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Abstract

Computerized tomography (CT) is a widely adopted modality for analyzing directly or indirectly 

functional, biological and morphological processes by means of the image characteristics. 

However, the potential utilization of the information obtained from CT images is often limited 

when considering the analysis of quantitative information involving different devices, acquisition 

protocols or reconstruction algorithms. Although CT scanners are calibrated as a part of the 

imaging workflow, the calibration is circumscribed to global reference values and does not 

circumvent problems that are inherent to the imaging modality. One of them is the lack of noise 

stationarity, which makes quantitative biomarkers extracted from the images less robust and stable. 

Some methodologies have been proposed for the assessment of non-stationary noise in 

reconstructed CT scans. However, those methods focused on the non-stationarity only due to the 

reconstruction geometry and are mainly based on the propagation of the variance of noise 

throughout the whole reconstruction process. Additionally, the philosophy followed in the state-of-

the-art methods is based on the reduction of noise, but not in the standardization of it. This means 

that, even if the noise is reduced, the statistics of the signal remain non-stationary, which is 

insufficient to enable comparisons between different acquisitions with different statistical 

characteristics. In this work, we propose a statistical characterization of noise in reconstructed CT 

scans that leads to a versatile statistical model that effectively characterizes different doses, 

reconstruction kernels, and devices. The statistical model is generalized to deal with the partial 

volume effect via a localized mixture model that also describes the non-stationarity of noise. 

Finally, we propose a stabilization scheme to achieve stationary variance. The validation of the 

proposed methodology was performed with a physical phantom and clinical CT scans acquired 

with different configurations (kernels, doses, algorithms including iterative reconstruction). The 

results confirmed its suitability to enable comparisons with different doses, and acquisition 

protocols.
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1. Introduction

Quantitative imaging (QI) is the process of reducing functional, biological and 

morphological processes to a measurable quantity by means of medical imaging. The uses of 

QI are even greater in the light of a new healthcare delivery system that becomes more 

personalized and tries to tailor therapies to the underlying pathophysiology.

QI includes the development, standardization, optimization, and application of structural, 

functional, or molecular imaging acquisition protocols, data analyses, display methods, and 

reporting structures, as well as the validation of QI results against relevant biological and 

clinical data. This way, QI contributes to the radiological interpretation by assessing the 

degree of a given condition (Buckler et al., 2011; Abramson et al., 2015). QI has been 

adopted in clinical studies and trials to obtain more sensitive and precise endpoints. The 

advancement in techniques to automatically interpret and quantify medical images have been 

recognized by regulatory agencies that have now proposed guidelines for the qualification of 

image-based biomarkers to be used as valid endpoints in clinical trials (e.g. the Quantitative 

Imaging Biomarkers Alliance (QIBA) at www.rsna.org/qiba). The utility of quantitative 

imaging is somehow hampered by the lack of standardization among vendors due to the 

nuisances of the acquisition and reconstruction processes such as signal-to-noise ratio, 

spatial resolution, slice thickness, image reconstruction algorithms among others (Mulshine 

et al., 2015).

Computerized tomography (CT) is recognized as a very suitable and widely adopted 

modality for quantitative imaging due to its high contrast and physical interpretability of the 

acquired signal. Uses of the quantitative imaging in CT (qCT) are the assessment of tumor 

size and texture (Aerts et al., 2014), calcifications (Agatston et al., 1990), emphysema 

(Müller et al., 1988), stenosis (Boogers et al., 2010) to name a few. In all cases, there is a 

reliance on the statistics of the CT signal to derive a valid quantity that captures the 

pathological process.

Although CT scanners are calibrated as part of the imaging workflow, the calibration is 

circumscribed to global reference values of air and water (Millner et al., 1978). This fact 

jointly to other inherent factors of the acquisition makes the CT signal more variable than 

desired (e.g. photon starvation, partial volume effect, beam hardening) (Hsieh, 2003). These 

effects are particularly important to create a quantitative metric that is consistent among 

vendors and free of confounding factors due to changes in patient weight and size to fulfill 

requirements of accuracy and precision (Uppot et al., 2007).

Among all those issues, CT noise is an important factor that has been carefully studied 

during the last decades at the detector level as part of the transmission process (Whiting, 

2002; Whiting et al., 2006). The non-monochromatic nature of the X-ray signal, the amount 

of total X-ray energy defined by tube current coupled with the effects of the reconstruction 
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and the interaction between X-ray and matter within the scanning field of view make the 

noise characterization in the reconstructed image a complex process. One of the main 

consequences of this complexity is the lack of stationarity. It is well understood that fan-

beam tomography introduces nonstationary frequencies components and nonstationary noise 

(Zeng, 2004) by the nature of the scanning geometry. Several methods have been developed 

to assess the CT noise spectrum in nonstationary conditions (Borsdorf et al., 2008a; Balda et 

al., 2010; Baek and Pelc, 2010).

Borsdorf et al. (2008a) proposed a non-stationary estimation of noise based on an analytical 

propagation of the variance throughout the whole reconstruction process (involving 

interpolations, convolutions, and backprojection) (Borsdorf et al., 2008b). This method 

provides an estimate of the variance of noise which is further decomposed into vertical and 

horizontal components to get the anisotropic behavior of noise in the fan-beam 

reconstruction. The main limitations of this method are the need of a calibrated physical 

noise model to estimate the noise variance in the fan-beam projections and the need of the 

raw fan-beam projections that are not typically available after reconstruction. Besides, 

although the variance is split into two different components (vertical and horizontal), they 

are assumed to be independent and thus, the method does not provide a truly anisotropic 

description of noise. The anisotropic limitation is partially avoided in Borsdorf et al. (2009), 

where the preferred direction is estimated as the direction with the strongest correlation 

during the backprojection of variance contributions.

It is important to note that the philosophy adopted in Borsdorf et al. (2008a, 2009) is not to 

provide a comparable level of noise between regions of the same image or even different 

acquisitions but to reduce the noise from direction estimates of its variance. This means that 

even with a noise reduction, the non-stationary behavior of noise remains active in the 

filtered image. This fact evidences that reducing non-stationary noise does not provide a 

solution for quantitative CT analysis in terms of enabling comparisons between different 

acquisitions that may show different statistical characterization.

A different approach was adopted by Balda et al. (2010) to provide not only the propagation 

of noise variance throughout the reconstruction process but also the noise power spectrum. 

The statistical model that describes the attenuation levels is assumed to be known (following 

a model or by calibration measurements). Then, certain equally distributed noise is 

generated with the parameters of the location under study that is reconstructed. The result is 

a patch with a stationary noise with the estimated noise power spectrum. This approach 

strongly depends on the underlying noise model adopted for the attenuation observed in the 

detector. Thus, the noise power spectrum can be substantially biased in scenarios where the 

underlying model differs due to the response of polychromatic X-ray beams. Besides, the 

fan-beam projections are required to estimate the noise power spectrum. This methodology 

provides a way to compare acquisition protocols for CT scanners from different 

manufacturers when comparing the reconstruction over the same phantom (matching 

different reconstruction kernels). However, it does not provide a suitable way to enable 

comparisons between different acquisitions.
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Recently, Kim et al. (2016) proposed a methodology based on the IMPACT iterative 

reconstruction algorithm (Man et al., 2001). That reconstruction method allows the 

calculation of the local variance in each iteration that can be used to transform the 

nonstationary noise to a more treatable one. A functional relationship between local variance 

and local mean is imposed by considering a conversion factor defined as the local mean 

divided by the local variance, which is multiplied to the reconstructed image. Then, the 

resulting random variable is assumed to have a linear dependence, which can be used to 

transform the noise distribution to a Gaussian one. Finally, any optimal filter for stationary 

Gaussian noise can be applied for noise reduction and the transformation is inverted to 

obtain the denoised image.

The method proposed by Kim et al. (2016) offers an interesting perspective to deal with non-

stationary noise. However, it requires the raw data projections before the reconstruction, 

which are not usually available in standard clinical routine. Besides, the calculation of local 

statistics is also required. This calculation was done considering identically distributed 

samples in the local region. This is a strong assumption that obviously provides biased 

results in locations with different attenuation levels, especially at the edges.

Summarizing, the methods mentioned above show common inconveniences to provide a 

unifying framework to enable comparisons between images acquired in different conditions:

• They require the projection information from the detectors. That information is 

not available in all studies.

• They are not designed to address other sources of nonstationarity like changes in 

the transmission medium due to different body weight distributions.

• They are focused on the noise reduction. The resulting images are still not 

comparable after noise reduction; the noise remains non-stationary.

• They do not provide a statistical characterization of noise after processing.

In this paper, we propose a complete methodology to avoid these limitations. With this aim, 

we circumvent the need of projection information by proposing a statistical characterization 

of noise in the images after reconstruction. The proposal is supported by a statistical 

exploratory analysis of reconstructed images with different configurations including dose, 

reconstruction kernels, and manufacturers. As a result, we propose a non-central Gamma as 

the probabilistic distribution that describes the statistical behavior of noise in all the different 

situations.

The probabilistic distribution is used to define a statistical mixture model that allows us to 

account for the partial volume effect in the description of local noise characteristics. The full 

methodology to estimate the local probabilistic characterization of noise throughout the 

image is also derived.

Finally, we propose a suitable variance stabilization approach for a mixture of non-central 

Gamma distributions. Our transformation shows some significant advantages: i) it naturally 

avoids biases in the estimation of local statistics due to the local characterization of noise; ii) 

the resulting image shows a stationary noise with known statistical distribution.
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The suitability of the proposed methodology is validated with a physical phantom and with 

clinical images, all of them acquired with different configurations. Our method exhibits a 

homogeneous response of noise after the stabilization. Besides, the comparison between low 

dose and high dose shows that, after the proposed stabilization, the local histograms 

significantly increase their similarities in all the cases. This results confirm that the proposed 

methodology provides a unifying framework allowing for comparing images acquired with 

several acquisition parameters. The method was also tested for iterative reconstruction. The 

results also confirmed its suitability to enable comparisons with different doses, and 

acquisition protocols.

The paper is structured as follows: Section 2 presents the exploratory data analysis of a 

phantom acquired with different kernels, doses, and devices. The exploratory analysis 

carefully tests the functional relationships between the statistics of noise for varying 

attenuation levels, reconstruction kernels, and doses. The descriptive analysis allows 

defining some features that a probabilistic distribution should meet to describe the noise 

statistics (Section 2.3). The proposed distribution is then generalized to deal with 

heterogeneous tissues using a mixture model, the local estimation of the mixture model that 

fulfills the distribution features is fully derived in Section 3. The variance stabilizing 

transformation is presented in Section 4. The validation of the proposed methodology is 

given in Section 5. Finally, in Section 6 we conclude.

2. Descriptive statistics of attenuation in CT scans

In this section, we perform an exploratory analysis of the statistics of reconstructed CT 

scans. Our purpose is to provide both qualitative and quantitative behaviors of the statistical 

distributions that describe the noise in reconstructed images with different reconstruction 

kernels, doses, and devices. The resulting analysis will provide the evidence for the proposal 

of a versatile family of distributions that models the overall behavior of noise for different 

reconstruction kernels, doses, and devices.

2.1. Materials

The exploratory analysis was performed considering the 8-step linearity LSCT 0001 

phantom (Kyoto Kagaku, Japan) acquired with different devices and reconstruction kernels. 

The phantom is schematically described in Fig. 1. It consists of a cylindrical structure made 

of a homogeneous material that contains other eight concentric tubular structures with 

different attenuation levels.

The phantom was acquired with two different devices with the following reconstruction 

protocol:

• General Electric Discovery STE. Four volumes of size 512 × 512 × 313 were 

acquired at Brigham and Women’s Hospital with different doses (400 mA and 

100 mA) and reconstruction kernels (Standard, Bone). All of them with a KVP: 

120 kV, Slice thickness 0.625, with software 07MWDVCT36.4. We will refer to 

these volumes as STD HD, STD LD, BONE HD, BONE LD for the different 

arrangements of kernels, and doses (HD: high dose; LD: low dose).
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• Siemens Definition. Similarly, four volumes of size 512 × 512 × 313 were 

acquired at Brigham and Women’s Hospital for the same configurations of doses 

(400 mA and 100 mA) and reconstruction kernels B31f, B45f. All of them with a 

KVP: 120 kV, Slice thickness 0.75, with software syngo CT 2007C. Following 

the same convention as before, we will refer to them as B31f HD, B31f LD, B45f 

HD, B45f LD.

Fig. 2 shows an example of the acquired images for all the kernels, devices, and doses 

considered.

2.2. Exploratory data analysis

The analysis of characteristics of noise in CT scans is performed by following the three main 

strategies proposed by Jones (1986): i) graphical representation, ii) quantitative evidence 

when possible, and iii) search for simplicity. Thus, to provide an accurate description of the 

statistical behavior of attenuation levels, the study of data was performed in a set of samples 

collected from each tissue identified by the numbered regions from 1 to 9 of the CT images 

as shown in Fig. 1. The samples were acquired by manually selecting a circular area in the 

axial view laying within each tissue type. More than 20,000 samples were acquired in each 

region.

In Fig. 3, we show the behavior of the estimated probability density functions (PDFs) 

obtained from the samples for the different configurations (represented as black dots). At 

first sight, the distributions look symmetrically centered on their expected value, although a 

positive skewness appears as the attenuation levels decrease. This effect is due to the lower 

limit of the attenuation, which is around −1000 HUs. It is also worth to mention that the 

variance of noise increases as the attenuation levels of the regions increase, which is 

observed in the way the PDFs decrease their height as their central attenuation level 

increases. This effect was already observed by Li et al. (2004) for the study of the 

relationship between variance and mean in the receiving sensors. The precise functional 

relationship will be carefully studied for each tissue type in terms of its moments until fourth 

order.

Analysis of mean and variance—The functional relationship between mean and 

variance is studied by representing the variance with respect to the average attenuation levels 

for the regions considered. In Fig. 4, the sample variance is plotted against the sample mean 

jointly to its regression line. At first glance, the monotonic relationship between variance 

and mean becomes evident and seems to behave linearly. This is confirmed with an F-test for 

the null hypothesis “H0: The variance and mean do not have a linear relationship.” The 

results obtained for the regression are shown in Table 1, where the Pearson’s correlation 

coefficient shows a strong linear relationship between mean and variance. Additionally, the 

coefficient of determination R2, that accounts for the explained variance shows that more 

than 75% of the variance is explained by a linear model. Finally, the p-value obtained for the 

F -test confirms with a strong evidence (p -value < 10−4) that both parameters –mean and 

variance–exhibit a linear relationship and, thus, the null hypothesis can be rejected.

Vegas-Sánchez-Ferrero et al. Page 6

Med Image Anal. Author manuscript; available in PMC 2017 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Analysis of Skewness—The skewness for the different tissues was studied by testing the 

unbiased Fisher-Pearson skewness statistic (Groeneveld and Meeden, 1984), G1, defined as:

(1)

where x̄ is the sample mean. If the data follows a Gaussian distribution, this statistic is 

distributed as a zero-mean Normal distribution with variance (Kendall and Stuart, 1969):

(2)

Thus, we can easily test the null hypothesis “H0: The data follows a Gaussian distribution”, 

by calculating the p-value for the obtained G1 statistic. In our case, since the number of 

samples is high, Var{G1} ≈ 6/n, so  follows a standard Gaussian distribution, i.e. 

. The results obtained for the test are shown in Table 2, where the value 

of | G1 | is represented as well as the hypothesis adopted according to the obtained p-value. 

Note that the null hypothesis can be rejected with a strong significance for the lowest density 

tissues (shown in bold letters), which corresponds to the range [−1000, −898] HUs that can 

be related to air and lung parenchyma.

Analysis of Kurtosis—An analysis of kurtosis allows us to confirm if the distribution of 

the observed samples may be considered as Gaussian distributed when it is combined with 

the analysis of skewness. We proceed in a similar way as we did for the skewness with the 

statistic known as sample excess of kurtosis (Groeneveld and Meeden, 1984), which is 

defined as:

(3)

Under null hypothesis “H0: The data follows a Gaussian distribution”, this statistic follows a 

zero-mean Gaussian distribution with variance (Groeneveld and Meeden, 1984; Joanes and 

Gill, 1998):

(4)

Thus, for a large number of samples –as it is the case under study–we can assume that 

. We can now calculate the p-values to contrast the null hypothesis for all 
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tissue types. The results obtained for the excess of kurtosis are also shown in Table 2. In this 

case, the conclusion is more subtle than in the previous case but still useful. Note that all the 

cases where the null hypothesis can be rejected are due to a positive excess of skewness 

(shown in bold letters). This means that the data behaves as a leptokurtic distribution whose 

excess of kurtosis converges to 0 as the mean value increases. This tendency would suggest 

that the kurtosis-skewness relationship could show a monotonic relationship that may be 

efficiently described by a family of distributions.

Relationship between Kurtosis and Skewness—The way the empirical distributions 

converge to a Normal one as the attenuation levels increase can be studied by analyzing the 

relationship between kurtosis and skewness. The Skewness-Kurtosis plot (Cullen and Frey, 

1999) is a representation of the locus of skewness-kurtosis pairs (specifically, kurtosis vs. 

skewness2) and allows us to compare the empirical behavior of the data with theoretical 

distributions. In general, theoretical distributions may be represented as points, lines or 

surfaces as the parameters of the distribution vary and depending on the kurtosis-skewness 

relationship. This way, the Gaussian distribution (with null skewness and kurtosis = 3) 

would be represented as a point at location (0, 3), while the Gamma distribution is 

represented by the line y = 1.5x + 3.

In Fig. 5, we show the Skewness-Kurtosis plot for the most extreme cases of each device 

(soft kernel+HD, sharp kernel+LD), the other ones are similar and were omitted for brevity. 

The different tissues of the phantom are represented with different colors (darker 

corresponds to higher attenuation levels). Note that the overall behavior of samples seems to 

increase linearly and there is a clear convergence to the Gaussian distribution –represented at 

location (0, 3)–as attenuation levels increase. This result confirms the already mentioned 

convergence of the skewness to 0 and kurtosis to 3.

Additionally, the leptokurtic behavior of the data is also confirmed by the overall linear 

increase shown in the figure. To see if this linear increase is significant, we performed a 

linear regression analysis of the Skewness-Kurtosis pairs constrained to the convergence to 

(0, 3) previously mentioned. The regression line is also represented in Fig. 5 as the red 

continuous line and its confidence interval is shown as dashed red lines. The results obtained 

for the regression analysis are shown in Table 3. The p-values for the null hypotheses H0: 

“There is no linear relationship between kurtosis and skewness2 “ and HΓ: “The Skewness-
Kurtosis are distributed as y = 1.5x + 3” are also given jointly with the increment of variance 

(ΔTTS) due to the approximation of the Gamma Skewness-Kurtosis distribution calculated 

as:

(5)

2For the sake of brevity and without introducing confusion, we will apply the same notation Γ(·) to the following concepts depending 
on the parameters used: Euler Gamma Γ(x), central Gamma distribution Γ(x | α, β), central Gamma random variable Γ(α, β), non-
central Gamma distribution Γ(X | α, β, δ), and non-central Gamma random variable Γ(α, β, δ). Additionally, the notation used from 
here forth refers to random variables in capital letters and samples of random variables in lower case letters. The expectation operator 
is denoted as E {·}.
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where m̂ accounts for the slope estimation of the regression line. 1 Results in Table 3 show 

that the null hypothesis H0 can be discarded with a strong evidence (p -values < 10−4) for all 

the cases and the regression lines obtained are close to the one that represents the Gamma 

distribution. Actually, the test for hypothesis HΓ shows that there is a very low evidence for 

discarding the hypothesis for almost all the cases. The only case where the slope 

significantly differs is the case of B31f HD. However, it is important to note that the increase 

of error due to the approximation 1.5x + 3 is 0.42%.

2.3. Proposal

According to the results obtained in the descriptive analysis of data, a proper family of 

distributions that model the statistical behavior of tissue/noise in CT scans should meet the 

following features:

1. Positive skewness for low attenuation levels that gradually decreases.

2. Leptokurtic behavior for low attenuation levels that gradually normalizes for 

higher attenuation levels.

3. Linear relationship between mean and variance.

4. Linear relationship between kurtosis and skewness2 with convergence to the 

Gaussian distribution.

In the light of these characteristics, we propose the non-central Gamma (nc-Γ) distribution 

defined as a three-parameter distribution:

(6)

where Γ(x) is the Euler Gamma function defined as , for x > 0; α is the 

shape parameter, β is the scale parameter, and δ is defined as the least attenuation level 

(typically around −1000 HUs).2 This distribution meets the whole set of characteristics 

observed in the exploratory analysis:

1. It has a positive skewness defined as:

(7)

2. The excess of kurtosis is positive and gradually converges to a Gaussian 

distribution as the mean increases:

1Note that ΔTTS ∈ [0, 1] since .
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(8)

3. The variance and mean of the nc-Gamma variable (i.e. μX = αβ + δ and 

) shows a linear relationship:

(9)

4. The linear relationship between kurtosis and skewness2 is the same as the 

observed data:

(10)

In Fig. 3 we show the nc-Gamma distributions (continuous lines) fitted with the maximum 

likelihood method. Additionally, in Table 4 we show the improvement obtained in the fitting 

when the Gaussian and a nc-Gamma are compared by means of the Kolmogorov–Smirnov 

distance of their cumulative distribution function (CDF) calculated as:

(11)

where F̂ (x) is the empirical CDF and FX is the theoretical distribution fitted to the data. The 

improvement was calculated as Dks (F, FGamma)/Dks (F, FGaussian). These results show the 

better performance of the nc-Gamma distribution even for higher levels of attenuation where 

the empirical distribution shows an increasing convergence to the Gaussian distribution. 

Note that the there is always an important improvement which, in some cases, reaches 70%.

3. Localized mixture model for CT images

The limited resolution of CT scans and the heterogeneous nature of some tissues cause the 

so-called partial volume effect. This effect is shown as an average attenuation level of the 

different compounding tissues within the pixel resolution. To model properly the combined 

effect of different tissues a suitable combination of probabilistic models should be applied. 

We propose to model the partial volume effect as a Mixture Model of Probabilistic 

distributions. This model generalizes the statistical description of noise when the partial 

volume effect is considered (Vegas-Sanchez-Ferrero et al., 2014).

As CT scans provide normalized units of the linear attenuation coefficients (Hounsfield 

units), one can expect some average attenuation levels in clinical scans such as air, fat, water, 

muscle, blood, bone, etc. These tissues are well characterized and the calibration of CT 

scans involve the tuning of some of these attenuation levels according to a calibration 

phantom such as the one shown in Fig. 2.
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The prior knowledge about the preexisting tissues in clinical CT scans lead to a more 

realistic definition of the heterogeneous composition of tissues and can be incorporated in 

the mixture model. Therefore, attending to the statistical properties of noise for the 

attenuation levels studied, we propose a mixture model whose components follow nc-Γ 
distributions and their mean values are located at the average attenuation levels of the 

expected tissues of clinical CTs (i.e. air, fat, water, muscle, blood, bone, etc.). In our case, 

and without loss of generality, we will consider those nine attenuation levels shown in Fig. 

1. Thus, the nc-Gamma mixture model (nc-ΓMM) proposed is comprised of a maximum of 

nine components.

We pursue a localized statistical model that may provide the probability of belonging to each 

of the considered tissue classes per pixel. To estimate this localized model, we propose a 

global-local approach that allows:

First, to fit the overall statistical behavior using the Expectation-Maximization method to 

establish suitable priors that can be used for the local refinement; Second, use the global 

priors as an initial condition for the local approximation, in which a mixture model is used to 

describe the contribution of each tissue class per pixel.

An additional and important characteristic of the localized mixture model is that it allows 

removing components whose importance within a local neighborhood becomes negligible. 

This is a critical issue since otherwise a component which is not present in the local 

neighborhood would try to fit the histogram even though there is no presence of that tissue 

in it, giving rise to a non-realistic description of the heterogeneous nature of tissue.

3.1. Global estimate

Let X = {xi}, 1 ≤ i ≤ N be a set of samples (pixel intensities) of a given region of the CT 

image. We assume that these samples are independent and identically distributed (IID) 

random variables (RVs).

The nc-ΓMM considers that these variables result from the contribution of J distributions:

(12)

where Θj are the parameters of the PDF. The nc-Gamma PDF is defined as in Eq. (6). We set 

the values δj = δ HUs for each j where δ is the minimum value received in the image 

(usually around -1000 HUs).

Under these conditions and without loss of generality, we will consider the transformation Y 
= X − δ. This change of variable transforms, by virtue of the formula for the change of 

random variables (Kendall and Stuart, 1969), a Γ(α, β, δ) random variable into its central 

counterpart with same parameters Γ(α, β). Therefore the nc-ΓMM, in its turn, becomes a 

central ΓMM with PDF:
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(13)

where Θj = {αj, βj} and

(14)

So, considering the set of samples Y = {yi} = {xi − δ}, 1 ≤ i ≤ N, the joint distribution of IID 

samples is given by:

(15)

where Θ is a vector of the parameters of the ΓMM {π1, ⋯, πJ, Θ1, ⋯, ΘJ}.

The Expectation-Maximization method (Moon, 1996) is applied here to maximize the log-

likelihood function when certain hidden discrete random variables, Z = {Zi}, are introduced 

into the model. These RVs take values in {1, ⋯, J} and they reference the membership of 

each sample, i.e. Zi = j means sample yi belongs to the jth distributions with parameters Θj = 

{αj, βj}.

Now, let Θ(n) be an estimate of the parameters of the mixture at the nth iteration, the 

expectation step is performed by calculating the expected value of the log-likelihood ℒ(Θ| 

Y, Z):

(16)

In the maximization step, the new estimate Θ(n) is obtained by maximizing the expectation 

of the likelihood function (Θ| Θ(n), Y). These steps are iterated until a stop criterion such as 

|| Θ(n +1) − Θ(n) || < TOL for some pre-established threshold (TOL) is reached.

The expectation of the likelihood function with respect to the hidden RVs when data Y and 

the previous estimate Θ(n) are known is:
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(17)

where p(Zi = j| Θ) is the probability of yi to belong to the jth class, denoted as πj, and p(Zi = 

j| yi, Θ(n)) is the posterior probability denoted as γi, j and derived by the Bayes theorem:

(18)

where, as in Eq. (12):

(19)

Since Eq. (17) is composed of the convex sum of two independent terms with the same sign, 

Λα, β and Λπ, the maximization step can be performed independently for each term. In the 

case of Λπ, the optimization is performed via Lagrange Multipliers to introduce the 

constraint , which ensures the result is a well-defined probability. The Lagrange 

method of multipliers guarantees a necessary condition for optimality in this problem. The 

new Lagrange function with the Lagrange multiplier, λ, reads:

(20)

The optimization with respect πj gives:

(21)

By summing both terms of the equation over j, we obtain λ = −N. Finally, the values of π̂
j 

that maximize the Lagrange function (and the likelihood term) are:
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(22)

For the optimization of the second term, Λα, β we impose the condition of a constant 

average μj for each tissue class, i.e. E{Y | Θj} = αj βj = μj. This way the term to be 

maximized reads:

(23)

subject to E{Y | Θj} = αj βj = μj.

The maximization of Eq. (23) can be obtained by plugging αj = μj/βj and setting the 

derivative equal to zero. Therefore, after some algebra, the maximization of Eq. (23) with 

respect to αj gives the following result:

(24)

where ψ(x) is the digamma function defined as ψ(x) = Γ′ (x)/Γ(x).

This expression has no closed solution. However, it can be obtained by numerical methods 

since the function f (x) = log (x) − ψ(x) is well behaved.

From the estimated value α̂
j that maximizes the log-likelihood, the estimate of β̂ is directly 

obtained from the constraint αj βj = μj.

The method can be summarized in the Algorithm 1.

3.2. Local estimate

The local estimation of parameters per pixel location, r, requires a more subtle analysis of 

the spatial dependence of α(r) and β(r). We assume that the image X: Ω → ℝ follows a 

non-stationary nc-ΓMM of J components with centrality parameter δ HUs (usually around 

−1000 HUs), known averages  and spatially variant shape and scale parameters. In 

order to simplify the notation, the centered image Y (r) = X(r) − δ will be considered 

hereafter.

We also assume that the spatial variation of both parameters is smoother than the random 

fluctuation of noise. This assumption allows us to consider that X(r) is locally stationary 

and, thus, the estimation of parameters could be performed with samples in a local 

neighborhood, η(r), of location r ∈ Ω.
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Algorithm 1

Implementation of the nc-ΓMM.

▷ Centering the data

J ← Number of components

▷ Initial guess of paramters

▷ Eq. (18)

maxIter ← Maximum number of iterations

Tol ← Tolerance

Err ← ∞

n ← 0 ▷ Iteration counter

while Err > Tol and n < maxIter do

 n ← n + 1

 for j = 1 to J do

   

   

   

   

▷ Eq. (18)

 end for

 Err ← || Θ(n) − Θ(n−1) ||/|| Θ(n−1)||

end while

return Θ(n)

Under these conditions, the parameters αj (r) can be efficiently calculated by considering the 

first conditioned moment and the first conditioned logarithmic moment of the normalized 

image Y (r)/μj as follows:

(25)

(26)
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The expected values can be approximated by their respective sample conditioned local 

moments (denoted with the operator 〈·|Z(r) = j〉) as:

(27)

(28)

Note that the posterior probability P (Z(r) = j| Y (r)) plays the same role as the posterior 

probability γi, j of Eq. (18) with an explicit reference to the location r. Thus, for brevity, we 

will denote it as γj (r).

We are interested in those values of α(r) for which both Eqs. (25) and (26) hold. So, 

considering that log(x) − ψ(x) is an always positive and monotonic decreasing function, and 

Σk πk xk ≥ Σk πk logxk holds for any set of positive weights {πi} and positive samples {xi}, 

we can subtract Eq. (25) from (26) and we get the following well-defined equality:

(29)

This result is the local counterpart of the result obtained in Eq. (24). The same result could 

be obtained by applying the Expectation-Maximization methodology employed in the 

previous section with the assumption of local stationarity. In this case, we preferred this 

equivalent derivation to provide an explicit reference to location r in the derivation.

The βj(r) and πj(r) parameters can be estimated in the same way as for the global estimate 

as:

(30)

(31)
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In conclusion, the local estimation of parameters can be obtained by following an iterative 

implementation shown in Algorithm 2.

Algorithm 2

Implementation of the local nc-ΓMM.

Y(r) ← X(r) − δ ▷ Centering the data

J ← Number of components

▷ Initial guess of paramters

γj(r)(0) ← p(Z(r) = j|Y(r), Θ(0)(r)) ▷ Eq. (18)

maxIter ← Maximum number of iterations

Tol ← Tolerance

Err ← ∞

n ← 0 ▷ Iteration counter

while Err > Tol and n < maxIter do

 n ← n + 1

 for j = 1 to J do

   

   

   

   

▷ Eq. (18)

 end for

 Err ← ||Θ(n) − Θ(n−1)||/||Θ(n−1)||

end while

return Θ(n)

4. Variance stabilization

The variance-stabilizing transformation (VST) has been historically applied to simplify the 

analysis of variance of some certain random variable whose variance is related to the mean 

level of the measurements (Bartlett, 1947). The main goal of a VST is to compensate the 

change of the variance with respect to the change of the mean value –whenever this 

relationship is known–to provide a constant variance.

In our case, the VST formulation can be used to seek a transformation of the signal that 

transforms the process from non-stationary to stationary. This is achieved without an explicit 

knowledge of the reconstruction geometry or the attenuation medium of the X-ray.
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The derivation of the VST is commonly associated with the so-called delta method, which 

links the central limit theorem with the convergence of the transformed random variable Y = 

f(X) by a differentiable function f. Formally speaking, let Xn be a sequence of random 

variables that satisfies  (i.e. convergence in distribution). Then the 

first order Taylor expansion of f(Xn) around μ is f(Xn) = f(μ) + f′(μ)(Xn − μ) which, 

reordering terms, gives:

(32)

Since Xn converges in distribution to a constant, , it also converges in probability 

and the Slutsky’s Theorem (Billingsley, 1995) can be applied to ensure convergence in 

distribution as . Thus, we conclude:

(33)

Now, let us suppose that the variance depends on the mean value, σ2 = Var(μ). We are 

interested in finding a transformation fstab (·) such that  is a constant. For that 

purpose, the following differential equation can be set: , whose solution 

provides the expression commonly used to calculate the VST (Bartlett, 1947):

(34)

where C is arbitrary constant.

4.1. Goals of the proposed methodology

Attending to the main characteristics of the signal studied in the exploratory data analysis 

section, the methodology we pursue should meet the following features:

1. Same average measures. The average attenuation levels should remain 

unaltered in order to describe a meaningful measure for quantitative purposes.

2. Homogeneous variance. The variance should get stabilized throughout the 

entire image.

3. Information from just one slice. The non-isotropic sampling of CT scans and 

the particular interpolation schemes of different devices may provide different 

noise characteristics depending on the location in the longitudinal axis. The 

methodology developed should be able to stabilize from just one axial slice.
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4.2. Variance-stabilizing transformation for Gamma variates

For the case of Gamma distributions (we assume that the data is already centered to its 

central parameter δ; i.e. for X ~ Γ(α, β, δ) we have Y = X − δ, so Y ~ Γ(α, β) with PDF 

fΓ(y|α, β) (see Eq. (14)), the functional relationship is clear: σ2 = βμ. Thus, the variance-

stabilizing transformation derived from Eq. (34) trivially becomes:

(35)

where K and C are arbitrary constants. This result is closely related to the transformation 

proposed by Box and Cox (1964) to ensure Gaussianity in the transformed variable by 

means of a power transformation. Actually, this Gaussian behavior can be shown if the 

square root is carefully analyzed. Note that the transformation  leads to a 

generalized Gamma distribution (Stacy, 1962) with PDF:

(36)

This new variable shows a quadratic exponential decay that contributes to decreasing the 

kurtosis observed in the exploratory data analysis. Additionally, the exponential term w2α−1 

increases the order of the derivative in the origin. Thus, the resulting PDF is more 

symmetrical and the skewness is consequently decreased. So, after this transformation, the 

resulting variate shows a Gaussian-like distribution.

Finally, considering that the moments of the generalized Gamma distribution (Vegas-

Sanchez-Ferrero et al., 2012) of Eq. (36) are:

(37)

the variance of  is (Tricomi and Erdélyi, 1951):

(38)

so, if our purpose is to get a constant variance Var{W} = 1 and we can assume high values 

of α, we can set C = 2 to get the desired stabilization. Conversely, for lower values of α, an 

estimate α̂ should be applied in Eq. (38) to get the normalization of variance.
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4.3. Variance-stabilizing transformation for ΓMMs

The case of stabilizing a Mixture Model of nc-Gamma distributions cannot be directly 

derived from eq. (34) as was done before due to the many parameters involved in the mean 

value of a mixture model. However, the stabilization of each of its components (i.e. Gamma 

distributions) can be used for this purpose as follows:

Let us suppose the image X: Ω → ℝ is distributed as a nc-ΓMM with central parameters δj 

= δ and Y(r) = X(r) − δ the centered Gamma mixture model. If we apply the same 

transformation derived for Gamma random variables, , by virtue of the 

formula for change of random variables, the new variable will follow a mixture model of 

generalized Gamma distributions whose PDF now reads:

(39)

where fW(·) is the generalized Gamma distribution derived in Eq. (36). Now, we can define a 

similar transformation as the one obtained for Gamma random variables, Eq. (35), with the 

following desired features: 1) it should transform each component of the mixture model into 

its corresponding stabilized counterpart, 2) the resulting variable should show the same 

average value, 3) the variance should be stabilized to a constant value.

The following transformation meets those features:

(40)

where C accounts for the homogeneous level of variance desired and the moments of 

can be estimated taking advantage of the local tissue characterization introduced in Section 

3.2 as the operator 〈·|Z(r) = j〉 in a neighborhood η(r) of the sample at location r. Therefore, 

the local moments are approximated as:

(41)

where, as in Eqs. (27) and (28), the sample conditioned local moments are:

(42)

Vegas-Sánchez-Ferrero et al. Page 20

Med Image Anal. Author manuscript; available in PMC 2017 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Note that the stabilizing transformation proposed in Eq. (40) is essentially an affine 

transformation of the resulting generalized Gamma mixture model. This transformation 

stabilizes the samples according to their belonging for each tissue class and, therefore, 

generalizes the stabilization derived for the Gamma variate in Section 4.2. The stabilization 

method is shown in Algorithm 3.

Algorithm 3

Stabilization for CT scans.

Y(r) ← X(r) − δ ▷ Centering the data

Θ ← Statistical Characterization ▷ Algorithm 2

γj(r) ← p(Z(r) = j|Y(r), Θ(r)) ▷ Eq. (18)

C ← Homogeneous standard deviation

▷ Eq. (42)

〈Y(r)|Z(r) = j〉 ← Σs∈η(r) y(s)γj(s)/Σs∈η(r) γj(s) ▷ Eq. (42)

▷ Eq. (40)

return Ystab(r)

5. Results

In this section we validate the performance of the proposed method to enable comparison 

between different kernels, doses, and devices from three different scenarios: First, we study 

the effect of stabilization in the local variance of the phantom. Additionally, we provide an 

analysis of the sensitivity of prior mean values in the stabilization. We also study the effect 

of the stabilization in the spatial resolution. The second scenario analyzes the reduction of 

the inhomogeneities in local variance for common chest CT scans acquired from the same 

subject. The third scenario considers Low-dose iterative reconstruction compared to high-

dose reconstructions.

5.1. Phantom stabilization

In this first experiment, we evaluate the performance of the stabilization method for all the 

different configurations of the phantom. The stabilization was performed separately in each 

of the axial slices to get a homogeneous standard deviation of 10 HUs. The local standard 

deviation was calculated across the longitudinal direction. The results are depicted in Fig. 6 

for each of the devices (General Electric and Siemens) where the variance of the stabilized 

images (lower row) shows a more homogeneous pattern than the observed in the original 

data (top row).
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The stabilization of noise in images should provide same average attenuation levels and 

same variance. This effect can be confirmed by observing the behavior of the histogram of 

the phantom in Fig. 7. Note that the histogram shows important differences in the variance 

of the histograms, not only between tissues but also between reconstructions and devices. On 

the contrary, the stabilized images show homogeneous variance along tissues, 

reconstructions, and devices. These results demonstrate that the attenuation levels are now 

comparable between kernels and devices.

5.2. Sensitivity of prior mean values

During statistical characterization of tissues (such as bone, blood, muscle), their mean values 

are assumed to be known. This is a reasonable assumption since these tissues are well 

characterized and the calibration of CT scans involve the tuning of some of these attenuation 

levels as previously mentioned. Some other tissues, however, do not necessarily fit the 

attenuation levels of any of the mean values established and, therefore, the stabilization of 

variance could be negatively affected.

Our method circumvents this problem by calculating the local moments, Eq. (41), 

considering the effect of different tissues within the local neighborhood, and heterogeneous 

compositions that may deviate from the previously established mean attenuation of tissues. 

The normalization of weights according to the posterior probabilities in Eq. (42) provides a 

convex weighting of sample intensities, which results in an effective anisotropic estimate of 

local moments. Even in the cases with intensities significantly deviated from the prior mean 

values, the local weights will contribute for the anisotropic estimation of local moments. In 

the worst-case scenario, the differences between tissues will be negligible, and the local 

weighting would become more isotropic. This situation would be only possible if the prior 

means are too close and the tissues within the local neighborhood show a poor contrast.

For the sensitivity analysis, we considered the GE phantom acquisitions with the 

configuration with the highest variance (BONE LD) to enhance deviations from the ideal 

result. We intentionally introduced a bias in the prior mean value for the substrate of the 

phantom (designed as region 4 in Fig. 1 because it is the tissue type showing more dynamic 

range in the local variance and it is also in contact with all the rest tissue types. Five 

different biases (−50%, −20%, 0%, 25%, and 50%) were considered in terms of the distance 

with its next or previous prior mean. The stabilization of the standard deviation was set to C 
= 10 HU. The results depicted in Fig. 8 clearly show the robustness even for strong 

deviations from the expected value and the suitability of the estimation of local moments 

proposed in Eq. (42).

5.3. Influence of the Stabilization on the Spatial Resolution

We study the effect of the stabilization technique on the spatial resolution by measuring the 

line-spread function (LSF) of the system, or equivalently, by its frequency transformation, 

the modulation transfer function (MTF) (Judy, 1976). The MFT is the standard way to assess 

a scanner resolution according to ISO 15708-2.3

3ISO 15708-2, “Non-destructive testing–Radiation methods–Computed tomography. Part 2: Examination practices”, www.iso.org/iso.
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We employed the same phantom studied in the exploratory analysis since it fits the 

requirements of the standard ISO 15708-2. We considered the edge profile of the bigger 

cylinder (region 4) and background as indicated in Fig. 9 (left column). The image was 

stabilized with C = 0, which is the worst-case scenario in which the stabilized image is the 

estimated signal and, thus, the edges are more prone to smoothing effects. The edge 

response function is computed as the average of the whole set of samples in the z-axis as 

suggested in the standard ISO 15708-2 and it is shown in Fig. 9 for the case of GE (the 

Siemens case showed similar results and was omitted for brevity). We superimposed the 

intensities for which the 10% and 90% of the edge response is reached. These margins serve 

as a robust measure to compare the differences between modulation transfer functions 

quantitatively. At first glance, the differences between the 10% – 90% margins are 

indistinguishable and clearly evidence the good preservation of resolution after the 

stabilization. The LSF, calculated from the edge response function by the absolute value of 

finite differences, shows a similar support in the edge location in all the cases. Finally, the 

MTF, calculated as the normalized discrete Fourier transform of the LSF, exhibits the high 

similarity between non-stabilized and stabilized images. A slightly lower performance is, 

however, observed for medium spatial frequencies (2 to 4 line pairs per cm). To analyze the 

importance of this fact, we provide a more detailed analysis in Table 5, where we show the 

10% – 90% distance in pixels. Note that the difference between both results is always lower 

than 0.5 pixels, meaning that the 10% – 90% rise differences between non-stabilized and 

stabilized images are not critically compromised.

If we consider a higher level of variance in the stabilized image, say C = 30, the MTF 

becomes more similar to the non-stabilized case, and so it does the 10% – 90% distance. 

These results confirm the suitability of the statistical characterization for the calculation of 

accurate local moments and show an excellent trade-off between resolution and stabilization.

Note that the method was intentionally designed to preserve the resolution of the original 

image after the stabilization. This means that the resolution will still depend on the 

reconstruction kernel and, therefore, the comparisons between images reconstructed with 

different kernels are still limited to their differences in spatial resolution. This fact would not 

remarkably affect to studies that analyze the evolution of the disease according to the 

attenuation levels in certain regions of interest, where the statistical properties are of most 

importance for comparison purposes instead of the delineation of structures.

5.4. Clinical CT scans stabilization

The stabilization performance was also evaluated in conventional chest CT scans obtained 

with different doses and kernels. The images were acquired from one subject that underwent 

CT scanning with two different radiation exposures (high dose and low dose). For the high 

dose, the data was reconstructed with two different kernels, one smooth (B31f) and the other 

sharp (B45f). The low dose data was reconstructed with the same smooth kernel.4 An axial 

view of the volumes is shown in Fig. 10 jointly to the stabilized images for a window level 

of [−1024, 200] HUs. Note that the lower dose acquisition exhibits a much higher variance 

4The data was obtained at Brigham and Women’s Hospital (Boston, MA, USA) with the approval of its ethical committee and 
informed consent of the subject.
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of noise due to photon starvation, especially in the lower parts of the lungs, where bony 

tissues increase the noise.

As opposed to the phantom case, we cannot directly calculate the local standard deviation 

for the evaluation due to the lack of multiple acquisitions. For this reason, we used the 

method proposed by Aja-Fernandez et al. (2015) to get an estimate of the local standard 

deviation. In Fig. 11 we show the local standard deviation estimated with the contours of the 

bony structures over-imposed (in blue) to have an anatomical reference. Note that the 

stabilized image reduces the variance of noise in those regions leading to a more accurate 

comparison between low dose and high dose images.

The visual effect of the noise stabilization is depicted in Fig. 12, were the acquisition 

reconstructed with a B45f kernel is represented along with its stabilized image with standard 

deviation set to 20. Note that the stabilized image provides a much clearer differentiation of 

soft organs that were affected by a higher variance of noise. Two different regions were 

zoomed to show better this effect. Fig. 12 also includes the histogram of noise estimated 

during the stabilization process. The stabilized histogram of noise (in blue) exhibits a 

Gaussian shape and a much lower variance as a result of the homogeneous response after 

stabilizing. Conversely, the non-stabilized noise has a much higher variance due to the 

contributions of noise with different variances. This qualitative behavior is confirmed when 

the kurtosis and skewness of both estimated noises are compared. The non-stabilized noise 

has a skewness of 0.47, and a kurtosis = 6.90, confirming a clearly skewed and leptokurtic 

behavior. On the other hand, the stabilized version exhibits a skewness of −0.108 and a 

kurtosis of 3.14, which is much closer to the desired Gaussian behavior of noise (in green).

The performance of the stabilizing method was quantitatively evaluated by comparing local 

histograms with the two-sample Kolmogorov–Smirnov distance. The comparison considered 

the following configurations: dose (LD B31f vs. HD B31f), kernels (HD B31f vs. HD B45f) 

and both dose and kernel (LD B31f vs. HD B45f). For this purpose, we divided the images 

shown in Fig. 10 into a set of 165 non-overlapping neighborhoods of size 31 × 31 from each 

acquisition and their respective empirical cumulative distribution functions were compared 

according to the Kolmogorov–Smirnov distance introduced in Eq. (11). This distance allows 

us to test statistically whether both distributions come from the same random variable.

The quantitative evaluation was done for a stabilized standard deviation of C = 40 HUs (see 

Eq. (40)), which is the median of the local standard deviation of the original images. This 

value was set to account for the fine details that may be missed during the estimation of the 

expected values in Eqs. (40)–(42). The mean value of histograms was removed to avoid 

potential biases non-related to local variance.

The results obtained for the two-sample Kolmogorov–Smirnov distances are shown in Fig. 

13, where the boxplots corresponding to the stabilized images exhibit a remarkable decrease 

in the distance. This difference is statistically significant in all the comparisons for the two-

sample Welch t-test (p-value < 10−4). The ratio of neighborhoods with indistinguishable 

distributions considering a statistical significance of 0.001 are shown in Table 6 where the 

improvement becomes evident and, in some cases, doubles the performance (from 22.21% to 
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55.15% in the worst case). The results in HD for both kernels is improved up to 100% which 

shows that the differences due to variance are avoided, making HD reconstructions 

completely comparable.

5.5. Iterative reconstruction

The proposed methodology was also tested for images reconstructed with an iterative 

algorithm. The same low-dose acquisition considered before was reconstructed by the 

Siemens iterative reconstruction method SAFIRE (Sinogram Affirmed Iterative 

Reconstruction) denoted as I44f. This reconstruction behaves as a sharp kernel and the 

overall effect in the anatomy is comparable to B45f. Then the nc-ΓMM approach was 

applied to the resulting image and stabilized. The estimated local standard deviation is 

shown in Fig. 14. Although the reduction of spatial variance is less effective, this case also 

shows a significant improvement in the homogeneity of local variance. This effect was also 

quantified with an analysis of histogram similitude as before (a set of 165 non-overlapping 

neighborhoods of size 31 × 31 and Kolmogorov–Smirnov distance, C = 40 HUs). The results 

of the histogram comparison shown in Fig. 15 again confirm the importance of stabilization 

before histogram comparison. The differences between stabilized and non-stabilized images 

are statistically significant (Welch t-test, p-value < 10−3 for all the cases).

The ratio of neighborhoods with indistinguishable distributions considering the two-sample 

Kolmogorov–Smirnov statistical test with a significance of 0.001 are shown in Table 7, 

where the improvement after stabilization is clearly confirmed once again. Note that the 

performance of the comparison between LD and HD B45f stands out because the details 

provided by sharper kernels are also preserved by the iterative reconstruction, which results 

in an increase of the similarity. In the case of smooth kernels such as B31f, some details are 

lost due to the low-pass filter effect of the smooth kernel. Nevertheless, the stabilization 

raises this ratio until 80.61%, which is more than the ones obtained for LD reconstruction 

with the B31f kernel. This means that the stabilization is also effective for iterative 

reconstruction and takes advantage of the better resolution provided by iterative schemes. 

Besides, the comparison between the iterative LD reconstruction and the B45f HD 

reconstruction reaches 96.97%. This result clearly shows the suitability of the proposed 

methodology to enable comparisons with different reconstruction methods and different 

doses.

6. Discussion and conclusions

This paper analyzes the effective statistical response of attenuation levels in CT scans in 

different arrangements including, reconstruction kernels, doses, and devices. The statistical 

analysis was carried out through an exhaustive exploratory data study including graphical 

representations, quantitative analysis up to 4-th order moments and their functional 

relationships among them. The study showed a leptokurtic behavior of noise, with a linear 

relationship between mean and variance. The noise also shows a convergence to a Gaussian 

noise as the average attenuation level increases. Finally, the skewness-kurtosis plot of noise 

can be explained by a linear regression that fits extraordinarily well to a Gamma-like 

distribution. This analysis lead us to propose a parametric distribution –the non-central 
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Gamma– that accurately models the statistical behavior regardless of dose, kernel or device. 

The suitability of this distribution was confirmed with different statistical tests involving the 

moments of the observed samples and their functional relationship (variance vs. mean, 

kurtosis vs. skewness).

Having a statistical model that properly describes the data paves the way for a more accurate 

treatment of the signal properties observed in the image. In the case of CT scans, the non-

homogeneous behavior of noise is an undesired effect that depends on several factors (dose, 

tissue, artifacts due to photon starvation, etc.). These factors introduce serious difficulties in 

the comparison of scanners when the progression of a disease or cross-sectional studies are 

performed. Actually, the same acquisition reconstructed with different kernels may show 

important discrepancies in the signal due to the effect of noise with different variances.

This work extends the proposed statistical distribution to model the non-homogeneous 

response of tissues (due to fluctuations in the variance) with a non-central Gamma Mixture 

Model. This model can cope with the partial volume effect and provides an accurate 

description of the local statistical properties of noise. The approach chosen for the 

estimation of local parameters is from coarse-to-fine, providing first a global set of 

parameters describing the statistics of the image that will be used for the local estimation. 

Both the global and the local implementations are presented.

Additionally, this characterization of noise can be stabilized to provide a homogeneous 

variance with the same attenuation levels as in the original image. As a result, the stabilized 

image presents the same attenuation levels with a more homogeneous response of noise that 

unveils details of soft tissues and enables the comparison of images acquired with different 

protocols. The evaluation of the proposed methodology is carried out in three different 

scenarios: first, we stabilize a phantom image acquired with different doses, reconstruction 

kernels, and devices. The stabilizing method successfully transformed the heteroscedastic 

image into a homoscedastic image (Figs. 6 and 7). The effect of stabilization was also tested 

in clinical images, for which different images of the same subject were acquired for different 

doses and reconstruction kernels. In that case, the stabilization of variance was also achieved 

(Fig. 11), showing a remarkable improvement in contrast for soft tissues and a more accurate 

comparison between images which is statistically significant (p-value < 10−4). Actually, in 

some cases, the stabilization doubles the performance of the non-stabilized images (see 

Table 6).

The suitability of the proposed methodology is also confirmed for iterative reconstruction 

and also shows a significant improvement in the statistical similitudes of images after the 

stabilization (p-value < 10−4). This result in especially relevant since it raises the power of 

the statistical comparison up to the levels of high dose acquisitions (from 52.12% to 80.61% 

in the worst case).

Our variance stabilization method is designed to transform the non-homogeneous nature of 

noise to a more treatable homogeneous and Gaussian-like distribution of noise without 

compromising the signal of the original image. With this aim, the estimation techniques used 

in the calculation of local moments, Eqs. (41) and (42), take advantage of the local statistical 
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characterization to provide more accurate estimates that are not affected by the presence of 

different tissue types in the same neighborhood. Besides, our resolution experiments support 

that the stabilization does not compromise the details of fine structures since the 

homogeneous variance factor, C, can be set to a level that preserves any loss of detail that is 

not preserved in the mean image, E{Y(r)}.

During the stabilization, we make use of local moment estimates according to a non-

stationary noise model derived. The local mean obtained from the conditioned local 

moments can be seen as a robust estimate of the signal level and, thus, a denoised version of 

the original image. As a consequence, for low values of C in Eq. (42) (C = 0 in an extreme 

case), the stabilization may be seen as a denoising methodology with some advantages. First, 

the local expectation successfully preserves the spatial resolution as was shown in Section 

5.3. Second, the preservation of details and structures that have been considered as noise by 

the local expectation operator can be preserved just by increasing the C value. Finally, the 

resulting homogeneous Gaussian-like noise obtained after stabilization allows other methods 

designed for additive Gaussian noise to work in optimal conditions.

The proposed statistical characterization has shown its suitability for modeling non-

homogeneous tissues according to a consistent noise model across kernels, doses, and 

devices. However, it is worth mentioning that the correlation of noise has been avoided 

intentionally for the sake of simplicity. This simplification does not show significant 

consequences in the estimation of posterior probability maps and, therefore, the estimation 

of local moments is not affected. However, the extension of the proposed statistical 

framework to correlated noise models would benefit other applications such as image 

reconstruction (if sinograms are provided) or denoising.

Our work provides methodological contributions that are amenable to be combined with 

preexisting reconstruction approaches. Some iterative reconstruction methods, such as 

DART (Batenburg and Sijbers, 2011) or SAFIRE (Grant and Raupach, 2012), exploit an 

iterative refinement of the image in the reconstructed domain that can be used as prior for 

estimating a new back-projection. We believe that our methodology makes use of a 

probabilistic distribution of tissue components that could be utilized as a probabilistic 

representation of the reconstructed image to generalize iterative approaches whenever 

sinograms are available.

We believe the results provided in this paper will enable the preprocessing of CT images 

before QI analysis tasks are performed to control the precision of the extracted biomarkers 

due to heteroscedastic conditions. Our results can be especially relevant to those studies that 

track the disease progression. The changes in transmission medium due to weight loss or 

gain that typically happens in longitudinal studies or oncological situations makes the issue 

of noise stabilization really important.
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Fig. 1. 
Scheme of the Cylindrical LSCT 0001 phantom studied. The legend specifies in descending 

order the mean attenuation levels per material.
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Fig. 2. 
Axial view of the acquired 3D volumes with different devices (Top: General Electric; 

Bottom: Siemens) for different kernels and doses. a) STD HD, b) STD LD, c) BONE HD, d) 

BONE LD, e) B31f HD, f) B31f LD, g) B45f HD, h) B45f LD.
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Fig. 3. 
Empirical probability density functions of samples for the different tissue regions and 

different arrangements of devices, kernels, and doses. Top: GE, Bottom: Siemens.
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Fig. 4. 
Functional relationship between variance and mean and its regression line.
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Fig. 5. 
Skewness-Kurtosis plots for the most extreme cases of each device. Low attenuation levels 

are represented in brighter blues, whereas higher attenuation levels are represented in darker 

blues. The regression line constrained to the Gaussian convergence is represented in red and 

its confidence interval as a dashed line. The green line represents the loci of the Gamma 
distribution defined as y = 1.5x + 3. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.)
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Fig. 6. 
Standard deviation of the stabilized data for different kernels and doses to a homogeneous 

standard deviation of C = 10 HUs. a) STD HD, b) STD LD, c) BONE HD, d) BONE LD, e) 

B31f HD, f) B31f LD, g) B45f HD, h) B45f LD.
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Fig. 7. 
Histogram comparison of the phantom before and after stabilization for the different 

configurations: general electric acquisition (a) and (b) and for the Siemens acquisitions (c) 

and (d). Note that the variance observed in non-stabilized images (a) and (c) is clearly 

heteroscedastic, whereas the stabilized variance in (b) and (d) becomes homoscedastic.
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Fig. 8. 
Box-plot of the local standard deviation for different bias in the prior mean for region 4 of 

the phantom.
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Fig. 9. 
Influence of the stabilization scheme in the spatial resolution for the GE acquisition. Top 

row: Edge Response Function. Mid row: Line-Spread Function. Bottom row: Modulation 

Transfer Function. The strong similarity between Modulation Transfer Functions shows that 

the resolution is not critically compromised after the stabilization.
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Fig. 10. 
CT real images acquired with different doses and kernels for a window level of [−1024, 200] 

HUs: a) B31f LD, b) B31f HD, c) B45f HD) and their respective stabilized images d) B31f 

LD, e) B31f HD, f) B45f HD).
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Fig. 11. 
Local standard deviation estimated from real CT images: a) B31f LD, b) B31f HD, c) B45f 

HD) and their respective stabilized images d) B31f LD, e) B31f HD, f) B45f HD). The 

contours of bony structures are over-imposed in blue for anatomical reference.
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Fig. 12. 
Noise stabilization effect in clinical CT scans. The variance of noise increases dramatically 

in the upper and lower parts of the image (zoomed regions 1 and 2), causing a noticeable 

reduction of contrast in soft organs and lung parenchyma. The stabilized image shows a 

more homogeneous response of noise and increases the contrast between tissues. The 

stabilized histogram of noise shows a behavior much closer to a Gaussian distributed noise 

(in green). (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.)
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Fig. 13. 
Kolmogorov–Smirnov distance for the two-sample tests obtained from non-stabilized 

images (red) and stabilized images (blue). The improvement provided by the stabilization is 

strongly significant (p-value < 10−4). (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.)
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Fig. 14. 
Iterative reconstruction (a) and local standard deviation estimated for iterative reconstruction 

before (b) and after stabilization (c).

Vegas-Sánchez-Ferrero et al. Page 43

Med Image Anal. Author manuscript; available in PMC 2017 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 15. 
Kolmogorov–Smirnov distance for the two-sample tests obtained from non-stabilized 

images (red) and stabilized images (blue) for the case of Iterative reconstruction. The 

improvement provided by the stabilization is strongly significant (p-value < 10−4). (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)
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Table 1

Results for the linear regression between variance and mean. All the results are strongly significant and 

confirm that more than 70% of variance is explained by linear regression.

Pearson’s Coef. R2 p-value Hyp.

STD LD 0.8686 0.7544 < 10−4 H1

STD HD 0.8593 0.7384 < 10−4 H1

BONE LD 0.9312 0.8671 < 10−4 H1

BONE HD 0.9133 0.8342 < 10−4 H1

B31f LD 0.8971 0.8047 < 10−4 H1

B31f HD 0.8613 0.7419 < 10−4 H1

B45f LD 0.9097 0.8276 < 10−4 H1

B45f HD 0.8815 0.7771 < 10−4 H1
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Table 6

Ratio of neighborhoods with statistically indistinguishable distributions obtained with a two-sample 

Kolmogorov–Smirnov test.

LD B31f vs. HD B31f LD B31f vs. HD B45f HD B31f vs. HD B45f

Normal 21.21% 48.48% 80.00%

Stabilized 55.15% 72.73% 100.00%
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Table 7

Ratio of neighborhoods with statistically indistinguishable distributions obtained with a two-sample 

Kolmogorov–Smirnov test.

LD I44f vs. HD B31f LD I44f vs. HD B45f

Normal 52.12% 80.61%

Stabilized 80.61% 96.97%
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