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Abstract

Patterns are crucial for efficiently scheduling microservice workflow applications to containers in cloud
computing scenarios. However, it is challenging to learn patterns of microservice workflows because
of their complex precedence constrained structures provided by users with more lightweighted, diver-
sified, and personalized services. In this paper, we propose a graph neural network is designed to
identify patterns within a set of microservice workflows by mining the common substructures of work-
flows. Based on the learned patterns, a pattern-based scheduling algorithm framework is developed
for microservice workflows with soft deadline constraints to minimize the average tardiness. A sort-
ing strategy is introduced based on urgency and pattern coverage rate. For simplification of the task
sorting process, the pattern-based task sorting algorithm (PB-TS) is devised. Furthermore, a resource
selection phase is incorporated to the pattern-based resource selection algorithm (PB-RS) to mini-
mize the candidate resource space. Experimental results demonstrate the proposed method is much
efficient as compared to three classical algorithms.

Keywords: Service computing, Scheduling optimization, Microservice workflow, Container cloud, Pattern
recognition

1 Introduction

More and more commercial enterprises, e.g., Ama-
zon and Netflix [1, 2], adopt the microservice
architecture for diverse and personalized com-
plex service requirements. These requirements
are usually microservice workflow applications [3]
which are depicted by DAGs (directed acyclic
graphs). Compared to general cloud workflow,
tasks of a microservice workflow are characterized
by larger-scale, smaller-granularity and more com-
plex dependent relationships [4]. Generally, they
are constrained by different soft deadlines. These
characteristics make the problem of scheduling

microservice workflows much more complicated
than that of general cloud workflows, especially
much more time-consuming. However, scheduling
microservice workflows in a short time is necessary
or even demanded in many application scenarios,
e.g., traffic monitoring, securities trading. In fact,
a lot of computations are repeated in a schedul-
ing process because there are a lot of similar or
same substructures in the microservice workflows
[5], which are called patterns in this paper. The
scheduling efficiency could be improved signifi-
cantly if the patterns are fulfilled by composed
services.
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In this paper, we consider the problem of
scheduling a set of microservice workflows to het-
erogeneous containers in cloud computing [6, 7],
submitted by different customers. The considered
problem is different from the classic VM (vir-
tual machine)-based workflow scheduling problem
[8]. Microservice workflows are constrained by soft
deadlines and contain many patterns. Tasks in
each workflow are precedence constrained. Con-
tainers have different processing speeds for dif-
ferent types of microservices. It is desirable to
meet the soft deadline requirements of all cus-
tomers, so the average tardiness is optimized in
the considered problem.

Because of the large-scale and smaller-
granularity tasks with much more complex depen-
dent relationships, it is rather difficult to schedule
microservice workflows efficiently based on the
following main challenges:

• Because of the complex structures of microser-
vice workflows, it is challenging to recognize the
patterns quickly and accurately.

• Different soft deadlines are required by cus-
tomers. It is crucial and difficult to get an
appropriate workflow sequence to minimize the
average tardiness.

• The large number of tasks in each microservice
workflow have a great influence on the optimiza-
tion objective. How to sort the tasks of each
microservice workflow is also challenging.

• It is much more difficult to allocate massive
heterogeneous containers to tasks with both
pattern and non-pattern features.

For the above challenges of the considered
problem, the PMWSC (Pattern-based Microser-
vice Workflow Scheduling to Containers) frame-
work is proposed which consists of four compo-
nents: pattern recognition, workflow sequencing,
task sorting, and resource selection. The main
contributions are as follows:

• Based on graph neural network, a pattern rec-
ognizer is designed to mine patterns in a set of
microservice workflows. Semi-supervised learn-
ing is adopted to achieve patterns fast and
accurately.

• A workflow sequencing strategy is proposed for
a set of microservice workflows in terms of
the priorities defined by soft deadlines, critical
paths and pattern coverage rates.

• A pattern-based task sorting algorithm (PB-
TS) is developed which reduces the computa-
tion time by reusing the ordered tasks of the
patterns, i.e., a lot of repeated calculations are
avoided.

• A pattern-based resource selection algorithm
(PB-RS) is proposed which utilizes historical
selecting schemes to reduce resource search
time.

The rest of the paper is organized as follows.
Related works are reviewed in Section 2. Section
3 modifies the system architecture and constructs
the corresponding mathematical model. The pro-
posed methods for the considered problem are
described in Section 4. Section 5 evaluates the
performance of the proposed methods followed by
conclusions in Section 6.

2 Related Work

In order to design efficient scheduling algorithms
for microservice workflow, both general workflow
and microservice workflow scheduling problems
are well studied. In the study of general work-
flow scheduling, we focus on the analysis of the
advantages and disadvantages of various workflow
scheduling algorithms. In the research of microser-
vice workflow scheduling, we focus on the imple-
mentation of the current microservice workflow
scheduling architecture.

2.1 General Workflow Scheduling

Workflow scheduling is one of the most important
problems in cloud computing. It is usually NP-
complete, i.e., it is almost impossible to find the
optimal solution in polynomial time. Many algo-
rithms have been proposed which can be divided
into three categories: heuristic, meta-heuristic and
learning-based algorithm.

Heuristics include list scheduling (such as
HEFT [9] and PEFT [10]), cluster-based schedul-
ing [11] and task replication scheduling [12]. List
scheduling usually divides the scheduling process
into two stages: task sequencing and resource
selection. Different heuristic rules could be embed-
ded in any of the two stages. For example, many
sub-deadline division strategies were proposed [13]
to meet the deadline constraint, such as the
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deadline-Markov decision process [14], the dead-
line early tree [15], the critical path-based itera-
tion [16] and partial critical paths [17]. Abrishami
et al. [18] defined Partial Critical Paths (PCPs)
and proposed the IC-PCP algorithm for dead-
line constrained workflow scheduling. Wu et al.
[3] extended the upward rank used in HEFT and
defined a probabilistic upward rank to meet the
deadline-constraint. The cluster-based scheduling
algorithm proposed in [11] allocates different task
clusters to specific resources through the proposed
allocation policies. Different from cluster-based
scheduling, we call the similar substructures in a
workflow as a pattern rather than a cluster in this
paper. A pattern is a subgraph with a node set
and an edge set, which is different from a cluster of
tasks. Task replication scheduling [12] copies tasks
to reduce communication costs and minimize the
completion time of all tasks.

Typical meta-heuristic algorithms are PSO
(Particle Swarm Optimization) [19], ACO (Ant
Colony Optimization) [20], GA (genetic algo-
rithm) [21], and SA (Simulated Annealing) [22].
Though a meta-heuristic method is usually more
effective for finding better scheduling solutions
than a heuristic, it is more time-consuming.
Therefore, meta-heuristics are not suitable for
cloud application scheduling problems with rapid
response requirements.

The efficiency of scheduling algorithms for
complex workflows is rather important in practice.
Knowledge (e.g., expert experience) obtained by
machine learning is utilized to improve schedul-
ing algorithm efficiency. Melnik et al. [23] pro-
posed a scheduling algorithm based on a neural
network to minimize the completion time of work-
flows. Similarly, Kintsakis et al. [24] used machine
learning to predict the running time of work-
flow tasks and the failure probability of specific
tasks assigned to computing resources. In order to
optimize the response time, some studies applied
reinforcement learning to workflow scheduling.
Cui et al. [25] proposed a reinforcement learning-
based method for workflow scheduling with mul-
tiple priorities submitted to clouds. Wu et al.
[26] designed an improved Q-learning algorithm
with a weighted fitness value function to optimize
makespan and balance loads. However, the effec-
tiveness of learning-based methods depends on
the dataset with rich label information, which is

not suitable for complex applications with uncer-
tain distribution. Many learning-based scheduling
algorithms directly use neural networks as end-
to-end schedulers to obtain scheduling schemes.
These methods do not extract pattern struc-
tures of intermediate processes and the obtained
results are usually non-interpretable. Recently,
GNN (graph neural network) has been commonly
used for graph pattern recognition [27], which
can support a variety of graph analyses, e.g.,
link prediction, node classification, and commu-
nity structure recognition [28–32]. Using flexible
representation learning, these GNN methods can
find more accurate patterns [33]. GNN has been
used to solve the problem of graph matching and
graph similarity learning [34, 35]. However, only
a few studies applied GNN to the cloud workflow
scheduling problem.

2.2 Microservice Workflow

Scheduling

Besides the traditional workflow scheduling, more
and more attention has been paid on microservice
workflow scheduling with provisioned container
resources [36–38]. These related studies mainly
focus on the system architecture of microservice
workflows in practice. A distributed service work-
flow engine based on microservices was developed
by Kurhinen et al. [4] based on the service-oriented
architecture framework. Some open issues in the
microservices scheduling and resources manage-
ment were summarized by Fazio et al. [39], e.g.,
how to deploy microservices to containers using
some tools (such as Docker Swarm, Kubernetes)
to instantiate and how to manage containers in
clouds. Zheng et al. [40] introduced a container
sharing mechanism to workflow tasks to eliminate
notable overheads caused by large workloads. The
Skyport proposed in [41, 42] is a container-based
execution management system for multi-cloud sci-
entific workflows. Using containers to existing
scientific workflow platforms, the software could
be well deployed and resource utilization could be
improved. Bhamare et al. [43] addressed the prob-
lem of scheduling microservices across multiple
clouds with different user-level SLAs, e.g.,latency
and cost. By evaluating the performance of the
microservices architecture using containers, Ama-
ral et al. [44] demonstrated that containers are
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suitable for microservices because of the character-
istics of lightweight, fast start-up times, and low
overheads.

Resource allocation and resource provisioning
are key components in cloud workflow schedul-
ing. Most microservices are performed in con-
tainer environments. Containers are incorporated
into many existing cloud computing platforms
to automatically deploy on the provided IaaS,
e.g., Amazon EC2 Container Service, Google Con-
tainer Engine, Microsoft Azure Container Service
and IBM Bluemix. At present, most cloud service
providers provide container as a service (CaaS).
Based on CaaS, Tihfon et al. [45] proposed a
multi-task cloud infrastructure which is flexible
and efficient for optimizing application perfor-
mance using the proposed scheduling and load
balancing algorithms. Peinl et al. [46] surveyed
the state of the art on the VM and container
management tools in cloud computing ecosystems.

To the best of our knowledge, containers have
been widely used to microservice applications. It
is much more time-consuming to schedule a large
number of microservice tasks to containers, but
there are many similar substructures in microser-
vice applications, and it is possible to reduce the
computation time of the scheduling algorithm.
However, little attention has been paid on min-
ing similar substructures to speed up scheduling
algorithms. In this paper, we focus on graph pat-
tern recognition to find similar substructures of
microservice workflows based on which an efficient
scheduling algorithm is developed.

3 System Architecture and
Problem Formulation

3.1 System Architecture

Based on the structure given in [47], a modified
architecture is developed as shown in Figure 1
which contains three components: the user inter-
face, Microservice Workflow Management System
(MWMS), and the container cloud with Container
as a Service (CaaS). Similarly to the architecture
in [48], the Controller of MWMS further contains
the Cloud Manager, the Container Allocator, and
the Monitor. Container resources are dynamically
managed by Controller. All container resources
are assumed to be in the same resource space

pool without considering in which hosts or virtual
machines they are located.

Fig. 1 Modified architecture for microservices workflows.

The workflows submitted by different users are
scheduled by Scheduler after the pattern recogni-
tion. Once the patterned tasks are sorted and the
required resources are selected, the obtained topo-
logical sequence and the task-resource mappings
are recorded in the pattern library which could be
reused in the following scheduling process.

Assume that MWMS accepts n microservice
applications W = {W1,W2, . . . ,Wn}. Applica-
tion Wi with µi nodes is described by a DAG
Wi = (Vi, Ei). Vi = {vi,1, . . . , vi,µi

} repre-
sents the microservice task set of Wi. Ei =
{(vi,j′ , vi,j)|vi,j′ , vi,j ∈ Vi} is the edge set between
microservice tasks. (vi,j′ , vi,j) means that vi,j can-
not start until task vi,j′ completes. φP

i,j and φs
i,j

are the set of immediate predecessors and the set
of immediate successors of vi,j , respectively. The
execution time of task vi,j is T e

i,j .
There are a large number of containers in

CaaS. The container set is denoted as C =
{c1, c2, . . . , cq} in which q ≫

∑n

i=1 ui. Different
from virtual machines, containers can be config-
ured more flexibly which leads to a much larger
number and more heterogeneous states than VMs.
These characteristics result in that it is much
more difficult to find the most appropriate con-
tainers for the concerned microservice tasks than
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to find appropriate VMs. Therefore, the problem
under study is much more complex than that of
scheduling workflow applications to VMs. Since
the problem of scheduling workflow applications to
VMs is NP-hard, it is natural that the considered
problem is NP-hard.

3.2 Scheduling Problem Description

For the considered scheduling problem, we make
the following assumptions:

• The scheduler accepts a large number of work-
flows with similar substructures.

• Microservice tasks of the workflows are non-
interruptible and non-divisible. Each microser-
vice task is executed on only one container at a
time.

• Same to most workflow scheduling algorithms
[18, 49–52], each cloud resource performs only
one task at a time.

• All containers are in the same resource pool and
their startup times are ignored.

Notations to be used are listed in Table 1.

Table 1 Notations to be used.

n Number of microservice workflows
W Set of microservice workflows, W = {W1,W2, . . . ,Wn}
Wi The ith microservice workflow in W

µi Number of tasks in microservice workflow Wi

µ
p
i Number of tasks with pattern feature

in microservice workflow Wi

Vi Set of tasks in Wi, Vi = {vi,1, . . . , vi,µi
}

vi,j The jth task in microservice workflow Wi

Ei Set of precedence relationship from task vi,j to vi,j′ ,
Ei = {(vi,j′ , vi,j′ )|vi,j′ ∈ V, vi,j ∈ Vi}

ϕP
i,j Immediate predecessor set of vi,j

ϕs
i,j Immediate successor set of vi,j

Ai Arrival time of Wi

Di Soft deadline of Wi

MS Set of microservice function components
msi,j Microservice function of the jth task vi,j

msi,j ∈ MS,MS = {ms1,ms2, . . . ,msp}
q Number of container resources
C Set of containers C = {c1, . . . , cq}
ck The kth container in C

sk,msj Speed of the kth container for microservice msj
P Set of workflow pattern in the pattern library,

P = {P1, P2, . . . , Pn}
xv Input vector of task v in GNN
cv,u Input vector of edge in GNN,

u is the immediate successor of v
ev Output feature of task v in GNN

A scheduling scheme is described by π =
{mi,j,k|mi,j,k = (vi,j , ck, ST (vi,j , ck))} in which
mi,j,k represents that task vi,j of workflow Wi

is scheduled to container ck with the start time
ST (vi,j , ck). The corresponding execution time
and completion time are calculated by:

ET (vi,j , ck) =
wj

sk,msj

(1)

FT (vi,j , ck) = ST (vi,j , ck) + ET (vi,j , ck) (2)

The start and finish times LST (ck) and LFT (ck)
of all tasks in ck are determined by:

LST (ck) = min
vi,j∈Sche(ck)

{ST (vi,j , ck)} (3)

LFT (ck) = max
vi,j∈Sche(ck)

{FT (vi,j , ck)} (4)

where Sche(ck) is the task set scheduled to ck.
Assume tasks vi,j and vi,p are scheduled to

containers cx and cy, respectively. The bandwidth
and latency of the two containers are bx,y and
dx,y. Avail(ck) is the earliest available time of ck
determined by

Avail(ck) = max
vi′,j′∈Sche(ck)

{AFT (vi′,j′)} (5)

where vi′,j′ is the j′th task of Wi′ existing
in ck before accepting vi,j . The start time
ST (vi,j , ck) of vi,j satisfies ST (vi,j , ck) ⩾

max{Avail(ck),maxp∈φP
j
{AFT (vi,p) +

TT (vi,p, vi,j)}} in which TT (vi,p, vi,j) is the data
transmission time from vi,p to vi,j determined by

TT (vi,p, vi,j) =
datap,j

bx,y
+ dx,y. The response time

RTi and tardiness TDi of workflow Wi can be
calculated as follows:

RTi = max
vi,j∈Wi

{AFT (vi,j)} −Ai (6)

TDi = max{RTi −Di, 0} (7)

where Di is the soft deadline of Wi. The objec-
tive of the problem under study is to minimize the
average tardiness TD :

min TD =

∑
i∈W TDi

n
(8)
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4 Proposed Methods

For the considered problem, the PMWSC
(Pattern-based Microservice Workflow Scheduling
to Containers) framework is proposed as shown
in Figure 2. A set of workflows submitted by dif-
ferent users is received by the scheduling system
and their similar structures are recognized. Tasks
in the pattern features are labeled. A workflow
scheduling sequence is determined according to
the soft deadline and the rate of covered pat-
terns. Tasks of each workflow are scheduled in
terms of the priorities determined by the topolog-
ical sequence. Appropriate resources are selected
for all of the tasks meeting the constraints.

Fig. 2 The proposed PMWSC framework.

The scheduling algorithm process (as shown
in Algorithm 1) consists of four phases: pattern
recognizing, workflow sequencing, task sorting,
and resource selection. The GNN (graph neural
network)-based workflow pattern recognizer ana-
lyzes the structure of a workflow and outputs the
pattern feature of its tasks (line 1). Based on the
urgency and pattern coverage rate, the scheduling
order of the workflow is obtained (line 2). Pattern
features are used to speed up the task sorting stage
and the resource selection stage of the schedul-
ing process (line 4,5). Details of each algorithmic
component are described in the following.

Algorithm 1: Pattern-based Microser-
vice Workflow Scheduling to Containers
(PMWSC)

1 Input the set of workflow application W
to the pattern recognizer and get the
pattern feature of each task vi,j ;

2 Generate workflow sequence

W ′ =
(
W[1], . . . ,W[n]

)
by a workflow

sequencing strategy;
3 for each W[i] in W ′ do

4 Call PB-TS;
5 Call PB-RS;

4.1 Pattern Recognizing

Since patterns are crucial for the performance of
scheduling algorithms, it is desirable to recognize
patterns accurately and fast. Patterns could be
recognized either on-line or off-line. It is important
to recognize patterns in advance for workflows
with similar sub-structures. Because of the advan-
tage of GNN encoding node information (e.g.,
the running time of tasks denoted by nodes, the
dependency structure between nodes, the com-
munication time between tasks, and the state of
processing units) into a set of embedding vectors
using node embedding learning, a GNN-based off-
line pattern recognizer is designed for large-scale
workflows in this paper.

As shown in Fig. 3, DAGs of workflows are
input to the GNN model through which the infor-
mation of each node (including its running time,
its adjacent nodes, communication times of the
connected edges) is learned. By learning historical
data in this way, a task pattern feature library is
obtained. The learned node information also can
be searched from the pattern feature library. If
there is a record in the library, the task is labeled
by a pattern task. The pattern library includes a
set of workflow patterns P = {P1, P2, . . . , Pn}. Let
ev be the pattern feature of task v. evi = evj

if
and only if tasks vi and vj have the same pattern
feature, i.e., tasks vi and vj share the same node
feature of Pk.

There are many studies on node pattern recog-
nition using GNN (e.g., [27, 31, 34]) of which
the process is as follows: given the feature vec-
tor xv of node v in a workflow, (G, xv) → ev
is the embedding of v in which ev includes its
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Fig. 3 Node embedding learning for task pattern feature.

neighborhood information, i.e., the aggregated
information of its neighbor nodes denoted by av =∑

u∈k(v) f(eu, cv,u) in which k(v) is the neigh-
borhood node set of v. ev is iteratively updated
by passing through the GNN network. In each
information passing step, ev is updated by: ev =∑

u∈k(v) f(eu, cv,u)+xv = av+xv. In other words,
the pattern feature ev is updated linearly to av.
No critical path information can be concerned by
the existing GNN for microservice workflows.

We develop a function g(av) nonlinearly to av
for updating ev as follows:

ev = g
( ∑

µ∈k(v)

f(eu, cv,u)
)
+ xv = g(av) + xv

(9)

where both f(·) and g(·) are nonlinear transfor-
mations on input vectors. The same nonlinear
transformations f(·) and g(·) are repeatedly used
to all nodes and all information passing steps. By
incorporating the transformation combination of
the two nonlinear functions f(·) and g(·) [xx], a
wide variety of aggregation functions can be used
by the modified GNN model which can obtain
critical path information effectively and efficiently.
For example, if f ∼ log(·/n), g ∼ en×·, and
n → ∞, the aggregation g(av) obtains the max-
imum embedding information of its neighbour-
hood nodes. The two nonlinear transformations
can fasten the convergent speed which is veri-
fied by experiments in the performance evaluation
section. For simplicity, only single-in and single-
out patterns are kept in the pattern library in
this paper to reduce the computation time of the
recognition process.

4.2 Workflow Sequencing

Generally, there are two ways for scheduling mul-
tiple workflows: combining all workflows into a
single workflow by adding two dummy virtual
tasks, scheduling workflows one by one according
to the priority policy. Due to the large number of
tasks, complex relationships in microservice work-
flows, the merged workflow is always too large for
the first method. Therefore, the proposed frame-
work adopts the second method which schedules
microservice workflows according to priorities of
the involved workflows.

Two strategies are proposed for workflow
sequencing:

• SWS1: The priority of workflow Wi is deter-
mined by the urgent degree αi which is defined
as

αi =
Di −Ai − CPi

CPi

(10)

in which CPi is the length of the critical path of
Wi. A smaller αi means a more urgent Wi. All
microservice workflows are sorted in the non-
decreasing order of their urgent degrees.

• SWS2: Since patterned tasks are usually more
important than non-patterned ones, it is desir-
able to schedule workflows with more tasks
recognized as patterns first. In other words,
more patterned tasks imply more information
to be reused in the following scheduling process.

The pattern coverage rate
µ
pattern

i

µi
is crucial to

determine the scheduling priority of a workflow
where µpattern

i is the number of nodes with the
pattern feature in workflow Wi. However, the
workflow with a more urgent degree should be
scheduled first. Therefore, the priority can be
determined by

βi = max
{
αi,

µpattern
i

µi

}
(11)

which considers both the urgent degree and the
pattern coverage rate.

An example with four microservice applica-
tions is shown in Figure 4. The colored nodes
are pattern tasks. The pattern coverage rates of
the four applications are 37.5%, 50.0%, 50.0%,
44.4%, respectively. SWS2 means that workflows
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with higher pattern coverage have higher priori-
ties when their soft deadlines exceed the execution
time of the critical path.

Fig. 4 An example of four workflows with two patterns.

4.3 Task Sorting

Since all tasks of a workflow are constrained by
their sub-deadlines, it is crucial to sort these tasks
in terms of their sub-deadlines for the scheduling
performance. In other words, how to divide the
workflow deadline into task sub-deadlines is very
important. In this paper, three deadline division
strategies are introduced, among which two are
traditional and a new one is developed by decom-
posing the critical path. Patterned nodes are kept
during the critical path decomposing process for
the first time. The following patterned nodes are
inserted to the global sequence directly to reduce
the sorting complexity.

The earliest start time, the latest start time,
the actual start time, the earliest finish time,
the latest finish time, and the actual finish time
of vi,j are denoted as esti,j , lsti,j , asti,j , efti,j ,
lfti,j and afti,j , respectively. φp

i,j and φs
i,j are

the immediate predecessor and immediate succes-
sor sets of vi,j , i.e., φ

p
i,j = {vi,j′ |(vi,j′ , vi,j) ∈ Ei},

φs
i,j = {vi,j′ |(vi,j , vi,j′) ∈ Ei}. T e

i,j is the aver-
age execution time of vi,j on all of its candidate
resources.

The four static temporal parameters esti,j ,
efti,j , lsti,j and lfti,j can be recursively deter-
mined by

esti,j =




Ai, if j = 1

max
vi,j′∈φ

p

i,j

{esti,j′ + T e
i,j′}, if j ̸= 1

(12)

efti,j = esti,j + T e
i,j (13)

lfti,j =




Di, if j = µi

min
vi,j′∈φs

i,j

{lfti,j′ − T e
i,j′}, if j ̸= µi

(14)

lsti,j = efti,j − T e
i,j . (15)

asti,j is determined only after vi,j is sched-
uled followed by afti,j = asti,j+T e

i,j . The interval
[esti,j , lsti,j ] defines the slack time of task vi,j
which implies that vi,j cannot start earlier than
esti,j and must start before lsti,j in order to meet
the deadline. The time complexity for calculating
the four static temporal parameters is O(|Ei|).

Generally, deadline division methods are based
on critical paths or partial critical paths. The
backward parameter ℓB(i, j) is the total length
from vi,j to the sink node vi,µi

while the backward
parameter ℓF (i, j) is the total length from vi,j to
the source node vi,1 ofWi. They can be recursively
calculated by:

ℓB(i, j) =




T e
i,µi

, if j = µi

max
∀vi,j′∈φs

i,j

{
ℓB(i, j′)

}
+ T e

i,j , if j ̸= µi

(16)

ℓF (i, j) =




T e
i,1, if j = 1

max
∀vi,j′∈φ

p

i,j

{
ℓF (i, j′)

}
+ T e

i,j . if j ̸= µi

(17)

Obviously, the length of the critical path is
ℓF (i, µi) = ℓB(i, 1). The CP-P proposed in [13]
utilizes ℓB(i, 1) for deadline division. For the same
task vi,j , the backward and forward parameters
are usually different, i.e., ℓB(i, j) ̸= ℓB(i, 1) −
ℓF (i, j) + T e

i,j is always true for tasks on non-
critical paths. Therefore, it is more reasonable to
determine the deadline of vi,j by both ℓB(i, j) and
ℓF (i, j) based on which the average length of vi,j

is defined by ℓ(i, j) =
ℓB(i,1)−ℓB(i,j)+T e

i,j+ℓF (i,j)

2 .
Three deadline division methods are adopted

for the considered problem. Besides the traditional
PDD (Proportional Deadline Division) and EDD
(Equalize Deadline Division), the proposed RSD
(Recursive Subgraph Decomposition) decomposes
all the tasks of Wi into patterned tasks and non-
patterned ones.
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• PDD (Proportional Deadline Division): The
deadline d(i, j) of each task vi,j is estimated by

di,j = Ai + (Di −Ai)×
ℓ(i, j)

ℓB(i, 1)
(18)

• EDD (Equalize Deadline Division): The dead-
line of task vi,j is estimated by

d(i, j) = Ai+ℓF (i, j)+(Di−Ai−ℓB(i, 1))×
n(i, j)

µi

(19)
where n(i, j) is the index of vi,j in the task
sequence sorted by the non-decreasing order of
ℓ(i, j).

• RSD (Recursive Subgraph Decomposition): Dif-
ferent from the traditional deadline division
principles, the proposed RSD decomposes the
DAG of Wi into a critical sub-graph WCP

i with
only critical tasks and many non-critical sub-

graphs W̃i = {W̃
(1)
i , W̃

(2)
i , . . .} with non-critical

tasks. Wi is recursively decomposed into a crit-
ical sub-graph and non-critical sub-graphs. The
deadline of d(i, j) of each task vi,j in the criti-
cal sub-graph is determined by Eqn. (18). The
available time and deadline of each non-critical
sub-graph depends on the latest deadlines of
immediate predecessors of its source and sink
tasks, respectively.

The task sorting algorithm is shown in Algo-
rithm 2. In the task sorting stage, if the pattern
features of the workflow are not considered, the
rank of the same pattern needs to be calculated
several times. However, considering the pattern
information, the order of tasks from the same
pattern is order-preserved, i.e., no task sorting is
needed from the same pattern for recalculating.

4.4 Resource Selection

In the resource selection stage, the scheduler
selects an appropriate container for each task
of the task sequence. For patterned tasks, the
resource selection process records the container
information of historical selection in the pattern
library. When the same pattern task is scheduled
again, the same resource allocation is preferred.
If no container meets the deadline in the pre-
ferred allocation, a resource is globally searched.
The historical information of non-patterned tasks
is not recorded. In an extreme case, no resource

Algorithm 2: PB-TS algorithm

1 for each task vi,j in Wi do

2 Calculate the sub-deadline sdj of vi,j
by Deadline division strategy
PDD,EDD or RSD;

3 Generate Q by sorting tasks in descending
order by their priorities;

4 for each vi,j ∈ Q do

5 if vi,j is a patterned task then

6 Get the sequence Q′ of vi,j from
pattern library;

7 Insert Q′ to Q;

can meet the deadline, a container is selected by
the EFT. The resource selection process is shown
in Algorithm 3.

Moreover, most scheduling algorithms calcu-
late the rank based on the average execution time
of tasks on global resources, which always leads to
inaccurate estimation on heterogeneous resources
as compared to the actual execution time of
the final scheduling, especially when the resource
space is huge. For the large number of containers
in the cloud platform, most low-performance con-
tainers could never be selected whereas they are
involved in the estimation. Therefore, it is neces-
sary to exclude such the set of resources which can
not only reduce the search space in the resource
selection stage but also obtain a more accurate
average execution performance.

5 Performance Evaluation

5.1 Simulation Setup

Many studies have analyzed the statistical char-
acteristics of microservice applications in data
centers [53–55]. Different from the existing bench-
mark, the size of microservice applications follows
a heavy-tailed distribution. According to the DAG
graph of the batch application in the Alibaba
cluster [56], more than 10% of application call
graphs contain more than 40 unique microservices.
The largest call graph can even consist of hun-
dreds to thousands of microservices. The average
depth of call graph is 4.27, and the derived value
of stand is 3.25. The scientific workflow datasets
widely used in the previous literature are not
suitable for microservice workflow. We generate
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Algorithm 3: PB-RS algorithm

1 for each task vi,j ∈ Q do

2 if vi,j is a patterned task then

3 Get the resource space S from the
pattern library in terms of the
pattern feature of vi,j ;

4 for each container ck ∈ S do

5 Calculate FT (vi,j , ck) by
Eqn. (2);

6 if FT (vi,j , ck) ≤ sdj then

7 π = π ∪ {mi,j,k} ;

8 if each container ck ∈ C then

9 Calculate FT (vi,j , ck) ;
10 if FT (vi,j , ck) ≤ sdj ;
11 then

12 π = π ∪ {mi,j,k};
13 Add ck to the resource

space in pattern library
according to the
pattern feature of vi,j .

14 if vi,j is a non-patterned task then

15 for each container ck ∈ C do

16 Calculate FT (vi,j , ck) ;
17 if FT (vi,j , ck) ≤ sdj then

18 π = π ∪ {mi,j,k}

19 ck = argminFT (vi,j , ck);
20 π = π ∪ {mi,j,k}.

simulation data according to the characteristics
of microservice applications, which are randomly
generated through the method of literature [56]
and ensure that there are sufficient common sub-
structures. For each workflow, the number of tasks
is randomly chosen as µi ∈ {30, 50, 100, 150}.
The multiplying factor is randomly chosen as θ ∈
{1.3, 1.5, 1.7} which is meaning the deadline of the
workflow is θ multiplying the length of the critical
path of this workflow application. When calibrat-
ing the parameters in the algorithm, a random
deadline factor is chosen.

The purpose of multiple experiments is to eval-
uate the scheduling effectiveness and efficiency
under different workflow scale, pattern coverage
rate and resource scale. Specifically, the work-
flow size in one scheduling experiment is set

from n ∈ {20, 50, 100, 200}. The pattern cover-
age rate in each workflow is randomly generated
from {0.1, 0.3, 0.5, 0.7, 0.9}. The number of het-
erogeneous containers in the resource space is
{200, 500, 1000, 2000}.

Di = θ × CriticalPath(w) (20)

The experimental results are analyzed by the
multifactor analysis of variance (ANOVA) statis-
tical technique. All the resulting p-values are less
than 0.05, indicating that all the studied factors
have a significant effect on the RPD response vari-
able at the 95.0% confidence level. Relative Per-
centage Deviation (RPD) is adopted to evaluate
the performance of different algorithms (param-
eter combinations). The calculation of RPD is
defined in equation (21). Let Ci(A) denote the
total index from algorithm A on instance i, C∗

i is
the smallest total index from all comparison algo-
rithms on instance i. The multifaceted analysis of
variance (ANOVA) is used to analyze the results.

RPD(A) =
C∗

i − Ci(A)

C∗
i

× 100% (21)

5.2 Parameter Calibration

There are three deadline division strategies, and
two candidates for workflow sequencing strate-
gies in the PMWSC framework. In order to verify
the performance differences of various strategies,
the above methods are used to test on random
samples.

1) Deadline Division
The Turkey HSD interval with 95% confidence

intervals of deadline division rules is shown in
Figure 5. It shows that the RPD of EDD is obvi-
ously lower than PDD and RSD, which means the
fair distribution of slack time to each task in the
workflow is more effective in deadline division for
the problem.

2) workflow sequencing
The Turkey HSD interval with 95% confidence

intervals of workflow sequencing rules is shown
in Figure 6. It shows that the RPD of SWS2 is
obviously lower than SWS1, which means consid-
ering both of urgent degree and pattern coverage
rate of microservice workflows is more effective in
workflow sequencing.

3) Performance of Pattern Recognizer
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Fig. 5 RPD means plot with 95% Turkey HSD intervals
of deadline division rules.

Fig. 6 RPD means plot with 95% Turkey HSD intervals
of workflow sequencing rules.

We modify the original GNN model in section
3. The results of loss value and accuracy in the test
set and the verification set are shown in Figure 7.
It can be seen from the figure that the GNN
model achieves an accuracy of 75% in the vali-
dation set, but the original model requires 1000
iterations to converge, while the modified model
achieves it in around 300 iterations. This may be
because the modified model takes into account the
characteristics of the dag graph, excludes unnec-
essary domain nodes in the aggregation func-
tion, and identifies single-in or single-out nodes,
thereby significantly reducing the dimensionality
of node features. Experiments have shown that the
improvement makes the GNN model more stable
and efficient when dealing with complex dag graph
data.

5.3 Algorithm Comparisons

To the best of our knowledge, there is no work-
flow scheduling problem proposed in previous
literature with the same characteristics as the con-
sidered problem. In order to test the performance

(a) Original GNN model

(b) Modified GNN model

Fig. 7 Loss and accuracy for train and validation

of the proposed algorithm, the algorithm com-
parison adopts the deadline division strategy to
modify the HEFT and PEFT as HEFT-D and
PEFT-D. The reason for choosing these two algo-
rithms for comparison is that HEFT is a classic
robust scheduling algorithm in various scenarios,
and PEFT is currently the best-improved algo-
rithm for HEFT. Another classic algorithm CPOP
determines the priority of a task by the sum of the
upward and downward rank values, and arranges
critical tasks to the critical path processor to min-
imize the total execution time of critical tasks.
Moreover, PMWSC includes task sorting phase
and resource selection phase, which are the same
as these three comparison algorithms. In order
to test the performance of our framework, which
includes the effectiveness and efficiency of schedul-
ing process. The average tardiness is the indicator
of the effectiveness, and the indicator of the effi-
ciency is the runtime of the scheduling scheme
generated.

5.3.1 Algorithm comparisons for

average tardiness

Under the 95% Tukey HSD confidence interval,
the comparison result of average tardiness under
different workflow size are shown in Figure 8.
There is no significant difference between the three
algorithms, the RPD value is lower than 0.8%.
Our framework is effective compared to the three

11



algorithms, although its advantages are not obvi-
ous. This result proves that our framework will
not miss the optimal solution while simplifying the
scheduling process.

Fig. 8 Comparison of algorithms for average tardiness
under different workflow size.

Figure 9 is the comparison result of average
tardiness under different pattern coverage rate.
It can be seen from the figure that the tardi-
ness of the proposed PMWSC, HEFT-D, PEFT-D
,and CPOP is consistent under different mode
coverage. The proposed algorithm has no obvious
advantage, which is same effective with two classic
algorithms under different pattern coverage rate.

Fig. 9 Comparison of algorithms for average tardiness
under different pattern coverage rate.

In order to verify the conclusion that the four
algorithms all can find a good solution when
the resources are sufficient, the comparison result
under different container size is in Figure 10. The
result shows that the PMWSC algorithm is not
always optimal. When the resources are insuffi-
cient, the average tardiness is longer than HEFT-
D and PEFT-D. However, when resources are
sufficient, the tardiness of PMWSC is equivalent

to the three algorithms. Therefore, our framework
is more suitable for the environment with sufficient
resources.

Fig. 10 Comparison of algorithms for average tardiness
under different container size.

5.3.2 Algorithm comparisons for

runtime

Under the 95% Tukey HSD confidence interval,
the comparison result of runtime under different
workflow size is shown in Figure 11. Among the
these algorithms, PMWSC is the best one. When
the workflow number increases, the runtime of
these algorithms all increases, but the proposed
PMWSC algorithm is always better than others.
This is because the proposed algorithm uses sim-
ilar pattern information to reduce the size of the
original problem.

Fig. 11 Comparison of algorithms for runtime under dif-
ferent workflow size.

The average experimental results under dif-
ferent pattern coverage rate is shown in the
Figure 12. When the mode coverage rate is low,
the proposed algorithm is not as efficient as
HEFT-D, PEFT-D and CPOP. When the mode
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coverage is about 30%, the execution time of the
three classical algorithms is very close, because
they do not use the pattern information to make
any optimization, and the pattern coverage rate
has no obvious impact on the scheduling efficiency.
With the increase of mode coverage, the execution
time of PMWSC decreases, and the performance
of the scheduler is improved.

Fig. 12 Comparison of algorithms for runtime under dif-
ferent pattern coverage rate.

Figure 13 is the comparison result of run-
time under different container size. Among all the
comparison algorithms, PMWSC is the best one.
When the container space takes different values,
The efficiency of the proposed PMWSC algorithm
is better than HEFT-D, PEFT-D and CPOP. It
is shown that the proposed algorithm optimizes
the container space, thus improving the search effi-
ciency of resources. From the trend in the figure,
our framework is suitable for workflow scheduling
in massive resource space.

Fig. 13 Comparison of algorithms for runtime under dif-
ferent container size.

6 Conclusion and Future
Work

This paper proposes a PMWSC (Pattern-based
Microservice Workflow Scheduling to Contain-
ers) framework to improve the performance of
scheduling microservice workflows with different
soft deadlines to heterogeneous containers in cloud
computing. Traditional scheduling systems rarely
consider the relationship of workflows to improve
scheduling performance. Our framework directly
extracts the pattern features based on GNN
and combines them with the heuristic schedul-
ing process. The experimental results show that
the proposed pattern-based workflow scheduling
framework leads to better performance, compared
to the classical algorithms.

At present, this paper focuses on the optimiza-
tion of cloud workflow execution efficiency and
tardiness, while ignoring the lease cost of cloud
resources, and also not considering the automatic
scaling of containers. Further research interests
include lease cost optimization with personalized
budget-constrained, and adopting container auto-
scaling technology to improve the flexibility of
pattern-based microservice workflow scheduling
system.

Acknowledgment

This work is supported by the National Key
Research and Development Program of China
(No. 2022YFB3305500), the National Natural
Science Foundation of China (Nos. 62273089,
62102080), Natural Science Foundation of Jiangsu
Province (No. BK20210204), and Collaborative
Innovation Center of Wireless Communications
Technology.

References

[1] Fowler, M., Lewis, J.: Microservices a defi-
nition of this new architectural term. URL:
http://martinfowler. com/articles/microser-
vices. html.[Online] (2014)

[2] Roig, E.B.: Building microservices (2017)

[3] Wu, Q., Ishikawa, F., Zhu, Q., Xia, Y.,
Wen, J.: Deadline-constrained cost optimiza-
tion approaches for workflow scheduling in

13



clouds. IEEE Transactions on Parallel and
Distributed Systems PP(12), 1–1 (2017)

[4] Kurhinen, H., et al.: Developing microservice-
based distributed workflow engine. (2014)

[5] Balalaie, A., Heydarnoori, A., Jamshidi, P.:
Microservices architecture enables devops:
Migration to a cloud-native architecture.
IEEE Software 33(3), 42–52 (2016)

[6] Wang, S., Ding, Z., Jiang, C.: Elastic schedul-
ing for microservice applications in clouds.
IEEE Transactions on Parallel and Dis-
tributed Systems 32(1), 98–115 (2021)

[7] Adam, O., Lee, Y.C., Zomaya, A.Y.: Stochas-
tic resource provisioning for containerized
multi-tier web services in clouds. IEEE Trans-
actions on Parallel and Distributed Systems
28(7), 2060–2073 (2017)

[8] Venumadhav, A.: A survey of various work-
flow scheduling algorithms in cloud environ-
ment. Ijsrp Org 22(8), 1483–1496 (2013)

[9] Topcuoglu, H., Hariri, S., Wu, M.-y.:
Performance-effective and low-complexity
task scheduling for heterogeneous computing.
IEEE transactions on parallel and distributed
systems 13(3), 260–274 (2002)

[10] Arabnejad, H., Barbosa, J.G.: List schedul-
ing algorithm for heterogeneous systems by
an optimistic cost table. IEEE Transactions
on Parallel and Distributed Systems 25(3),
682–694 (2014)

[11] Kanemitsu, H., Hanada, M., Nakazato, H.:
Clustering-based task scheduling in a large
number of heterogeneous processors. IEEE
Press (2016)

[12] Nirmala, S.J., Setlur, A.R., Singh, H.S.,
Khoriya, S.: An Efficient Fault Tolerant
Workflow Scheduling Approach using Repli-
cation Heuristics and Checkpointing in the
Cloud (2018)
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