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Abstract

Multi-modal ophthalmic image classification plays a key role in diagnosing eye diseases,
as it integrates information from different sources to complement their respective perfor-
mances. However, recent improvements have mainly focused on accuracy, often neglecting
the importance of confidence and robustness in predictions for diverse modalities. In this
study, we propose a novel multi-modality evidential fusion pipeline for eye disease screening.
It provides a measure of confidence for each modality and elegantly integrates the multi-
modality information using a multi-distribution fusion perspective. Specifically, our method
first utilizes normal inverse gamma prior distributions over pre-trained models to learn both
aleatoric and epistemic uncertainty for uni-modality. Then, the normal inverse gamma dis-
tribution is analyzed as the Student’s ¢ distribution. Furthermore, within a confidence-aware
fusion framework, we propose a mixture of Student’s ¢ distributions to effectively integrate
different modalities, imparting the model with heavy-tailed properties and enhancing its
robustness and reliability. More importantly, the confidence-aware multi-modality ranking
regularization term induces the model to more reasonably rank the noisy single-modal and
fused-modal confidence, leading to improved reliability and accuracy. Experimental results
on both public and internal datasets demonstrate that our model excels in robustness, par-
ticularly in challenging scenarios involving Gaussian noise and modality missing conditions.
Moreover, our model exhibits strong generalization capabilities to out-of-distribution data,
underscoring its potential as a promising solution for multimodal eye disease screening.
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1. Introduction

Diabetic Retinopathy (DR) and Diabetic Macular Edema (DME) stand as the primary
culprits behind permanent vision impairment among individuals of working age [23]. Age-
related Macular Degeneration (AMD) is another leading cause of blindness worldwide, with
Polypoid Choroidal Vasculopathy (PCV) a subtype of AMD, especially seen in Asians [20], ]].
Driven by the tremendous development of computer vision [21], [14], [45], the screening and
continuous monitoring of the above eye diseases under computer-aided detection is imminent.

Retinal fundus image (Fundus) and Optical Coherence Tomography (OCT) are the
common 2D and 3D imaging techniques for ophthalmic diseases screening. This moti-
vates the researchers to combine above modalities to improve the performance of oph-
thalmic diseases screening. After all, multi-modality learning usually provides more com-
plementary information than uni-modality learning [54]. Existing multi-modality learn-
ing methods can be roughly classified into early, intermediate, and late fusion accord-
ing to the fusion stage [3]. For the multi-modality ophthalmic image learning, recent
works [52, 16, 24 40, 48, 15, 36, 6, 25] mainly focused on the early fusion [16], 24], 140]
and intermediate fusion stages [52], 48] [15] [36] [6, 25]. Previous researches typically combine
features from different eye image modalities directly during fusion. However, this may lead
to the collection of misjudged features from the noisy modality, resulting in incorrect pre-
diction results §r, as seen in Fig. [1| (a). To address this challenge, we leverage uncertainty
estimation in our method to assess the reliability of uni-modality from the perspective of
individual modal distributions. As depicted in Fig. [1| (b), we estimate the prediction and
uncertainty of uni-modality {@m,, Um}m:1,27 and then leverage the distribution fusion of con-
fidence to derive the final prediction and its uncertainty {yz, Up}. This endeavor is crucial
for ensuring clinical safety and reliability, particularly when dealing with interference from
either image type, where uncertainty serves as a dependable metric for integrating multi-
modality distributions.

Uncertainty estimations provide an excuse for ambiguous or uncertain network predic-
tions. In particular, when a model encounters data it has never seen before or input tainted
by noise, it can express uncertainty with a typo I don’t know,” and the degree of that
uncertainty can be quantified. As stated by [19], uncertainty estimation encompasses two
types: aleatoric and epistemic uncertainty. Aleatoric uncertainty is inherent in the observed
data and arises from inherent randomness or variability in the underlying processes. In
contrast, epistemic uncertainty stems from the limitations of our knowledge or the model,
indicating uncertainty that can be reduced or eliminated with additional data or improved
models. Current uncertainty estimation methods mainly include the Bayesian neural net-
works, Deep ensemble (DE), Deterministic-based methods. Bayesian neural networks learn
the distribution of network weights by treating them as random variables, using Laplace ap-
proximation [30], Markov Chain Monte Carlo [34] and variational inference techniques [38].
Affected by the challenge of convergence, these methods have a large amount of computa-
tions, until the introduction of dropout into the network has been alleviated to a certain
extent [19]. Rather than to learn the distribution, a alternative and simple way to estimate
the uncertainty is to learn an ensemble of deep networks [22]. To alleviate computational
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Figure 1: Comparison multi-modality classification methods for eye disease screening. (a) Traditional
multi-modality eye disease screening. (b) Our confidence-aware multi-modality learning for eye disease
screening. y and U denote the prediction and its uncertainty, respectively.

complexity and overconfidence [42, 47], many deterministic-based methods [42, B1], [44], 27]
have been designed to directly output uncertainty in a single forward pass through the
network. Most of above methods are focused on the single-modality with uncertainty esti-
mation. How to be aware of multi-modal uncertainty and fuse them in principle remains to
be studied. Recently, an uncertainty-aware multimodal learner for estimating uncertainty
through cross-modal stochastic network prediction is proposed by [46]. Notably, relying
solely on cross-attention for multimodal feature fusion may not optimize post-fusion perfor-
mance, especially with the presence of noisy modality, as depicted in Fig.[I] Differently, our
approach provides confidence scores for each modality and elegantly integrates multi-modal
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information using a multi-distribution fusion perspective.

In this paper, we present EyeMoSt+, a novel confidence-aware multi-modality eye dis-
ease screening method aimed at promoting reliable fusion of Fundus and OCT modalities.
Our approach utilizes Normal-inverse Gamma (NIG) prior distributions over pre-trained
models to learn both aleatoric and epistemic uncertainty for uni-modality. By solving the
NIG prior analytically as a Student’s ¢ distribution, we transform it into a mixed Student’s
t distribution fusion problem. To endow the model with global uncertainty and robustness,
we introduce a confidence-aware fusion strategy for Mixture of the Student’s ¢ (MoSt) dis-
tribution. To prevent an escalation of global confidence in the presence of modal noise,
we utilize a novel confidence-aware ranking-based regularization approach. To validate the
effectiveness of our proposed method, we conduct extensive experiments on three datasets,
covering various eye diseases, such as glaucoma grading, AMD, PCV, DR, and DME. These
experiments underscore the reliability and robustness of EyeMoSt+ in multimodal screening
for eye diseases, highlighting its effectiveness in processing noisy inputs, identifying missing
patterns, and handling unseen data. In summary, the contributions of this paper are mainly
included:

(1) We propose a novel confidence-aware multi-modality eye disease screening method, which
providing a new evidential multi-modality paradigm for classification with reliability and ro-
bustness.

(2) To integrate different modalities, a novel MoSt is designed to be dynamically aware of
heavy-tailed and confidence for each modality with uncertainty, which promisingly provides
significantly robustness as well and promotes reliable decision.

(3) To address the confidence relationship between uni-modality and fusion modality, we
propose a novel confidence-aware ranking regularization term for multi-modality eye disease
screening.

(4) We conducted comprehensive experiments on both public and internal datasets encom-
passing various eye diseases to thoroughly validate the accuracy, robustness, and reliability
of our model, including its performance on Out-of-distribution (OOD) test samples such as
those with Gaussian noise, missing modality, and unseen data. E]

We compared three methods [2], 411, [56] directly related to our research, outlined below:
(1) Compared with the evidential deep regression method [2], our work extends this frame-
work to the domain of ophthalmic classification, introducing confidence-aware evidential
multi-modality fusion. Leveraging [2] method, we employ the evidence prior distribution
NIG to characterize confidence for different modalities (Egs. [I] to ). However, the original
method lacks a solution for integrating the prediction and confidence of different modali-
ties. To address this limitation, we propose MoSt, a dynamic fusion approach that merges
predictions and uncertainties from diverse modalities (Eq. . Additionally, to ensure that
the confidence level of the fusion modalities consistently exceeds the confidence level of uni-
modality, we introduce a novel confidence-aware ranking regularization term tailored for
multimodal eye disease screening (Eq. .

(2) In comparison with [41], where fusion involves two Student-t distributions, we enhance

1Our code has been released in https://github.com/Cocofeat/EyeMoSt.
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this process and propose a ranking regularization term for confidence perception. Building
on [41], our confidence-aware fusion strategy (Eq. [7]) is an improved version. We assume
that multiple Student’s t distributions remain approximate Student’s t distribution after
fusion, with the degrees of freedom vp and ¥ aligning with [41]. The calculation of ug
introduces the confidence C of both modalities. Furthermore, we construct an evidence prior
distribution NIG for different modalities and transform it into two Student’s t distributions
for fusion (Eq. . Besides, a new confidence-aware ranking regularization term for multi-
modal eye disease screening is introduced to establish the ranking relationship between the
confidence of the fusion modality and the confidence of each single modality (Eq. .

(3) Compared with our prior conference version [56], we further enhance the fusion process of
the mixture of Student’s t distributions (Eq. , introducing an innovative confidence-aware
multi-modal learning ranking component. Our contributions also encompass more robust
validation, OOD data detection, and missing modality experiments in practical applications.
We refine the fusion modality of the mixture of Student’s ¢ distribution, incorporating Eqs.
to and Eq. to propose a new confidence perception ranking regularization term for
multimodal eye disease screening. Additionally, we enrich the robust experimental verifica-
tion in Sec. and [4.4) and perform OOD data verification in different scenarios. Finally,
the addition of missing modality experiments in Sec. aim to comprehensively verify the
robustness and reliability of the proposed algorithm.

2. Related Works

In this section, we first briefly review multi-modality learning for eye disease screening.
Then, different uncertainty quantification methods are introduced.

2.1. Multi-modality learning for eye disease screening

According to integrate of multi-modality fusion at different stages, existing multi-modality
image methods for typical ophthalmic diseases screening can be divided into methods that
fuse in early, intermediate, and late stages [3]. Early fusion-based approaches integrated
multiple modalities directly at the data level, usually by concatenating the raw or prepro-
cessed multi-modality data. Rodrigues et al. [40] prone to use the complementary features
based on grayscale and vessel connectivity attributes in the early fusion stage. The following
methods tend to fuse special raw data early rather than stitching multimodal raw images di-
rectly. Hua et al. [I6] combined the preprocessed Fundus image and wide-field swept-source
Optical Coherence Tomography Angiography (OCTA) at the early stage and then extract-
ing representational features for DR recognition. Li et al. [24] obtained synthesized FFA
data through CycleGAN [55], and then feeds into a convolutional neural network (CNN)
with paired FFA and Fundus data. They tried to learn both modality-invariant features
and patient-similarity features for retinal disease diagnosis. The early fusion stage methods
can preserve the original image information to the greatest extent, and most people cur-
rently perform multi-modality ophthalmic image fusion at the intermediate stage for disease
screening.



The intermediate fusion strategies allow multiple modalities to be fused at different in-
termediate layers of the network. Yoo et al. [52] first attempted to diagnose AMD from
multi-modality images at the intermediate fusion stage. They used pre-trained VGG-Net
model to extract features, then aggregated them and diagnosed AMD by random forest clas-
sifier. Different from directly aggregating the features extracted by the pre-trained model,
Wang et al. [49] 48] trained end-to-end two-stream CNN with class activation mapping and
then concatenated information from the Fundus and OCT streams. Similarly, Ou et al. [36]
and He et al. [15] extracted the different modality features with CBAM [50] and modality-
specific attention mechanisms, then concatenated them to realize the multi-modality fusion
for retinal image classification. Cai et al. [6] does well in capturing domain-specific fea-
tures embedded in ophthalmic images in the early and intermediate fusion stages to achieve
classification. Above methods on the early and intermediate fusion stage are too simple
and lack of exploiting the complementary information between Fundus and OCT modality.
Therefore, Li et al. [25] combined features across multiple dimensions of the network and
explored the relation between them by a hierarchical fusion strategy. However, in the later
stage of fusion, the features of each modality and the features of hierarchical fusion are only
concatenated for eye diseases classification. While the identification of DR diseases using
Ultra-WideField Color Fundus Photography (UWF-CFP) imaging and OCTA was under-
taken by [9], a manifold mixup strategy was incorporated to enhance the generalization of
concatenated features. In the late fusion stage, more attention should be paid to how to com-
bine the predictions of these multiple models robustly and reliably. Therefore, in this paper,
we try to focus on adaptive fusion based on uncertainty estimation in the late fusion stage
for multi-modality eye disease screening. Our aim is to integrate information from various
modalities using a multi-distribution fusion approach, particularly emphasizing Student’s ¢
distribution fusion. This methodology, although previously explored in medical image reg-
istration [I1), B9] and segmentation [35], offers promising avenues for advancing eye disease
screening. For instance, pixel similarity within MoSt algorithm was introduced for the rigid
registration of multimodal medical images [I1]. Building upon this foundation, Ravikumar
et al. [39] proposed group-wise similarity registration to enhance correspondence and align
shapes more robustly. Inspired by the aforementioned methods, we propose the MoSt within
a confidence-aware fusion framework to effectively integrates different modalities for robust
and reliable eye disease diagnosis.

2.2. Uncertainty estimation

Uncertainty quantification provides reliable predictions and confidence levels, which are
critical for advancing explainable deep neural networks (DNNs) [I]. Bayesian neural net-
works (BNNs) [4, 32, 17] models uncertainty by learning a distribution of deterministic
parameters. Commonly used techniques include Laplace approximation [30], Markov Chain
Monte Carlo [34] and variational inference [3§]. Although BNNs are robust to overfitting
problems, they can be unacceptably computationally intensive. To address this problem,
Kendall et al. [I9] introduced a straightforward method, leveraging Bayesian deep learning
with Monte Carlo Dropout (MCDO), to model both aleatoric and epistemic uncertainty in
the context of computer vision. DE [22] trained and integrated multi deep learning mod-

6



els to produce uncertainty. However, there is still a certain consumption of memory and
computing costs.

Recently, deterministic-based methods [27, [44] are designed to estimate the uncertainty
by a single forward pass without much sampling and time cost. Van Amersfoort et al. [44]
proposed to measure the distance between the test sample and the prototype as a determinis-
tic uncertainty based on the idea of building an radial basis function network. Furthermore,
it was contended by [I8] that uncertainty estimation for multimodal data remained a chal-
lenge. They introduced multimodal neural processes incorporating several innovative and
principled mechanisms designed to address the specific characteristics of multimodal data.
Quality-aware multimodal fusion was introduced by [53] to attain robust multimodal fusion.
Nevertheless, they did not explicitly characterize the aleatoric and epistemic uncertainty of
each modality, potentially limiting the model’s ability to effectively perceive and differen-
tiate data quality. In this paper, our model is extended the deep evidential regression [2]
to classification for multi-modality fusion. We focus on the modality-specific uncertainty
estimation and how to fuse multi-modality estimation more confidently and reliably.

3. Proposed method

In this section, we introduce the overall framework of EyeMoSt+, which efficiently es-
timates the aleatoric and epistemic uncertainty for each modality and integrate the fusion
modality in principle adaptively. As shown in Fig. 2| we first employ the pretrained CNN or
transformer encoders to capture different modality features. Then, we place multi-evidential
heads after the trained networks and to model the parameters of higher-order evidential dis-
tributions for each modality. To merge these predicted distributions, we derive the normal
inverse Gamma distributions to Student’s ¢ (St) distributions. Particularly, the confidence-
aware fusion for mixture of St distributions (MoSt) is introduced to integrate the St dis-
tributions of different modalities in principle. Besides, a novel confidence-aware ranking
regularization term is proposed to constrain the confidence relationship between unimodal-
ity and fusion modality. Finally, we elaborate on the training pipeline for the model evidence
acquisition.

3.1. Prediction & uncertainty estimation for each modality

Given a multi-modality ophthalmic dataset D = { {xin}i\f:l} and the corresponding

label ¥¢, the intuitive goal is to learn a function that can classify different categories. In
the ophthalmic image, OCT and Fundus are common imaging modalities. Therefore, here
M=2, x¢ and x5 represent OCT and Fundus input modality data, respectively. We first load
pretrained 2D CNN-based [10] or transformer-based [28] backbone encoder © and the 3D
CNN-based [7] or transformer-based [I3] backbone encoder ® to identify the feature-level
informativeness, which can be defined as © (x}) and ® (x}), respectively. We extend the
deep evidential regression model [2] to deep multi-modality evidential classification for eye
diseases screening. To this end, to model the uncertainty for each modality, we assume that
the observe label y' is drawn from a Gaussian N (y’|u, 0?), whose mean and variance are
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Figure 2: The framework of confidence-aware multi-modality learning for eye disease screening
(EyeMoSt+).

governed by an evidential prior named the Normal-Inverse-Gamma (NIG):

0,2

NIG (1, 0*[pp) =N (”I%m 5_) L™ (0% am, Bm) (1)

where I'"! is an inverse-gamma distribution. Specifically, the multi-evidential heads will be

placed after the encoders © and ® (as shown in Fig. [2)), which outputs the prior NIG pa-

rameters P, = (Ym, Om, Qm, Bm). As a result, the Aleatoric Uncertainty (AU) and Epistemic

Uncertainty (EU) can be estimated by the E [¢%] and the Var [u], respectively:
Bim Bon

AU:E[Uz}:a _1, EU:Var[u]:m

(2)

After that, the Student’s ¢ predictive distributions can be derived, which are formed by the
interaction of the prior and the Gaussian likelihood of each modality, given by:
i o p(yi‘gvpm)p(g‘»pm)
p(Y'[pm) = p(0ly".pm) (3)
= [ | .p (e, u,0%) NIG (u, 0%|py) dudo?,

When placing a NIG evidence prior on our Gaussian likelihood function, there exists an
analytical solution as follows

ant) am<yi—%)2> ~(ant2)

p(y’|pm) = T T(am) 27 B (1461, 1+ 2Bm (1+0m)
=St (yi; Yms Oms 2am) )

(4)

Where o,, = Brm(140m) hus, the two modalities distributions are transformed into the

Om 0

Student’s ¢ distributions St (y%; Um, T, Vm) = St <yi; Yims %, 2am)
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3.2. Confidence-aware fusion for Mixture of Student’s t distributions

Then, we focus on fusing multiple St distributions from different modalities. How to
rationally integrate multiple Sts into a unified St is the key issue. To this end, the joint
modality of distribution can be denoted as:

p(z1,22) = St (y';up, p, vp) (5)

Then the joint ¢ distribution with:

s ([} [3][1])

In order to preserve the closed Student’s ¢ distribution form and the heavy-tailed properties
of the fusion modality, the updated parameters are given by [4I]. In simple terms, we
first adjust the degrees of freedom of the two distributions to be consistent. As described
n [41], the smaller values of degrees of freedom has heavier tails, while the larger variance
values represent better heavy tails too. Furthermore, considering the variance formula of the
Student’s ¢ distribution (like Eq. E[), it’s important to note that as v increases, the variance
decreases, indicating a higher level of confidence. We assume that multiple Student’s ¢
distributions are still an approximate Student’s ¢ distribution after fusion. Assuming that
the degrees of freedom of v; are smaller than vy, then, the fused Student’s ¢ distribution
St (yi;u,, 3., v,) will be updated as:

Vp=U1
Ucmlul + OQUQ , (7)
_1 v2(v1—2)
Tp=1 (T1 + 2822y,

Where C; and Cy denote the confidence from the distribution of uni-modality, which can be
defined as:

(%1 (%)
C = , Co = . 8
! U1 + U 2 V1 + Vg ( )

Therefore, the prediction and uncertainty for the fused modality can be estimated by:

7= Jv'p vk pr)dy’ = ur,
UF = EF UF _EF <1+

vp—2

(9)

2
vp—2 )

where pp is the parameter of St distribution after fusion, which can be denoted as pr =
(up,or,vr). Confidence-aware fusion for MoSt can be seen in Fig. |3 @.

3.3. Confidence-aware multi-modality ranking

In contemporary multimodal methodologies, the direct fusion of potentially corrupted
modalities is a prevalent practice, leading to compromised model reliability and recognition
errors. Accurately defining the reliability of each modality poses challenges, particularly
when dealing with diverse confidence levels across different modalities for the same sample,
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especially in the presence of noisy data. Fortunately, the supervision of confidence estima-
tions can serve as a viable alternative. Drawing inspiration from the informatics principle
of “the essence of information is to eliminate uncertainty (Shannon)” [43], where greater
information implies reduced uncertainty. That is, for a reliable multi-modality classifier,
integrating multimodal information will eliminate uncertain parts of the information, re-
sulting in more confident results. Based on this assumption, we introduce a ranking-based
regularization term [29]. This term constrains the relationship between single modality and
fused modality, ensuring that the confidence level of the fused modality consistently sur-
passes that of each individual modality. As a result, the model’s reliability is significantly
bolstered.

Specifically, we first directly minimize the confidence difference between the uni-modality
and fusion modality as follows:

LmF) = € (Sty,) — C (Stp), (10)

where C (+) represents the confidence of the modality, defined by the logits generated through
the softmax layer [29]. Despite the presence of modal contamination, the fused models can,
at times, yield accurate predictions. Hence, we solely focus on regularizing the confidence in
correct predictions, while avoiding the minimization of confidence for individual modalities.
The aforementioned formula can be relaxed for any ophthalmic modality image as follows:

L) = max (0,C (Sty) — C (Stp)). (11)

The proposed confidence-aware multimodal ranking loss is integrated over arbitrary modality
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and fused modality pairs for each sample, formalized as follows:

M
Lo=) L™, (12)
m=1

The proposed confidence-aware multi-modality regularization term is versatile and can be
seamlessly incorporated as an additional loss term into current evidential deep learning
framework to constrain their confidence estimates. Confidence-aware multi-modality rank-
ing rule can be seen in Fig. |3] @. This integration enhances model reliability and boosts
performance robustness.

3.4. Multi-modality learning process

Under the evidential learning framework, we expect more evidence to be collected for each
modality, thus, the proposed model is expected to maximize the likelihood function of the
model evidence. Equivalently, the model is expected to minimize the negative log-likelihood
function, which can be expressed as:

LNV (s By oy Bn) = log oIV Ew 106 (28,0 (1 + )

Fam+3) (13)
+ (am + 5) 10g (Y = )"0 + 26 (14 6,)) ,
Then, to fit the classification tasks, we introduce the cross entropy term £SF to Eq.
EfXIG = LNE 4 )\mﬁan X Ny (14)

where )\, is the balance factor and set to be the same as [2]. 7,, is the overall model evidence,
which can be denoted as:

1
nm:am—l—ém—l—ﬂ—. (15)

Similarly, for the fused modality, we first maximize the likelihood function of the model
evidence as follows:

2

+5 (v + 1) log (1 + —‘yt‘“F)2> .

vEXR

YF
LY (yp, Yp, vp) = logy/SF + log % + log \/upm (16)

Then, to achieve better classification performance, the cross entropy term £LSF is also intro-
duced into Eq. [16] as below:
Lot = LN 4 \pLSF (17)

Where Ap serves as the balance factor, its optimal selection is identified through the ablation
study (Sec . Totally, the evidential deep learning process for multi-modality screening
can be denoted as:

M
Lar=Y LN+ L3+ AL, (18)
m=1

11



Ac serves as a crucial hyperparameter that governs the potency of confidence-aware multi-
modality learning regularization. Its value is set to 10 based on the insights from [29] and
the results of the ablation study (Sec . This paper primarily focuses on discussing eye
diseases using two modalities: OCT and Fundus imaging. Accordingly, the parameter M is
set to 2. The process of proposed EyeMoSt+ are shown in Algorithm [I

Algorithm 1 Confidence-aware multi-modality learning for eye disease screening

m=1

Am = 0.01, A\p = 0.5, A\c = 10, and epochs for training the classifier ¢..
fort=1,...,t. do
form=1,...,M do
Place the NIG prior for each modality with Eq. [1} NIG (i, 0%|p,,) < each encoder
outputs;
Compute the analytical solution for each modality with Eq. 4t St (3% Yo, Om, 2000 ) <
NIG (4, 0-2|pm)§
Compute the each modality loss with Eq.
end for
Obtain the fusion modality parameters with Eq. [7}
Compute the fusion modality loss with Eq.
Compute the confidence-aware regularization loss with Eq. [11}
Compute the total loss with Eq. [18]
Update the parameters of the networks with gradient descent;
end for
return networks parameters.

Given dataset D = {{z"}_ | yi}i\;v initialized classifier F = {f™}»_,  hyperparameter

4. Experiments

4.1. Datasets € Training Details

1) Experimental Datasets: This paper conducts a comprehensive evaluation of the
performance of the EyeMoSt+ model across the public and private datasets : GAMMA
dataset [51], OLIVES [37] and an in-house dataset developed for this study. The different
datasets for different diseases are detailed below.

GAMMA Dataset for Glaucoma Recognition: To assess the efficacy of our proposed
approach in glaucoma recognition, we assess its performance on the GAMMA dataset [51].
This dataset comprises 100 paired cases, each assigned a three-level glaucoma grading. The
original image size for OCT and near-IR Fundus images is 256 x 512 x 992 and 1956 x 1934,
where 256 is the total number of OCT slices. More details about the original dataset can be
found in [51]. The cases are thoughtfully divided into training and test subsets, containing
80% and 20% of the cases, respectively. To mitigate the influence of incidental factors on
performance evaluations, a rigorous five-fold cross-validation strategy is employed.

OLIVES Dataset for DR and DME screening: The effectiveness of the proposed algorithm
in identifying DR and DME is subsequently verified using the OLIVES dataset [37]. This
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dataset comprises paired OCT and near-IR Fundus images from 96 patients over multiple
cycles, yielding a total of 3128 paired cases. More specifically, it includes 56 patients with
DME and 40 patients with DR at various weeks, resulting in a total of 1837 DME samples
and 1291 DR samples. The original image size for OCT and near-IR Fundus images is
48 x 504 x 496 and 768 x 768, where 48 is the total number of OCT slices. Additional
details about the original dataset can be found in [37]. To ensure reliable experimentation,
we partitioned the dataset into training, validation, and test subsets, maintaining an 8:1:1
ratio.

In-house Dataset for AMD and PCV Screening: Finally, our method undergoes rigorous

testing using an exclusive in-house dataset obtained from the Shantou International Joint
Eye Center at Shantou University, utilizing Topcon 3D OCT-2000 as OCT and Fundus
acquisition device. The dataset comprises 149 cases of AMD and 178 cases of PCV, involving
a total of 327 patients. Some cases feature both left and right eye images, resulting in a total
of 604 paired OCT and Fundus images, including 265 AMD samples and 341 PCV samples.
The original image size for OCT and Fundus images is 128 x 512 x 885 and 2100 x 2000,
where 128 is the total number of OCT slices. Adhering to established practices, we partition
the patient cohort into training, validation, and test subsets, maintaining a consistent 8:1:1
patient ratio for reliable experimentation.
2) Training Details: Our proposed method is implemented in PyTorch and trained on
NVIDIA GeForce RTX 3090. Adam optimization [20] is employed to optimize the overall
parameters with an initial learning rate of 0.0001. The maximum of epoch is 100. The
original image size in the GAMMA dataset is comparable to that of the internal dataset.
For OOD-related experiments using the GAMMA dataset (as detailed in Section 4.4), we
uniformly adjusted the original sizes of its OCT and Fundus images to 128 x 256 x 128
and 256 x 256, respectively. Given the size disparity between OLIVES and the original
images from GAMMA and the internal dataset, our aim is to optimize the utilization of the
NVIDIA GeForce RTX 3090 graphics card memory while maximizing information retention
in the original images. Consequently, we adjusted the Fundus and OCT image sizes for the
OLIVES dataset to 512 x 512 and 48 x 248 x 248. The batch size is set to 16. In all the
following experiments involving the addition of Gaussian noise, we apply a ten-fold random
addition strategy to mitigate any performance improvements resulting from random factors.
It should be noted that our proposed EyeMoSt+ can be divided into two versions, EyeMoSt+
(CNN) and EyeMoSt+ (Transformer), depending on the encoders used. Therefore, for the
EyeMoSt+ (Transformer) version, to align with the input requirements of the pre-trained
models [28, [13], we adjusted the input sizes for Fundus and OCT to 384 x 384 and 96 x 96 x 96
for all the datasets.

4.2. Compared Methods & Metrics

1) Compared Methods: We compare the following six methods: For different fusion stage
strategies, a) B-CNN Baseline of intermediate typical fusion method based on CNNs, b)
B-Transformer Baseline of intermediate typical fusion method based on transformers, c)
B-EF Baseline of the early fusion [16] strategy, d) M?LC [50] of the intermediate fusion
method and the later fusion method €) TMC [12] are used as comparisons. B-EF is first
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integrated at the data level, and then passed through the same MedicalNet [7]. B-CNN and
B-transformer first extract features by the encoders (same with us), and then concatenates
their output features as the final prediction. In addition, we compared f) SmartDSP [5]
and g) EyeStar [51], which ranked first and third on the GAMMA dataset. For the
uncertainty quantification methods, h) MCDO [19] employs the test time dropout as an
approximation of a Bayesian neural network. i) DE [22] quantifies the uncertainties by
ensembling multiple models. In the case of all the baselines and our proposed EyeMoSt+,
we selected the best checkpoint for testing based on the validation performance using the
Accuracy (ACC) metric.

2) Performance Metrics and Evaluation: In our evaluation, we employ ACC and
Kappa metrics, which offer an intuitive basis for comparing our method with other existing
approaches. To quantify the effectiveness of ordinal ranking, we utilize area under risk-
coverage (AURC). This enables a comprehensive understanding of how our method’s risk
estimates align with the actual outcomes. For the calibration, we employ the Expected
Calibration Error (ECE) [32] metric.

Table 1: Comparisons with different algorithms on the GAMMA dataset. F and O denote Fundus and
OCT modality. The top-2 results are highlighted in bold and underlined for our method. Higher ACC and
Kappa mean better. Lower ECE means better.

Gaussian noise

Original
Method 0=0.1 (F) a=0.3 (O)

ACC Kappa ECE ACC Kappa ECE ACC Kappa ECE P-value Time (s)

B-CNN 0.700 0.515 0.340 0.623 0.400 0.530 0.500 0.000 0.740 0.0004 3.79
B-Transformer 0.780 0.641 0.230 0.664 0.459 0.372 0.733 0.574 0.277 0.0305 1.95
B-EF 0.660 0.456 0.350 0.660 0.452 0.360 0.500 0.000 0.740 0.0004 3.70
M?LC 0.710  0.527  0.290 0.660 0.510 0.352 0.500 0.000 0.740 0.0004 3.83
SmartDSP 0.840 0.743 0.170 0.530 0.323 0.380 0.800 0.679 0.220 0.0270 15.17
EyeStar 0.860 0.774 0.150 0.650 0.439 0.380 0.740 0.583 0.250  0.0050 26.79

MCDO 0.758 0.636 0.253 0.601 0.341 0.494 0.530 0.000 0.740 0.0004 27.79
DE 0.710 0539 0330 0.666 0.441 0.385 0.530 0.000 0.730 0.0004 31.14
T™MC 0.810 0.658 0.230 0.430 0.124 0.919 0.580 0.045 0.700 0.0360 4.27
EyeMoSt 0.850 0.754 0.170 0.663 0.458 0.368 0.830 0.716 0.210 - 3.90
EyeMoSt+T  0.820 0.732 0.180 0.751 0.579 0.294 0.827 0.710 0.193 - 2.18
EyeMoSt+C 0.860 0.761 0.150 0.675 0.464 0.350 0.850 0.764 0.175 - 4.09

4.3. Robustness validation

1) GAMMA dataset: We first reported our algorithm with start-of-the-art methods on
the GAMMA dataset in Tab.[Il We conducted a performance comparison of various methods
under the normal condition, including the top-ranking SmartDSP (1st place) and EyeStar
(3rd place) methods from the GAMMA Challenge. Based on the three metrics of ACC,
Kappa, and ECE under the normal condition in Tab. [I we observed that our proposed
EyeMoSt+ (CNN) method achieved comparable performance, securing the second position.
To assess the robustness of the proposed method, we introduced Gaussian noise with o = 0.1
or o = 0.3 to the Fundus modality or the OCT modality, respectively, during testing. As
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Figure 4: Accuracy and ECE performance of different algorithms in noisy single modality with different

levels of noise on GAMMA dataset. (a) ACC and ECE for various algorithms in the presence of noise at

different levels in Fundus modality. (b) ACC and ECE for various algorithms in the presence of noise at
different levels in OCT modality. Higher ACC and Lower ECE mean better.

Table 2: Comparisons with different algorithms on the OLIVES dataset. F and O denote Fundus and
OCT modality. The top-2 results are highlighted in bold and underlined for our method. Higher ACC and
Kappa mean better.

Gaussian noise

Original
Method 0=0.5 (F) 0=0.3 (0)
ACC Kappa ACC Kappa ACC Kappa P-value Time (s)

B-CNN 1.000 0.840 0.669 0.000 0.377 0.047 < 0.001 11.01
B-Transformer 1.000 1.000 1.000 1.000 0.669 0.000 <0.001 10.67
B-EF [16] 0.98 0968 0.979 0.953 0.331 0.000 <« 0.001 9.13
M?LC [50] 1.000 1.000 0.957 0.905 0.389 0.059 <« 0.001 11.86
MCDO [I9] 1.000 1.000 1.000 1.000 0.373 0.035 <0.001 34.12
DE [22] 1.000 1.000 1.000 1.000 0.331 0.000 < 0.001 36.73
TMC [12] 1.000 0.835 0.775 0.389 0.557 0.253 <« 0.001 12.96
EyeMoSt [56] 0.932 0.838 1.000 1.000 0.932 0.838 - 12.08
EyeMoSt+ (Transformer) 1.000 1.000 1.000 1.000 0.775 0.451 - 11.35
EyeMoSt+ (CNN) 0.993 0.984 1.000 1.000 0.981 0.957 - 12.20
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illustrated in Tab. I the addition of o = 0.1 Gaussian noise to the Fundus modality led to a
significant reduction in the performance of all methods. However, our methods, EyeMoSt+
(CNN) and EyeMoSt+ (Transformer), remained comparable, with EyeMoSt+ (Transformer)
exhibiting the best performance. When o = 0.3 Gaussian noise was added to the OCT
modality, rendering almost all methods ineffective, our proposed EyeMoSt+ method main-
tained a high recognition accuracy. In the context of hypothesis testing, we computed the
significance differences, as indicated by p-value, between all methods under noisy conditions
and the optimal results obtained by our proposed method, as shown in Tab. [Il Based on
the p-value in Tab. , our proposed method exhibited distinctions compared to TMC [12],
EyeStar [51], and B-transformer. Notably, it demonstrated pronounced differences when
compared to the remaining methods.

Furthermore, in a more general scenario, we demonstrated the ACC and ECE metrics

under different noise conditions (¢ = 0.1,0.2,0.3,0.4,0.5) for the Fundus or OCT modalities,
as depicted in Fig. [l As noise increased, both of our proposed methods exhibited optimal
performance, highlighting the effectiveness of our fusion approach. Specifically, under noisy
conditions in the Fundus modality, EyeMoSt+ (Transformer) demonstrated superior perfor-
mance, while under noisy conditions in the OCT modality, EyeMoSt+ (CNN) also exhibited
the best performance. This variation could be attributed to differences in the pretrained
encoders. Overall, EyeMoSt+ (CNN) achieves the best performance under normal and noisy
conditions.
2) OLIVES and in-house datasets: We further compared our algorithm with different
methods on the OLIVES and in-house datasets in Tab. [2| and Tab. [3} We compare these
methods under the clean multi-modality eye data. Our method obtained competitive results
in terms of ACC and Kappa. It should be noted that on the OLIVES dataset, due to the
abundance of data and easy classification, most methods can achieve a perfect accuracy rate.
Then, to verify the robustness of our model, we added Gaussian noise to Fundus or OCT
modality (o = 0.5/0.3) on the dataset. We discovered that when all methods encountered
Fundus modality affected by Gaussian noise, they managed to maintain their performance
to a certain degree. However, once Gaussian noise was introduced to OCT modality, their
performances were noticeably affected as shown in Tab. 2| and Tab. 8] Specically, when
compared to early fusion B-EF [I6], intermediate fusion methods B-CNN, B-Transformer
and M2LC [50], EyeMoSt [56] demonstrates enhanced or maintained classification accuracy
in both noisy OCT and Fundus modalities. Simultaneously, our proposed EyeMoSt+ method
exhibits the best performance, consistently ranking first or second across various conditions.
In comparison to the late fusion method TMC [12], our EyeMoSt+ demonstrates comparable
performance under normal condition and superior performance in noisy Fundus or OCT
modality. We also computed the significance differences between the optimal results of
our proposed method and other methods under noisy conditions on the OLIVES and in-
house datasets. The results of p-value in Tab. [2] and Tab. [3| indicate significant distinctions
compared to other methods.

More generally, we added different Gaussian noises (¢ = 0.1,0.2,0.3,0.4,0.5) to Fundus
or OCT modality, as depicted in Figure 5| (a) and (b), to showcase their effects on ACC
and Kappa metrics. The same conclusion can be drawn from Fig. 5| that our EyeMoSt+
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demonstrates superior performance in both noisy Fundus or OCT modality. In addition,
we found that noisy OCT modality exert a significantly greater influence on performance
compared to Fundus modality. Based on the above experiments, we can draw a conclusion
that our EyeMoSt+ remains unaffected by any noisy modality and achieves comparable
performance under normal condition. This resilience can be attributed to the confidence-
aware distributional fusion and the multi-modality ranking loss, which enables robust fusion
under noisy modality. The visual comparisons of original and different noises to the Fundus
or OCT modality on the in-house dataset can be shown in Fig. || (c).

Table 3: Comparisons with different algorithms on the In-house dataset. F and O denote Fundus and
OCT modality. The top-2 results are highlighted in bold and underlined for our method. Higher ACC and
Kappa mean better.

Gaussian noise

Original
Method 0=0.5 (F) 0=0.3 (O)
ACC Kappa ACC Kappa ACC Kappa P-value Time (s)

B-CNN 0.800 0.581 0.457 0.002 0.443 0.000 < 0.001 3.20
B-Transformer 0.814 0.612 0457 0.002 0443 0.000 < 0.001 2.94
B-EF [I6] 0.829 0.643 0.814 0.615 0.443 0.000 < 0.001 5.90
M?LC [50] 0.814 0.607 0.703 0.417 0.443 0.000 < 0.001 6.46
MCDO [19] 0.786 0.549 0457 0.023 0.429 0.204 < 0.001 5.01
DE [22] 0.829 0.646 0.814 0.615 0.626 0.033 < 0.001 8.28
TMC [12] 0.829 0.643 0.729 0.448 0.443 0.000 < 0.001 3.98
EyeMoSt [50] 0.829 0.646 0.800 0.575 0.829 0.646 - 3.22
EyeMoSt+ (Transformer) 0.814 0.612 0.787 0.543 0.671  0.345 - 3.25
EyeMoSt+ (CNN) 0.829 0.641 0.814 0.612 0.829 0.641 - 3.61

3) Uncertainty estimation & and Inference time: To further quantify the reliability
of uncertainty estimation, we compared different uncertainty estimation algorithms [22] [19]
12] using the ECE indicator on the GAMMA dataset. As shown in Tab. and Fig.
our proposed algorithm shows comparable performance in clean modality and more robust
performance in case of noised uni-modality. The more comparisons of ECE and AURC on
the OLIVES and in-house datasets can be seen in the Fig. |5| (a-b). Similar experimental
conclusions were observed from this observation. Finally, we compared the average inference
time of a single test sample on different data sets for different algorithms, as shown in Tab.
Tab. 2] and Tab. 3 As shown these tables, our EyeMost+ has improved little running time
compared to methods without uncertainty estimation, but provides more accurate and robust
performance. Compared to uncertainty estimation methods, our EyeMoSt+ (CNN) exhibits
faster processing speeds than other uncertainty estimation methods (MCDO [19], DE [22],
and TMC [12]), although it is slightly slower than the previous version, EyeMoSt [50].
It is worth noting that EyeMoSt+ (Transformer) achieves the optimal processing speed
compared to other uncertainty estimation methods, attributed to the reduced input image
size. Overall, EyeMoSt+ (CNN) achieves more robust accuracy and reliable uncertainty
estimation. Therefore, in the following sections, we will only present the results of EyeMoSt+
(CNN).
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ECE for various algorithms in
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shown for both OLIVES and in-house datasets. (¢) Comparisons of original and noisy OCT/Fundus data

on the In-house dataset.
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4.4. Qut-of-distribution detection

According to [33], OOD data can be categorized into two main groups: shifted sam-
ples, which exhibit visual differences but semantic similarities compared to in-distribution
(ID) data, and near-OOD samples, which share perceptual similarities but possess distinct
semantics relative to ID data. To replicate these scenarios, we introduced noise to cre-
ate shifted samples and substituted in-house fundus images with fundus images from the
GAMMA dataset in our experimental setup to generate near-OOD samples. To advance
our pursuit of uncertainty estimation in multi-modality ophthalmic clinical applications, we
conducted uni- and multi- modality uncertainty analyses on eye data.

1) Uncertainty analysis for shifted eye data: In our first analysis, we introduced
varying levels of Gaussian noise to the uni-modality data (Fundus or OCT) in both the
OLIVES and in-house datasets to simulate shifted OOD data. The original samples without
noise were labeled as in-distribution (ID) data. Fig. [6] (a) illustrates a significant corre-
lation between uncertainty and OOD data. Uncertainty in uni-modality images increases
proportionally with added noise. This observation underscores the role of uncertainty as
a metric for assessing the reliability of uni-modality eye data. Additionally, we examined
the uncertainty density of uni-modality and fusion modality before and after introducing
Gaussian noise. Fig. @ (b) provides an example by adding noise with o = 0.3 to the Fundus
modality or OCT modality on the in-house dataset. After noise introduction, fused uncer-
tainty increases, leading to a rightward shift in the entropy distribution map. Notably, the
distribution of the fusion modality aligns more closely with that of the modality without
noise (Fig. [6] (b) (2)-(3)). Therefore, our proposed method can serve as a valuable tool for
evaluating the reliability of modalities in ophthalmic multi-modality data fusion.

2) Confidence analysis for near OOD eye data: Furthermore, we replaced the fundus
modality in the in-house dataset with fundus modality images from the previously unseen
GAMMA [51] dataset to simulate near-OOD data. The fundus and OCT image inputs of
the in-house dataset were considered as ID data. As indicated in Tab. ] the performance of
various methods declined to varying degrees when compared to in-distribution data, whereas
our method maintained robust performance. We also analyzed the change in confidence
distribution for data within and outside the fundus modality and fused modality divisions.
As depicted in Fig.[7], we observed that confidence decreased for the fundus modality and the
fusion modality on OOD data. However, the confidence decline of the fusion modality was
less pronounced when compared to the fundus modality. Consequently, our proposed method
can serve as an effective OOD detector, facilitating reliable and robust decision-making in
multi-modality eye disease screening.

4.5. Missing modality experiments

In real-world clinical diagnoses, datasets containing paired fundus and OCT images are
often limited. Consequently, we compared our method with other methods on the in-house
dataset featuring a missing modality scenario. To simulate the absence of one modality,
we set the input for the missing modality to 0. Tab. [5| shows that even when the Fundus
modality is missing, most algorithms, including ours, maintain a certain level of performance.
Conversely, in the absence of the OCT modality, most algorithms experience a notable
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Figure 6: (a) Uncertainty density of uni-modality eye data on the OLIVES dataset. (1-2) ID and OOD
under various levels of noise in OCT/Fundus data. (3) ID and OOD under different noise levels in either
OCT or Fundus data. (b) Uncertainty density of uni-modality and multi-modality eye data on the in-house
dataset. (1) ID and OOD under a noise level of ¢ = 0.3 in either OCT or Fundus data. (2-3) Uncertainty

density for uni-modality and fusion modality under OOD data (noisy Fundus or OCT modality).

decline in performance. Notably, our proposed algorithm exhibits sustained performance.
This observation suggests a tendency among most algorithms to over-rely on a specific
modality, such as OCT modality, in the absence of other modalities, leading to a natural
decline in performance. Our proposed algorithm dynamically incorporates more dependable
modalities by evaluating the confidence and reliability of each modality. By doing so, our
method addresses the limitations observed in other algorithms and demonstrates robust
performance in scenarios with missing modalities.

Table 4: Accuracy, Kappa, and ECE performance of different algorithms under adding unseen Fundus
modality. (BLUE) means indicates the performance of near OOD eye data.

Metrics

Methods ACC 1 Kappa | ECE |

B-CNN 0.620 (0.171) 0.271 (0.310) 0.371 (0.171)

M2LC B0 0.743 (0.071) 0.472 (0.135) 0.257 (0.071)
MCDO [[9  0.676 (0.110) 0.357 (0.192) 0.324 (0.110)

DE [22] 0.771 (0.058) 0.537 (0.109) 0.229 (0.058)

TMC [12] 0.786 (0.043) 0.559 (0.084) 0.214 (0.043)
EyeMoSt (6] 0.771 (0.058) 0.521 (0.125) 0.186 (0.015)
EyeMoSt+ (CNN)  0.814 (0.015) 0.607 (0.034) 0.186 (0.015)
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Figure 7: Confidence density of uni-modality and multi-modality eye data on the near-OOD condition.

Table 5: Accuracy, Kappa, and ECE performance of different algorithms under missing Fundus or OCT
modality condition on the in-house dataset.

Missing Fundus modality Missing OCT modality

Methods ACC 1 Kappat ECE| ACC{ Kappat ECE |
B-CNN 0443 0.000 0557 0443 0000 0557
M2LC [50) 0443 0.000 0557 0443  0.000  0.557
MCDO [I9] 0794 0574 0.206 0443 0.000  0.557
DE [22] 078 0543 0214 0443 0000  0.557
TMC [12] 0.743 0479 0257 0443 0000  0.557

EyeMoSt [56] 0.800 0.584 0.200  0.669 0.000 0.331
EyeMoSt+ (CNN) 0.814 0.612 0.186 0.729 0.448 0.271

Table 6: Parameter selection of A\g on the in-house dataset.

Ap = 0 0.1 0.2 0.5 0.7 1.0

Acct 0.800 0.771 0.814 0.829 0.814 0.786
Kappa T 0.575 0.512 0.606 0.641 0.615 0.543
AURC | 0.331 0.269 0.263 0.210 0.251 0.336

ECE | 0.200 0.230 0.186 0.171 0.186 0.214

Table 7: Parameter selection of A on the in-house dataset. () denote the Fundus condition with added
noise (0=0.3).

Ao = 0 0.1 0.5 1 5 10 15

Acct  0.829 (0.800) 0.843 (0.557) 0.800 (0.800) 0.814 (0.786) 0.814 (0.786) 0.829 (0.814) 0.800 (0.786)
Kappa T 0.641 (0.575) 0.667 (0.000) 0.578 (0.575) 0.607 (0.543) 0.607 (0.543) 0.641 (0.612) 0.581 (0.543)
AURC | 0.210 (0.336) 0.269 (0.238) 0.185 (0.208) 0.212 (0.239) 0.233 (0.269) 0.209 (0.228) 0.198 (0.192)
ECE | 0.171 (0.200) 0.230 (0.443) 0.200 (0.200) 0.186 (0.214) 0.186 (0.214) 0.171 (0.186) 0.200 (0.214)
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Table 8: Ablation study for overall learning process on the in-house dataset. (-) denote the Fundus
condition with added noise (¢=0.3).

B LN % Lo Acc Kappa 1
v 0.800 0.581
v v 0.814 0.612
VA 0.829 (0.800)  0.646 (0.575)
VY v v v 0.829 (0.814) 0.641 (0.612)

4.6. Ablation study

1) Hyperparameter selection of A\ and Ac: Ap is the balance factor between the
LNEL Joss and the £EF loss. In the experiments below, we demonstrate the importance of
augmenting training objective with the evidence classifier loss L& introduced in EyeMoSt.
Ar € [0,1] represents the importance of LSF loss. We performed parameter validation on
the in-house dataset. As shown in the Tab. [0}, the performance is improved after introducing
LEE loss, and the best value is 0.5. A¢ represents a pivotal hyperparameter governing the
regularization of confidence-aware multimodal learning. We conducted parameter selection
experiments on the in-house dataset. In alignment with [29], we explored the range Ao
= 0.1 to 15 to assess its performance. Additionally, to underscore the robustness of this
regularization term, we added Gaussian noise (¢=0.3) to the Fundus modality. As depicted
in Tab. [7] the optimal value for A\¢ was determined to be 10.

2) Overall learning process: Further, we conduct ablation experiments on Eq. , as
depicted in Tab. [§l Where B is the baseline of the intermediate typical fusion method B-
CNN. B-CNN first extracts features by the encoders (same with us), and then concatenates
their output features as the final prediction. LN/ represents pairwise fusion directly after
establishing multi-NIG distributions.

3) Uni-modality and multi-modality: Finally, we conducted a comparative analysis
between the uni-modal variant of B-CNN and our proposed method on the in-house dataset.
Specifically, we examined various uni-modality scenarios, denoted as Uni-B, where only the
Fundus modality was used for training. The results, as presented in Tab. [9] reveal that
the base method B-CNN can initially achieve performance levels comparable to those of
the individual uni-modality Uni-B methods after fusion. However, it becomes susceptible
to performance degradation when exposed to noise, occasionally even underperforming the
uni-modality methods. In contrast, our proposed method EyeMoSt+ (CNN), described in
this paper, incorporates a confidence-based distribution during the fusion process.

5. Conclusion

In conclusion, we introduce EyeMoSt+, a pioneering solution designed to revolution-
ize multi-modality eye disease screening by seamlessly fusing Fundus and OCT modalities.
Drawing upon the principles of NIG prior distributions, we have harnessed aleatoric and epis-
temic uncertainty embedded in uni-modality data. More importantly, a confidence-aware
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Table 9: Comparisons with uni-modality and multi-modality methods on the in-house dataset. Uni-Fundus
and Uni-OCT represent the classification of eye diseases using the B-CNN method with only Fundus or
OCT, respectively. EyeMoSt+ denotes the EyeMoSt+ (CNN).

Gaussian noise

Original
Method 0=0.3 (F) 0=0.5 (0)
ACC Kappa ACC Kappa ACC Kappa
Uni-Fundus  0.800  0.581  0.557  0.000 / /
Uni-OCT  0.78  0.543 / / 0.557  0.000

B-CNN 0.800 0.581 0.457 0.023 0.443 0.000
EyeMoSt+ 0.829 0.641 0.814 0.612 0.829 0.641

fusion for mixture of Student’s ¢ distribution is proposed to establish a robust and reliable
disease screening model. Furthermore, our innovative confidence-aware ranking-based reg-
ularization form offers a new perspective on fusion integrity, preventing the compromise of
outcomes in the presence of noisy modality. Through rigorous validation across a diverse
spectrum of eye disease datasets, including Glaucoma recognition, AMD and PCV screen-
ing, as well as DR and DME recognition, our method’s reliability and robustness are firmly
established. Particularly notable is its effectiveness in handling noisy inputs, identifying
missing patterns, and processing unseen data.

In the future, our attention will be directed along two distinct avenues. Firstly, we
seek to expand beyond pairwise modality fusion, delving into the realm of comprehensive
multimodal fusion. Secondly, we are committed to exploring the real-world implementation
of our robust ocular a framework for multimodal screening of eye disease. This strategic
initiative holds significant promise in advancing the accuracy and dependability of Al-driven
medical decisions, a prospect that resonates strongly with our overarching objectives.
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