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Abstract
Financial statements’ big data have the characteristics of “Incompleteness” and 
“Nonrepresentative”. In this paper, employing the world’s largest commercial data-
base on finance, ORBIS, we first find that the rate of missing data varies depending 
on the country, the type and size of financial items, and the year. Using informa-
tion on missing data, we interpolate non-random missing financial variables from 
the previous- and/or next-year values of the same financial item, the values of other 
financial items, and the conditions of missing values determined by CatBoost. 
Because the distribution of financial values obeys Zipf’s law in the large-scale range 
and mean and variance diverge, we employ an inverse hyperbolic function to convert 
the value of a financial item as a target variable. We introduce two types of miss-
ing interpolation models according to the two types of situations involving missing 
objective variables. After verifying the accuracies and stabilities of these models, 
we describe the properties of firm-scale variables in which non-random missing val-
ues are interpolated. In the final stage of this work, we combine these two models. 
From our observations, we confirm that the range in which Zipf’s law is established 
becomes wider than before interpolation.

Keywords  Interpolation · Non-random missing · CatBoost · Big data · Firm 
financials · Machine learning

Introduction

Research using big data has been conducted from the viewpoints of “Volume,” 
where the amount of data is too large to be handled by conventional tools, “Variety,” 
where the types of data and the formats used to handle them vary, and “Velocity,” 

Shouji Fujimoto, Takayuki Mizuno and Atushi Ishikawa contributed equally to this work.

 *	 Shouji Fujimoto 
	 fujimoto@kanazawa-gu.ac.jp

Extended author information available on the last page of the article

http://orcid.org/0000-0003-1332-076X
http://crossmark.crossref.org/dialog/?doi=10.1007/s42001-022-00165-9&domain=pdf


1282	 Journal of Computational Social Science (2022) 5:1281–1301

1 3

where data are generated and updated frequently [1]. As social science research 
advances, it has become clear that big data research poses the following major prob-
lems. The data characteristics of “Incompleteness,” which implies often lacking the 
data needed for research, and “Nonrepresentative,” which does not reflect a random 
sample from the population, have been pointed out by sociologist M. J. Salganik 
of Princeton University [2]. These very critical issues are at the heart of big data 
science. To solve these issues, this paper proposes a method to interpolate the non-
random missing values in commercial financial statements’ big data.

From around 2012, national statistics offices and international organizations 
began to consider the use of big data in official statistics [3]. In recent years, various 
works have pointed out the need to develop interpolation and resampling techniques 
to fill in missing data to ensure the accuracy of big data in handling official statistics 
[4–8]. The major interpolation techniques include the k−means method of finding 
and replicating similar samples without missing data [9], the method of finding and 
interpolating relationships between elements using matrix decomposition, such as 
principal component analysis [10], and the method of Bayesian estimation of miss-
ing values [11, 12]. For the interpolation of big data, a method applying a decision 
tree is often adopted from the viewpoint of calculation cost [13, 14]. In addition, 
a report by the German Statistical Office indicated that, in recent years, clustering 
has become the most common use of machine learning in official statistics and that 
interpolation of missing data has become the second most common use, in which 
the use of extended decision trees is a promising technique for interpolating missing 
data [15].

In this paper, we focus on the world’s largest commercial dataset on firm finance, 
ORBIS by Bureau van Dijk [16], which is widely used in various researchers and 
government agencies. Bureau van Dijk has contracted with data vendors around 
the world to collect the last 10  years of corporate information held by each ven-
dor, combines these sources in the same format, and sells the resulting product. 
The latest ORBIS contains financial data of approximately 400   million listed and 
unlisted firms from around the world, and the number of firms included in the 
database continues to grow with each edition. However, although the coverage of 
large-scale firms is high in the balance sheets (BS) and profit and loss statements 
(P/L) published in ORBIS, it has been found that the actual coverage depends on the 
firms’ sizes, countries, years, and key financial items, and that data coverage tends 
to increase over time [6]. This is because the main users of ORBIS are institutional 
investors who are not interested in old data, small-scale firms, or minor financial 
items. This causes “Incompleteness” and a “Nonrepresentative” nature of big data 
[2].

ORBIS is frequently used by various researchers to understand global economic 
trends and the role of policies across firms within and across countries[17–23]. 
However, the OECD report cautions that we should be aware of missing data when 
using ORBIS [6]. For example, in the field of Econophysics, which analyzes cor-
porate financial information of hundreds of millions of firms worldwide, research-
ers frequently use ORBIS to investigate the functional form of firm-size distribu-
tion, such as operating revenue, number of employees, assets, and profit of the firms 
in each country. However, the completeness of data is assumed implicitly, and the 
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effect of non-random missing data on the functional type is not sufficiently consid-
ered [24–26].

A previous study showed that the overall firm-size distributions of number of 
employees and receipts in dollars follow Zipf’s law (a power law with an exponent 
of −1 ), using United States Census data, which is considered exhaustive [27]. To 
a lesser extent, it is important to realize that all data, large and small, should be 
included in the analysis when discussing the scale to which Zipf’s law will hold, 
which can be done by analyzing firm-size variables in Portugal, Austria, and France, 
where full data are available [28]. As stated above, various works have demonstrated 
that there is a significant difference in firm-size distribution between the total data 
and all available data, including missing data. However, the interpolation of miss-
ing data is difficult in light of Zipf’s law. Because the distribution in a large-scale 
range obeys Zipf’s law, the mean and variance of the variables diverge when we 
integrate it to infinity [29]. Therefore, it is difficult to correctly estimate the mean 
square error, the mean absolute error, and the coefficient of determination used in 
the machine learning model. Because firm sizes often take zero or negative values, 
logarithmic transformations are not always possible. Net income is operating rev-
enue minus costs, therefore it can be negative when the latter exceeds the former. 
And inactive firms have zero operating revenue.

To solve this problem, we use the prediction error of the financial item converted 
by the inverse hyperbolic function as the evaluation function [30]. Using CatBoost 
[31], we interpolate non-random missing values of financial items with high accu-
racy without breaking Zipf’s law. Furthermore, it should be noted that Zipf’s law 
breaks down due to the missing data in financial items within the range normally 
considered to be mid-scale firms. In this learning, the missing information of the 
explanatory variable itself is useful for predicting the objective variable. Our method 
learns about non-random situations in which missions occur, and at the same time 
predicts missing data by regression.

In this paper, we find that the rate of missing data varies depending on the coun-
try and the type and size of financial items. Accordingly, we interpolate non-ran-
dom missing financial values from the previous- and/or next-year values of the same 
financial item, the values of the other financial items, and the conditions of missing 
data using CatBoost. We confirm the effectiveness of this method by predicting non-
missing financial values as objective variables and comparing them with true values. 
To justify this approach, we assume that the probability of missing an objective vari-
able is the same if the explanatory variables are identical. In the data interpolated by 
this method, we confirm that the range of firm-size variables in which Zipf’s law is 
established becomes wider than before interpolation.

The structure of this paper is as follows. "Data" describes a dataset for machine 
learning as well as the object of analysis in this paper. It is important that the time 
course of the missing data rate and the missing data rate by financial item for the 
same year show non-randomness, depending on the country, financial item, and 
firm size. In addition, the missing data rate of the value of a financial item is highly 
dependent on the missing value of the financial item in the previous or next year. 
"Method" describes the machine learning models used in this paper. First, we use 
an inverse hyperbolic function to convert the value of a financial item as a target 
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variable. Then, we explain two types of models for interpolating missing values 
according to the two types of conditions surrounding missing objective variables 
using CatBoost. "Results" describes the verification of the accuracies and stabilities 
of the models and the properties of the firm-size variables in which non-random 
missing values are interpolated. Here, we introduce a method to interpolate non-ran-
dom missing values by combining these two models. Finally, "Conclusions" summa-
rizes this paper and describes future issues.

Data

This paper discusses the extent to which missing corporate financial data can be 
interpolated by machine learning using BS and P/L for all firms in ORBIS 2020 
and 2016 editions. We also discuss how the firm-size distribution, which has not 
been sufficiently observed due to missing data, can be corrected. Tables  1 and 2 
show the number of major financial items by country in 2017 for 10 representative 
countries (USA, China, United Kingdom, Japan, Portugal, Russia, Brazil, Colom-
bia, Morocco, and India), where ORBIS lists a large number of firms with financial 
information and relatively high operating revenue compared to the other financial 
items.

First, "Missing data rate over time" describes the time variation of the missing 
data rate. In "Missing data rate by financial item", we discuss the differences in 
missing data rates among financial items for the same year.

Table 1   Number of firms with primary financial statements in 2017 from all countries, as well as the 
United States (US), China (CN), Japan (JP), United Kingdom (GB), and Portugal (PT)

We use the following abbreviations in the text and figures. OR Operating Revenues, NE Number of 
Employees, NI Net Income, CCE Cash & Cash Equivalent, IFA Intangible Fixed Assets, TFA Tangible 
Fixed Assets, LTD Long-term Debtors, SF Shareholders Funds

Name All US CN JP GB PT

Total Firms 385,106,696 64,707,071 68,044,727 5,150,662 15,349,971 1,016,369
Operating Revenues 19,020,554 500,686 1,249,131 1,472,995 239,385 343,253
Num. of Employees 24,467,339 486,203 7,125,653 337,650 1,131,420 304,350
Net Income 18,398,026 27,905 4,551,832 768,495 256,829 370,741
Cash & Cash Equivalent 14,926,277 6926 872,568 283,505 1,522,513 370,899
Debtors 16,980,137 11,863 891222 283,912 2,777,627 385,262
Intangible Fixed Assets 16,204,190 7285 884,198 280,543 1,915,193 309,223
Stock 17,871,004 7671 891,043 283,760 2,776,906 384,778
Tangible Fixed Assets 16,275,807 7285 889,314 280,543 1,915,272 309,223
Capital 22,884,830 7705 883,332 319,702 3,017,398 387,281
Creditors 15,659,435 11,795 889,808 283,791 2,367,832 368,610
Loans 15,327,586 7678 889,197 283,607 2,368,005 362,506
Long-term Debtors 12,110,259 6251 881,130 240,145 954,124 245,388
Provisions 11,135,990 2,870 656,965 240,323 492,182 91,756
Shareholders Funds 24,097,131 27,928 5,121,040 284,608 3,037,054 387,543
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Missing data rate over time

In this section, we observe how the ratios of the number of firms with operating rev-
enue (OR) in 2013 and 2019 to that in 2017 depend on the size of OR in 2017, tak-
ing Japan, Portugal, Colombia, and Morocco as examples, which have typical char-
acteristics in the missing data rate in the time direction from Tables 1 and 2.

Figure 1 shows how the ratio of the number of firms with OR in 2013 to that in 
2017 depends on the size of OR in 2017. Specifically, the smaller the size of OR in 
2017, the smaller the number of firms with OR in 2013. This trend is particularly 
pronounced in Japan among these four countries. The other countries have similar 

Table 2   Number of firms with primary financial statements in 2017 from all countries, as well as Russia 
(RU), Brazil (BR), Colombia (CO), Morocco (MA), and India (IN)

We use the following abbreviations in the text and figures. OR Operating Revenue, NE Number of 
Employees, NI Net Income, CCE Cash & Cash Equivalent, IFA Intangible Fixed Assets, TFA Tangible 
Fixed Assets, LTD Long-term Debtors, SF Shareholders Funds

Name All RU BR CO MA IN

Total Firms 385,106,696 18,836,039 33,325,093 5,016,678 1,788,992 3,948,990
Operating Revenue 19,020,554 2,380,677 18,127 296,927 165,758 74,844
Num. of Employees 24,467,339 2,166,894 18,462 148,546 13 4500
Net Income 18,398,026 2,380,907 19,398 313,892 165,758 75,235
Cash & Cash Equivalent 14,926,277 1,868,671 17,860 6631 153,664 74,515
Debtors 16,980,137 1,502,444 18,988 194,808 165,752 75,048
Intangible Fixed Assets 16,204,190 2,380,151 17,996 149,788 165,742 74,914
Stock 17,871,004 2,377,870 18,292 194,671 165,742 74,996
Tangible Fixed Assets 16,275,807 2,380,151 18,053 176,819 165,742 74,914
Capital 22,884,830 2,732,826 18,712 209,509 165,741 1,113,363
Creditors 15,659,435 2,380,164 18,607 75,163 165,751 75,028
Loans 15,327,586 2,380,045 17,719 73,521 165,741 74,948
Long-term Debtors 12,110,259 2,380,095 15,354 15,531 165,735 74,296
Provisions 11,135,990 2,351,642 11,123 3133 165,724 73,223
Shareholders Funds 24,097,131 2,380,909 20,490 1,249,065 165,773 75,228

Fig. 1   Relationship between 
the ratio of the number of firms 
with 2013 operating revenue 
(OR) to that with 2017 OR and 
2017 OR size
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trends but different rates of decline, as shown in Fig. 1. It also shows that firms in 
Japan with OR of less than 10 million dollars in 2013 are extremely deficient com-
pared to 2017. This corresponds to the breaking down of Zipf’s law for the 2013 
OR-size distribution at 10   million dollars, as described in Firm-size distribution 
with interpolated missing values.

In addition, the following characteristics are observed in the size dependency of 
the ratio of the number of firms with OR in 2019 to that in 2017. In Morocco, the 
OR of small-scale firms in 2017 was barely recorded in 2019. The larger the size of 
OR in 2017, the greater the proportion recorded. This observation means that the 
OR of Moroccan firms for 2019 is being collected. Data are initially collected from 
large-scale firms that are important and easy for making collections.

Missing data rate by financial item

We examine how the ratio of the number of firms with the number of employees 
(NE), tangible fixed assets (TFA), and net income (NI) to that with operating rev-
enue (OR) in 2017 depends on the size of OR in the same year. Here, we take Japan, 
Portugal, Colombia, and Morocco as examples, which have typical characteristics in 
their missing data rates due to the differences in financial items from Tables 1 and 2. 
These are important financial items for a firm’s productivity. The ratio of the number 
of firms with OR and NE (Fig.   2a), as well as the number of firms with OR and 
TFA (Fig. 2b), to that with OR depends on the size of OR.

Figure  2a shows that, in Colombia and Morocco, most of the firms for which 
OR are recorded are missing NE. Furthermore, the data on NE in Colombia are 
larger than those in Morocco (Table 1). Of these 150,000 firms, only around 20,000 
include OR. On the other hand, most Portuguese firms with OR ranging from 102 to 
105 thousands of dollars have NE. In Japan, the smaller the size of OR, the higher 
the missing rate of NE.

Figure 2b shows that, in Portugal and Morocco, most firms with OR also include 
TFA, and that the missing data ratio increases by as much as 20% when OR is less 

Fig. 2   a Relationship between the ratio of the number of firms with OR & NE to that with OR and the 
size of OR. b Relationship between the ratio of the number of firms with OR & TFA to that with OR and 
the size of OR
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than 102 or greater than 105 thousands of dollars. In Japan and Colombia, the smaller 
the size of OR, the higher the missing rate of TFA.

Similar properties to NE and TFA are observed for NI. The following character-
istics are observed in the ratio of the number of firms with OR and NI to that with 
OR. In Portugal, Colombia, and Morocco, most firms with OR include NI. In Japan, 
the smaller the size of OR, the higher the missing ratio of NI. As described above, 
the missing ratio for each financial item in the same year varies depending on the 
country, the type of financial item, and the firm size.

Method

In this paper, we construct two models that predict the value of financial items in 
the middle of three consecutive years for all firms in all countries listed in ORBIS. 
The variables are the 14 or 13 financial statements listed in Tables 1 and 2 for the 
consecutive 3-year period, standard industrial classification (SIC) code, and country 
code. Specifically, we adopt CatBoost, which can use the information of missing 
data themselves for interpolation.

CatBoost

CatBoost is an extension of supervised machine learning with decision trees. In the 
regression analysis using the decision tree [32], the multidimensional space of the 
explanatory variables is divided by the decision trees, and a regression model is con-
structed to predict representative values such as the average value of the objective 
variables in each divided area. In this case, the learning is performed so that a loss 
function such as the square sum of errors of the training data is minimized. Disad-
vantages of regression analysis using decision trees include the followings: it has 
low prediction accuracy, overlearning is likely to occur, and the prediction model 
changes significantly (low robustness) by setting hyperparameters that adjust the 
learning algorithm, such as maximum depth of tree.

To compensate for these shortcomings of the decision tree, ensemble learning, 
which combines decision trees, was devised. In ensemble learning, decision trees 
(single weak learners) which have been separately learned are fused to improve pre-
diction ability for unlearned data. Ensemble learning consists of two methods: bag-
ging and boosting.

In bagging, decision trees (weak discriminators) with low prediction accuracy are 
combined, and prediction is performed by a majority vote or an average value. A 
typical library that uses bagging is RandomForest [33]. RandomForest still has the 
following shortcomings: overlearning is likely to occur, and the prediction accuracy 
becomes low when the training data is small.

Boosting is a learning method in which a weak discriminator is gradually updated 
into a strong discriminator. In Gradient boosting, which is one of the most promising 
methods, when the weak discriminator is updated, the error up to the N-th is reduced 
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by (N + 1)-th by using the differential gradient. Typical algorithms that use gradient 
boosting include XGBoost, LingtGBM, and CatBoost [34, 35, 38–40].

XGBoost is an early learning method using gradient boosting. While Random-
Forest’s accuracy and overlearning problems are greatly improved, XGBoost runs 
slower than other algorithms. LightGBM greatly improves the execution speed of 
XGBoost with a decision tree algorithm based on histograms. In the LightGBM, the 
calculation time for hyperparameter tuning can be secured by improving the execu-
tion speed, but the following problems remain: the prediction accuracy lowers when 
there are many categorical variables. CatBoost is an algorithm that improves on the 
problems with categorical data variables in LightGBM. The CatBoost algorithm has 
three features: efficient preprocessing of categorical variables (Ordered Target Sta-
tistics), learning by randomly changing the order of training data (Ordered Boost-
ing), and use of binary symmetric decision tree as weak discriminator (one decision 
tree). As a result, CatBoost does not reduce prediction accuracy even if there are 
many categorical variables.

Because the data we deal with includes categorical variables for countries, we 
adopted CatBoost’s algorithm. We used the official CatBoost Python package [41]. 
In learning, we used default values for each hyperparameter: RMES as loss func-
tion, maximum number of trees at 1,000, depth of tree at 6, and learning rate at 
0.226236001.

Creating an objective variable

It is empirically known that the distribution of financial variables follows Zipf’s law 
around the top 1/4 percent [36, 37]. In such a power-law distribution with an expo-
nent of −1 , when an integral up to infinity is considered, the mean and variance 
diverge, and it is impossible to calculate a statistic using them. If it is forced, the 
statistics depend strongly on outliers (tail of the distribution). Financial items are not 
only positive. Values in P/L can have zero or negative values. Negative values also 
follow Zipf’s law in the large-scale range.

To deal with firm financial data having such properties, this paper considers the 
amount zk

I
 converted by an inverse hyperbolic function as an objective variable of 

CatBoost as follows [30]:

where yk
I
 is the value of the financial item I to be predicted for the firm k and �y is 

the value of y in the top 25% . zk
I
 can be approximated as log(2yk

I
∕�y) in the range 

yk
I
≫ 𝜎y > 0 and as − log 2|yk

I
∕�y| in the range yk

I
≪ −𝜎y < 0 . Thus, the variable zk

I
 

can smoothly describe positive and negative large-scale and other ranges at equal 
intervals.

The quantity zk
I
 converted by the inverse hyperbolic function is close to a two-

sided exponential distribution. Thus, zk
I
 is a very manageable variable in CatBoost 

(1)zk
I
= sinh−1

yk
I

�y

= log

⎛⎜⎜⎜⎝

yk
I

�y

+

�����
�
yk
I

�y

�2

+ 1

⎞⎟⎟⎟⎠
,



1289

1 3

Journal of Computational Social Science (2022) 5:1281–1301	

where the mean and variance are included in the loss function to estimate the param-
eter. Conversely, if we try to minimize the value of the loss function using yk

I
 instead 

of zk
I
 as the objective variable, only a very small percentage of errors in the large 

positive or negative ranges that follow Zipf’s law will affect the value of the loss 
function, creating a model that can predict only certain large-scale ranges. To avoid 
this problem, in this paper, the variable transformed by the inverse hyperbolic func-
tion is used as the objective variable.

Description of missing value interpolation model

In this section, we consider the following missing value interpolation model with 
CatBoost, which predicts the objective variable introduced in "CatBoost" as follows:

Here, f is a CatBoost evaluation function. The explanatory variable yk
t,i

 is the numeri-
cal value of the financial item i of t year of a firm k, and n is the number of financial 
items to be used for the explanatory variable. yk

t,I
 does not exist on the right side, and 

Eq. (2) predicts it by converting zk
t,I

 using Eq. (1). The explanatory variable xk
j
 is the 

j-th attribute of a firm k, such as a time-independent number or category, and m is 
the number. In this paper, we consider xk

j
 as the main industry of a firm k (4-digit 

SIC code [42]) and a dummy variable of the country where the firm k is located (204 
countries with financial values in ORBIS). The reason why the SIC code is consid-
ered an industry is that a similar industry has been assigned a number that is close to 
a four-digit code.

As described in "CatBoost", the explanatory variable yk
t,i

 is characterized by the 
divergence of statistical quantities such as the average value and variance in the 
large positive and negative scale ranges. Furthermore, yk

t,i
 is often missing. Cat-

Boost, a nonparametric method of classifying explanatory variables under various 
conditions and regressing objective variables, is compatible with yk

t,i
 , which has 

these properties.

Handling of explanatory variables when missing values are present

As discussed in "Data", smaller firms are more likely to miss financial values. In 
order for the model to learn this feature, if the value of the explanatory variable is 
missing, a numerical number that the financial value cannot take is inserted into the 
explanatory variable (yk

t,i
= −1, 000, 000, 000, 000).

In predicting yk
t,I

 from the objective variable zk
t,I

 , there are two typical patterns of 
how explanatory variables can be missing. In one, there is at least one of the explan-
atory variables yk

t−1,I
 and yk

t+1,I
 . On the other, they are both missing. In the learn-

ing of the model, the prediction is performed for yk
t,I

 , where a value actually exists, 
and the parameter is adjusted so that the difference between the predicted value and 
the true value becomes minimum. Note that when yk

t,I
 is present, there is often at 

(2)
zk
t,I
= f (yk

t−1,1
, yk

t,1
, yk

t+1,1
;yk

t−1,2
, yk
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least one of yk
t−1,I

 and yk
t+1,I

 . Moreover, there is a very strong correlation between 
the t year value yk

t,I
 and the (t ± 1) year value yk

t±1,I
 of the same financial item I [36]. 

Therefore, most of the learning with the model introduced in the previous section 
uses yk

t±1,I
 to predict yk

t,I
.

In practice, however, when yk
t,I

 does not exist, in most cases neither yk
t−1,I

 nor yk
t+1,I

 
exists. As an effective model for this case, we introduce a new model that omits 
yk
t±1,I

 from the right side of Eq. (2) and predicts yk
t,I

 using only other financial items 
( yk

t−1,i≠I
 , yk

t,i≠I
 , yk

t+1,i≠I
).

In summary, this paper uses the following two models according to the missing 
state of the explanatory variables yk

t±1,I
 . If yk

t−1,I
 or/and yk

t+1,I
 exists, we interpolate 

yk
t,I

 from 3 years’ n = 14 financial items minus 1 for the objective variable. This is 
referred to as Model 1. If both yk

t−1,I
 and yk

t+1,I
 are missing, we interpolate yk

t,I
 from 3 

years’ n = 13 financial items, excluding I. This is referred to as Model 2.

Results

In this section, we first evaluate the accuracy of the two missing value interpolation 
models introduced in "Method". Next, the temporal stability of model parameters is 
discussed using importance. Finally, using a dataset with interpolated missing val-
ues, we show how defects break Zipf’s law.

Accuracy evaluation of non‑random missing value interpolation models

Prediction accuracy of missing values

In Model 1, 41 explanatory variables are adopted for the 3 years’ 14 financial items 
minus 1 of the objective variable. In Model 2, there are 39 explanatory variables for 
13 financial items over 3 years.

Objective variables are set for each of the firm’s key financial items represent-
ing productivity: operating revenue (OR), number of employees (NE), tangible fixed 
assets (TFA), and net income (NI). We evaluated the accuracy of the value predicted 
(although it actually exists) by the contribution ratio R2 in comparison to the actual 
value transformed by the inverse hyperbolic function. Table 3 compares the contri-
butions of Models 1 and 2 to these 4 objective variables in 2017 by training data 
used to estimate model parameters and test data not used to estimate model param-
eters for all firms whose financial items are listed in ORBIS (Tables 1 and 2) and 
for firms from 10 representative countries. Training and test data were generated by 
randomly dividing the learning data into 80% ∶ 20% portions.

Table 3 shows that both Models 1 and 2 can often predict the four objective vari-
ables with high accuracy. In particular, since the value of each financial item has 
a very strong correlation with the values of the same financial item in the previ-
ous year and in the following year, Model 1, which uses these values for prediction, 
shows a higher prediction accuracy than Model 2. However, as described in "Com-
parison with a simple method" below, since there are few cases in which Model 1 
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can be used for interpolation processing of missing values, the high prediction accu-
racy of Model 2 is important. In both Models 1 and 2, the prediction accuracy is not 
so different between training data and test data. This indicates that no overlearning 
occurs in these two models.

Number of non‑missing items and prediction accuracy

This section describes how the prediction accuracy shown in Table  3 varies with 
the number of non-missing values in the explanatory variables. Since we confirmed 
that overlearning is sufficiently suppressed in "Prediction accuracy of missing val-
ues", the prediction accuracy was evaluated by combining training data and test 
data. Model 1 is an easy-to-understand prediction in which the value of the same 
financial item as the objective variable for the previous or next year determines most 
of the prediction accuracy, and it is therefore omitted here. As mentioned earlier, 
in Model 2, there are 39 explanatory variables for 3 years of 13 financial items. We 
used Model 2 to predict the value of each financial item for all firms that include at 
least one of the 4 financial items (OR, NE, TFA, and NI) in 2017.

Figure 3 shows how the prediction accuracy of the values of these 4 financial 
items changes when the number of non-missing explanatory variables changes 
from 1 to 39, regardless of the kind of item. The prediction accuracy for the four 
financial items increases dramatically with an increasing number of explana-
tory variables up to about nine. The reason for this is considered as follows. If 
there are no more than nine non-missing explanatory variables, the majority is a 
firm that reports only primary financial items. Since the main financial items are 
strongly correlated with OR, NE, TFA, and NI, these characteristics appear in 

Table 3   Comparison of Estimated Accuracy between Training Data and (/) Test Data in 2017

As shown in Table 2, in Morocco (MA) the number of firms with NE is 13. In addition, as shown in 
Fig. 2a, firms that have a number of employees in Colombia (CO) have almost no other financial items. 
Therefore, the corresponding prediction accuracy was excluded from the comparison

Country Operating Revenue 
(OR)

Num. of employees 
(NE)

Tangible Fixed 
Assets (TFA)

Net Income (NI)

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

All Firms 0.97/0.97 0.88/0.88 0.94/0/94 0.73/0.73 0.97/0.97 0.78/0.77 0.71/0.70 0.55/0.53
US 0.98/0.98 0.87/0.87 0.99/0.99 0.73/0.73 0.99/0.98 0.91/0.91 0.69/0.63 0.55/0.48
CN 0.95/0.95 0.84/0.84 0.97/0.97 0.61/0.61 0.97/0.97 0.80/0.80 0.72/0.71 0.36/0.35
JP 0.99/0.99 0.83/0.83 0.98/0.98 0.86/0.85 0.98/0.98 0.85/0.85 0.64/0.64 0.51/0.51
GB 0.97.0.97 0.92/0.92 0.98/0.98 0.80/0.80 0.95/0.95 0.68/0.67 0.65/0.64 0.53/0.50
PT 0.97/0.97 0.90/0.90 0.96/0.96 0.79/0.80 0.97/0.97 0.70/0.69 0.76/0.75 0.67/0.67
RU 0.92/0.91 0.81/0.81 0.72/0.72 0.52.0.52 0.95/0.95 0.71/0.70 0.72/0.71 0.63/0.62
BR 0.96/0.96 0.88/0.87 0.99/0.95 0.54/0.51 0.95/0.95 0.74/0.72 0.66/0.64 0.51/0.44
CO 0.94/0.94 0.81/0.81 0.99/1.00 -/- 0.91/0.91 0.77/0.76 0.60/0.58 0.48/0.45
MA 0.93/0.93 0.81/0.80 -/- -/- 0.95/0.95 0.70/0.68 0.71/0.71 0.59/0.55
IN 0.97/0.97 0.89/0.88 0.98/0.99 0.75/0.75 0.97/0.97 0.76/0.75 0.77/0.76 0.65/0.61
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the prediction accuracy when there are nine or fewer items. On the other hand, 
when there are 10 or more explanatory variables with no missing data, the pre-
diction accuracy for these 4 financial items monotonically increases depending 
on the number of non-missing values. If there are more than 10 non-missing 
explanatory variables, the majority will be those firms that partially report non-
key financial items. Such financial items do not correlate well with OR, NE, 
TFA, and NI on their own, and their multiple uses improves their prediction 
accuracy.

Firm‑size dependence of prediction accuracy

Firm size ranges from local micro firms to global giants. This section examines 
the dependency of predictive accuracy on firm size. Figure 4a, b show the predic-
tion accuracy for OR of Models 1 and 2. Figure 4c, d show the prediction accu-
racy for NI of Models 1 and 2. In each figure, the horizontal axis represents the 
actual value, and the vertical axis represents the median and average of the pre-
dicted values by each model. The error bar represents the fourth quantile. Each 
value is converted by an inverse hyperbolic function.

Figure 4a, b show that both Models 1 and 2 can predict OR with high accuracy 
regardless of OR size. While small- and mid-scale firms account for the majority 
of the training data, each model is also well trained in predicting OR for large-
scale firms.

Next, we discuss the accuracy of NI predictions. Figures 4c, d show that Model 
1 can predict positive NI with high accuracy regardless of NI size. On the other 
hand, Model 2 shows that the accuracy decreases depending on the NI size, and 
the predicted value is lower than the actual value. Both Models 1 and 2 show 
that the accuracy of negative NI decreases depending on NI size. Large negative 
NIs often result from unforeseen extraordinary losses such as natural disasters. 
Because it is difficult to predict such temporary losses from these explanatory 
variables, it is likely that the accuracy of predicting negative NI is lower than that 
of predicting positive NI.

Fig. 3   Relationship between 
the accuracy of four financial 
items (operating revenue (OR), 
number of employees (NE), 
tangible fixed assets (TFA), net 
income (NI)) in Model 2 and the 
number of non-missing explana-
tory variables
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Accuracy of reproducing firm‑size distribution with predicted values

As shown in the previous sections, the predicted values by Models 1 and 2 include 
errors. Here, we show that the prediction error does not affect the functional form 
of the firm-size cumulative distribution. In this paper, the cumulative distribution is 
defined as the integrated probability density function from x to ∞.

Figure 5a is a comparison of the actual and predicted OR distributions for Japa-
nese firms in 2017 by Model 1. For both OR and NI, the distributions reproduced by 
the predicted values closely match the actual distributions, indicating that the inter-
polation of the missing data by Model 1 does not distort the actual distributions.

Fig. 4   Accuracy of predicting operating revenue (OR) and net income (NI) by size using Models 1 and 2 
( � = 1, 024, 000 dollars in (a) and (b) and � = 64, 000 dollars in (c) and (d))
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Figure 5b is a comparison of these two variables in Model 2. As with Model 
1 in Fig. 5a, the distribution of OR is faithfully reproduced by the predicted val-
ues. On the other hand, in the case of NI, the power-law distribution in the upper 
range shifts to the lower left overall. This corresponds to the lower NI predicted 
by Model 2 overall, as shown in "Firm-size dependence of prediction accuracy". 
However, it is possible to reproduce Zipf’s law in the large-scale range of NI dis-
tribution, even with the most inaccurate Model 2 estimates in Table 3. That is, 
in both Models 1 and 2, the interpolation processing of the missing data by the 
predicted values does not distort the shape of the distribution of the actual values.

Comparison with a simple method

We compared the number of firms with interpolatable financial values between 
the interpolation using the models we proposed and the simple interpolation 
method described below. Furthermore, we compared the accuracy of a simple 
interpolation method and the comparable Model 1.

Simple interpolation method: For financial item I, the following conditions 1, 
2, and 3 are used to interpolate the missing value in preference to 1. 

1.	 If there is no value for t year and there are values for (t + 1) year and (t − 1) year, 
the average value interpolates the value for t year.

2.	 If there is no value for t year and there is a value for (t + 1) year, the value inter-
polates the value for t year.

3.	 If there is no value for t year and there is a value for (t − 1) year, the value inter-
polates the value for t year.

Fig. 5   Cumulative distributions of actual and predicted values from Models 1 and 2 for operating rev-
enue (OR) and positive net income (NI) for Japanese firms in 2017



1295

1 3

Journal of Computational Social Science (2022) 5:1281–1301	

The conditions under which the simple interpolation method can be used to inter-
polate missing values are the same as the conditions under which Model 1 is used. 
Model 2 is used when both (t + 1) year and (t − 1) year values are missing. There-
fore, by combining the interpolation by Models 1 and 2, the number of firms having 
the interpolatable missing value is greatly increased compared with the simple inter-
polation method.

The number of Japanese firms listed by ORBIS in 2017 was 5, 150, 662. Table 4 
shows the number of firms for which OR, NE, TFA, and NI are included, and this 
table further shows the number of firms with missing values for financial items that 
can be interpolated by a simple method or by Model 1 as well as the numbers of 
those that can be interpolated by combining Models 1 and 2. In addition, Table 4 
shows that the number of firms that can be interpolated by Models 1 and 2 is two 
to six times larger than the simple method in terms of OR, NE, TFA, and NI. In 
particular, the introduction of Model 2, which interpolates over other financial items 
without the (t + 1) year and (t − 1) year values, has overwhelmingly increased the 
number of firms that can be interpolated.

Table   5 compares the interpolation accuracy between the simple method and 
Model 1. We confirm that the interpolation accuracy of Model 1 is higher than that 
of the simple method for all four financial items.

Temporal stability of the interpolation models

In this Firm-size dependence of prediction accuracyion, the temporal stability of 
model parameters is discussed by observing the importance of explanatory variables 
in the model for each year. Since the explanatory variable’s importance in Model 1 
becomes an obvious result in which the explanatory variables (t − 1) year and (t + 1) 
year corresponding to the objective variable I have a total value of around 70% , we 
observed the annual change in importance while focusing on Model 2. We measured 
the importance of Model 2 to estimate the missing operating revenue (OR) as fol-
lows. First, we built Model 2 for each year from t = 2012 to 2019 year using ORBIS 

Table 4   Number of Japanese firms that are missing the values of financial items that can be interpolated 
in 2017

OR NE TFA NI

Japanese firms 5,150,662 5,150,662 5,150,662 5,150,662
Number that is occupied 1,407,986 312,591 312,591 747,184
Interpolatable number in Model 1 25,432 224,955 224,955 184,907
Interpolatable no. in Models 1 and 2 33,915 1,129,310 1,167,870 694,717

Table 5   Comparison of 
accuracy ( R2 ) when it can be 
interpolated by a simple method 
or Model 1 in 2017 in Japan

OR NE TFA NI

Model 1 0.97 0.94 0.97 0.71
Simple method 0.94 0.84 0.94 0.36
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2020 edition. Second, we built Model 2 for each year from t = 2008 to 2011 year 
using ORBIS 2016 edition. After these steps, we summed the (t − 1) , t, and (t + 1) 
year importances of the same financial item. Figure 6 shows the importance of the 
dummy variable for the countries averaged over all years, listed from the top 15 
countries. The error bar represents the standard deviation due to the difference in 
years. Figure 6 shows that the country importance is low and that this model is gen-
erally useful without country information.

Figure 7 shows the annual change in the sum of the country importances (Coun-
tries) and all other explanatory variables’ importances from 2008 to 2018. The high 
importance of net income (NI) in OR predictions is due to the fact that NI is calcu-
lated by subtracting expenditures from OR. Furthermore, the high importance of the 
number of employees (NE) is due to the causality of labor productivity, in which NE 
generates OR. Figure 7 shows that importance is relatively stable for all explanatory 
variables. This suggests that the relationship between financial items changes slowly 
over the years. Thus, models built in one year can be used in other years with some 
degree of accuracy.

Firm‑size distribution with interpolated missing values

Finally, by observing the firm-size distribution in the financial data set with inter-
polated missing values, we clarify the distortion that the missing values have 

Fig. 6   Importance of the coun-
try dummy variable averaged 
over all years (horizontal axis is 
country code [43])

Fig. 7   Annual changes in the sum of the country dummy variable’s importances (Countries) and impor-
tances of all other explanatory variables (see Tables 1 or 2 for abbreviations)
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been `given to the firm-size distribution. In this section, data are first interpolated 
by Model 1, and when it is not available, the data are interpolated by Model 2. 
This is the interpolation method proposed in this paper.

To clarify the distribution distortion caused by the missing data in the time 
direction, Fig.  8a shows how the cumulative distributions of the operating rev-
enues (OR) of Japanese firms recorded in ORBIS for 2017 and 2013 are changed 
by the interpolation method. To clarify the distribution distortion caused by the 
difference in financial items in the same year, Fig. 8b shows how the cumulative 
distribution of OR and tangible fixed assets (TFA) of Portuguese firms in 2017 
changes as a result of interpolation using our method.

From Tables 1 and 4, the OR of Japanese and Portuguese firms in 2017 showed 
less deficit than those of other years and other financial items, and the change due 
to interpolation was small. On the other hand, as shown in Fig. 1a, the percent-
age of missing data in financial items increases as we go back to the past, par-
ticularly among small- and mid-scale firms. Figure 8a shows the state in which 
missing data in the time direction are interpolated by our method, particularly in 
small- and mid-scale ranges. Specifically, we observed that the cumulative distri-
bution of OR in 2013 approaches that in 2017 as the scale decreases due to the 
interpolation.

Next, as shown in Fig. 2, even in the same year, missing data in other finan-
cial items were more frequent among small- and mid-scale firms compared to 
OR. Figure 8b shows that missing data due to differences in financial items are 
being interpolated, particularly in small- and mid-scale ranges. Specifically, we 
observed that the cumulative distribution of TFA in 2017 approaches that of OR 
as the size decreases.

Fig. 8   a Cumulative distributions of original operating revenue (OR) of Japanese firms in 2017 and 2013 
and those of interpolated OR by our method. b Cumulative distributions of original OR and tangible 
fixed assets (TFA) of Portuguese firms in 2017 and those of interpolated OR and TFA by our method (in 
each figure, dashed line is the power law of an exponent −1 (Zipf’s law))
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In these examples, we confirmed that the power-law range of the cumulative dis-
tribution of past OR and TFA in the same year was expanded, and the lower limit of 
the transition to the log-normal distribution was lowered to the small-scale range. In 
other words, it became clear that the missing data of financial items, which occurs 
in the time direction and in the financial item direction, broke Zipf’s law in the mid-
scale range of the firm-size distribution.

Conclusions

In this paper, we proposed a method to interpolate non-random missing values in 
financial statements’ big data using CatBoost. We focused on the world’s largest 
commercial database, ORBIS, and observed the rate of missing data in the time 
direction and the rate by financial items in the same year, and we found that the rate 
of missing data varies depending on the country, the type and size of financial items, 
and the year. These results indicate that the missing data themselves are useful as 
information for interpolating the missing values.

We constructed a model that incorporates this information on missing data and 
interpolates the missing value by regression as follows. The values of a financial 
item for three consecutive years are used as explanatory variables, and the value of a 
financial item for the middle year is predicted as an objective variable. We proposed 
two models, depending on whether there was at least one prior-year or next-year 
value of the financial item of the predicted value or, on the other hand, both were 
missing. The first model dealt with 41 explanatory variables in 3 years’ 14 financial 
items subtracting 1 as the objective variable, and the second model dealt with 39 
explanatory variables in 3 years’ 13 financial items.

We measured the prediction accuracy of the missing values for each model and 
compared the distribution of data replicated by each model with that of the original 
data. In both cases, we confirmed that the accuracy of the model predictions was 
high, and that the shape of the original distribution was maintained even if the pre-
diction values contained errors. We then compared the number of missing data that 
could be interpolated by each model or a simple interpolation method and found that 
the number for the two models was two to six times larger than that for the simple 
method. We also compared the prediction accuracy and confirmed the temporal sta-
bility of the interpolation model. It is important to note that, to justify these models, 
we assume that the probability of missing the objective variable is the same if the 
explanatory variables are all the same.

Finally, we combined the two models, giving priority to the first model. We used 
this method to interpolate the missing values likely to appear in the past and those 
likely to appear in financial items other than operating revenue. As a result, we con-
firmed that the power-law range of the cumulative distribution of past operating rev-
enue and tangible fixed assets in the same year was expanded, and the lower limit of 
the transition to the log-normal distribution was lowered to the small-scale range. In 
previous studies, it has often been argued that the shape of a firm-size distribution 
depends on its financial items. This study showed that this may be due to missing 
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data. This analysis also means that data must be interpolated to discuss the temporal 
variation of the cumulative distribution.

Compared to the total number of firms in ORBIS, there are far fewer firms that 
have at least one financial value. There are probably many firms that have no actual 
activities but are registered. It is a future issue to predict the firm-size distribution of 
firms that have actual activities but do not contain any financial values from macro-
economic statistics such as GDP.

It’s also interesting to note that in the process of CatBoost, debtors contribute 
significantly to the importance of operating revenue predictions. Does debt have a 
more positive impact on a firm’s productivity than assets? The stability of causality 
between financial items is also a future issue.
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