have made significant

progress in the 3D zero-shot classification task. These methods primarily

focus on 3D object classification with an aligned pose; such a setting is,

however, rather restrictive, which overlooks the recognition of 3D objects

with open poses typically encountered in real-world scenarios, such as an
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overturned chair or a lying teddy bear. To this end, we propose a more

realistic and challenging scenario named open-pose 3D zero-shot classifica-

tion, focusing on the recognition of 3D objects regardless of their orienta-

tion. First, we revisit the current research on 3D zero-shot classification,

and propose two benchmark datasets specifically designed for the open-pose

setting. We empirically validate many of the most popular methods in the

proposed open-pose benchmark. Our investigations reveal that most current

3D zero-shot classification models suffer from poor performance, indicating

a substantial exploration room towards the new direction. Furthermore,

we study a concise pipeline with an iterative angle refinement mechanism

that automatically optimizes one ideal angle to classify these open-pose 3D

objects. In particular, to make validation more compelling and not just

limited to existing CLIP-based methods, we also pioneer the exploration

of knowledge transfer based on Diffusion models. While the proposed so-

lutions can serve as a new benchmark for open-pose 3D zero-shot classifi-

cation, we discuss the complexities and challenges of this scenario that re-

main for further research development. The code is available publicly at

https://github.com/weiguangzhao/Diff-OP3D.

Keywords: Zero-Shot, 3D Classification, Open-Pose, Text-Image Matching

1. Introduction

Deep learning models have achieved remarkable advancements in com-

puter vision tasks (Xue et al., 2023a; Chen et al., 2023a; Zhao et al., 2023;

Jiang et al., 2023). However, their outstanding performance relies heavily

on large amounts of labeled data. In this regard, zero-shot learning, where
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classes are learned without corresponding samples, has drawn substantial

scholarly focus. While 2D zero-shot classification research (Radford et al.,

2021; Wang et al., 2019; Naeem et al., 2023; Ye et al., 2023, 2021) is thriving,

research on 3D zero-shot classification (Zhang et al., 2022; Zhu et al., 2023;

Naeem et al., 2022) is still in nascent stages. Considering the inherent ir-

regularity and sparsity of 3D data, the extracted features exhibit significant

differences compared to 2D data. As a result, most existing 2D zero-shot

learning methods fail to produce effective results when applied directly to

the 3D domain (Cheraghian et al., 2019b,a, 2020, 2022).

Figure 1: 3D Zero-Shot Classification for Aligned-Poses and Open-Poses. (a) is a 3D sam-

ple in aligned-pose from the dataset ModelNet40, while (b) and (c) are the corresponding

sample in open-poses from our benchmark ModelNet40‡.

Currently, to better leverage knowledge from the 2D domain, most state-

of-the-art methods (SOTAs) (Zhang et al., 2022; Huang et al., 2023; Zhu

et al., 2023; Xue et al., 2023a; Wang et al., 2023b) explore bridging Con-

trastive Language-Image Pre-training (CLIP) (Radford et al., 2021) to 3D

classification. Their general pipeline is to project 3D objects to 2D depth

maps and then to match the class names and image features via CLIP. As an

initial exploration, these methods have already demonstrated remarkable ef-
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fectiveness on existing benchmarks. However, all these evaluations are based

on the assumption that 3D objects are in aligned-poses. Such alignment is

based on prior category knowledge, thus inherently simplifying the task of

classification. Unfortunately, objects in the real world are typically posi-

tioned in random orientations, which can be referred to as open-pose, such

as an overturned chair or a flying bird. These open-pose scenarios present a

realistic yet significant challenge for current SOTAs. As shown in Fig. 1, the

effectiveness of these SOTAs is closely tied to the objects’ orientations, and

their performance becomes poor when the aligned 3D object is modified to

the open-pose case.

To this end, we investigate a more challenging, yet practical task of 3D

zero-shot classification aiming at recognizing 3D objects in open-poses. De-

spite its importance, this open-pose setting is rarely studied in the literature.

To this end, we first revisit the current methods and datasets for 3D zero-

shot classification. Furthermore, we propose to generate two new datasets to

benchmark open-pose 3D zero-shot classification, by applying random rota-

tions to each sample in the widely-used zero-shot datasets ModelNet40 (Wu

et al., 2015) and McGill (Siddiqi et al., 2008). Due to the uncertain orienta-

tions of objects, the selection of projection angles becomes a crucial matter.

In this context, we propose a concise pipeline with an iterative angle re-

finement mechanism that automatically optimizes one ideal project angle to

classify these open-pose 3D objects. Specifically, this mechanism dynam-

ically determines the projection angles based on the characteristics of the

input object and the outcomes of matching processes which shows potential

in handling open-pose variations.
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Additionally, it is notable that existing projection-based approaches ex-

clusively use CLIP as their text-image matching backbone, and their projec-

tions are primarily limited to depth maps and rendered images. To achieve

more comprehensive evaluations, we make the first attempt to utilize a 2D

pre-trained diffusion model (Rombach et al., 2022; Sohl-Dickstein et al., 2015)

as the backbone for classifying 3D objects. We also incorporate the edge im-

age, thereby expanding the variety of projection styles.

While the above pipeline can serve as the first as well as a new benchmark

for open-pose 3D zero-shot classification, we also discuss the challenges and

potential outlooks for 3D zero-shot classification in the open-pose setting,

which may further inspire future work in this direction.

The contributions of our work can be summarized as follows:

• We propose a more challenging scenario, namely open-pose 3D zero-

shot classification, to uncover the current limitations of state-of-the-art

approaches. We survey a comprehensive set of 3D zero-shot classifica-

tions in the open-pose setting for the first time.

• We develop two benchmarks, ModelNet40‡ and McGill‡ for evaluating

open-pose 3D zero-shot classification. Our empirical investigations re-

veal that most current SOTA 3D zero-shot methods suffer from poor

performance for open-pose classification.

• We design a concise pipeline with an iterative angle refinement mecha-

nism, which achieves a substantial improvement, thus presenting a new

benchmark method in the open-pose setting.

• We discuss the challenges for open-pose 3D zero-shot classification, and
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set out new directions which may inspire future research towards this

direction.

2. Related Work

Classification in the 3D Domain: The mainstream deep learning

methods for 3D classification can be categorized into three types (Guo et al.,

2020): point-based, voxel-based, and multi-view-based methods. PointNet (Qi

et al., 2017) was the pioneering network to extract point cloud features and

recognize 3D objects. Point-Transformer (Zhao et al., 2021; Wu et al., 2022)

utilizes transformer architecture in the 3D domain, leading to a significant

improvement in classification performance. Additionally, Voxnet (Maturana

and Scherer, 2015) introduces voxel representation to process point clouds,

while MinkowskiNet (Choy et al., 2019) offers a sparse voxel convolution

architecture based on this concept. Moreover, MVCNN (Su et al., 2015) sug-

gests projecting 3D mesh categories from multiple views and employing 2D

networks for training. LRMV (Yang and Wang, 2019) predicts the score of

each projection view to select images. Some studies (Kanezaki et al., 2018;

Wei et al., 2021; Zhou et al., 2024) have also delved into how viewpoint se-

lection can influence classification results. Unlike these supervised learning

methods, our work is focused on zero-shot classification, where new (unseen)

classes emerge during testing.

Zero-Shot Classification in the 2D Domain: The objective of con-

ventional zero-shot learning tasks is to classify a sample set from unseen

categories (Larochelle et al., 2008). Presently, there are two primary ap-

proaches to addressing zero-shot classification tasks in the 2D domain (Yang
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et al., 2022): embedding methods (Rahman et al., 2020; Zhou et al., 2022;

Han et al., 2022; Ye et al., 2023), and generative methods (Li et al., 2023;

Yang et al., 2023). The former seeks to learn a specific feature space that

aligns with both the samples and category descriptions, while the latter trans-

forms the zero-shot classification task into a standard classification problem

by generating pseudo samples for unseen categories.

Furthermore, both CLIP (Radford et al., 2021) and the diffusion clas-

sifier (Li et al., 2023) can perform classification tasks without relying on

the training set of the specific benchmark. Consequently, these methods are

also considered zero-shot models. However, it’s important to note that their

pre-training dataset may include samples corresponding to classes within the

target dataset. Therefore, strictly speaking, these methods differ from con-

ventional zero-shot models in classifying “unseen classes”. Nonetheless, when

applied to assist in the zero-shot classification of 3D data, they can be accu-

rately categorized as zero-shot methods, as no 3D samples are used during

the training process.

3. Revisiting 3D Zero-Shot Classification

In the realm of 3D zero-shot classification, two broad methods have

emerged: language pre-training model-based and language-image pre-training

model-based. The former relies on Word2Vec (Mikolov et al., 2013) or

GloVe (Pennington et al., 2014) to generate text embeddings for categories,

while the latter primarily uses CLIP to match text embeddings with pro-

jected image embeddings. While Cheraghian et al. (Cheraghian et al., 2022)

provided a comprehensive review of the language pre-training model-based
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method, recent years have witnessed a surge in new 3D zero-shot classi-

fication approaches, particularly those leveraging the language-image pre-

training model-based paradigm. In this section, we’ll delve into a detailed

overview and analysis of existing 3D zero-shot datasets and methodologies.

3.1. 3D Zero-Shot Classification Benchmark Datasets.

The existing 3D zero-shot classification benchmark datasets primarily

consist of ModelNet40 (Wu et al., 2015), ModelNet10 (Wu et al., 2015),

McGill (Siddiqi et al., 2008), ScanObjectNN (Uy et al., 2019), and SHREC2015

(Lian et al., 2015). In Table 1, we summarize the division of these datasets

into seen and unseen classes, as well as their partitioning into training, vali-

dation, and test sets.

Datasets Total Classes Seen/Unseen Classes Train/Valid/Test Samples

ModelNet40 40 30/- 5852/1560/-

ModelNet10 10 -/10 -/-/908

McGill 19 -/14 -/-/115

ScanObjectNN 15 -/11 -/-/495

SHREC2015 50 -/30 -/-/192

Table 1: 3D Zero-Shot Classification Benchmark Datasets.

ModelNet40 & ModelNet10: ModelNet40 is widely used in various 3D

classification tasks, including 3D full-supervision, weakly-supervision, and

few-shot classification. It consists of 40 categories of 3D objects, with each

category containing a varying number of CAD models. The distribution of

models across categories is balanced. This dataset encompasses a diverse

array of common object classes, including chairs, tables, airplanes, cars, and
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more. Furthermore, ModelNet10 is a subset of ModelNet40, comprising only

10 categories of 3D objects. Most existing 3D zero-shot classification meth-

ods (Narayan et al., 2020; Michele et al., 2021; Cheraghian et al., 2022; Hao

et al., 2023) treat the 30 classes of ModelNet40 as seen classes and the remain-

ing 10 classes as unseen classes, namely ModelNet10. It’s worth noting that

some language-image pre-training model-based methods (Xue et al., 2023a;

Zhu et al., 2023; Qi et al., 2023; Huang et al., 2023) consider all classes as

unseen classes, as they directly utilize language-image pre-training models

for inference without the need for training on seen classes.

McGill: McGill dataset differs from ModelNet40 in its composition, focusing

on various 3D biological samples such as fish, dinosaurs, spiders, octopuses,

and more. Specifically, the McGill dataset comprises a total of 19 categories,

with five categories overlapping with the visible classes in ModelNet40. Con-

sequently, only the remaining 14 categories are utilized as unseen classes.

Due to its high-quality point clouds and a wide range of object categories,

this dataset is widely adopted for numerous 3D zero-shot classification meth-

ods (Narayan et al., 2020; Michele et al., 2021; Cheraghian et al., 2022; Hao

et al., 2023).

ScanObjectNN: ScanObjectNN dataset comprises 15 categories of 3D ob-

jects derived from real-world scans, often presenting cluttered backgrounds

and partial objects due to occlusions. These objects predominantly stem from

indoor scenes. With four classes overlapping with ModelNet40 excluded, the

remaining 11 classes are regarded as unseen classes. Due to varying qualities

of point clouds and backgrounds, this dataset is frequently divided into three

subsets: OBJ ONLY, OBJ BG, and PB T50 RS.
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SHREC2015: This dataset was initially introduced at the Eurographics

workshop for a 3D object retrieval competition. It comprises a total of 50

categories, with 20 of these categories overlapping with the seen classes in

ModelNet40. Consequently, the remaining 30 categories are utilized as un-

seen classes. Moreover, SHREC2015 remains relatively underutilized in the

zero-shot classification domain, with only three studies Cheraghian et al.

(2019b, 2020, 2019a) conducted for validation on this dataset.

However, most of these datasets were deliberately aligned or oriented

during collection. This makes 3D zero-shot classification tasks detached from

complex real-world scenarios, where objects may be in arbitrary poses. In

light of this, we make the first attempt to build an open-pose benchmark

where all unseen 3D objects are in arbitrary poses.

Taking into account the coverage and frequency of dataset usage, we de-

cided to separately utilize the ModelNet40 and McGill datasets to create the

open-pose datasets, referred to as ModelNet40‡ and McGill‡. We rotate each

sample in ModelNet40 and McGill to obtain the ModelNet40‡ and McGill‡

datasets, respectively2. Although the samples in McGill inherently have less

standardized orientation compared to those in ModelNet40, the range of their

rotational angles is limited, lacking sufficient randomness to effectively illus-

trate the open-pose issue. Therefore, we also apply random angle rotations

to them. Similar to previous datasets (Wu et al., 2015; Siddiqi et al., 2008),

we divide our open-pose datasets as shown in Tab. 2.

2The random angles and open-pose datasets are available on our GitHub.
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Datasets Total Classes Seen/Unseen Classes Train/Valid/Test Samples

ModelNet40‡ 40 30/- 5852/1560/-

ModelNet10‡ 10 -/10 -/-/908

McGill‡ 19 -/14 -/-/115

Table 2: Our Open-Pose 3D Zero-Shot Classification Benchmark Datasets.

3.2. 3D Zero-Shot Classification with Language Pre-training Model

The language pre-training model-based methods draw inspiration from

existing 2D zero-shot approaches, using text embeddings to establish cor-

relations between seen and unseen classes. Cheraghian et al. (Cheraghian

et al., 2019a,b, 2020, 2022) pioneered research on 3D zero-shot classifica-

tion. They made the first attempt in traditional (Cheraghian et al., 2019b),

inductive (Cheraghian et al., 2019a), and transductive (Cheraghian et al.,

2020) zero-shot classification settings within the 3D domain, providing a

standardized evaluation protocol for subsequent research work. Their pro-

posed methods are based on text embeddings (Word2Vec (Mikolov et al.,

2013) & GloVe (Pennington et al., 2014)) with two refinement loss func-

tions (Cheraghian et al., 2022). On the other hand, 3DCZSL (Naeem et al.,

2022) takes an approach that considers the 3D zero-shot classification task

from the perspective of geometric structure composition. However, it re-

lies on point-wise component labels, which currently can only be satisfied

by the PartNet dataset (Mo et al., 2019). 3DGenZ (Michele et al., 2021)

is proposed as the first generative 3D zero-shot classification network. It

conducts Google searches for 100 images per class and utilizes a pre-training

classification network to obtain image representations for each category.
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3.3. 3D Zero-Shot Classification with Language-Image Pre-training Model

We make the first attempt to provide an overview of the language im-

age pre-training model-based methods. Currently, all these methods uti-

lize CLIP’s knowledge for zero-shot classification of 3D models. Based on

their implementation approaches, we categorize them into two groups: input-

optimization and encoder-distillation methods.

Input-optimization methods. These methods typically involve op-

timizing the text input of CLIP or rendering image inputs, as depicted in

Fig. 2. PointCLIP (Zhang et al., 2022) pioneered the projection of 3D ob-

jects into 2D images and utilized CLIP for category matching. Building upon

this work, PointCLIPv2 (Zhu et al., 2023) incorporates large-scale language

models (such as GPT-3) (Brown et al., 2020) to automatically design more

descriptive 3D-semantic prompts. Furthermore, DiffCLIP (Shen et al., 2024)

proposes integrating stable diffusion with ControlNet (Zhang et al., 2023)

to minimize the domain gap between rendered images and realistic images.

Additionally, DILF (Ning et al., 2024) utilizes GPT-3 to generate textual

prompts enriched with 3D semantics and designs a differentiable renderer

with learnable rendering parameters to produce representative multi-view

images. Most of these methods do not require additional training and per-

form direct inference using existing pre-trained models. However, they often

require a considerable number of hyperparameters to achieve the best results.

Encoder-distillation methods. As depicted in Fig. 4, these meth-

ods retain the text encoder of CLIP while incorporating a visual encoder

to supervise their newly designed encoder. Specifically, Ulip (Xue et al.,

2023a,b) and CLIPgoes3D (Hegde et al., 2023) design a new 3D encoder
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Figure 2: Input-optimization Framework

to learn the relationship between 3D features, rendered images, and textual

descriptions. Furthermore, ReconCLIP (Qi et al., 2023) leverages recon-

struction tasks to enhance the feature extraction of 3D encoders. Moreover,

CLIP2Point (Huang et al., 2023) develops a new image encoder network to

narrow the domain gap between depth maps and realistic images. Meth-

ods of this kind often require additional 3D data for pre-training, limiting

their applicability to the domain of the training data. Furthermore, they

heavily rely on 3D data, resulting in significant computational overhead. For

instance, Ulip and CLIPgoes3D both require training on 8 A100 GPUs.

Figure 3: Encoder-distillation Framework

However, both input-optimization and encoder-distillation methods are

built upon the assumption that objects are in aligned poses. As depicted in
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Fig. 4, the more practical and challenging task of recognizing 3D objects in

open poses is neglected. In our work, we explore the performance of many

existing methods in an open-pose setting and propose a new method tailored

specifically for this scenario as a baseline.

Figure 4: Performance on Aligned and Open-Pose Dataset

4. Our Main Methodology

As depicted in Fig. 5, our pipeline consists of three main components:

Projection (a), Text-Image Matching (b), and Angle Selection (c). Given a

3D object, projection images can be obtained by selecting projection angles

and styles. These images are then matched with text descriptions via a pre-

training text-image matching backbone. Additionally, the projection angles

can be pre-selected or determined based on the input object and matching

outcomes. With the final settled projection angles, predictions are obtained

based on the corresponding matching scores. Furthermore, (e) and (f) are

optional text-image matching backbones based on Diffusion and CLIP, re-

spectively. In this section, we provide detailed descriptions of this pipeline.
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Figure 5: Overview of Our Pipeline

4.1. Projection

We utilize a perspective projection to transform the 3D input x into 2D

images. In the projection phase, our main focus lies on two aspects: projec-

tion position analysis and projection style selection. Here, we concentrate on

exploring various styles for projection. The analysis of projection positions,

closely linked with angle selection, will be elaborated in Section 4.3.

In addition to the depth maps and rendered images commonly used in

existing works, we introduce edge maps as an additional projection style.

Given that the primary data representations for 3D objects are point clouds

and meshes, our method considers both inputs. Due to the sparsity of point

clouds, their projection style differs significantly from that of meshes. Hence,

we convert images projected from both point clouds and meshes into edge im-
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ages for zero-shot classification. As depicted in Fig. 6, the two different input

data formats yield distinct projected images, which are ultimately extracted

into similar edge images.

Figure 6: Projection Styles

Specifically, when the input is point-cloud data, direct projection yields

a set of discrete pixels, making it challenging to adequately represent its

semantic information. Following the approach of PointCLIPv2 (Zhu et al.,

2023), we adopt voxel projection, which involves four steps: voxelization,

densification, smoothing, and squeezing, to obtain a continuous pixel projec-

tion image. Furthermore, we utilize the Canny algorithm to compute pixel

gradients, thereby obtaining the edge image. On the other hand, mesh data

includes additional face information, specifically triangular surfaces, com-

pared to point-cloud data. In this regard, we can directly achieve the contin-

uous pixel projection image by point light projecting. To simulate parallel

light, we position the point light source far away from the camera and the 3D

mesh. To address noise on the surface of mesh data, we increase the Canny

gradient threshold (Canny, 1986) to mitigate this impact, which also results

in the removal of some detailed information. For instance, the edge image of
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the mesh lacks the boundary of the legs compared to the edge image of the

point cloud in Fig. 6.

4.2. Text-Image Matching

Since CLIP is originally designed for text-image matching, its perfor-

mance in 3D zero-shot classification tasks has been extensively explored in

numerous studies. Conversely, the diffusion process has not yet been applied

to this area. Therefore, we revisit how the diffusion process, as a generative

model, accomplishes this task.

Given a clean feature sample f0 and a variance schedule β1, ..., βT , we

can define a Markov chain that gradually adds Gaussian noise to the data as

follows:

q(ft|ft−1) = N (ft;
√
1− βtft−1, βtI). (1)

The denoising diffusion probabilistic models (Rombach et al., 2022) learn

the reverse process pθ(ft−1|ft, s) with the corresponding semantic descrip-

tion s. Typically, the diffusion model can be interpreted as a denoising

autoencoder ϵθ(ft, t, s) with a training target that minimizes the objective

function:

LDM = Ef0,ϵ∼N (0,I),t

[
∥ϵ− ϵθ(ft, t, s)∥22

]
. (2)

In the Diffusion Classifier (Li et al., 2023), the posterior probability of the

latent feature of the sample conditioned on the specific semantic is calculated

based on the denoising performance, thus enabling the classification task.

With a semantic description constructor S(c) for each class and a 2D feature

extractor ϵθ(), such probability can be approximately estimated as follows:

pθ(c|f0) =
exp {−Et,ϵ [∥ϵ− ϵθ(ft, t, S(c))∥22]}∑
j exp {−Et,ϵ [∥ϵ− ϵθ(ft, t, S(j))∥22]}

. (3)
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Here, we directly adopt such a pre-training diffusion framework with the

encoder E(·). Denoting the multi-style projection process as the function

Pk(·,φ) with style k ∈ K and angles φ, we define the text-image matching

score with the latent denoising module as below:

MSθ,K(x,φ, c) = exp
{
−Et,ϵ,k

[
∥ϵ− ϵ̂θ,k(x,φ, c)∥22

]}
ϵ̂θ,k(x,φ, c) = ϵθ (ft,k (x,φ) , t, Sk (c)) ,

ft,k (x,φ) =
√
ᾱtE (Pk (x,φ)) +

√
1− ᾱtϵ,

(4)

where following (Ho et al., 2020; Rombach et al., 2022), αt = 1 − βt, ᾱt =∏t
i αt is defined to construct the noised feature for timestep t. The closer

the predicted noise to the actual noise, the higher the matching score. For

consistency in representation, the output of CLIP can also be considered as

the matching score. Then, the following estimated probability and prediction

for a 3D point cloud sample under a single projection angle can be attained:

pθ,K(c|x,φ) =
MSθ,K(x,φ, c)∑
j MSθ,K(x,φ, j)

(5)

ŷ = argmax
c

pθ,K(c|x,φ). (6)

More details about the constructed semantic descriptions for different pro-

jection types can be found in Section 5.3.

4.3. Angle Selection

To enhance the adaptability of the text-image matching framework to

unaligned 3D point cloud data, the appropriate projection angles are in-

dispensable. The choice of projection angles can be either predefined fixed

angles, derived from the information of the 3D object, or refined according

to preliminary matching scores.
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4.3.1. Pre-defined Fixed Angles

Besides pre-selected single angles, existing pre-training-based 3D zero-

shot classification methods only adopt circular and cube projections. Con-

cerning circular projection, the camera is positioned obliquely above the ob-

ject, which is adjusted by an angle φ1 measuring the camera’s inclination

with respect to the x-y plane. Multi-view images are obtained by changing

the azimuthal angle φ2 of the camera’s projection on the x-y plane relative

to the x-axis. On the other hand, cube projection places the camera along

the six directions of the three-dimensional coordinate axis. All cameras are

oriented towards the center of the object and at a distance rp from the object.

Both circular and cube projections keep the object pose unchanged, only ad-

justing the camera position, as shown in Fig. 7. In this context, these two

methods can achieve suitable views for open-pose 3D objects by fine-tuning

the hyperparameters.

Figure 7: Basic Projection Methods

4.3.2. Iterative Angle Refinement Mechanism (IARM)

To enhance the identification of optimal projection angles, we propose

an advanced method that integrates information from 3D objects and text-
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image matching. In instances where improper projection angles result in

significantly low matching scores for specific classes, a high prediction proba-

bility does not guarantee a reasonable outcome. Thus, we introduce an itera-

tive angle refinement module utilizing the projection angles φc = [φc,1, φc,2],

aimed at maximizing the text-image matching scores for each class c. This

proposed module is expected to yield a more reasonable estimation of prob-

ability as depicted below:

p∗θ,K(c|x) =
MSθ,K(x,φc, c)∑
j MSθ,K(x,φj, j)

(7)

φc = argmax
φ

MSθ,K(x,φ, c). (8)

Assuming both the projection and text-image matching processes are dif-

ferentiable, we can ascertain the projection angles yielding the highest match-

ing score for each class through the gradient descent algorithm. Starting with

an initial projection angle vector φ(0), the entire iterative optimization pro-

cess, incorporating a varying scaling factor [ηr], is outlined as follows:

φ(0)
c = φ(0)

φ(r+1)
c = φ(r)

c + ηr · sign

(
∂MSθ,K(x,φ

(r)
c , c)

∂φ
(r)
c

)
.

(9)

Upon completion of R optimization steps, we utilize the estimated affine

angle of each category φ̂c = φ
(R)
c to formulate the final classification predic-

tion for the 3D point cloud samples, as outlined below:

ŷ∗ = argmax
c

MSθ,K(x, φ̂c, c)∑
j MSθ,K(x, φ̂j, j)

. (10)
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The prediction process aims to minimize the global risk associated with

decision-making. Specifically, the confidence assigned to the angle most con-

ducive to the correct classification of an individual object should surpass the

confidences of other classes across all angles.

In practice, the distribution of the matching score computed by the pre-

training model often exhibits non-smoothness within the projection angle

space. Additionally, certain semantic image matching models, such as the

Stable Diffusion utilized in this study, entail a considerable number of pa-

rameters, rendering optimization impractical and computationally expensive

in such scenarios.

To streamline this optimization process, we propose a succinct strategy.

Initially, we normalize and translate the sample coordinates to the coordinate

origin to derive the covariance matrix Σ:

Σ = (xT · x)/N, Σ ∈ R3×3, (11)

where x represents the coordinates and N denotes the number of vertices in

a sample. By performing eigenvalue decomposition on this matrix Σ, we can

derive the three eigenvectors: e1, e2, e3 ∈ R1×3. Subsequently, we establish a

new coordinate system for the sample, yielding the transformed coordinates

as follows:

x′ = x · [e1, e2, e3] . (12)

According to principal component analysis, fixing the camera on the z-

axis in the new coordinates ensures the largest variance in each dimension

of the projected image. This perspective may result in capturing more clas-

sification information. Furthermore, this dimensional reduction operation
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Algorithm 1: IARM on Diffusion Classifier

Data: 3D objects with open-pose: x

Semantic description for each class: S(c)

Pre-training diffusion framework: ϵθ(), E()

Project function for each style: Pk()

Number of iterations: R

Class number: C

Refine scales: [ηr]

Distance from the camera to the object: rp

1: Calculate the covariance matrix Σ through Eq. 11 and calculate its

eigenvectors e1, e2, e3

2: Establish a new coordinate system and obtain the coordinates x′

through Eq. 12

3: for c in range(C) do

4: Initialize the projection angle φ
(0)
c = 0

5: for r in range(R) do

6: Sample random Gaussian noises ϵ and calculate the matching score

MSθ,K(x
′,φ

(r)
c , c) through Eq. 4

7: Calculate the partial derivative of matching score and update the

φ
(r)
c through Eq. 9

8: end for

9: Calculate the matching score MSθ,K(x
′,φ

(R)
c , c) through Eq. 4

10: end for

11: Obtain the final prediction ŷ∗ through Eq. 10

12: return predicted label ŷ∗
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reduces the projection angles variable from two to one dimension (only the

azimuthal angle φc,2). Instead of directly applying this rotation angle to the

3D data, it can be equivalently applied to the projected image. Following

this initial adjustment of the projection angle, we can proceed to refine the

angle through the previously introduced mechanism within a more simplified

single-dimension case. The detailed steps for the proposed angle refinement

strategy are outlined in Algorithm 1.

5. Experiment

5.1. Experiment Setting

Evaluation Metric. Following the SOTA approaches (Cheraghian et al.,

2022; Hao et al., 2023; Qi et al., 2023), we utilize top-1 accuracy and employ

mAcc to calculate the average accuracy across all categories, thereby pro-

viding a comprehensive reflection of the model’s classification performance

across different categories. Given that the pre-training-based methods dis-

cussed in this section do not necessitate training on native 3D datasets, there

are no designated ”seen” classes. To ensure a fair and uniform comparison,

we exclusively evaluate the performance of conventional zero-shot classifica-

tion among unseen classes.

Implementation Details. We conduct our end-to-end inference process

on a single RTX3090 card. The Stable Diffusion model (Rombach et al.,

2022) is employed as the 2D pre-training model to predict the noise. Fol-

lowing Stable Diffusion, we set the seed to 42. For the hyperparameters

of the diffusion classifier, we empirically tune the time steps and trials to

600 and 30, respectively. Additionally, we adjust the projected camera dis-
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tance rp to 2.2 and the angle refinement parameters R and [ηr] to 10 and

[20, 18, 16, ..., 2], respectively. Regarding projection, we utilize single-point

light source projection from PyTorch3D (Ravi et al., 2020) for mesh samples

and voxel projection for point-cloud samples.

5.2. Analysis on Open-Pose 3D Zero-Shot Classification

5.2.1. Comparison to SOTAs

We evaluate five recent SOTA methods: PointCLIP (Zhang et al., 2022),

Ulip (Xue et al., 2023a), ReconCLIP (Qi et al., 2023), CLIP2Point (Huang

et al., 2023), and PointCLIPv2 (Zhu et al., 2023), on our open-pose bench-

mark McGill‡ and ModelNet10‡ for 3D zero-shot classification. All repro-

duction codes and pre-trained models are obtained from the official GitHub

repository of the respective papers. The current state-of-the-art methods

employ various pre-training models for zero-shot classification, such as GPT,

CLIP, etc. Detailed information and results are provided in Table 3. “Ours-

CLIP” and “Ours-Diffusion” indicate that we utilize CLIP and Diffusion as

the pre-training text-image matching models in our pipeline (see Figure 5),

respectively.

Results on the Open-Pose 3D Zero-Shot Benchmark McGill‡. We

present the results of our method on the McGill‡ benchmark in Table 3.

Based on our pipeline, both Ours-CLIP and Ours-Diffusion exhibit com-

pelling performance. Particularly, Ours-Diffusion demonstrates notable im-

provements of 11.3% and 15.8% on Accuracy (Acc) and mean Accuracy

(mAcc), respectively. Furthermore, our approach relies solely on a single

pre-training model (CLIP or Diffusion), rendering it a concise solution for

initial open-pose 3D zero-shot classification.
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Venue Pre-training McGill‡ ModelNet10‡

GPT CLIP Diffusion 3D-pm Acc mAcc ACC mACC

PointCLIP CVPR’22 ✓ 12.2 13.3 17.7 16.4

Ulip CVPR’23 ✓ ✓ 14.8 16.1 14.4 13.8

ReconCLIP ICML’23 ✓ ✓ 15.7 17.3 15.6 14.3

CLIP2Point ICCV’23 ✓ ✓ 14.8 17.4 19.7 18.1

PointCLIPv2 ICCV’23 ✓ ✓ 27.8 28.9 19.9 18.2

Ours-CLIP - ✓ 31.3 34.6 26.3 24.2

Ours-Diffusion - ✓ 39.1 44.7 22.6 21.7

Table 3: Comparison to Current SOTAs on the Open-Pose 3D Zero-Shot Classification.

3D-pm stands for the 3D pre-training model.

Results on the Open-Pose 3D Zero-Shot Benchmark ModelNet10‡.

As indicated in Table 3, our method also surpasses SOTAs with improve-

ments of 6.4% and 6.0% on Accuracy (Acc) and mean Accuracy (mAcc), re-

spectively. Unlike the results on McGill‡, the performance of Ours-Diffusion

on ModelNet10‡ is lower than that of Ours-CLIP. We observe that CLIP

exhibits particularly high accuracy in the ’toilet’ and ’monitor’ categories,

whereas Diffusion demonstrates more evenly distributed performance across

all categories. Due to the smaller number of classes, CLIP achieves better

results on ModelNet10‡. Since CLIP utilizes feature similarity for measure-

ment while Diffusion adopts noise MSE distance, it is challenging to directly

compare or ensemble these two methods. In future work, we will explore

methods to effectively combine CLIP and Diffusion to yield robust inference

results. Notably, samples in these datasets tend to be boxy and symmetrical,

with minimal variance between some classes, thus posing a challenging task

in the open-pose scenario.
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5.2.2. Analysis on Views Selection

We compare our Iterative Angle Refinement Mechanism (IARM) with

commonly used projection methods, namely cube and circular views. The

visualization results of these methods for a single sample, including angles,

projections, and final predictions, are depicted in Figure 8. Additionally, we

incorporate a fixed single-view approach utilizing only the top view for further

context. The results, detailed in Table 4, reveal significant disparities. In the

open-pose scenario, the fixed single-view perspective yields notably poor re-

sults, with an accuracy of merely 6.6%. While the cube and circular methods,

as multi-view ensemble approaches, do show improvement over a single-view

perspective, their performance is still hindered by the inherent randomness

in open poses. In contrast, our angle refinement mechanism offers a more

advantageous approach to selecting views conducive to classification. It leads

to substantial gains, as evidenced by our method showing 10.5% and 10.0%

improvements in Accuracy (Acc) and mean Accuracy (mAcc), respectively,

on the open-pose McGill‡ benchmark.

Ant Bird Crab Dino. Dolp. Fish Hand Octo. Plier Quad. Snake Spec. Spider Teddy Acc mAcc

Top View 0.0 28.6 0.0 0.0 0.0 0.0 0.0 0.0 42.9 0.0 0.0 11.1 9.1 0.0 6.1 6.6

Cube 0.0 57.1 0.0 0.0 100.0 0.0 14.3 25.0 85.7 0.0 66.7 0.0 18.2 0.0 21.7 26.2

Circular 0.0 57.1 0.0 0.0 75.0 12.5 57.1 37.5 100.0 9.1 55.6 0.0 9.1 0.0 25.2 29.5

Ours-IARM 0.0 71.4 10.0 0.0 100.0 12.5 71.4 37.5 71.4 27.3 77.8 0.0 45.5 28.6 35.7 39.5

Table 4: Projection Angle Update on the McGill‡. In order to reduce the length of the

table, we take abbreviations for some category names: Dino. vs Dinosaur, Dolp. vs

Dolphin, Octo. vs Octopus, Quad. vs Quadruple, Spect. vs Spectacle.
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Figure 8: Final Views with the Corresponding Prediction.

5.3. Analysis on Bridging Pre-training Diffusion

Unlike current SOTAs, we are the first to utilize 2D pre-training with

diffusion as the 3D zero-shot classifier instead of CLIP. In the preceding

section, we presented its final performance in the open-pose setting. Given

the complexity inherent in the open-pose setting, we validate its performance

on the generic aligned-pose ModelNet10 dataset to provide insights into its

potential in detail.

5.3.1. Comparison on Prompts

First, we investigate the influence of semantic descriptions on the match-

ing of various styled projections. We set the trials and camera distance rp

to 30 and 2.2, respectively. We design multiple prompts for three style im-

ages: Render Image (Render I.), Depth Image (Depth I.), and Edge Image

(Edge I.), and report the corresponding mAcc results on ModelNet10 in Ta-

ble 5. Specifically, “one line-drawn [nc]” is the optimal prompt for depth

images, “one model of [nc] in linear composition” is the best prompt for ren-
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der images, while “one edge map of one standalone [nc]” is the most effective

prompt for edge images. Moreover, the edge images exhibit the best results

among the three types of images.

Prompts Render I. Depth I. Edge I.

one model of [nc] 69.3 58.8 72.3

one line-drawn [nc] 69.9 59.8 72.0

one photo of one [nc] 69.6 53.2 73.7

one photo of one standalone [nc] 63.4 51.6 71.1

one depth map of one standalone [nc] 67.2 48.5 77.4

one edge map of one standalone [nc] 66.1 51.9 77.6

one render image of one standalone white [nc] 68.0 55.6 66.3

one sketch photo of one standalone white [nc] 65.8 53.0 74.7

one model of [nc] in linear composition 73.5 59.5 73.5

one photo of one [nc] in linear composition 73.1 59.7 73.7

Table 5: Prompts for Multiple Style Images. [nc] stands for the name text of each category.

5.3.2. Comparison to the CLIP

Subsequently, we compare the effectiveness of the diffusion classifier with

that of the CLIP classifier on ModelNet10. To ensure a fair comparison,

we only exchange the classifier while keeping all other conditions the same.

The comparison results in terms of mAcc are reported in Table 6. For

CLIP, we utilize four common pre-training model structures: CLIP-VIT-

B\16 (Dosovitskiy et al., 2021), CLIP-VIT-B\32 (Dosovitskiy et al., 2021),

CLIP-ResNet50 (He et al., 2016), and CLIP-ResNet101 (He et al., 2016).

Overall, CLIP-VIT-B\16 yields the best performance among these CLIP

models. However, the diffusion classifier demonstrates more powerful ef-

fectiveness, particularly when the trial is set to 30 (Tr.30).
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It is worth noting that the diffusion classifier is considerably slower than

the CLIP classifier, primarily due to its more complex computational process.

Theoretically, selecting a larger number of trials and time steps in diffusion

could potentially lead to further enhancements in performance. Therefore,

opting for the diffusion method entails a trade-off, wherein significant com-

putational resources are required to achieve performance gains.

Render I. Depth I. Edge I. Avg. Times (s)

CLIP-VIT-B\16 54.7 59.7 34.2 49.5 0.025

CLIP-VIT-B\32 49.6 52.7 38.0 46.8 0.028

CLIP-ResNet50 45.2 41.9 37.5 41.5 0.037

CLIP-ResNet101 48.4 54.3 40.8 47.8 0.042

Diffusion-Tr.10 66.2 53.5 70.4 63.4 8.771

Diffusion-Tr.20 71.6 58.6 74.3 68.2 17.461

Diffusion-Tr.30 73.5 59.8 77.6 70.3 26.078

Table 6: Comparison to the CLIP. Times denotes the averaged inference time of a single

projected image.

5.3.3. Ablation on Projection Styles

In the ablation studies of the three style images (Render, Depth, Edge)

for both the CLIP and Diffusion models on the ModelNet10 dataset, the

results are reported in Tables 6 and 7. The CLIP model exhibits the best

performance for depth images and the worst for edge images, whereas the

diffusion model performs inversely. Additionally, we explore the ensemble

of these styles to achieve better performance. Specifically, as introduced in

Section 4.2, the ensemble involves taking the average over projection styles

when calculating the matching score. From Table 7, the CLIP model achieves

better mAcc results by combining render and depth images. Conversely, the
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Diffusion model demonstrates the best performance by combining render and

edge images.

Render Depth Edge mACC

CLIP-VIT-B\16 ✓ ✓ 61.2

CLIP-VIT-B\16 ✓ ✓ 53.6

CLIP-VIT-B\16 ✓ ✓ 50.2

CLIP-VIT-B\16 ✓ ✓ ✓ 53.6

Diffusion-Tr.30 ✓ ✓ 73.2

Diffusion-Tr.30 ✓ ✓ 79.4

Diffusion-Tr.30 ✓ ✓ 81.7

Diffusion-Tr.30 ✓ ✓ ✓ 79.4

Table 7: Ablation on Projection Styles

6. Challenges

The open-pose setting poses greater difficulty for 3D zero-shot classifi-

cation and holds more practical significance. In this context, we make the

first attempt to introduce the 3D open-pose zero-shot classification task and

provide one effective method as the baseline for subsequent studies. Clearly,

this task presents numerous challenges that warrant further research and in-

vestigation. In this section, we focus on exploring several key challenges and

potential solutions.

Insufficient samples for 3D seen classes. The scarcity of samples

for 3D seen classes presents a significant obstacle to training accurate classi-

fication models. Unlike 2D data, the scarcity of 3D data arises from higher

acquisition costs, increased processing and storage requirements, limited ac-

cess channels, and difficulties in annotation. To overcome this challenge,
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researchers may explore data augmentation techniques such as scaling and

translation to generate synthetic samples and enrich the training dataset.

Additionally, leveraging text-to-3D generation models (Lin et al., 2023; Chen

et al., 2023b) or image-to-3D generation models (Liu et al., 2023) to expand

3D data holds promising prospects.

Viewpoint similarity among the classes. The presence of viewpoint

similarity among different classes complicates the 3D zero-shot classification

process, particularly for projection-based methods (Huang et al., 2023; Zhu

et al., 2023; Xue et al., 2023a; Wang et al., 2023b). Instances like tables

and beds can appear remarkably similar from certain viewpoints, a common

occurrence in the open-pose setting. One possible solution is to incorporate

viewpoint augmentation during training, exposing the model to diverse view-

points of the same object class to improve its robustness against viewpoint

variations. For methods that do not require additional training, iterating

multiple times may help determine the optimal viewpoint.

Attribute relationship between seen and unseen classes. Estab-

lishing an effective relationship between seen and unseen classes is crucial

for generalizing the classification model to unseen classes (Zhou et al., 2023;

Wang et al., 2023a). Transfer learning techniques, such as feature align-

ment and domain adaptation, can be explored to leverage knowledge from

seen classes and transfer it to unseen classes. Furthermore, fundamental

knowledge from disciplines such as physics and biology could be utilized to

generalize the attributes of seen and unseen classes.

Bias in the distribution of pose data. In training data for large

models, there is typically a lower proportion of open-pose data compared to
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aligned-pose data (Radford et al., 2021; Rombach et al., 2022; Sohl-Dickstein

et al., 2015). The imbalance in the distribution of open-pose data in train-

ing datasets hinders the model’s ability to learn representative features for

open-pose classification. Addressing this challenge may involve collecting ad-

ditional open-pose data or exploring techniques to balance the distribution

of open-pose data in the training process.

Our open-pose setting introduces additional complexities, such as vari-

ations in object orientations and viewpoints, which are not adequately ad-

dressed by existing 3D zero-shot classification models. By incorporating these

considerations into the design and training of 3D large-scale models, there

will be an enhancement in their adaptability and robustness for handling di-

verse 3D data in reality. Our work serves as an important clue, highlighting

the critical need for open-pose scenarios to promote the development of 3D

zero-shot learning.

7. Conclusion

This paper provides an overview of the current progress in 3D zero-shot

classification and proposes a more challenging benchmark for 3D zero-shot

classification, aiming to recognize unseen 3D objects with open poses. Cor-

respondingly, we validate the effectiveness of different strategies and design

a concise pipeline with a concise angle refinement mechanism to present the

preliminary solution. However, due to the significantly higher difficulty, our

approach, being the first exploration in open-pose situations, does not achieve

as remarkable results as in the aligned-pose case. Furthermore, we pioneer

the exploration of knowledge transfer using pre-training Diffusion, broaden-
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ing the scope of validation beyond existing CLIP-based methods. Finally, we

also set out challenges and potential exploration strategies for 3D zero-shot

classification in the open-pose setting.
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