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Abstract Information extraction provides the basic technical support for
knowledge graph construction and Web applications. Named entity recogni-
tion(NER) is one of the fundamental tasks of information extraction. Recog-
nizing unseen entities from numerous contents with the support of only a few
labeled samples, also termed as few-shot learning, is a crucial issue to be stud-
ied. Few-shot NER aims at identifying emerging named entities from the con-
text with the support of a few labeled samples. Existing methods mainly use
the same strategy to construct a single prototype for each entity or non-entity
class, which has limited expressiveness power and even biased representation.
In this work, we propose a novel hybrid multi-prototype class representation
approach. Specifically, for entity classes, we first insert labels after entities in
support sentences to enrich the learned token and label embeddings with more
contextual information. Then, for each entity span, the contextual token em-
beddings are averaged to form its entity-level prototype, while the contextual
label embedding is considered as its label-level prototype. The set of prototypes
for all entities in a class constitute the multi-prototype of this entity class. For
non-entity class, we directly use the set of token embeddings to represent it,
where multi-prototype refers to the multiple token embeddings. By treating
the entity and non-entity classes differently, our hybrid strategy can extract
more precise class representations from the support examples. Furthermore,
we establish a harder and more reasonable experimental setting of few-shot
NER by offering a rigorous sampling strategy. Extensive empirical results show
that our proposal improves F1 scores by 3%∼10% absolute points over prior
models on popular benchmark Few-NERD under both loose and our proposed
rigorous sampling constraints, achieving state-of-the-art performance.

Zenghua Liao · Junbo Fei · Weixin Zeng · Xiang Zhao
National University of Defense Technology, 109 Deya Road, Changsha, Hunan
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1 Introduction

With the gradual maturity and vigorous development of Web technology,
the era of Web 3.0 based on knowledge interconnection is coming. Knowl-
edge Graph (KG) related technologies play an important role in promoting
the development of future Web. And information extraction provides the key
technical support for knowledge graph construction. Named entity recognition
(NER) is one of the fundamental tasks of information extraction, which locates
spans from unstructured text sequence and categorizes them with pre-defined
entity classes (e.g., Person and Film) or non-entity class (i.e., Outside, also
shortened as O) [28,17]. Under the supervised learning setting, a long list of ap-
proaches, especially those framed on deep neural networks, can cope with NER
adequately [14,2,19,20]. However, the prerequisite for these supervised models
is the heavy manual annotation of labeled data, which is time-consuming and
labor-intensive. Hence, how to increase the ability to recognize unseen entities
from numerous contents with the support of only a few labeled samples, also
termed as few-shot learning, is a crucial issue to be studied.

In response, an increasing number of works contributing to few-shot NER
have emerged in recent years. These studies consider NER as a sequence label-
ing problem that restricts each token (in the sentence) belonging to at most one
class, and tackle it by metric-based meta-learning [13]. Among them, a repre-
sentative work [9], denoted as ProtoNER, constructs a prototype by support
examples to represent each class. Then, given queries, it predicts their labels
(i.e., classes) with the nearest neighbor search according to their distances to
the prototypes of classes. This is further illustrated in Example 1.

Example 1 In Figure 1 is an example of few-shot NER. There is a sup-
port sentence containing three spans belonging to the Film class (i.e, Titanic,
Inception and The Revenant), one span labeled as the Person class (i.e,
Leonardo DiCaprio), and three spans belonging to the Outside class (i.e, ,,
and, starred).

As shown in the left of Figure 1, ProtoNER constructs a prototype for each
class by averaging the embeddings of all the tokens belonging to this class. For
instance, the prototype for the Film class is the average of the embeddings
of Titanic, Inception, The, and Revenant. Then, given a token in query
sentence (e.g., Rob), ProtoNER calculates the distance between the token em-
bedding and the prototypes of all classes (i.e., Film, Person and Outside),
and assigns the closest class to this token (e.g., Person).

Nevertheless, there are two notable issues with ProtoNER: (1) A single
prototype is constructed for each class, denoted as the averaged embedding of
all tokens in this class, which has limited expressiveness power and even biased
representation. This is shown in Example 1, where using the averaged token
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Support Example Film Outside Person

QueryPrototype Network Hybrid Multi-Prototype

Reiner

is

a

Titanic1,1 Inception2 and2 The Revenant3 starred3  Leonardo DiCaprio1

director

Rob

Fig. 1: An example of few-shot NER. For entity class (resp., non-entity class),
i in support example denotes i-th entity (resp., token).

representation as the prototype of class Film would bias the class represen-
tation towards drama films. (2) The non-entity class O involves tokens with
irrelevant (or even inconsistent) meanings, and hence the average of the token
embeddings could result in a noisy prototype representation of the O class.

Several efforts have been proposed to mitigate these problems. For (1), Hou
et al. [12] use the class label (e.g., the string film) to augment the original pro-
totype. However, label and token representations are learned separately and
combined via weighted average, where label embeddings are obtained without
context, which fails to learn precise label representations and hence cannot
characterize the class sufficiently. For (2), Yang et al. [33] abandon the con-
cept of prototype and use the set of token embeddings to represent each class.
Nevertheless, it only benefits the non-entity class O and falls short for en-
tity classes (e.g., the mere token The in The Revenant can hardly be used to
represent the class Film).

In this work, we aim to address the aforementioned issues by offering a hy-
brid multi-prototype construction approach, HMP. For entity classes, instead
of using a single prototype to represent all entity spans in the class, we con-
struct entity-level and label-level prototypes for each span, thus resulting in
a multi-prototype representation of the class. Specifically, we make better use
of the label information by inserting labels into support sentences, by which
the token and label embeddings can be learned with more contextual informa-
tion. Then for each entity, the contextual token embeddings are averaged to
form its entity-level prototype, while the contextual label embedding is con-
sidered as its label-level prototype. The set of prototypes for all entity spans
in a class constitutes the multi-prototype of this entity class. For non-entity
class, we directly use the set of token embeddings to represent it, where the
multi-prototype refers to the multiple token embeddings. By treating the en-
tity and non-entity classes differently, our hybrid multi-prototype strategy can
extract more precise class representations from the support examples, hence
facilitating the inference in the query set.
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Example 2 Continue with Example 1. As shown in the bottom right of Fig-
ure 1, for entity class Film, its multi-prototype is the set {e1, l1, e2, l2, e3, l3},
where e1 (resp., e2, e3) and l1 (resp., l2, l3) are the entity-level and the label-
level prototypes of the entity span Titanic (resp., Inception, The Revenant),
respectively. For O, its multi-prototype is the set of token embeddings {o1,o2,o3}.

Then, for each token in the query sentence, HMP calculates the distances
between its embedding and all prototypes, and considers the class that the clos-
est prototype belongs to as the label for this token.

In addition, we notice that there is an issue with theN -wayK-shot episodic
sampling in previous few-shot NER experimental settings [12,33,6,29]. That
is, to keep the context integrity for NER, they conduct sentence-level sam-
pling, which is difficult to accurately satisfy the constraint of N -way K-shot.
Therefore, they loose the restriction on K and only require that the final num-
ber of examples (K∗) for each entity class is above K, which, however, would
lower the difficulty of this task since much more samples (K∗ > K) would be
provided for each class using the sentence-level sampling. This would in turn
cause the inflation of evaluation results. To make the evaluation condition more
similar to the original setting, in this work, we propose a rigorous sampling
algorithm to keep K∗ close to K. We compare HMP against state-of-the-art
methods on popular benchmarks under both loose and our proposed rigorous
sampling constraints, and the empirical results validate that HMP achieves the
best performance, improving F1 scores by 3%∼10% absolute points.

Objectives. The research objectives of this work are:

– Exploring a class representation approach with less bias and more expres-
siveness. For this objective, we extend the single-prototype representation,
which is commonly used in previous few-shot NER models, to the multi-
prototype representation.

– Offering a flexible strategy to construct class representation. Taking into
account the difference between entity classes and non-entity classes, we
devise a hybrid construction method to obtain their multi-prototype rep-
resentation.

– Making better use of class labels to offer contextual information for class
representations. For this objective, we insert labels into support sentences
to exploit the implicit information hidden in the labels.

– Examining whether the performance inflation exists in existing literature
and establishing a fair experimental setting. To achieve this objective, we
design a more rigorous sampling strategy and compare the performance of
state-of-the-art models under both loose and our proposed strict sampling
strategies.

Contributions. The main contributions of this work are:

– We propose a novel multi-prototype class representation strategy to alle-
viate the potential representation bias and improve the expressiveness of
single-prototype methods.
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– We devise a hybrid strategy to construct multi-prototypes for entity and
non-entity classes according to their corresponding characteristics.

– We leverage the class labels to learn contextual token and label embeddings,
which in turn can produce more accurate multi-prototype representation
of classes.

– We put forward a rigorous experimental setting for few-shot NER, which
is more reasonable and realistic than existing ones, so as to reduce the
performance inflation of previous few-shot NER models and provide a fairer
evaluation.

Organization. The next section discusses related works. Section 3 intro-
duces the task formulations and our proposed rigorous evaluation setting for
few-shot NER. Section 4 presents the HMP model, and Section 5 describes
experiments and results. Section 6 concludes this article.

2 Related Work

Few-shot learning. Early studies on few-shot learning are relatively ac-
tive in image processing [23], primarily focusing on classification problems,
among which metric-based methods have been extensively explored [21,1,34].
These methods hold a hypothesis that the representation of each class can
be obtained through a small amount of labeled data, and the representation
of unlabeled item should have the highest similarity with that of the class to
which it should belong. In the field of NLP, few-shot learning has also been
investigated in tasks such as few-shot text classification [27,18], few-shot re-
lationship extraction [11,10,31], few-shot entity typing [7,22], and few-shot
NER [6].

Solutions to Few-shot NER. The majority of few-shot NER approaches [15,
9,12,33,16] consider few-shot NER as a sequence labeling problem that re-
stricts each token (in the sentence) belonging to at most one class, and tackle
it using meta-learning [13]. Fritzler et al. [9] directly transfer Prototypical
Network [1] to few-shot NER, calculating a prototype for each entity class
by averaging all token embeddings in the class and directly learning a b0 to
represent non-entity class. Hou et al. [12] further explore the label-enhanced
prototype to alleviate potential representation bias of the entity class. How-
ever, label and token representations are learned separately and combined via
weighted average, where label embeddings are obtained without context, which
fails to learn precise label representations and hence cannot characterize the
class sufficiently. Yang et al. [33] argue that tokens labeled O have no unified
semantic meaning, and the learned prototype of the class O is mixed with
noise. Nevertheless, it ignores the fact that the combination of all tokens gives
the named entities specific meaning and individual tokens in named entities
can hardly be used to represent the class. Thus, it only benefits the non-entity
class O and falls short for entity classes.
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There are also other types of approaches. While some cross-lingual en-
hanced [8,32] and cross-domain enhanced [35,24] methods aim to transfer the
capability obtained in high resource to low resource, templates-based NER [3]
follows templates-based NLP [25,26] and treats NER as a language model
problem by ranking sentences filled by candidate named entity spans. There is
also undefined class augmented method [30] that mines the trend of clustering
in O class to better represent non-entity class.

In this paper, we treat few-shot NER as a sequence labeling problem and
tackles it with metric-based meta-learning. Our proposed method differs from
existing literature mainly in the following three aspects: 1) Instead of using a
single prototype to represent the class, we construct a multi-prototype for each
class; 2) We also insert labels into supporting sentences, thereby enhancing
the accuracy of the class representation; 3) We use different representation
construction methods according to the characteristics of entity classes and
non-entity classes.

Evaluation setting of few-shot NER. The evaluation of few-shot NER
follows the popular experimental setting in few-shot learning, i.e., iterative
N -way K-shot episodic sampling. Nevertheless, such iterative episodic few-
shot NER training and testing suffers from the issue in episode construction.
Specifically, the sentence-level sampling can cause the inconsistency of shots in
different classes. Li et al. [15] and Yang et al. [33] use greedy-based sampling
strategy to build up a support set that satisfies the strict K-shot setting.
Nevertheless, such a strategy cuts down the sampling space and increases
the sampling time due to strict restrictions. Fritzler et al. [9] and Tong et
al. [29] only ensure there are at least K entities for each class. Regrettably,
these simple restrictions cause serious deviation of the average shot from the
original setting K. Hou et al. [12] approximately construct K-shot support set
by the minimum-including algorithm, which may lead to a particularly high
frequency of certain classes. By converting K-shot into K ∼ 2K-shot, Ding et
al. [6] alleviate the problems of all the above strategies at the same time. But
2K is still a relatively loose upper limit, especially when K is large.

In this work, compared with current evaluation settings, we put forward a
more rigorous sampling strategy for few-shot NER. Specifically, it adopts an
upper limit 2K to avoid sampling too many entities for popular classes and
optimizes the sampling results by deleting extra samples. As such, the average
shot of each class becomes as close as possible to the original setting K.

3 Problem Formulation and Setup

In this section, we introduce the problem settings of NER and few-shot NER.
Next, we point out issues in existing few-shot NER evaluation settings and
propose a more rigorous and realistic sampling strategy.
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3.1 Named Entity Recognition

In this paper, we follow previous works [9,12,33,6,29] and formulate NER as
a sequence labeling problem. Thus, the sentences in the original NER problem
can be regarded as sequences of tokens 1. Formally, given a sequence of tokens
x = {x1, x2, · · · , xn}, xi ∈ X , i ∈ [1, n], where X is the set of all tokens, a
sequence labeling classification model assigns a label yi ∈ C to xi, producing
y = {y1, y2, · · · , yn}, where C is the set of pre-defined classes. Correspondingly,
the (x,y) pair represents a sentence and its label sequence. Notably, C can be
split into a collection of entity classes C+ (e.g., Film, Person) and non-entity
class Outside (shortened as O). An entity is a span of tokens belonging to the
same entity class, and the label of an entity is its corresponding entity class.

3.2 Few-Shot Named Entity Recognition

We use the common iterative N -way K-shot episodic few-shot NER training
paradigm [6,12]. Given class set Ctrain = {ci}

N
i=1, ci ∈ C+ (N-way), dataset

D (all (x,y)), for each step in training, one episode (Strain and Qtrain) is
sampled to train model. Specifically, Strain = {(x,y)(i)}Ns

i=1 is the support set,

Qtrain = {(x,y)(j)}
Nq

j=1 is the query set, and Strain ∩ Qtrain = ∅, Notably, in
Strain, for each class ci, it is required that the number of entities labeled as ci
equals to K (K-shot).

Models are trained on Qtrain (i.e., predicting y given x) with Strain as ref-
erence. All information in Strain and Qtrain is available to models in training.
In test phase, Stest andQtest are constructed in the same way as in the training,
except that the training and test class sets are disjoint, i.e., Ctest ∩ Ctrain = ∅.
The target of few-shot NER is to predict y given x in Qtest using the trained
model and Stest.

3.3 Sampling Strategies

Issues with existing episodic sampling. Typically, to evaluate the few-
shot learning models, N -way K-shot episodic sampling is adopted, where each
episode (including support set and query set) is sampled from the original
training and testing data, and the support set involves K examples for each of
the N classes. To ensure the context integrity for few-shot NER, current meth-
ods conduct sentence-level sampling to construct each episode. Nevertheless,
since each sentence contains varying numbers of entities, it is difficult for the
sentence-level sampling to accurately satisfy the constraint of N -way K-shot.
For instance, in Figure 1, the support sentence will never be selected under
the strict 2-way 1-shot setting since there are 3 entities for the Film class.

1 In the rest of the paper, we may use the word “sequence” to refer to “sentence”.
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To address this issue, existing methods [9,29,12,6] loose the restriction on
the K value and only requires that the final number of examples (K∗) for each
entity class is above K 2. For example, in Ding et al. [6], a greedy sampling
strategy is proposed to ensure that K ≤ K∗ ≤ 2K. Nevertheless, this would
lower the difficulty of this task since too many samples (K∗ > K) are provided
for each class.

Algorithm 1: Rigorous sampling algorithm.
Input : Dataset D, N -class set CN , N , K
Output : Support set S

1 S ← ∅;
2 for c in CN do
3 Countc = 0;

4 while ∃Countc < K, c ∈ CN do
5 Randomly sample (x, y) ∈ D; Stemp ← S ∪ (x, y);
6 Compute Counttemp with Stemp;

7 if ∃Count
temp
c > 2K, c ∈ CN then

8 Continue

9 else
10 S ← Stemp; Count← Counttemp

11 for (x, y) in S do
12 Stemp ← S − (x, y); Compute Counttemp with Stemp;

13 if ∃Count
temp
c < K, c ∈ CN then

14 Continue

15 else
16 S ← Stemp; Count← Counttemp

17 return S;

Our proposed rigorous sampling strategy. To make the evaluation
conditions more similar to the original N -way K-shot setting, in this work, we
propose a rigorous sampling algorithm to keep the average K∗ value close to
the setting K. Given an N -class set CN ⊂ C+, dataset D, N , and K, we aim to
sample support set S. Specifically, we randomly sample (x,y) ∈ D iteratively
until the following condition is met: ∀c ∈ CN , the number of entities labeled as
c is within the range [K, 2K]. Next, we delete the (x,y) pairs in S by following
the criteria: the shot of any class will not be less than K because of removing
(x,y) pairs from S. Finally, we end sampling when no (x,y) pair in S can be
deleted. Algorithm 1 shows the detailed sampling process.

Our rigorous sampling algorithm can prevent sampling fluctuations caused
by unbalanced class distribution and provide an evaluation condition that is
much closer to the original N -way K-shot setting. This is because we adopt an
upper limit 2K to avoid sampling too many entities for some popular classes.

2 In this work, we denote these relaxed few-shot settings as N -way K̃-shot. The actual
average K value is denoted as K∗.
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More importantly, we further optimize the sampling results by deleting extra
samples so that the average shot of each class becomes as close as possible
to the setting K. We empirically validate that our rigorous sampling strategy
is more reasonable and realistic than existing ones in Table 2 in Section 5.
Further evaluations on few-shot NER also reveal that our strategy is able
to reduce the performance inflation of previous models and provide a fairer
evaluation condition.

4 Hybrid Multi-Prototype Learning for Few-shot NER

In this section, we first introduce the framework of HMP. Then we elaborate
the design details. Finally, we describe the training and inference process.

4.1 Framework Overview

Rob director

Hybrid multi-prototype
E
N

C
O

D
E
R

Support

Titanic

,

Inception

and

...

starred

Leonardo

DiCaprio

Rob

Reiner

is

a

director

Query

Support

Titanic

,

(Film)

Inception

...

starred

Leonardo

DiCaprio

(Person)

Film PersonOutside

token embeddings and
O class multi-prototype

Entity class multi-prototype

entity-level prototype

label-level prototype

Inference

on

Query

Fig. 2: Overview of Hybrid Multi-Prototype Few-Shot NER framework.

Figure 2 shows the framework of HMP. It takes episodes as input and out-
puts label sequences for tokens in the query set. The procedure can be divided
into four stages: (1) For the support set, HMP first expands the sequences
with entity labels to enrich the semantic meanings of sentences; Next, (2)
HMP employs an encoder to embed the sequences in both support and query
sets, producing contextual token and label embeddings; Afterwards, (3) based
on the contextual embeddings, HMP generates hybrid multi-prototype repre-
sentation for all classes; Finally, (4) HMP predicts the label for tokens in query
set based on their distance with hybrid multi-prototype class representations.

4.2 Sequence Expansion and Embeddings

First, we propose to insert the entity labels into the original sequences in
the support set to obtain expanded sequences. This is motivated by the fact
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that the labels can enrich the sentence semantics and help learn more precise
semantic embeddings for tokens. For instance, without sequence expansion, the
token Titanic could refer to both the ship and the film, while its semantic
meaning becomes much clearer by enriching the sentence with the label Film.
Specifically, for each class, we only insert the labels after α entity spans. This
is because inserting too many class labels could hurt the original meanings of
sentences. In Section 5.6, we will discuss the influence of hyperparameter α on
overall results.

Formally, given (x,y) in the support set, we denote the expanded sequence
set as x′ = {x1, x2, y1, · · · , xn, yk} that consists of n tokens and k inserted
labels. Notably, our approach could make better use of the label information
by leveraging it to guide the token embedding learning, while Hou et al. [12]
fails to model such interactions between tokens and labels.

Next, we forward the expanded sequence set into an encoder, i.e., BERT [5],
to obtain the contextual embeddings of tokens and labels. Specifically, the
contextual embeddings of the expanded sequence set are:

x̂′ = fθ(x
′) = {x̂1, x̂2, ŷ1, · · · , x̂n, ŷk}, (1)

where fθ(·) is the encoder and ·̂ denotes the embedding.

4.3 Hybrid Multi-Prototype Representation

Given the contextual embeddings, we aim to generate the hybrid multi-prototype
representation for classes using the support set. We use hybrid to highlight
that we devise different approaches to handle entity classes and outside class,
respectively, according to their specific characteristics.

Multi-prototype for entity classes. Given an entity class c ∈ C+, we
use Ec to denote the entities in the support set that are labeled as c. For each
entity e ∈ Ec, we denote its entity-level prototype ee as the averaged contextual
embeddings of its tokens {x1, x2, · · · , x|e|}, and its label-level prototype le as
the contextual embedding of its label ye. Hence, the entity-level and label-
level prototypes of all the entities in this class constitute the multi-prototype
representation c of this entity class:

c =
⋃

e∈Ec

{ee, le}. (2)

Our multi-prototype can mitigate possible representation bias and improve
the expression ability of single-prototype approaches. By calculating the entity-
level prototype, we tackle the problem that individual tokens in the entities
can hardly represent the corresponding class, and obtain a specific class repre-
sentation. At the same time, we leverage the label-level prototype to improve
the generalization ability and the expressiveness of the model because of the
general information of class contained in label. Notably, it is difficult to fully
represent the class with only a few examples, hence single-prototype can be
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biased towards majority entities. Fortunately, our multi-prototype representa-
tion method can retain the representation of minority entities. We empirically
validate the effectiveness of such designs in Table 8.

Multi-prototype for outside class. For the class O, following Yang et
al. [33], we use token embeddings to represent the class, where the multi-
prototype refers to the multiple token embeddings. Let O = {x1, x2, · · · , xo}
be the tokens in the support set that are labeled as O. Then the multi-prototype
representation of outside class is: o = {x̂1, x̂2, · · · , x̂o}.

The multiple token embeddings alleviate the issue that the single-prototype
cannot represent tokens with no uniform meaning in the class O. We empirically
validate the effectiveness of such designs in Table 8 in Section 5.4.

4.4 Inference in the Query Set

Given a query sequence xq = {xq
1, x

q
2, · · · , x

q
n} and their token embeddings

x̂q = fθ(x
q) = {x̂q

1, x̂
q
2, · · · , x̂

q
n}. To predict the label for token x

q
i , we first

calculate the probability that it belongs to each class, and then consider the
class with the highest probability as y

q
i . Specifically, the probability of token

x
q
i belonging to class c is computed by:

p(c|xq
i ) =

exp(−mindis(x̂q
i , c))

∑

j exp(−mindis(x̂q
i , cj))

,

mindis(x̂q
i , c) = min

c′∈c

||x̂q
i , c

′||22,
(3)

where mindis denotes the minimum distance between the token embedding
and the multi-prototype representations of this class (defined in Equation 2).
In this work, we use the squared Euclidean distance as the distance measure.
Note that the lower the mindis, the higher the probability.

Besides, label prediction is a sequential process, where label dependence
could affect the results. For example, the label Education has a lower probabil-
ity of appearing behind the label Airport. Therefore, we follow Yang et al. [33]
by adopting an additional train-free Viterbi decoder to handle dependencies
between labels and make more accurate predictions.

Training. In the training phase, we use the negative log likelihood loss to
update the parameters in the encoder:

L = −
1

N

N
∑

i=1

log(p(yqi = cg|x
q
i )), (4)

where cg denotes the gold label, p represents the probability calculated using
Equation 3 and N denotes the total number of tokens in the query set of the
training data.
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Table 1: Dataset statistics.

Dataset Domain # Class # Sentence # Entity
Few-NERD General 66 188.2k 491.7k
WNUT Social 6 5690 3890
re3d Security 11 4697 3135

5 Experiments

In this section, we first introduce the datasets and compare the sampling
strategies for generating the training data for few-shot NER. Next, we detail
the specific experimental settings. Afterwards, we introduce the main evalua-
tion results and then the ablation results. Finally, we present the case study
and hyperparameter study.

5.1 Dataset and Sampling

Dataset. We use three datasets Few-NERD (containing Few-NERD (INTER)

and Few-NERD (INTRA)) [6], WNUT [4], and re3d 3 to evaluate our proposed
model. The statistics are shown in Table 1.

– Few-NERD is the first and only dataset specially constructed for few-shot
NER with 8 coarse-grained and 66 fine-grained entity classes. Two few-
shot NER subtasks, INTER and INTRA, are developed adopting different
splitting strategies. For the former, the data is divided into different sets
(train/dev/test) according to the fine-grained types of entities. For the
latter, coarse-grained types are used to split the data, which means that
there is very little shared knowledge between different sets. We compare
HMP against state-of-the-art methods on this dataset.

– WNUTmainly focuses on named entities in the social domain. Unlike Few-NERD,
which is collected on Wikipedia, WNUT comes from social platforms. While
the sentences from Wikipedia have high qualities, e.g., correct grammat-
ical structures and consistent spellings, the sentences on the social plat-
forms have many issues such as incorrect syntactic structure, inconsistent
spelling, more slang usage, and a large number of abbreviations. As thus,
even supervised NER approaches cannot tackle WNUT very well. In this work,
we use this dataset to assess the generalization capability of few-shot NER
approaches.

– re3d is constructed using documents relevant to the defense and security
analysis domain. Entities tend to be more specialized than the aforemen-
tioned two datasets. We also use this dataset to assess the generalization
capability of few-shot NER approaches.

Sampling strategies. We report the final averaged shot value K∗ gener-
ated by different sampling algorithms in Table 2, where 5000 support sets are

3 https://github.com/kotwanikunal/entity-recognition-datasets

https://github.com/kotwanikunal/entity-recognition-datasets
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sampled from the testing set of INTER. Besides, we also define the deviation
degree, to characterize the class-wise deviation from K:

D =
1

Ne

Ne
∑

1

√

√

√

√

N
∑

i=1

(Ki
actual −K)2, (5)

where Niter represents the number of episodes, N refers to the number of
classes, and Ki

actual denotes actual shots of the i-th class in one episode. The
deviation degree D can reflect the balance of the samples generated for each
class, where an imbalanced distribution of samples would cause the value to
become larger.

Table 2: Final average shot K∗ and deviation degree D in support set under
four settings. NwK̃s refers to N -way K̃-shot.

Strategy
K∗ D

5w1̃s 5w5̃s 10w1̃s 10w5̃s 5w1̃s 5w5̃s 10w1̃s 10w5̃s

Fritzler et al. [9] 16.8 65.6 28.0 111.8 36.5 118.0 85.1 272.2
Ding et al. [6] 1.7 8.6 1.8 9.2 1.8 9.1 2.8 14.0
Hou et al. [12] 1.7 5.4 1.7 5.5 2.3 1.5 4.2 4.9
Ours 1.3 5.2 1.3 5.2 0.9 0.7 1.4 1.3

It reads from Table 2 that our rigorous sampling strategy keeps the aver-
age K∗ value close to K, and attains a very low deviation degree, while other
methods are apt to generate more samples for each class and have higher de-
viation degrees. Notably, although the average K∗ value generated by Hou et
al. [12] is close to ours, we discover that it is unstable and tends to generate
large number of samples for certain classes, as can be observed from the devi-
ation degrees. To further empirically validate this, we calculate the percentage
of K∗ values that are larger than 1.5K under 5-way 1̃-shot and 10-way 1̃-shot
settings. The results reveal that, the percentages of these large K∗ values are
very small in our sampling strategy (10% and 0%, respectively), while these
figures for Hou et al. [12] are 50% and 60%, respectively.

In all, the analysis above demonstrates that our proposed sampling strategy
is the closest to the original N -way K-shot setting.

5.2 Experimental Setting

We test the model with episodic evaluation, a widely adopted evaluation
method in few-shot learning, where we employ our rigorous sampling strat-
egy to generate the support set and query set in the episode. All support
sets are sampled under the K̃-shot constraint, but all query sets are sampled
satisfying the same 1̃-shot setting. 15,000 episodes are sampled for training,
while 5,000 for testing. Note that the class sets of training and testing data
are disjoint.
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Besides, since the classes of Few-NERD have two hierarchies, we utilize both
coarse-grained and fine-grained labels in INTER, while only fine-grained labels
in INTRA, to calculate label-level prototypes. That is, we calculate two label-
level prototypes for each entity on INTER. For WNUT and re3d, we only use the
test set of these datasets to evaluate our model which is trained on Few-NERD.

Implementation details. We adopt uncased BERT-Base4 as our backbone
to obtain contextual representations of sequences and adopt the best hyper-
parameter values reported by Ding et al. [6]5. We use PyTorch6 to implement
our models and all of them can be fit into V100 GPU with 32G memory. The
training under each setting lasts for hours, and exhibits similar efficiency em-
pirically to state-of-the-art methods. We set the hyperparameter α to 1 and
provide further discussion in Section 5.6.

Metrics. All experiments are repeated five times with different random
seeds, and the mean and standard deviation of the precision (P), recall (R), and
micro F1 are calculated. We report the F1 of all experiments, and selectively
report P and R following the settings of the previous studies.

Baselines. Four competitive models are used in our experiments. Pro-

toNER [9] employs Prototype Network to calculate prototypes for each class
and classifies tokens by the similarity with prototypes. LTC [12] uses label rep-
resentation to improve the prototype quality and considers label dependencies.
We replace the Viterbi decoder used in Struct [33] to focus on comparing pro-
totype representations. NNShot [33] directly uses the similarity between tokens
to classify queries. Struct [33] improves NNShot with Viterbi decoder to obtain
the most likely label sequence.

5.3 Overall Performance

The overall performance of the models on Few-NERD are summarized in Ta-
ble 3, 4, 5, and 6 respectively. It can be observed that HMP consistently outper-
forms state-of-the-art models across all evaluation settings. Next, we analyze
the results in detail.

On prototype construction. Our hybrid strategy of building multi-proto-
type by class characteristics benefits the performance. From the results, it is
obvious that, under each setting, the R of ProtoNER is higher than the P,
while LTC is just the opposite and even the P of LTC is higher than that of
other models. This is because, ProtoNER tends to predict tokens as the entity
class due to its noisy prototype of the non-entity class O. As thus, much more
false positives emerge, resulting in a larger R (number of correct entities /
number of gold entities) and a lower P (number of correct entities / number
of predicted entities). On the contrary, the number of entities predicted by

4 https://huggingface.co/
5 https://github.com/thunlp/Few-NERD
6 https://pytorch.org/

https://huggingface.co/
https://github.com/thunlp/Few-NERD
https://pytorch.org/
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Table 3: Performance on Few-NERD under 5-way settings. † indicates results
from Ding et al. [6]. K∗ denotes average shot. Loose Samp. denotes sam-
pling strategy adopted by Ding et al. [6], and Rigorous Samp. is our sampling
method. The best results are in bold.

Model
Few-NERD (INTER)

5-way 1̃-shot 5-way 5̃-shot

P R F1 P R F1

Loose Samp. K∗ = 1.7 K∗ = 8.6

ProtoNER † 39.0±0.0 51.7±0.3 44.4±0.1 53.7±1.8 65.0±2.2 58.8±1.4
LTC 68.1±0.4 38.7±0.8 49.3±0.6 68.0±0.1 42.5±0.9 52.3±0.7
NNShot † 50.4±0.6 58.8±0.1 54.3±0.4 45.8±3.5 56.5±2.9 50.6±3.3
Struct † 58.1±1.0 56.6±1.5 57.3±0.6 60.4±0.3 54.4±3.5 57.2±2.1

HMP 58.8±0.8 61.5±1.3 60.1±0.7 59.3±0.5 61.6±0.8 60.4±0.6
Rigorous Samp. K∗ = 1.3 K∗ = 5.2

ProtoNER 32.1±0.6 49.6±0.3 39.0±0.5 41.9±0.8 65.9±8.0 50.0±0.8
LTC 68.1±0.3 40.9±0.2 51.1±0.1 67.0±0.1 46.4±0.3 54.8±0.2
NNShot 43.4±1.3 53.2±0.9 47.8±1.1 45.9±1.8 58.8±1.6 51.6±1.7
Struct 53.2±0.9 52.5±1.8 52.8±0.9 54.8±1.3 57.3±2.3 56.0±1.3

HMP 56.5±2.0 55.7±3.0 56.1±2.5 59.0±0.8 63.4±0.6 61.1±0.7

Table 4: Performance on Few-NERD under 10-way settings. † indicates results
from Ding et al. [6]. K∗ denotes average shot. Loose Samp. denotes sam-
pling strategy adopted by Ding et al. [6], and Rigorous Samp. is our sampling
method. The best results are in bold.

Model
Few-NERD (INTER)

10-way 1̃-shot 10-way 5̃-shot

P R F1 P R F1

Loose Samp. K∗ = 1.8 K∗ = 9.2

ProtoNER † 32.6±0.2 48.9±2.9 39.1±0.9 47.9±0.5 61.8±1.7 54.0±0.4
LTC 66.2±0.2 36.6±0.2 47.1±0.2 67.1±0.1 41.1±0.4 51.0±0.3
NNShot † 42.7±2.1 52.2±1.8 47.0±2.0 45.2±0.8 56.1±0.4 50.0±0.4
Struct † 52.8±0.3 46.6±0.9 49.5±0.5 58.0±0.9 43.0±2.2 49.4±1.8

HMP 53.7±0.8 55.5±1.4 54.6±0.9 57.1±0.8 58.9±1.5 58.0±0.5
Rigorous Samp. K∗ = 1.3 K∗ = 5.2

ProtoNER 25.8±1.0 42.7±1.0 32.2±0.9 38.0±0.5 56.3±1.3 45.4±0.7
LTC 66.4±0.4 35.1±0.6 46.0±0.6 67.2±0.5 36.5±0.4 47.3±0.2
NNShot 35.1±2.1 45.0±2.7 39.4±2.3 37.0±0.4 49.3±1.5 42.3±0.7
Struct 46.7±0.6 41.4±2.1 43.9±1.4 52.1±1.0 43.4±1.6 47.3±1.4

HMP 50.5±1.1 48.9±2.3 49.7±1.7 56.1±0.8 56.6±1.7 56.3±0.9

LTC decreases due to the weighted average label and token embeddings and
Viterbi decoder. Specifically, the separately obtained label embeddings, which
cannot accurately represent the corresponding class, and the label dependency
introduced by Viterbi decoder both make the tokens in the query are difficult
to be identified as entity class. Besides, NNShot alleviates the issue of Pro-

toNER by using token embeddings to represent corresponding class. But due
to ambiguous entity class representations, NNShot has a limited improvement
in performance. Also, due to Viterbi decoder, Struct get an increase in F1
score. Different from these approaches, our model benefits from the hybrid
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Table 5: Performance on Few-NERD under 5-way settings. † indicates results
from Ding et al. [6]. K∗ denotes average shot. Loose Samp. denotes sam-
pling strategy adopted by Ding et al. [6], and Rigorous Samp. is our sampling
method. The best results are in bold.

Model
Few-NERD (INTRA)

5-way 1̃-shot 5-way 5̃-shot

P R F1 P R F1

Loose Samp. K∗ = 1.7 K∗ = 8.5

ProtoNER † 18.6±1.0 31.8±1.0 23.5±0.9 35.9±0.7 50.5±1.9 41.9±0.6
LTC 54.6±1.0 14.4±0.7 22.6±0.8 61.2±0.6 22.7±0.4 33.2±0.3
NNShot † 29.0±1.0 33.4±1.4 31.0±1.2 32.9±2.5 39.2±2.2 35.7±2.4
Struct † 37.8±1.1 34.3±0.3 35.9±0.7 48.0±1.4 32.7±2.6 38.8±1.7

HMP 46.1±0.9 34.7±1.2 39.5±0.7 48.6±0.9 42.6±1.0 45.4±0.7
Rigorous Samp. K∗ = 1.2 K∗ = 5.2

ProtoNER 14.4±0.6 31.1±0.9 19.7±0.7 28.2±0.6 49.4±1.4 35.9±0.6
LTC 55.4±0.3 21.3±0.2 30.8±0.3 60.1±0.5 22.0±1.0 32.2±1.2
NNShot 24.2±0.6 29.1±0.9 26.4±0.7 30.1±1.6 39.1±1.6 34.0±1.5
Struct 34.2±2.2 29.0±2.0 31.0±1.5 46.2±3.3 39.3±1.5 42.4±1.9

HMP 46.5±0.9 35.0±2.2 39.9±1.4 47.7±0.8 44.3±1.3 45.9±1.0

Table 6: Performance on Few-NERD under 10-way settings. † indicates results
from Ding et al. [6]. K∗ denotes average shot. Loose Samp. denotes sam-
pling strategy adopted by Ding et al. [6], and Rigorous Samp. is our sampling
method. The best results are in bold.

Model
Few-NERD (INTRA)

10-way 1̃-shot 10-way 5̃-shot

P R F1 P R F1

Loose Samp. K∗ = 1.8 K∗ = 9.1

ProtoNER † 16.5±0.5 24.6±0.7 19.8±0.6 28.9±0.8 43.1±0.8 34.6±0.6
LTC 52.0±0.2 15.6±0.8 24.0±0.9 56.6±0.6 17.5±0.2 26.7±0.2
NNShot † 20.4±0.2 23.6±0.5 21.9±0.2 25.5±0.6 30.3±1.7 27.7±1.1
Struct † 29.9±1.1 22.0±0.7 25.4±0.8 40.6±2.2 19.6±2.7 26.4±2.6

HMP 38.7±0.9 30.2±1.7 33.9±0.7 47.4±1.3 38.6±1.7 42.5±0.8
Rigorous Samp. K∗ = 1.2 K∗ = 5.2

ProtoNER 11.8±0.3 22.9±0.3 15.6±0.3 22.3±0.6 41.0±1.2 28.9±0.6
LTC 53.9±1.0 16.7±0.5 25.5±0.5 57.2±0.9 15.5±0.7 24.4±0.8
NNShot 16.9±0.8 22.0±0.5 19.1±0.6 22.7±0.7 30.0±1.1 25.8±0.8
Struct 26.8±1.0 21.7±2.0 24.0±1.5 40.4±0.9 25.1±1.9 30.9±1.5

HMP 40.8±0.7 29.5±0.8 34.2±0.5 43.8±3.8 37.0±5.7 39.6±2.1

strategy of building multi-prototype by class characteristics, obtains precise
class representations, and thus achieving state-of-the-art performance.

On sampling strategies. Our rigorous sampling strategy provides a fairer
experimental setting. From the tables, it is obvious that the performance of
the models trained with loose sampling strategy is generally better than that
trained with rigorous one. However, this overall performance inflation bene-
fits from much more support examples in the setting. In other words, loose
sampling strategies lower the difficulty of few-shot NER task. In contrast, our
sampling strategy effectively limits the average shot near the original setting,
thus the distribution of entities with different characteristics in the same class
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is more difficult to learn and finally reduces the performance inflation of pre-
vious few-shot NER models. In this connection, it could be considered as a
fairer experimental setting for few-shot NER task.

Table 7: F1 on WNUT and re3d using episodic evaluation. For WNUT, † indicates
results from Yang et al. [33]. For re3d, † indicates results from Tong et al. [29].
The best results are in bold.

Model
WNUT re3d

1̃-shot 5̃-shot 1̃-shot 5̃-shot

ProtoNER † 15.8±4.1 22.1±3.1 26.8 27.8
LTC † 17.5±2.9 26.0±2.1 23.3 35.8
NNShot † 20.2±6.0 26.7±4.0 - -
Struct † 20.5±5.2 27.9±3.2 - -
ProtoNER 16.3±0.6 22.5±0.8 25.5±0.8 36.2±2.2
LTC 20.2±0.8 28.3±1.5 21.8±1.8 33.1±2.7
NNShot 18.6±0.6 23.5±1.1 35.8±5.5 47.3±3.1
Struct 19.7±0.1 22.6±0.8 36.3±1.9 48.9±1.2
HMP (ours) 31.5±0.7 33.3±0.9 45.6±3.6 49.8±4.5

On generalization ability. Our model shows good generalization ability
in other domains. We conduct 1̃-shot and 5̃-shot experiments on the test sets
of WNUT and re3d, using the trained model on Few-NERD. Table 7 shows the
results, where our model still achieves state-of-the-art performance.

5.4 Ablation Study

Table 8: F1 over different components on INTER. -viterbi indicates without
Viterbi decoder. -expansion indicates without sequence expansion. -label-level
prototypes indicates using sequence expansion but without label-level pro-
totypes. prototype→token indicates using tokens to represent entity class.
multiple→single indicates using single-prototype to represent entity class.
token→prototype indicates using single-prototype to represent non-entity class.

Model 5-way 5̃-shot 10-way 5̃-shot
HMP 61.1 56.3
-viterbi -5.0 -5.6
-expansion -4.3 -3.4
-label-level prototypes -2.5 -2.7
prototype→token -4.2 -7.1
multiple→single -2.8 -2.0
HMP-E 56.8 52.9
prototype→token -0.8 -5.6
multiple→single -3.1 -2.1

token→prototype -3.7 -5.4

To provide a deeper insight of each component in HMP, we conduct ablation
analysis under 5-way 5̃-shot and 10-way 5̃-shot settings in Table 8. HMP-E

denotes HMP trained without sequence expansion.



18 Zenghua Liao et al.

Usefulness of Viterbi decoder. The results of HMP without Viterbi
decoder (-viterbi) show that capturing the dependencies between labels can
improve performance. While the F1 score descends, the performance of our
model is still superior to that of the state-of-the-art models (e.g., Struct with
Viterbi decoder).

Usefulness of sequence expansion. The drop in F1 caused by removing
the sequence expansion (-expansion) indicates that inserting the class labels
into the support examples is beneficial to contextual embedding learning and
hence the overall results.

Usefulness of label-level prototypes. In more detail, when using ex-
panded sentences but without the corresponding label-level prototypes (-label-
level prototypes), the performance falls between that of HMP-E (without the
sentence expansion) and HMP, demonstrating the usefulness of the label-level
prototypes, as well as sequence expansion.

Usefulness of multi-prototype. We further verify the effectiveness of
multi-prototype from three aspects: prototype→token, multiple→single and
token→prototype. First, instead of multi-prototype, we use tokens to represent
entity class (prototype→token). The results confirm that the multi-prototype
can characterize the entity class better than the tokens. Second, we delve
deeper into different representations of prototypes, where the single-prototype
is calculated for each entity class by averaging all tokens in the same class
(multiple→single). The decreased performance of HMP and HMP-E shows that
the multi-prototype can effectively improve the expressiveness of the single-
prototype methods. Third, we use single-prototype to represent class O on the
basis of the second step (token→prototype). The drop in results confirms that
the multiple tokens is more suitable to represent class O than single-prototype.

The above ablation results demonstrate that our proposed hybrid multi-
prototype construction is of great help to the improvement of performance.

5.5 Case Study

We conduct case study to show that our proposed multi-prototype construction
method can generate less biased class representation, which in turn can bring
more accurate few-shot NER results. Specifically, as shown in Figure 3, we
select two typical cases from the dataset, with each case containing both partial
support and query sets. Entities are identified with colors, and different colors
represent different entity classes. The correct inference results on the query
sentences are marked with True (following the sentence). The models that
produce the inference results are appended to the corresponding sentences.

The results in Figure 3 can reflect the bias of the prototype construction
of current methods. Specifically, ProtoNER and LTC incline to omit certain
entities, e.g., the underlined craddock of query set 1 in Figure 3-(a), or part
of the tokens in entity, e.g., the underlined matthias of query set 2 in Figure 3-
(a). This is because they use the average of all token embeddings to represent
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1.mackendrick got along poorly with the producers of the film .
2.carlos won the 200-meter dash in 19.92 seconds , 

   beating world-record holder tommie smith .

craddock made 83 appearances for the club . (True, HMP)

craddock made 83 appearances for the club . (ProtoNER, LTC, NNShot, Struct)

matthias hues was also cast as the new russian character . (True, HMP)

matthias hues was also cast as the new russian character . (ProtoNER, LTC, Struct)

matthias hues was also cast as the new russian character . (NNShot)

Part of

Support

Set

Query

Set 1

Query

Set 2

(a)

2.the stg 44 is generally considered the first selective fire military rifle to 

   popularize the assault rifle concept . 

1.brett also stars in series 8 and 10 , outside of christine 's tenure as headteacher .

the armament of cm-12 is identical to cm-11 's . (True, HMP, ProtoNER, LTC)

the armament of cm-12 is identical to cm-11 's . (NNShot, Struct)

matthias hues was also cast as the new russian character . (True, HMP)

matthias hues was also cast as the new russian character . (ProtoNER, LTC)

matthias hues was also cast as the new russian character . (NNShot, Struct)

Part of 

Support

Set 

Query

Set 1

Query

Set 2

(b)

Fig. 3: Case study of bias in Few-shot NER.

each class, which lacks expressiveness and tends to be biased towards popular
entities. Meanwhile, Struct and NNShot tend to predict more tokens as entities,
e.g., the underlined ’s (resp., russian) of query set 1 (resp., query set 2) in
Figure 3-(b), since they use the set of token embeddings to represent each
class, which includes many irrelevant tokens into the class representation and
misleads the inference process. In contrast to previous methods, our proposal
HMP can generate expressive and less biased prototypes by overcoming the
aforementioned issues, leading to consistently better results.

5.6 Hyperparameter Study

We discuss hyperparameter α in the process of sequence expansion. We dis-
cover that inserting a certain number of (but not all) labels can be the most
effective are consistent on all datasets. The F1 curve in Figure 4 confirms that
the proper number of inserted labels has a great effect on performance. In
most cases, inserting one label for each class can greatly improve the overall
performance of the model.
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Fig. 4: F1 over different number of expanded entities (controlled by α) on
INTER.

6 Conclusion and future work

We propose a hybrid multi-prototype class representation approach for few-
shot NER, which calculates multi-prototype to represent entity class and uses
token embeddings to represent non-entity class. Extensive empirical results
show that the hybrid prototype construction strategy and the multi-prototype
strategy are of great help to the generation of less biased representations,
which also leads to state-of-the-art few-shot NER performance. Moreover, we
introduce a rigorous experimental setting for few-shot NER, which can pro-
vide a reasonable and fairer evaluation condition. We further demonstrate the
adaptability of our model to corpus on social media on the WNUT dataset.

The theoretical implication of this work lies in two aspects: 1) The proposed
hybrid multi-prototypes can effectively alleviate the representation bias caused
by existing class representation approaches, and offer more expressive class
representations for few-shot NER; 2) This article also verifies that different
sampling methods do have a great impact on the final results, and a more
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reasonable and rigorous experimental setting should be used to ensure fair
comparison among different models.

The practical implication of this work is to offer a more effective approach
for identifying named entities in a given text and classifying them into pre-
defined entity classes with a few support examples, i.e., few-shot NER.

Furthermore, such advance in few-shot NER can reduce the dependence
on manually annotated data, thereby accelerating the extraction of knowledge
in emerging domains.

We hope our work can provide insights into the few-shot NER task. In the
future, we plan to investigate how to generate more accurate class representa-
tions by an adaptive construction.
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