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Abstract
Kernel methods are an import class of techniques in machine learning. To be effective, good feature maps are crucial for
mapping non-linearly separable input data into a higher dimensional (feature) space, thus allowing the data to be linearly
separable in feature space. Previous work has shown that quantum feature map design can be automated for a given dataset
using NSGA-II, a genetic algorithm, while both minimizing circuit size and maximizing classification accuracy. However,
the evaluation of the accuracy achieved by a candidate feature map is costly. In this work, we demonstrate the suitability of
kernel-target alignment as a substitute for accuracy in genetic algorithm-based quantum feature map design. Kernel-target
alignment is faster to evaluate than accuracy and does not require some data points to be reserved for its evaluation. To further
accelerate the evaluation of genetic fitness, we provide a method to approximate kernel-target alignment. To improve kernel-
target alignment and root mean squared error, the final trainable parameters of the generated circuits are further trained using
COBYLA to determinewhether a hybrid approach applying conventional circuit parameter training can easily complement the
genetic structure optimization approach. A total of eight new approaches are compared to the original across nine varied binary
classification problems from the UCImachine learning repository, showing that kernel-target alignment and its approximation
produce feature map circuits enabling comparable accuracy to the previous work but with larger margins on training data (in
excess of 20% larger) that improve further with circuit parameter training.
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1 Introduction

Quantum computers leverage quantum properties such as
entanglement and promise the potential of a speed advan-
tage over classical algorithms when applied to specialized
problems. Some algorithms such as Shor’s algorithm for fac-
torization (Shor 1997) andGrover’s search algorithm (Grover
1996) have been shown theoretically to outperform all known
classical algorithms applied to the same tasks.Quantumalgo-
rithm design is made difficult by the unintuitive nature of
quantum entanglement which must be used effectively to
achieve an advantage over classical algorithms. Quantum
machine learning seeks to apply quantum computation to
machine learning tasks to achieve a quantum advantage over
classical machine learning.

Quantum machine learning and classical machine learn-
ing show promise for automating many practical tasks
that would otherwise require human intelligence, includ-
ing disease diagnosis (Myszczynska et al. 2020), natural
language processing (Khurana et al. 2022), and image clas-
sification (Horak and Sablatnig 2019). Machine learning
algorithms are designed to learn functions from data (Good-
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fellow et al. 2016). These algorithms can be separated into
three categories: supervised learning, unsupervised learning,
and reinforcement learning. Supervised learning algorithms
make use of prelabeled training data, while unsupervised
learning algorithms do not (Alloghani et al. 2020). In rein-
forcement learning, agents learn behavior by interacting with
an environment that provides rewards and punishments to
guide them.

Kernel methods are an important class of techniques in
both classical and quantum machine learning. The Support
Vector Machine (SVM) (Boser et al. 1996) is an important
classical supervised kernelmethod, due to its theoretical rela-
tions to other learningmodels (Jacot et al. 2018; Schuld 2021)
and results regarding its generalization ability (Vapnik 1998;
Vapnik and Chervonenkis 2015). It is built around an opti-
mization algorithm for finding an optimal linear hyperplane
that separates data points into two classes. The hyperplane
is selected to maximize the minimum margin of any point in
the training dataset, where the margin of a point is defined
as the distance of the point from the separating hyper-
plane. Larger margin sizes have been theoretically linked to
improved generalization performance (Vapnik 1998; Vapnik
andChervonenkis 2015).Non-linear decision boundaries can
be achieved by mapping non-linear data to a higher dimen-
sional feature space. The mapping function used is called
a feature map, and the range of a feature map is called a
feature space. By use of a technique known as the “kernel
trick”, the decision boundary optimization problem can be
reformulated in terms of a kernel function that computes the
similarity of a pair of data points in the feature space (Boser
et al. 1996). This obviates the need to explicitly compute fea-
turemap outputs for data points, so long as the corresponding
kernel function can be computed.

The feature map must be carefully selected for effec-
tive separation of the data. For any kernel function and
labeled training set combination, a quantity known as the
kernel-target alignment of the kernel can be calculated. This
indicates the degree of agreement between the kernel func-
tion and a hypothetical oracle kernel induced by the training
labels that is well suited to the training data (Cristianini et al.
2001). A high kernel-target alignment has been shown in
other works to correlate with improved classification perfor-
mance (Cristianini et al. 2001), and it has been proposed for
use as a metric for selecting suitable kernels for a dataset in
classification problems (Cristianini et al. 2001; Hubregtsen
et al. 2022).

The QSVM algorithm enhances the SVM algorithm by
implementing the feature map function as a quantum circuit
(see Section 3.1.2). While quantum feature map circuits are
parameterized in the feature values of a single data point, they
can also contain additional trainable parameters which can
be optimized to improve the suitability of the kernel circuit
for a specific dataset (Hubregtsen et al. 2022). A quantum

circuit containing trainable parameters is called an ansatz.
Prior work has used classical optimizers on trainable param-
eterized quantum kernels to maximize their kernel-target
alignment, which resulted in positive effects on the classi-
fication accuracy of the resulting SVM models (Hubregtsen
et al. 2022).

2 Related works

Quantum feature map circuits of fixed structure that make
use of trainable parameter values are reported in Hubregtsen
et al. (2022). The trainable parameter values are optimized
using Stochastic Gradient Ascent to maximize the kernel-
target alignment of the corresponding kernel functions. This
was performed to test whether kernel-target alignment opti-
mization could improve the performance of a fixed-structure
quantum feature map on a given dataset. Increased kernel-
target alignment had previously been shown in Cristianini
et al. (2001) to correlate with improved classification abil-
ity. The technique described can be applied either to tailor
an existing feature map to a dataset or to fully generate a
feature map for a dataset from a feature map ansatz that has
a predetermined circuit structure and parameter placement.
Theworkmade use of both classical noise-free simulations of
quantumcomputers and realNISQcomputers to run quantum
circuits, reporting improvements in classification accuracy
after kernel-target alignmentmaximization (Hubregtsen et al.
2022).

A second model training metric applicable to quantum
kernel classifiers is a classifier’s root mean squared error
(RMSE). This is often optimized to train parameterizedmod-
els for classification tasks. It can be better suited to training
than direct evaluation of accuracy since it accounts for the
magnitudes of misclassification errors rather than simply the
number of errors that occur. Accuracy can be too insensi-
tive to circuit parameter changes to show when a circuit has
slightly improved if a data set is not sufficiently large.

Another approach to optimizing the choice of kernel cir-
cuit for a dataset is to optimize the selection of circuit gates
used in the feature map in addition to the values of train-
able circuit parameters. This approach has been applied to
optimizing circuits applied to other problems (Ostaszewski
et al. 2021). Genetically inspired algorithms have also been
applied to circuit structure optimization since they are capa-
ble of combinatorial optimization (Lukac and Perkowski
2002; Bautu and Bautu 2007; Rasconi and Oddi 2019).

Altares-López et al. (2021) detailed the implementation of
a genetic algorithm for automated feature map circuit design
for use with QSVM classifiers that both maximizes classifi-
cation accuracy and minimizes circuit size. The optimization
was performed using a variation of genetic algorithm named
NSGA-II (Deb et al. 2002) which customizes the usual
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genetic selection and fitness evaluation operations of the
genetic algorithm (as outlined in Sect. 3.3) to evaluate multi-
ple fitness functions and preferentially select non-dominated
solutions for crossover.

In a minimization problem with two fitness functions,
a solution s with fitness values (a, b) is considered non-
dominated with respect to another set of n solutions with
fitness values {( fi , gi )|i ∈ {1, 2, ..., n}} if and only if

∀i ∈ {1, 2, ..., n}, ( fi < a) �⇒ (gi > b)

, i.e., if and only if there are no solutions in the set with
all fitness values superior to the corresponding fitness values
of s. NSGA-II also makes use of elitism to guarantee the
preservation of the solutions that best optimize at least 1 of
the individual fitness functions.

In order to apply a genetic algorithm to quantum feature
map design, the work also defined a binary string representa-
tion for encoding feature map circuits. The encoding strategy
can be found in Altares-López et al. (2021) and is summa-
rized here.

Each circuit gate is encoded in a sequence of 5 bits, the
first three of which encode the type of gate applied and the
last two of which encode a proportionality parameter for use
in the case that a parameterized rotation gate was selected by
the first three bits. The mapping of bits to gates and propor-
tionality parameters is shown in Table 1.

Table 1 Mapping used on each consecutive 5-bit sequence of bits
encoding a feature map gate to determine the gate type and a propor-
tionality parameter value used in the case of parameterized gates

Bits Gate Bits Parameter

000 H 00 π

001 CNOT 01 π/2

010 I 10 π/4

011 Rx 11 π/8

100 Rz

101 I

110 I

111 Ry

The available gates for the encoding to select from are Hadamard (H),
CNOT, identity (I), and parameterized rotations around the X, Y, and Z
axis of the Bloch sphere which are used to encode data point feature val-
ues into the circuit.Wedefine theRx(θ)gate as cos(θ/2)1−i sin(θ/2)X,

the Ry(θ) gate as cos(θ/2)1 − i sin(θ/2)Y, and the Rz(θ) gate as
cos(θ/2)1 − i sin(θ/2)Z. If a parameterized rotation gate Ra around
axis a is selected, the parameter selected by the last two of the five
gate bits will be used to select a proportionality parameter p. When the
gate Ra is applied to encode a feature value xi , the gate applied will be
Ra(pxi ). In the case of a CNOT gate being selected and this gate being
applied to qubit i , qubit i will be used as the control qubit and qubit
(i + 1) mod M will be used as the target qubit

Hyperparameters M and N which designate the maxi-
mum number of qubits and maximum number of gate layers
respectively must be chosen before applying the genetic
algorithm and are fixed for the duration of the genetic opti-
mization. A single solution is represented as a bit string of
length 5MN , which holds the concatenation of the encodings
of the individual gates in the feature map.

The gates in the encoding are applied successively with
the target qubit and feature value to potentially encode being
selected in a round-robin fashion. Stated explicitly, for each
consecutive group of 5 gate bits, the i th gate description
will be applied to qubit i mod M and will encode feature i
mod N if it performs a parameterized rotation. This encoding
strategy was selected for simplicity, although other strategies
could also feasibly be attempted.

Two fitness functions were optimized in the work: accu-
racy on a test set was maximized and a weighted size metric
was simultaneously minimized. The unweighted size met-
ric SM was calculated in terms of the number of qubits M ,
the number of single qubit gates Nlocal, and the number of
entangling gates NCNOT, by the expression

SM = Nlocal + 2NCNOT

M
.

Theweighted sizemetricWS supplied to the genetic algo-
rithm was given by the expression

WS = SM + SM · accuracy2.

The work was able to demonstrate the effectiveness of
using NSGA-II with the devised feature map binary string
encoding strategy, accuracymaximization, andweighted size
minimization to automatically produce quantum feature map
circuits for QSVM classification using only a dataset and a
few hyperparameters as input. The generated circuits were
also experimentally shown to generalize to unseen data. In
addition to using few qubits and quantum gates, the circuits
produced by the approach were observed to make little to
no use of entanglement, meaning they could be efficiently
simulated classically and the approach could constitute a
quantum-inspired classical machine learning algorithm.

Some attempts have been made to enhance the genetic
optimization and compare the approach to others. The work
done in Chen and Chern (2022) is based on the algorithm put
forward in Altares-López et al. (2021). They used a modified
encoding scheme which encoded the proportionality param-
eter values using three bits instead of only two, doubling the
number of encodable parameter values. A restricted choice
of parameter values was one of the potential limitations of
the algorithm designed in Altares-López et al. (2021). The
algorithm was also further modified to optimize gate cost
and classification accuracy in a single objective expression,
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using a single objective genetic algorithm instead of a multi-
objective genetic algorithm such as NSGA-II. Notably, this
introduced a new hyperparameter used to weight the focus
of the optimization between circuit size and accuracy, which
is not done with NSGA-II.

The feature map generated by the genetic algorithm was
compared with two other choices of ansatz: a hardware effi-
cient ansatz proposed in Kandala et al. (2017) and a unitary
decomposition ansatz proposed in Shende et al. (2006). Each
ansatz was trained with COBYLA (Powell 1994), directly
evaluating classification accuracy as a cost function. It was
found that the feature map circuits generated by the genetic
algorithm variation used in the work performed similarly
to the hardware efficient ansatz, depending on the circuit
depth hyperparameter selectedwhengenerating the hardware
efficient ansatz. However, both were beaten by the unitary
decomposition ansatz in accuracy, which achieved the high-
est accuracy at the cost of having a large, fixed size.

Our work investigates kernel-target alignment as a met-
ric for automating quantum feature map design for the
Quantum-Enhanced Support Vector Machine (QSVM) algo-
rithm (Schuld and Killoran 2019; Rebentrost et al. 2013).
Our work has two goals: investigate the suitability of using
alternative cost functions to accuracy in the genetic optimiza-
tion process described in Altares-López et al. (2021) and,
secondly, investigate whether the problem of limited circuit
parameter choices in the genetic algorithm can be addressed
by a hybrid process of genetic and circuit parameter training.

We address the first goal by evaluating two alternative
cost functions to the accuracy metric in Altares-López et al.
(2021): firstly, kernel-target alignment for the genetic opti-
mization step and, secondly, a heuristic estimation of the
kernel-target alignment performing a fraction of the kernel
evaluations. For the second goal, a hybrid method involv-
ing further optimizing the final choice of trainable circuit
parameter values after the genetic algorithm terminates for
each of the above approaches is evaluated. This final opti-
mization uses COBYLA (Powell 1994) to maximize either
kernel-target alignment or RMSE. The new approaches are
compared to the original across several binary classification
problems of varying difficulties. We show that even though
the kernel-target alignment metric is less computationally
expensive to compute in terms of quantum kernel evaluations
and avoids the training of an SVM classifier, the perfor-
mance of the constructed classifiers is comparable to the
original approach and often achieves a bettermargin distribu-
tion on training data. It has been demonstrated theoretically
that increased margin sizes indicates better generalization
ability (Vapnik 1998; Vapnik and Chervonenkis 2015). The
kernel-target alignment approximation heuristic is shown to

performmarginally worse than exact kernel-target alignment
optimization but at a fraction of the computational cost. The
hybrid approaches are shown to improve margin sizes over
the original. The original approach is also shown to some-
times overfit to the test data used to evaluate its accuracy
metric, particularly on difficult problems.

In the following section, we give a more detailed explana-
tion of the background topics involved in understanding this
work and related works and explain our experimental setup.
This is followed by a section covering our findings and inter-
pretations. In the final section, we give an overview of the
contributions made and suggest ideas for further research.

3 Methods

3.1 Binary classifiers using quantum kernels

3.1.1 Support Vector Machine (SVM)

The SVM algorithm is a classical supervised machine learn-
ing algorithm for binary classification problems that works
by finding an optimal separating hyperplane between two
classes of data points. TheSVMalgorithm is applicablewhen
the data points can be represented by real-valued feature vec-
tors. For simplifying definitions, the class labels are usually
replaced with positive and negative one.

Themargin of a single data point is defined as the distance
from the data point to the SVM’s chosen hyperplane. The
margin of an SVM classifier refers to the minimum of the
margins of the data points. The data points with minimum
margin are known as the support vectors. The hyperplane
chosen by the SVM is optimal in the respect that it maximizes
the minimum of the margins of the training set data points
by solving a quadratic programming optimization problem.

The SVM algorithm is also capable of classifying datasets
with classes that are not linearly separable. This can be
achieved by first mapping the data points to a higher dimen-
sional space in such away that theybecome linearly separable
in the higher dimensional space (see Fig. 1 for an illustration).
A function used to perform this mapping is called a feature
map, and the range of the function is called the feature space.
The choice of feature map must be suited to the dataset in
order to classify it well, since it determines whether the data
will become linearly separable after transformation.

A feature map φ(x) that maps a point into feature space
has a corresponding kernel function

κ(xi , x j ) = 〈φ(xi ), φ(x j )〉
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Fig. 1 An example illustrating
how a feature map function
could be used to make
non-linearly separable points
linearly separable in a higher
dimensional space. In this case,
the feature map could be
implemented as a function that
adds a third dimension to the
points with decreasing value as
distance from the central region
of the points increases

Points not separable by a
line in 2D space

Points now separable by
a plane in 3D space

Feature map
function φ

which computes the inner product of a pair of data points
in the feature space. The margin optimization problem can
be equivalently reformulated as a dual problem in terms of
the kernel function (Boser et al. 1996), which can some-
times avoid the explicit computation of the feature map. This
advantage is often referred to as the “kernel trick”. Seeing
that in many cases where a feature map can not be efficiently
computed but the corresponding kernel function can be, the
dual formulation of the problem increases the number of
potential feature maps that can be applied to a dataset.

In the dual form of the SVM, the classifier output for
a given class is determined using a coefficient sequence
α = {α1, α2, ..., αn} and offset sequence b = {b1, b2, ..., bn}
chosen by the SVM algorithm during the hyperplane opti-
mization. The decision function df outputs an indication of
the distance of its input point from the hyperplane after map-
ping into feature space. It is defined in terms of the kernel
function κ , the training samples {x1, x2, ..., xn}, the α coef-
ficients, and the b offsets as follows:

df(x) =
n∑

i=1

(αiκ(x, xi ) + bi ).

The sign of df(x) is used to determine the predicted class
of the argument point x :

Class(x) = sign(df(x)).

3.1.2 Quantum-enhanced support vector machine

The Quantum-enhanced Support Vector Machine (QSVM)
algorithm extends the SVM algorithm by performing the
kernel computation on a quantum computer (Schuld and
Killoran 2019; Rebentrost et al. 2013). A quantum circuit
parameterized in the values of a single data point is used as

a feature map to map the data points to a high dimensional
quantum state in a quantum Hilbert space.

For a quantum feature map encoding data points into q
qubits, the dimensionality of the feature Hilbert space is 2q .
Although a quantum computer can efficiently compute the
quantum state feature space representation of data point, in
general, the quantum state cannot be efficiently represented
classically due to the exponentially increasing dimension-
ality of the feature space. To work around this classical
limitation, the kernel function is computed directly on the
quantum computer and the kernel-based formulation of the
SVM is used. The kernel computation for a pair of data points
can be efficiently performedbymeasuring the overlap of their
corresponding states in the quantum feature space.

To train a QSVM model, the Gram matrix Kn×n of the
training points must be computed. For n training points
{x1, x2, ..., xn} and a quantum kernel function κ , the Gram
matrix is defined by Ki j = κ(xi , x j ) where i, j ∈
{1, 2, ..., n}. In the case of a noise free quantum computer
or simulator being used to execute κ , the symmetric property
κ(xi , x j ) = κ(x j , xi ) and the property that κ(xi , xi ) = 1 can
be used to reduce the number of required evaluations.

Assuming the stated properties, the n main diagonal
entries of K (K11, K22,..., Knn) do not require kernel evalu-
ations, since Kii = κ(xi , xi ) = 1. For the remaining n2 − n
entries Ki j which are not on the main diagonal, there is a
symmetric entry K ji with the same value, since

Ki j = κ(xi , x j ) = κ(x j , xi ) = K ji

.
This means that only half of the entries need to be explic-

itly computed by kernel evaluations. In effect, only n2−n
2

kernel evaluations must be performed to construct K . In the
case of a NISQ computer, this technique could potentially be
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applied if measures were taken to mitigate noise and correct
the kernel matrix such as in Hubregtsen et al. (2022).

Since the only difference between the SVM and QSVM
algorithms is how the kernel computation is performed, the
potential advantage of the QSVM algorithm lies in enabling
the computation of kernel functions that are hard to estimate
classically (Liu et al. 2021). While examples of such kernels
have been discovered (Liu et al. 2021) for artificial datasets, it
is an open question how best to design quantum feature maps
to achieve a useful kernel with a quantum speed advantage.

3.2 Kernel quality metrics

3.2.1 Kernel-target alignment

Kernel-target alignment is a heuristic for kernel quality that
measures the degree of similarity between two kernels or the
degree of agreement between a kernel and a dataset (Cristian-
ini et al. 2001). It is calculated using a matrix inner product
between the Grammatrix constructed from the training sam-
ples and an oraclematrix constructed from the training labels,
where the oraclematrix acts as a stand-in for theGrammatrix
of a hypothetical kernel which is very well-suited to the data.

For a set of training points {x1, x2, ..., xn} with corre-
sponding labels {y1, y2, ..., yn} with ∀i, yi ∈ {−1, 1}, a
kernel function κ(xi , x j ), and with the Frobenius inner prod-
uct for matrices defined as

〈A, B〉F =
∑

i, j

Ai j Bi j ,

the kernel-target alignment can be computed as follows (Cris-
tianini et al. 2001):

1. Compute theGrammatrix Kn×n using the kernel function
and training points by the rule

Ki j = κ(xi , x j ).

2. Compute the oraclematrix On×n using the training labels
by the rule

Oi j = yi y j .

3. Compute the kernel-target alignment KTA using the
Frobenius inner product as

KTA = 〈K , O〉F√〈K , K 〉F 〈O, O〉F .

A high kernel-target alignment has been shown in other
works to correlate with improved classification performance
(Cristianini et al. 2001), and it has been proposed for use

as a metric for selecting applicable kernels for a dataset in
classification problems (Cristianini et al. 2001; Hubregtsen
et al. 2022).

3.2.2 Root mean squared error

Root mean squared error (RMSE) is a common metric for
measuring the error of a model. It is calculated as the square
root of the mean of the squared errors of a classifier’s predic-
tions on each training set data point. In this work, the RMSE
of a classifier is calculated using the errors of the decision
function on training data with an adjustment to the error cal-
culation. The adjustment is to account for there not being a
definitively correct output of the SVM decision function for
a given sample and label pair. The error is measured relative
to a positive target decision function output m, which we set
to one in this work.

We calculate the error for a decision function output a and
training label b using the following rule:

error(a, b) =

⎧
⎪⎨

⎪⎩

(m − a) if b = 1 and a < m

(a − m) if b = −1 and a > −m

0 otherwise

This choice of error function means that only points not
classified to the desired degree of confidencem contribute to
the error calculation, and the errors of the considered points
increase with distance from the target output.

For a set of training points {x1, x2, ..., xn} with corre-
sponding labels {y1, y2, ..., yn} with ∀i, yi ∈ {−1, 1}, the
RMSE is calculated in terms of this adjusted error function
and the decision function df by the following rule

RMSE =
√∑n

i=1 error(df(xi ), yi )
2

n

3.3 Overview of genetic algorithms

Genetic algorithms are flexible metaheuristic algorithms
inspired by the real-world evolutionary principles of natural
selection, genetic inheritance, and random mutation. They
are a popular choice of algorithm for optimizing complex
objective functions in cases where algorithms known to pro-
duce a global optimum are unknown or infeasible.

Implementing a genetic algorithm first requires design-
ing a solution representation on which genetic operations
can be performed. The solution representation often (but not
always) takes the form of a binary string, which is mapped by
a problem-specific decoding function to a usable solution. A
genetic algorithmmanages a set of these solution representa-
tions, which is called a population. The initial population can
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be a set of randomly generated solutions or chosen according
to a problem-specific heuristic.

The optimization process is iterative and typically repeats
until a suitable solution is found, a desired number of
iterations has passed, or the rate of improvement of the solu-
tions becomes low. In each iteration, genetically inspired
operations are applied to the population to create a new
replacement population. The population creation process
involves fitness evaluation, selection, crossover, and muta-
tion operations.

Fitness evaluation is performed by decoding a solution
representation into a solution, then evaluating a numeric
score of its suitability for the problem. This is performed
for the entire population, after which point a selection oper-
ation is applied to select some solutions for crossover and
mutation. It is important that better solutions are more likely
to be selected for crossover, since this is the mainmechanism
driving improvement between generations. The solutions
selected for crossover are referred to as “parents”.

The crossover operation is performed between two par-
ent solutions to produce one or more new solutions, called
child solutions. This is usually performed by taking a simple
combination of the solution representations of the parents.
In the case of a binary string solution representation, a
simple crossover can be performed by combining two non-
overlapping subsequences of the parents, taking a random
number of bits from the first and the remainder from the cor-
responding positions in the second. Amutation operation can
be applied to a child solution by randomly editing its rep-
resentation by a small amount. This simulates the random
mutation which occurs in real life and affects the diversity of
available genetic material in the population.

A strategy often employed when determining which indi-
viduals will make up the next generation is to preserve the
best performing of the solutions among the current genera-
tion and the newly created children. This is known as elitism
and ensures that solutions can survive through multiple gen-
erations and potentially indefinitely, so long as they continue
to outperform newer ones. This helps prevent regression of
the achieved fitness due to chance as generations pass.

The general idea for a genetic algorithm is flexible enough
that many variations and extensions of the discussed compo-
nents have also been studied (Chahar et al. 2021).

3.4 Experiments

The algorithm for automated feature map design described
in Altares-López et al. (2021) was reimplemented using the
Julia programming language (Bezanson et al. 2017), the Yao
quantum simulator framework (Luo et al. 2020), and the
pymoo (Blank and Deb 2020) implementation of NSGA-II.
All experiments were run with the maximum qubit count and
featuremap depth hyperparameters set to 6. The genetic algo-
rithm population size was set to 100, with 15 new individuals
being produced every generation. A total of 30% of the new
individuals were produced by crossover; the rest were chosen
randomly from the parents. In each generation, 70% of the
population underwent mutation. When mutation occurred,
20% of the bits in the mutated solution were flipped. All
experiments were run using a noise free quantum simulator
provided by Yao.

Three configurations of the original algorithm were run
on nine different datasets of varying difficulty (see Table 2)
to compare their effectiveness. The first configuration max-

Table 2 Table showing the
characteristics of the datasets
and sample splits used

Dataset Class -1 Class 1 Features (PCA) Train Test Validation

Moons Top left Bottom right 2 (N/A) 210 90 500

Cancer Benign Malignant 30 (10) 210 90 124

Iris Versicolor Virginica 4 (N/A) 42 18 40

Digits Eight Nine 64 (10) 140 60 148

Circles Outer Inner 2 (N/A) 210 90 500

Random Red Blue 2 (N/A) 210 90 N/A

Voice Acceptable Unacceptable 309 (10) 28 12 44

SUSY Background Signal 18 (10) 210 90 500

SUSY reduced Background Signal 8 (N/A) 210 90 500

Not all points in the base datasets were used to ensure the sample split remained balanced in each of the
sample sets. Other considerations in determining the data splits were experiment runtime while maintaining
a sufficiently large ratio of test points to train points and a sufficiently large number of validation points. All
datasets with more than 10 feature values were reduced to 10 features using principle component analysis
(PCA). The moons, circles, and random datasets are artificial, with the moons and circles datasets being
generated with Scikit-learn (Pedregosa et al. 2011). The rest of the datasets are sourced from the UCIMachine
Learning Repository (Dua and Graff, 2017) either directly or indirectly through Scikit-learn (Pedregosa et al.
2011)
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imized accuracy on a test set and minimized weighted size,
as in the original work (Altares-López et al. 2021). The
second configuration maximized kernel-target alignment on
the training data, ignoring the test data, and minimized the
unweighted size metric also defined in Altares-López et al.
(2021). The third configurationmaximized an approximation
of kernel-target alignment on the training data andminimized
the same unweighted size metric.

Before performing the genetic optimization, the datasets
are split into three disjoint subsets, namely training data, test-
ing data, and validation data. The training data is used to
evaluate kernel-target alignment and its approximation, as
well as train the QSVM model for a given feature map cir-
cuit. The testing data is only used to evaluate the accuracy
metric in the first approach. The validation data is used to
determine the generalization ability of the generated mod-
els and must be separate from the testing data since the first
approach can indirectly access the testing data through the
accuracy metric and potentially overfit to it.

In order to calculate the kernel-target alignment approx-
imation for n training points, the n points are divided into
a disjoint complementary subsets of size roughly n/a. The
number of subsets a can be adjusted based on the number
of training points to balance speed and precision. The kernel
target alignment is calculated on each of the subsets in turn,
then averaged.

Assuming the properties of the kernel function are not
used to accelerate the Gram matrix computation, n2 kernel
evaluations are required to compute the exact kernel-target
alignment, and only

a(n/a)2 = (n2)/a

evaluations are required to compute the approximation, giv-
ing a factor a speedup. If the kernel properties are used, then

(n2 − n)/2 = n2/2 − n/2

NSGA-II operations

Randomly generate
initial population of

solutions

Evaluate size metric (unweighted
or weighted) and chosen genetic
training metric (accuracy, kernel-
target alignment, or kernel-target

alignment approximation) for each
new solution in the population

Produce new solutions using
crossover and mutation

operators

Select parent solutions
using non-domination and
crowding distance metrics

Yes

No

No

Train parameters of final
population with COBYLA to
optimize parameter training

metric (RMSE or kernel-
target alignment)

Final solutions
ready

Reached genetic
algorithm termination

point?

Yes
Performing hybrid

variational parameter
training?

Fig. 2 A flow diagram outlining the algorithm followed to genetically train quantum feature map circuits. The diagram also shows how a hybrid
method involving circuit parameter training can be performed after genetic optimization
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kernel evaluations are required to compute the exact kernel-
target alignment. Therefore, the number of kernel evaluations
requiredwhen evaluating the kernel-target alignment approx-
imation can be derived as

a(
( na )2 − n

a

2
) = n2

2a
− n

2
,

meaning the factor speedup by evaluating the approximation
is larger than a, but should approach a as n increases. In this
work, we use a value of a = 5 in all experiments involving
the kernel-target alignment approximation.

After the genetic optimization in each configuration com-
pletes,we attempt further improvement by further optimizing
just the proportionality parameters encoded in the last two
bits of the gate representation using an implementation of
COBYLA (Powell 1994) provided by the NLopt optimiza-
tion library (Johnson 2011). This allows the parameter values
to not be restricted to one of only four possibilities. This
optimization aims to either minimize RMSE or maximize
kernel-target alignment using the training set to evaluate the
metrics. The COBYLA optimizer is allowed one hundred
evaluations of the cost function to perform the optimization.
A flow diagram outlining the algorithmic process can be seen
in Fig. 2.

Fig. 3 The circuits with highest validation set accuracy produced by
the three base genetic approaches when creating quantum feature maps
for the Moons dataset. a shows the best produced circuit when training
to maximize accuracy and minimize weighted size as in the original
work, b shows the best circuit when training to maximize the exact

kernel-target alignment and minimize unweighted size, and c shows
the best circuit when training to maximize the approximation of the
kernel-target alignment and minimize unweighted size. Circuits b and
c are significantly larger. Unused gate layers and qubits are omitted
from the diagrams
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Fig. 4 A graph showing the
classification accuracies of the
best models produced by
various approaches of quantum
feature map design on the
Moons dataset, compared with a
classical RBF kernel for
reference. All approaches can be
seen to achieve comparable
accuracy across the different
subsets

The COBYLA cost functions for RMSE and kernel-target
alignment both require computing a Gram matrix each eval-
uation, meaning the number of kernel evaluations performed

is 100(n2−n)
2 . This can be contrasted with the genetic opti-

mization of accuracy or kernel-target alignment, where at
least as many kernel evaluations are performed to evaluate
the fitness of just the first generation of 100 solutions in
the genetic algorithm. In the subsequent 1199 generations
15× 1199 = 17985, more Gram matrix evaluations are per-
formed for a total of 18,085, meaning the final parameter
training for the entire output population requires roughly55%

Fig. 5 A graph showing the mean margin of the Moons training set
points for the best classifiers produced by each approach, with error
bars showing standard deviation. Circuit parameter training and genetic
training of kernel-target alignment are both shown to increase the mean
margin size. The approach numbering corresponds to the numbering
used in Fig. 4

of the number of kernel evaluations performed in the genetic
optimization in the cases of genetically optimizing accuracy
or the exact kernel-target alignment.

We name the three base approaches 1, 2, and 3, respec-
tively. Each approach has two additional sub-approaches
defined for further training of RMSE or kernel-target align-
ment, for a total of nine approaches. The RMSE and
kernel-target alignment variations are named with a.1 and.2
suffix, respectively. We graph the classification accuracies,
average margins, ROC curves, feature map circuits, and
confusion matrices of the best models produced by each
approach, where the best model of a population is taken to be
the one achieving the highest validation set accuracy. For two
dimensional datasets, decision boundaries are also graphed.
Note that results for individual datasets were not averaged
over multiple runs of the genetic algorithm or circuit param-
eter optimization to reduce experiment runtime.

The code implementing the experiments and result graph-
ing can be found on GitHub (Pellow-Jarman 2022).

4 Results

As in the original work by Altares-López et al. (2021), the
feature map circuits produced by each of the approaches tend
to make little to no use of entangling gates (see Fig. 3). How-
ever, the circuits produced by optimizing the kernel-target
alignment-based metrics tend to produce significantly larger
circuits overall (see Fig. 3). This could be explained by the
fact that the weighted size metric in the genetic optimiza-
tion was replaced with an unweighted size metric in those
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Fig. 6 A graph showing the
ROC curves of the best models
produced by various approaches
of quantum feature map design
on the Moons dataset. All of the
produced models are shown to
perform similarly on the dataset

approaches due to the weighted size metric depending on
the test set accuracy, which was not evaluated. A total of
1200 generations were allocated for the genetic algorithm to
run. We chose 1200 iterations since this was tested as being
sufficient for the convergence of the original approach, and
keeping it constant allows for directly comparing metrics
in conditions where the faster evaluation time of kernel-
target alignment comparedwith accuracy is trivially satisfied.
The optimization of the circuit size did not converge in the
allocated 1200 generations in approaches 2 and 3, which
can be inferred from the presence of redundant gates. This
could possibly be addressed by allowing more generations to

pass or using a size metric weighted in kernel-target align-
ment instead of accuracy, similarly to the original approach.
Another possible explanation for the larger circuit size is
that a circuit achieving perfect accuracy may still be able to
improve its kernel-target alignment; in the accuracy maxi-
mization case, the genetic algorithm is able to shift focus
to minimizing circuit size after achieving 100% accuracy,
but the same cannot be done as easily when maximizing
kernel-target alignment since its limiting value of one ismore
difficult to achieve. Additionally, the high mutation rate of
70% could be reduced to attempt to reach convergence in the
allocated 1200 generations. For the produced circuits to have

Fig. 7 A graph showing the classification accuracies of the best mod-
els produced by various approaches of quantum feature map design
on the Voice dataset, compared with a classical RBF kernel for refer-

ence. Genetic accuracy maximization is shown to overfit to the testing
data used to evaluate the accuracy metric, justifying the necessity of a
separate validation set
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Fig. 8 A graph showing the mean margin of the Random training set
points for the best classifiers produced by each approach, with error
bars showing standard deviation. The approach numbering corresponds
to that in Fig. 4

the potential of a quantum advantage over classical SVM
methods, the kernels corresponding to the generated feature
map circuits must be difficult to estimate classically. While
this is not the case for the feature maps generated with the
methods in our results, future works may focus on extending
the method to encourage the selection of entangling gates
where it might be effective.

Our experiments show that substituting kernel-target
alignment or approximated kernel-target alignment for accu-
racy in the genetic optimizationprocess produces featuremap
circuits with accuracy comparable to the original approach
across all datasets (see Figs. 4 and 6 for example). Further
optimizing the final population’s trainable parameters using
COBYLAwas often able to improve the averagemargin sizes

of the classifiers (see Fig. 5) on training data and sometimes
able to improve validation set classification accuracy (see
Figs. 4 and 9), showing that a hybrid approach performing
further optimization of the final population parameter values
is worth attempting despite the computational cost if improv-
ing accuracy is important (Fig. 6). Training the parameters of
a single solution for 100 cost evaluations requires only half
a percent of the kernel evaluations as the genetic optimiza-
tion process, so a smaller subset of the final solutions could
be trained at a much lower cost. Additionally, the untrained
parameters encoded in the solution binary strings are not lost
if further training is performed and can still be used if they
happen to perform better than the trained ones.

The results demonstrate that on difficult datasets such
as the SUSY, SUSY reduced features, Voice, and Ran-
dom datasets, the original approach’s models can overfit to
the testing data used to evaluate the accuracy metric (see
Fig. 7). This is likely due to the fact that test set accuracy is
directly optimized in the genetic algorithm without regard
to training set accuracy. Since the kernel-target alignment
approaches make use of only the training data during the
genetic optimization, they do not suffer from the same draw-
back, although they do not show improvement on validation
data for the difficult problems. This problem could possibly
be avoided by shuffling the training and testing data each
generation, although this would make the accuracy metric
depend on the generation at which the accuracy was evalu-
ated and could prevent caching of solution fitnesses in the
genetic algorithm. A second possible solution is to average
the accuracy over subsets of the data. Given a dataset of n
points, this can be performed while requiring at most n2−n

2
kernel evaluations in the worst case, since the Gram matrix
for the entire dataset can be computed once and used as a

Table 3 Table showing the
average margin size of the best
classifier produced by each
approach, averaged across the
nine datasets with equal
weighting given to each dataset

Approach Average margin Absolute change Percentage change

1-Accuracy (original work) 0.838 N/A N/A

Accuracy, RMSE training 0.993 +0.154 +18.42%

Accuracy, KTA training 0.971 +0.133 +15.87%

2-Alignment 1.043 +0.205 +24.46%

Alignment, RMSE training 1.016 −0.028 −2.66%

Alignment, KTA training 1.090 +0.047 +4.49%

3-Approximation 1.065 0.226 +26.99%

Approximation, RMSE training 1.145 +0.080 +7.54%

Approximation, KTA training 1.124 +0.059 +5.59%

For this purpose, the best classifier is defined as the classifier achieving the highest validation set accuracy for
the target dataset. The improvement columns for the base approaches (2 and 3) show how genetic optimization
of kernel-target alignment and its approximation improve on themargins achieved in the original work. For the
hybrid approaches (with additional RMSE and KTA parameter training), the columns show change relative
to the base approaches
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Fig. 9 Decision boundaries of
the best classifiers for
approaches 2 and 2.1 on the
Moons validation data. Further
parameter training on training
data to minimize RMSE after
genetically designing the feature
maps to maximize kernel-target
alignment is shown to improve
classification ability on
validation data. The approach
numbering scheme is the same
as that used in Fig. 4

cache to look up the kernel output for any pair of points
when creating models with arbitrary choices of training and
testing subsets.

Themargins of classifiers trainedwith the second and third
approach tended to be larger than those trained with the first
(see Figs. 5 and 8, as well as Table 3). This could be due to the
fact that the kernel-target alignment metric and its approx-
imation are evaluated on the training subset as opposed to
accuracy which is evaluated on the testing subset, leading
to the former two approaches having higher confidence on
the training subset. In either case, increased margin size is
an indicator of improved generalization ability according to
theoretical works (Vapnik 1998; Vapnik and Chervonenkis
2015) showing that margin size bounds VC dimension and
VC dimension bounds expected generalization error. Further
parameter training on the final generation also tended to show
some improvements in margin sizes, even on easier datasets
such as the Moons and Circles datasets where there was not
much effect on overall classification accuracy. This improve-
ment in margin can be seen visually in the decision boundary
graphs of the classifiers (see Fig. 9).

5 Conclusion

In this paper, we compared our implementation of the
approach defined in Altares-López et al. (2021) with adjust-
ments to the genetic algorithm cost functions. These adjust-
ments were aimed at investigating the suitability of kernel-
target alignment as an alternative metric to test set accuracy
and at reducing the number of kernel evaluations required
by the approach. The new approaches were shown to still
be effective at designing accurate classifiers with fewer ker-
nel evaluations, although at the cost of increased circuit size.
They were also shown to often produce classifiers with bet-
ter margins on training data. We also put forward a hybrid
approach extending the original work by applying COBYLA

(Powell 1994) to further optimize the trainable parameters of
the produced quantum feature map circuits after the termina-
tion of the genetic algorithm to attempt further improvement,
at a lower additional computational cost than thegenetic algo-
rithm’s base cost. This parameter training was also shown to
be capable of improving margin sizes and sometimes accu-
racy without increasing the circuit gate cost.

There is still more work to be done in accelerating the
genetic algorithm while keeping gate costs low. A potential
avenue to achieving this goal is the use of a multi-phase
genetic algorithm in which the cost function is initially
easy to evaluate but increases in precision after a set num-
ber of generations passes. For example, the a parameter of
the kernel-target alignment approximation could be made to
decrease as generations pass for the approximation to become
more accurate at the cost of more kernel evaluations, or the
cost function could be switched from kernel-target alignment
to classification accuracy to reduce gate cost once a prede-
termined kernel-target alignment has been achieved.

The original approach could also further be extended to
have the gate encoding for parameterized gates select a clas-
sical data encoding function such as those used in Suzuki
et al. (2020) to introduce classical nonlinearity to the encod-
ing, potentially allowing for even lower gate cost or higher
accuracy circuits to be produced.

6 A. Appendix

For Figs. 10, 11, 12, 13, 14, 15, and 16, we show the accu-
racy of the best produced kernels on each dataset, with
the classical RBF kernel also shown for comparison. These
figures show that the newly proposed approaches achieve
comparable classification accuracy to the original approach,
despite not directly evaluating classification accuracy dur-
ing training. The graphs for the difficult problems (Random,
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Fig. 10 A graph showing the
classification accuracies of the
best models produced by
various approaches of quantum
feature map design on the
Cancer dataset, compared with a
classical RBF kernel for
reference

Fig. 11 A graph showing the
classification accuracies of the
best models produced by various
approaches of quantum feature
map design on the Iris dataset,
compared with a classical RBF
kernel for reference

Fig. 12 A graph showing the
classification accuracies of the
best models produced by
various approaches of quantum
feature map design on the Digits
dataset, compared with a
classical RBF kernel for
reference
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Fig. 13 A graph showing the
classification accuracies of the
best models produced by
various approaches of quantum
feature map design on the
Circles dataset, compared with a
classical RBF kernel for
reference

Fig. 14 A graph showing the
classification accuracies of the
best models produced by
various approaches of quantum
feature map design on the
Random dataset, compared with
a classical RBF kernel for
reference. In the case of this
dataset, the validation set is the
union of the training and testing
points. This gives an idea of the
extent to which the approach
was able to memorize all the
points

Fig. 15 A graph showing the
classification accuracies of the
best models produced by
various approaches of quantum
feature map design on the SUSY
dataset, compared with a
classical RBF kernel for
reference
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Fig. 16 A graph showing the classification accuracies of the best models produced by various approaches of quantum feature map design on the
SUSY reduced features dataset, compared with a classical RBF kernel for reference

Voice, SUSY, SUSY reduced features) show that the original
approach has a tendency to overfit to the testing data used to
evaluate the accuracymetric and that a separate validation set
must be reserved to estimate the generalization of its mod-
els. The approaches based on maximizing the approximation
of kernel-target alignment are also seen to overfit to training
data in these cases more than the other approaches do.

Figures 17, 18, 19, 20, 21, 22, and 23 show the margins
of the same best produced kernels on the training data from
each dataset. The approaches based on maximizing kernel-
target alignment and its approximation tend to have larger
average margin sizes, and final parameter training for RMSE
and kernel-target alignment also tends to increase the margin

Fig. 17 A graph showing the mean margin of the Cancer training set
points for the best classifiers produced by each approach, with error
bars showing standard deviation

sizes. The exception to the trend was the Iris dataset, which
was also the second smallest dataset with only 42 training set
points.

Figures 24, 25, 26, 27, 28, 29, 30, and 31 show the ROC
curves of the best produced models for each dataset. Across
the datasets, the curves are mostly similar when comparing
approaches.

Figures 32, 33, and 34 show the decision boundaries
resulting from the best feature map produced by each
approach, for the datasets with two dimensional feature vec-
tors. These can be inspected to see the improvementsmade by
parameter training as well as the complexity of the decision
rules produced by each approach.

Fig. 18 A graph showing the mean margin of the Iris training set points
for the best classifiers produced by each approach, with error bars show-
ing standard deviation
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Fig. 19 A graph showing the mean margin of the Digits training set
points for the best classifiers produced by each approach, with error
bars showing standard deviation

Fig. 20 A graph showing the mean margin of the Circles training set
points for the best classifiers produced by each approach, with error
bars showing standard deviation

Fig. 21 A graph showing the mean margin of the Voice training set
points for the best classifiers produced by each approach, with error
bars showing standard deviation

Fig. 22 A graph showing the mean margin of the SUSY training set
points for the best classifiers produced by each approach, with error
bars showing standard deviation

Fig. 23 A graph showing the mean margin of the SUSY reduced
features training set points for the best classifiers produced by each
approach, with error bars showing standard deviation
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Fig. 24 A graph showing the
ROC curves of the best models
produced by various approaches
of quantum feature map design
on the Cancer dataset

Fig. 25 A graph showing the
ROC curves of the best models
produced by various approaches
of quantum feature map design
on the Iris dataset

Fig. 26 A graph showing the
ROC curves of the best models
produced by various approaches
of quantum feature map design
on the Digits dataset
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Fig. 27 A graph showing the
ROC curves of the best models
produced by various approaches
of quantum feature map design
on the Circles dataset

Fig. 28 A graph showing the
ROC curves of the best models
produced by various approaches
of quantum feature map design
on the Random dataset

Fig. 29 A graph showing the
ROC curves of the best models
produced by various approaches
of quantum feature map design
on the Voice dataset
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Fig. 30 A graph showing the ROC curves of the best models produced by various approaches of quantum feature map design on the SUSY dataset

Fig. 31 A graph showing the ROC curves of the best models produced by various approaches of quantum feature map design on the SUSY reduced
features dataset
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Fig. 32 Decision boundaries for each approach on the Moons validation data
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Fig. 33 Decision boundaries for each approach on the Circles validation data
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Fig. 34 Decision boundaries for each approach on the Random valida-
tion data. In the case of the Random dataset, the validation data does
not consist of unseen randomly generated points as would be the case
in other datasets. Under the assumption that the models cannot general-

ize to new pseudorandom data, the validation dataset instead shows the
concatenation of the training and testing points to give an idea of the
different approaches’ capacity for memorizing a random assignment of
labels to random points
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