
VR-GNN: Variational Relation Vector Graph Neural
Network for Modeling Homophily and Heterophily
Fengzhao Shi

School of Cyber Security, University of Chinese Academy of Sciences
Ren Li

School of Cyber Security, University of Chinese Academy of Sciences
Yanan Cao

School of Cyber Security, University of Chinese Academy of Sciences
Xixun Lin

School of Cyber Security, University of Chinese Academy of Sciences
Yanmin Shang

School of Cyber Security, University of Chinese Academy of Sciences
Chuan Zhou

Chinese Academy of Sciences
Jia Wu

Macquarie University
Shirui Pan

Gri�th University

Research Article

Keywords: Data mining, Graph neural networks, Semi-supervised node classi�cation, Social network

Posted Date: January 11th, 2024

DOI: https://doi.org/10.21203/rs.3.rs-3842969/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-3842969/v1
https://doi.org/10.21203/rs.3.rs-3842969/v1
https://doi.org/10.21203/rs.3.rs-3842969/v1
https://creativecommons.org/licenses/by/4.0/

Version of Record: A version of this preprint was published at World Wide Web on May 1st, 2024. See the
published version at https://doi.org/10.1007/s11280-024-01261-8.

https://doi.org/10.1007/s11280-024-01261-8

VR-GNN: Variational Relation Vector Graph

Neural Network for Modeling Homophily and

Heterophily

Fengzhao Shi1,2†, Ren Li1,2†, Yanan Cao1,2*, Xixun Lin1,2,

Yanmin Shang1,2, Chuan Zhou3, Jia Wu4, Shirui Pan5

1*School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China.

2Institute of Information Engineering, University of Chinese Academy of
Sciences, Beijing, China.

3Academy of Mathematics and Systems Science, University of Chinese
Academy of Sciences, Beijing, China.

4School of Computing, Macquarie University, Sydney, Australia.
5School of Information and Communication Technology, Griffith

University, Gold Coast, Australia.

*Corresponding author(s). E-mail(s): caoyanan@iie.ac.cn;
Contributing authors: shifengzhao@iie.ac.cn; liren@iie.ac.cn;

linxixun@iie.ac.cn; shangyanmin@iie.ac.cn; zhouchuan@amss.ac.cn;
jia.wu@mq.edu.au; s.pan@griffith.edu.au;

†These authors contributed equally to this work.

Abstract

Graph Neural Networks (GNNs) have achieved remarkable success in diverse real-
world applications. Traditional GNNs are designed based on homophily, which
leads to poor performance under heterophily scenarios. Most current solutions
deal with heterophily mainly by modeling the heterophily edges as data noises
or high-frequency signals, treating all heterophilic edges as being of the same
semantic. Consequently, they ignore the rich semantic information of these edges
in heterophily graphs. To overcome this critic problem, we propose a novel GNN
model based on relation vector translation named as Variational Relation Vec-
tor Graph Neural Network (VR-GNN). VR-GNN models relation generation
and graph aggregation into an end-to-end model based on a variational infer-
ence framework. To be specific, the encoder utilizes the structure, feature and

1

label to generate a fine-grained relation vector for each edge, which aims to
infer its implicit semantic information. The decoder incorporates the generated
relation vectors into the message-passing framework for deriving better node
representations. We conduct extensive experiments on eight real-world datasets
with different homophily-heterophily properties to verify model effectiveness.
Extensive experimental results show that VR-GNN gains consistent and signifi-
cant improvements against existing strong GNN methods under heterophily and
competitive performance under homophily.

Keywords: Data mining, Graph neural networks, Semi-supervised node classification,
Social network

1 Introduction

Hete. edge Hete. edge

H
ete. ed

g
e

Student AStudent A
School of

Computing

School of

ComputingProfessor AProfessor A

Student BStudent B

Guide Employ

T
ea

ch

(a)

H
ete. ed

g
e

Scholarship AScholarship AStudent AStudent A

Hete. edge

Student BStudent B

School of

Computing

School of

Computing

Hete. edge

Award

A
w

a
rd

Sponsor

(b)

Fig. 1: Modeling the heterophilic edges. The central nodes in the above figures are professor
A and scholarship A respectively. The neighbors of two central nodes are the same. The
blue represents treating all heterophilic edges as being of the same semantic. The red is the
implicit semantic of the edge.

Graph Neural Networks (GNNs) have revealed superior performance on various
real-world graph applications, ranging from social networks [1], citation networks [2]
to biological networks [3]. Graph Convolutional Network (GCN) [4] and its variants
[5, 6] learn node representations by smoothing the features between neighbor nodes.
The smoothing operation is suitable for homophilic graphs [7], where connected nodes
tend to possess similar features and belong to the same class. However, on heterophilic
graphs [8] connected nodes have dissimilar features and different labels, the traditional
GCNs suffer from poor performance and even is inferior to Multi-layer Perceptron
(MLP) that completely ignores the graph structure [9].

Recently several efforts have been proposed to achieve heterophily-based GNNs.
The current approaches are mainly to consider the heterophilic edges as a single

2

semantic to complete the overall modeling, such as treating the heterophilic edge mod-
eling as a specific data noise [10, 11] or high-frequency signal [12–14]. As a result,
all these methods ignore the rich semantic representation of the edges (especially the
heterophilic edges) in the heterophily graphs, which leads to an unsatisfactory model
performance. As shown in figure 1, professor A and scholarship A contain the same
neighbors, and the neighbors are heterophilic connected with them. If we regard these
edges as the same semantic, then professor A and scholarship A will become more and
more similar after GNN aggregation, which is obviously unreasonable. In fact, we can
easily distinguish the professor A and scholarship A by considering the semantics of
their adjacent edges. For example, student A and professor A should have a “guide”
semantic, while scholarship A and student A should have a “award” semantic. Gener-
ally, although two nodes have the same neighbors, the semantics of the adjacent edges
can be quite different.

To address the above problem, we introduce the concept of relation vector into the
message-passing framework for modeling the implicit semantic of each edge, where
the message passing between nodes can be described by an addition translation of
the relation vector. It is an intuitive idea motivated by recent progress on knowledge
graph embedding [15]. To verify the effectiveness of our intuition, we design a pre-
liminary experiment that including three heuristic baselines to show how introducing
fine-grained relation vectors can influence the representation in the hetrophily graphs.
Concretely, we first use structure, feature and label information of the original graph
respectively to divide the edges into fine-grained discrete relation vectors. Then, we
change the aggregation strategy of GCN [4] to combine the relation vectors of each edge
to generate the node representations. The experimental results on both homophily and
heterophily datasets show that an obvious improvement by introducing fine-grained
relation vector modeling.

Based on the above empirical analysis, we present Variational Relation Vector
Graph Neural Network (VR-GNN), a variational GNN model that innovatively
incorporates the fine-grained relation learning into the message-passing process for
modeling both homophily and heterophily on graphs. VR-GNN models the relation
vector generation and node representation in a unified framework where encoder
achieves relation vector generation and decoder achieves node representation, which
can transfer the knowledge learned by relation vector into node representations more
directly. The encoder of VR-GNN treats relation vectors as latent variables and adopts
variational inference to generate it based on the graph structure, feature and label,
which combines all the information on the graph to make the relation vector more infor-
mative. The decoder incorporates generated relation vectors into the message-passing
mechanism, where messages are computed by translating neighbors along connections.
Finally, the model takes the output node representation to perform the downstream
node classification task. The contributions of our work are summarized here:

• We propose a novel idea that introduces the concept of relation vector into
the message-passing framework for modeling the implicit semantic of each edge
in heterophily graphs, and provide the empirical analysis for demonstrating the
effectiveness of relation vector in learning node representations for heterophily
graphs.

3

• To further fulfill the proposed idea, we present VR-GNN which jointly models
the relation vector generation and node representation within a encoder-decoder
variational framework.

• We conduct extensive experiments on 8 common homophily and heterophily datasets
and the results demonstrate that VR-GNN gains consistent and significant improve-
ments against multiple strong GNN methods under heterophily and competitive
performance under homophily.

2 Preliminary

2.1 Problem Definition

A graph can be denoted as G = (V, E) with a set of nodes V = {v1, v2, · · · , vN} and
a set of edges or connections E . The connections of a graph can be described by its
adjacency matrix A = [aij] ∈ {0, 1}N×N , where N = |V| is the number of nodes, and
aij = 1 means node vi and vj has a connection eij between them. The node feature
matrix of a graph can be denoted as X ∈ R

N×F , where F is the feature dimensional
size of per node. xi ∈ R

F denotes the i-th row of X and corresponds to the feature of
node vi. In this paper, we focus on the semi-supervised node classification task, which
aims to learn a mapping f : V → C, where C = {c1, c2, · · · , cM} is the label set with
M classes, given A, X and partially labeled nodes {(v1, y1), (v2, y2), . . . } with yi ∈ C.

2.2 Message-passing Framework

Most current GNNs apply the message-passing framework [16] to formulate their work-
flow. Normally the message-passing framework consists of L layers, and in each layer
l, it aggregates neighbor and central nodes with the following principle:

hl+1
i = U(hl

i,AGG(hl
j : j ∈ Ni)) (1)

where hl
i denotes the embedding of node vi in layer l; Ni is the neighbor set of node

vi; AGG(·) is the neighbor aggregation function; U(·) is the updating function of
renewing the central node embedding with aggregation information and original node
information.

2.3 Homophily Ratio

Here we introduce the concept of homophily ratio [10] to estimate the homophily level
of a graph.
Definition 1 (Homophily ratio). The homophily ratio of a node vi is the proportion
of its neighbors belonging to the same class with vi. The homophily ratio of a graph
is the mean of homophily ratios of all its nodes:

H =
∑

vi∈V

|{eij : eij ∈ E ∧ yi = yj}|
|Ni|

∈ [0, 1]

4

Table 1: Performance comparison of GCN+RV model and only GCN. Bold
text denotes GCN+RV surpass the original GCN.

Models
Homophily Dataset Heterophily Dataset
Cora CiteSeer Chameleon Squirrel

GCN 87.14 79.86 59.61 46.78

GCN+RV (structure) 87.63 80.45 64.32 51.25

GCN+RV (feature) 87.54 79.93 65.79 52.34

GCN+RV (label) 80.32 71.05 67.33 52.98

A high homophily ratio represents the graph owns a strong homophily property,
and a low homophily ratio indicates a weak homophily property or strong heterophily
property.

3 Effectiveness Verification of Relation Vector

In this section, we attempt to conduct a preliminary exploration of the modeling of
relation vector, to verify whether it is a valuable approach to model homophily and
heterophily connections.

The basic idea of relation vector is to refine the rough description of connections in
a fine-grained manner. Here we consider a simple refining idea that for each connection
(edge), it can be categorized by some common relations according to its characteristics.
Then we design three dividing strategies from different aspects as follows:

• Structure aspect: We randomly divide edges into K relations, where K is hyper-
parameter. Because there is no guidance for the relation dividing, the subsequent
learning of relation vector is based on the graph structure information.

• Feature aspect: For each edge eij , we categorize it according to the feature difference
of its two end points ∥xi − xj∥. Specifically, we averagely divide the edges into K
ranges with an ascending order of the feature difference. Then we consider that the
edges in the same range own the same relation.

• Label aspect: We categorize an edge by the labels of its two end nodes. There is
total M2 relations, and M is the number of node class. Note that here we only use
the node labels in training set, and for the unknown node we randomly assign a
label to it.

Above three strategies can be regarded as three simple baseline models, which
take advantage of different characteristics to refine edges with specific relations. Then
each relation will be initialized with a corresponding embedding representation and
assigned to the characterized edges. We denote the relation vector on edge eij as rij .

To merge the inferred relation vector into the message-passing framework, we con-
sider the classical two-layer Graph Convolutional Network (GCN) model. We simply
modify the GCN framework and add the relation vector into neighbor aggregation
process:

x′
i = σ(

∑

j∈Ni

xj√
di
√

dj
W) ⇒ x′

i = σ(
∑

j∈Ni

φ(xj , rji)√
di
√

dj
W)

5

where xi is the embedding of node i; x′
i is the output embedding of node i after one

GCN layer; Ni is the neighbor set of node i; di is the degree of node i; W and σ are
linear and non-linear transformation. Especially, we fuse the relation vector with node
embedding using function φ, which is set as φ(x, r) = x + r. For simplicity, we only
maintain the relation in first GCN layer, but with the layer deepening, the relation
vector r will also be propagated and capture the wide-range dependency.

Then we compare the model of GCN+RV (RV represents relation vector.) with
only GCN on four frequently used homophily and heterophily datasets including
Cora, Citeseer, Chameleon and Squirrel. The results are demonstrated in Table 1. We
can see that though the three baselines are very simple, they still bring an evident
improvement to the original GCN model.

For the structure aspect baseline, it just categorizes the relation randomly instead
of introducing any information to it, which brings an effective performance improve-
ment for GCN on four datasets. It shows that the design itself with relation vectoron
edges can bring potential capacity for modeling homophily and heterophily. We also
observe that the improvement on heterophily dataset is more evident on homophily
dataset. It demonstrates that two nodes with the heterophily connection have a more
complicated implicit relationship compared to the one under homophily situation.
Such as for label aspect baseline with M classes, if two nodes’ label are similar, there
are only M situations, while for being dissimilar there are M2−M situations (consider
directed edges). In generally speaking, the above improvements of three baseline mod-
els give a preliminary verification of the effectiveness of relation vector for fine-gained
connection modeling. And in the next section, we give a comprehensive framework for
modeling the relation vectors.

4 Methodology

4.1 VR-GNN Framework

The core idea of VR-GNN is to introduce relation vectors to describe diverse
homophilic and heterophilic connections of the graph within a more effective message
passing framework. We treat such a process as an encoder-decoder paradigm, which
firstly encodes the connection characteristics into relation vectors and then decodes
the relation vectors through GNN to complete the node classification.

In this work, we take Variational Auto-Encoder (VAE), a popular probabilistic
technique to encode/decode hidden embedding of the data [17], as our overall frame-
work. Specifically, we treat the relation vector of graph connections as latent variable
z, and the node classification as a prediction process guided by z, hence the process
of VR-GNN can be formularized as following:

pθ(Y|A,X,Ytr) =

∫

pθ(z|A,X,Ytr) pθ(Y|z,A,X,Ytr) dz (2)

where A is adjacency matrix; X is node feature matrix; Y ∈ R
N×M is label matrix;

Ytr is training label matrix; θ denotes learnable parameters.

6

Structure

Sub-Relation

Vector

Feature

Sub-Relation

Vector

Label

Sub-Relation

Vector

M
er

g
e

th
re

e
p
ar

ts

M
L

P

M
L

P

KL Loss

Encoder: Relation Vector Generation Decoder: Message Passing with Relation VectorInput Graph

Structure Sub-Relation Vector Feature Sub-Relation Vector Label Sub-Relation Vector

one-hot label

MLP

re-parameterization

trick
Layer 1 Layer L

neighbor aggregation

random initialization

Fig. 2: The architecture of VR-GNN. It consists of two components: an encoder to generate
relation vectors by combining structure, feature and label information, and a decoder to
achieve node classification with generated relation vectors. The encoder generates three types
of sub-relation with variational inference and composes them into final relation vectors. The
three sub-relations are set as multivariate normal distribution with mutual independence.
The decoder utilizes the relation vectors to translate original neighbor features into proper
messages and aggregates them for obtaining final node representations.

Since the true posterior pθ(z|A,X,Ytr) is intractable, we adopt variational
inference [18] to learn it. We introduce a variational distribution qφ(z|A,X,Ytr),
parameterized by ϕ, to approximate pθ(z|A,X,Ytr), and we aim to minimize KL
divergence between the two distributions:

minKL [qφ(z|A,X,Ytr)∥pθ(z|A,X,Ytr)] (3)

then following the standard derivation of variational inference, we can get the evidence
lower bound (ELBO) learning object:

maxL(θ,φ) =−KL [qφ(z|A,X,Ytr)||p(z)] +
Eqφ(z|A,X,Ytr) [log pθ(Ytr|z,A,X)]

=Len + Lde

(4)

The specific proof of equation 4 is as follows:

7

Proof 1. Equation 3 can be transformed with following steps:

KL [qφ(z|A,X,Ytr)∥pθ(z|A,X,Ytr)]

=Ez∼qφ [log qφ(z|A,X,Ytr)− log pθ(z|A,X,Ytr)]

=Ez∼qφ

[

log qφ(z|A,X,Ytr)− log
pθ(z,Ytr|A,X)

pθ(Ytr|A,X)

]

=Ez∼qφ [log qφ(z|A,X,Ytr)− log pθ(z,Ytr|A,X)] +

Ez∼qφ [pθ(Ytr|A,X)]

=− L(θ,φ) + pθ(Ytr|A,X) ≥ 0

Therefore, maximizing the log-likelihood pθ(Ytr|A,X) is equivalent to maximizing its
ELBO:

L(θ,φ) =−Ez∼qφ [log qφ(z|A,X,Ytr)− log pθ(z,Ytr|A,X)]

=Ez∼qφ [−(log qφ(z|A,X,Ytr)− log p(z))] +

Ez∼qφ [log pθ(z,Ytr|A,X)− log p(z)]

=−KL [qφ(z|A,X,Ytr)||p(z)] +
Eqφ(z|A,X,Ytr) [log pθ(Ytr|z,A,X)]

=Len + Lde

The derived ELBO includes two terms, which respectively correspond to the
encoder and decoder training of VR-GNN. The first term Len is a KL divergence where
the encoder ϕ is trained to generate relation vector z by observed graph information
A, X, Ytr. Meanwhile, z is controlled by a manually assigned prior distribution p(z).
For the second term Lde, the decoder θ is trained to employ generated z together with
A and X to predict observed node labels Ytr.

In the inference phase, the learned encoder ϕ can be directly used to generate
relation vectors, and the decoder θ is used to predict the unknown node labels. Hence
we derive the final formulization of VR-GNN:

p(θ,φ)(Y|A,X,Ytr) =

∫

qφ(z|A,X,Ytr) pθ(Y|z,A,X,Ytr) dz (5)

The framework demonstration is given in figure 2.

4.2 Encoder: Relation Vector Generation

We model the relation vector of each connection with a independent identically dis-
tribution assumption. Given A, X and Ytr, the variational posterior distribution

8

qφ(z|A,X,Ytr) and prior distribution p(z) can be factorized as:

qφ(z|A,X,Ytr) =
∏

eij∈E

qφ(zij |A,X,Ytr)

p(z) =
∏

eij∈E

p(zij)
(6)

and the learning object of encoder can be rewritten as:

Len = −
∑

eij∈E

KL [qφ(zij |A,X,Ytr)||p(zij)] (7)

We let the posterior be a multivariate normal distribution, and the prior a standard
multivariate normal distribution, which is flexible and could make the computation
analytical:

qφ(zij |A,X,Ytr) = N (µij ,σ
2
ijI)

p(zij) = N (0, I)
(8)

where µij and σ
2
ij are distribution parameters to be learned.

Furthermore, the relation vector zij expects to encode the comprehensive
homophily and heterophily characteristics of a connection. To achieve this goal, we
mainly consider three aspects of information to generate zij : structure, feature and
label (corresponding to A, X and Ytr). It is a reasonable choice since there have
been works showing that graph topology, node feature and node labels are served as
important factors for homophily and heterophily modeling [19–21].

Specifically, we decompose zij into three sub-relation vectors generated from
varying aspects, then linearly combined them together for fusing the information:

zij = αszs,ij + αfzf,ij + αlzl,ij (9)

where α· are hyper-parameters for composing weight. zs,ij , zf,ij and zl,ij denote
structure, feature and label sub-relation vectors, which are set as multivariate normal
distribution:

qφ(zs,ij |A,X,Ytr) = qφ(zs,ij |A) = N (µs,ij ,σ
2
s,ijI)

qφ(zf,ij |A,X,Ytr) = qφ(zf,ij |X) = N (µf,ij ,σ
2
f,ijI)

qφ(zl,ij |A,X,Ytr) = qφ(zl,ij |Ytr) = N (µl,ij ,σ
2
l,ijI)

(10)

Once we have got each sub-relation’s expectation µ·,ij and variance σ
2
·,ij , we can

further derive the distribution of zij as:

µij = αsµs,ij + αfµf,ij + αlµl,ij

σ
2
ij = α2

sσ
2
s,ij + α2

fσ
2
f,ij + α2

lσ
2
l,ij

(11)

and we detail the design of each sub-relation vector below.

9

Structure Sub-relation Vector

For capturing structure aspect information, we assign a randomly initialized expecta-
tion and variance embedding for each connection:

µs,ij ∈ R
|E|×H

σs,ij ∈ R
|E|×H

(12)

where H denotes hidden dimension. Because there is no guidance for generation, the
subsequent learning of sub-relation vector is in fact based on the graph structure.

Feature Sub-relation Vector

This is motivated by the observation that the feature of edge endpoints can be regarded
as weak label information and serve as an indicator for connecting homophily and
heterophily [20]. Specifically, we employ the MLP to transform the concatenation of
two endpoints feature, and generate expectation and variance as follows:

fij = ReLU (MLP([xi∥xj]))

µf,ij = MLP(fij)

σf,ij = MLP(fij)

(13)

Note that the above MLPs are different modules. For reducing used symbols, we adopt
the same denotation (the same below).

Label Sub-relation Vector

The label of two end-nodes can provide direct homophily and heterophily description
for a connection, but the usage of label information faces two problems: 1. There are
only partially observed node labels; 2. The introduction of label information for in-
degree node may lead to label leakage problem, as message passing will bring the
“correct answer” to the node. Therefore we only use out-degree node label to generate
sub-relation vector. Specifically, for a connection eij , we take node vi’s label yi as one-
hot vector, and feed it into MLP to generate expectation and variance embedding. For
unobserved labels, we set the one-hot vector as zero. The process can be formulized
as following:

µl,ij = MLP(yi)

σl,ij = MLP(yi)
(14)

Relation Vector Generation

After getting each sub-relations’ mean and variance embedding, we combine them
into the final embedding µij and σ

2
ij by equation 11. Additionally, instead of directly

sampling zij , we apply the re-parameterization trick of VAE [17] to make the sampling
process derivable:

zij = µij + σijϵ (15)

10

where ϵ ∼ N (0, I). After getting each edge’s posterior zij , equation 7 is conducted to
calculate the encoder loss.

4.3 Decoder: Message Passing with Relation Vector

The decoder aims to incorporate generated relation vectors into message-passing
framework, to complete downstream node classification task. In this work, our inspi-
ration is mainly based on the idea of TransE [15], a classical knowledge graph model,
that the relation both serves as a semantic and numerical translation for connected
nodes. Our message-passing function can be formalized as follows:

hl+1
i = U(hl

i,AGG(φ(hl
j , z

l
ji) : j ∈ Ni))

φ(hl
j , z

l
ji) = Wlhl

j + zlji
(16)

where hl
i denotes the embedding of node vi in layer l; zlji denotes the relation vector of

edge eji in layer l, with z0ji = zji. For each neighbor, we apply a matrix transformation
and relation translation before aggregating. This can convert neighbors to a more
proper feature with the central node, and flexibly model the homophily and heterophily
property of each connection when message passing.

After each layer, relation vectors will also go through a matrix transformation to
maintain the layer consistency with node embedding:

zl+1
ji = Wl

rel z
l
ji (17)

Next, we give the overall procedure of the decoder and corresponding implementa-
tion details. Firstly, we apply MLP to transform original node feature to higher-level
embedding:

h0
i = ReLU(MLP(xi)) (18)

Secondly, we conduct aggregation function. Considering that attention mechanism
can adaptively model the influence of different nodes, we take self-attention [22] to
aggregate neighbor information:

h̄l
i = AGG(φ(hl

j , z
l
ji) : j ∈ Ni) =

∑

j∈Ni

βl
ij(φ(h

l
j , z

l
ji)) (19)

where βl
ij is attention coefficient:

βl
ij =

exp{hl
iφ(h

l
j , z

l
ji)}

∑

k∈Ni
exp{hl

iφ(h
l
k, z

l
ki)}

(20)

Thirdly, we conduct updating function to renew the central node embedding:

hl+1
i = θh̄l

i + (1− θ)h0
i (21)

11

where θ is to balance h̄l
i and h0

i , that can maintain the computing stability by attaching
a residual of initial layer. Then the second and third steps will iterate L times to get
the output node representation:

hi = hL
i (22)

Finally, we employ an MLP to perform node classification:

ypredi = MLP(hi) (23)

4.4 Training and Inference

Training

After getting the prediction of each node, we can calculate a semi-supervised loss for
the decoder, which corresponds to the second term of equation 4:

Lde = − 1

Ntr

∑

vi

CE(ypredi , yi) (24)

where Ntr is the training node number; CE(·) denotes the cross entropy function. Then
with the encoder loss of equation 7, we could derive the overall loss of the model:

L(θ,φ) =γLen + (1− γ)Lde (25)

Here we add a weighting hyper-parameter γ between the encoder and decoder, which
aims to provide training process a more flexible focus.

Inference

In the inference phase, when generating zij by qφ(zij |A,X,Ytr), we directly use the
expectation µij as the relation vector of edge eij . We ignore the variance σij to reduce
the noise for inference, which is similar as [23].

4.5 Algorithm Complexity Analysis

Here we analyse the time complexity of VR-GNN. The generation of each sub-relation
vector costs O(|E|), hence the time complexity of encoder is O(|E|). For the decoder,
the feature transformation in equation 18 is of O(|V|) complexity. For each GNN layer,
the aggregation function and updating function respectively cost O(|E|) and O(|V|)
complexity. Finally, the MLP for classification is of O(|V|) complexity.

Therefore, the overall time complexity of VR-GNN is:

O(L|E|+ L|V|)

where L is the layer number. This matches the complexity degree of other GNN
baselines, like FAGCN [12] and GPR-GNN [24].

12

5 Experiments

5.1 Experiment Setup

Table 2: Homophily Datasets Statistics

Cora CiteSeer PubMed

Node 2708 3327 19717
Edge 10556 9228 88651
Feature 1433 3703 500
Class 7 6 5

Homophily Ratio H 0.656 0.578 0.644

Table 3: Heterophily Datasets Statistics

Chameleon Squirrel Actor Texas Cornell

Node 2277 5201 7600 183 183
Edge 62742 396706 53318 558 554
Feature 767 2089 932 1703 1703
Class 5 5 5 5 5

Homophily Ratio H 0.024 0.055 0.008 0.016 0.137

Datasets

In the experiments, we utilize eight real-world datasets with different homophily ratios:

• Cora, Citeseer and Pubmed are three citation networks [25, 26] with high homophily
ratio.

• Chameleon and Squirrel [10] are page-page networks extracted from Wikipedia of
specific topics, with low homophily ratio.

• Actor [10] is constructed according to the actor co-occurrence in Wikipedia pages
and holds low homophily ratio.

• Cornell and Texas [10] are two sub-datasets of WebKB, a webpage database
constructed by Carnegie Mellon University, and possess low homophily ratio.

In practice, Cora, Citeseer and Pubmed are regarded as homophilic graphs, and
Chameleon, Squirrel, Actor, Cornell and Texas are considered as heterophilic graphs.
The statistics of datasets are demonstrated in table 2 and tabel 3. We use the
same dataset partition as [10], which randomly splits nodes of each class into
train/validation/test set with a ratio of 60%/20%/20%.

13

Baselines

We compare VR-GNN with several existing strong baselines to verify the effectiveness
of our method, including:

• Non-GNN Method: MLP: that only considers node features and ignores graph
structure;

• Homophily-based GNNs: GCN [4], GAT [2] and SGC [27], which are designed
with the homophily assumption;

• Heterophily-based GNNs: FAGCN [12], GPR-GNN [24], BernNet[13],
ACM-GCN [14], GeomGCN [10], H2GCN [28], HOC-GCN [29], BM-GCN

[11], GloGNN++ [30], Auto-HeG [31], which are designed with the heterophily
assumption.

For MLP, GCN, GAT and SGC models, we tune them for the optimal parame-
ters. For FAGCN, GPR-GNN, ACM-GCN, BM-GCN and GloGNN++, we rerun the
models with the default parameters given by the author. For GeomGCN, H2GCN,
BernNet and HOC-GCN, Auto-HeG, we report the results of published papers. For
all methods, we report the mean accuracy with a 95% confidence interval of 10 runs.

For our method, we use early stopping strategy with 200 epochs and set an max-
imum epoch number as 1000. We set the dimensional size of node embedding and
relation vector as 64, and the layer number of GNN as 2. We use Adam optimizer
to train the model, and tune learning rate from {0.01, 0.02, 0.05, 0.001, 0.002, 0.005},
weight decay from {0, 1e − 4, 5e − 4, 1e − 5, 5e − 5}. We tune the hyperparameters
αs, αf , αl, θ, γ from 0 to 1, with 0.1 step size. To mitigate the overfitting problem, we
take dropout when training. We implement our method based on PyTorch Geometric
(PyG) library [32] and Python 3.9.12. The program is executed on 32GB Tesla V100
GPU.

5.2 Results of Node classification Task

Table 4 and 5 list the results of VR-GNN and other baselines for node classification
task, from which we can observe that:

VR-GNN outperforms all the other methods on all five heterophilic datasets. This
proves the effectiveness of employing relation vectors to achieve a heterophily-based
GNN. Specifically, VR-GNN significantly outperforms traditional GNNs, i.e. GCN,
GAT and SGC, relatively by 24.8%, 20.5% and 41.3% on average, since they cannot
generalize to heterophily scenarios. Compared with other heterophily-based GNNs,
including both the method type of mixing high-order neighbors and passing signed
messages, VR-GNN also achieves effective improvements, like 5.1% over ACM-GNN on
Chameleon, 11.8% over BernNet on Squirrel, 13.8% over GloGNN++ on Actor, 14.1%
over BM-GCN on Texas, 4.3% over GPR-GNN on Cornell. These results demonstrate
that VR-GNN could model the heterophilic connections more flexibly and expressively,
meanwhile without destroying the graph structure.

On homophilic datasets, i.e. Cora, Citeseer and Pubmed, VR-GNN performs better
or comparably to the baselines. Specifically, VR-GNN outperforms all the methods on
Citeseer and Pubmed dataset. For Cora dataset, VR-GNN also achieves the second
best result with only 0.87 difference with GAT. These show that VR-GNN possesses

14

Table 4: Results on homophilic with mean accuracy (%) ± 95% confidence interval. The
best and second best results are in bold and underlined. OOM means out of memory when
reproducing. H2GCN and HOC-GCN report mean accuracy (%)± standard deviation.

Homophilic Datasets
Cora Citeseer Pubmed

MLP 77.83±1.28 76.77±0.90 85.67±0.33

GCN 87.87±1.03 80.26±0.60 87.16±0.27

GAT 89.14±0.95 81.45±0.59 87.51±0.25

SGC 86.78±0.95 80.71±0.55 81.93±0.21

FAGCN 87.58±1.09 81.79±1.01 84.26±0.41

GPR-GNN 88.11±1.05 79.51±0.85 89.25±0.46

BernNet 88.52±0.95 80.09±0.79 88.48±0.41

ACM-GCN 88.01±0.68 80.87±0.81 89.20±0.20

GeomGCN 85.4±0.26 76.42±0.37 88.51±0.08

H2GCN 86.92±1.35 77.07±1.64 89.40±0.34

HOC-GCN 87.04±1.10 76.15±1.88 88.79±0.40

BM-GCN 87.53±0.70 80.29±1.02 89.32±0.47

GloGNN++ 76.85±0.64 75.33±0.78 OOM
Auto-HeG 86.88±1.10 75.81±1.52 89.29±0.27

VR-GNN 88.27±0.89 81.95±0.77 89.65±0.33

a consistent performance on homophily scenarios, which further proves the adaptive
modeling capacity of relation vectors.

5.3 Ablation Study of Three Sub-relations

To evaluate the effect of each sub-relation vector part, we conduct the ablation study
of only removing one sub-relation part and simultaneously removing two of them. We
take Chameleon, Squirrel, Texas and Citeseer as example datasets. The results are
demonstrated in table 6. The subscripts s, f , l respectively denote the sub-relation
used. We can see that generating relation vectors with absence of some relation cannot
provide stable performance across datasets compared to VR-GNN, which verifies the
necessity of composing all three parts.

5.4 Compared with Other Encoder Designs

Currently, many works use GNN as an encoder to get the hidden embedding of data
[23, 33]. To further verify the efficacy of our encoder design, we compare it with some
GNN-based encoders such as GCN and SGC on four datasets. Specifically, we first
employ GCN (SGC) to get node embeddings, then concatenate the embeddings of two
endpoints of each edge, and use MLP to calculate the mean µ and variance σ of the
relation vector. Other structure of VR-GNN remains the same. The results are shown
in table 7. We can observe that our encoder outperforms GCN and SGC by 3.1%
and 2.5% on average. Our method is designed to explicitly extract three aspects of

15

Table 5: Results on heterophilic datasets with mean accuracy (%)±95% confidence interval.
The best and second best results are in bold and underlined. H2GCN and HOC-GCN report
mean accuracy (%)± standard deviation.

Heterophilic Datasets
Chameleon Squirrel Actor Texas Cornell

MLP 47.61±1.23 31.73±0.98 39.20±0.82 89.51±1.80 89.51±2.60

GCN 62.93±1.82 46.33±1.06 33.73±0.85 78.69±3.28 65.74±4.43

GAT 63.26±1.40 42.81±1.14 35.93±0.42 79.67±2.30 77.70±2.62

SGC 64.55±1.36 40.45±0.71 29.97±0.66 69.18±2.62 52.62±3.61

FAGCN 63.30±1.08 41.26±1.24 38.36±0.72 90.00±3.78 88.38±2.16

GPR-GNN 66.43±0.74 52.96±0.92 39.69±0.72 91.80±1.64 88.85±2.13

BernNet 68.29±1.58 51.35±0.73 41.79±1.01 93.12±0.65 92.13±1.64

ACM-GCN 67.74±1.39 53.59±0.70 39.86±1.00 92.97±2.43 91.16±1,62

GeomGCN 61.06±0.49 38.28±0.27 31.81±0.24 58.56±1.77 55.59±1.59

H2GCN 57.11±1.58 36.42 ±1.89 35.86±1.03 84.86±6.77 82.16±4.80

HOC-GCN - - 36.82±0.84 85.17±4.40 84.32±4.32

BM-GCN 69.85±0.85 51.59±1.05 39.23±0.70 83.11±2.79 82.79±2.95

GloGNN++ 69.58±1.16 48.83±0.69 37.06±0.46 82.79±2.46 82.13±2.62

Auto-HeG - - 37.43±1.37 86.76±4.60 83.51±6.56

VR-GNN 71.21±1.17 57.50±1.18 42.16±0.42 94.86±1.89 92.70±2.70

Table 6: Ablation study of three sub-relations.

Datasets Chameleon Squirrel Texas Citeseer

VR-GNNs 69.89 53.37 93.24 81.02
VR-GNNf 69.54 52.74 93.51 81.16
VR-GNNl 70.00 53.43 92.97 80.96
VR-GNNsf 70.22 55.12 93.71 81.36
VR-GNNsl 70.69 56.78 93.71 81.20
VR-GNNf l 70.30 54.48 93.51 81.88

VR-GNN 71.21 57.50 94.86 81.95

information for generation, which can make the encoding process more effective and
less noisy.

5.5 Visualization Analysis

To show the modeling effect of VR-GNN more intuitively, we conduct the node embed-
ding visualization for Squirrel dataset. We extract the node embedding of VR-GNN
and five promising baselines (BM-GCN, GloGNN++, FAGCN, GPR-GNN and ACM-
GCN), then employ t-SNE [34] algorithm to map them into 2-dimensional space for
visualization. The results are shown in figure 3. We can observe that VR-GNN learns
more discriminative node embedding, which is more cohesive within the same cate-
gory and dispersed between the different categories. This further proves the validity of

16

(a) BM-GCN (b) GloGNN++ (c) FAGCN

(d) GPR-GNN (e) ACM-GCN (f) VR-GNN

Fig. 3: Node embedding visualization for Squirrel dataset. Different colors correspond to
different node classes.

Table 7: Comparison results with other encoder
designs.

Datasets
Encoder

Chameleon Squirrel Texas Citeseer

GCN 69.38 52.76 91.35 80.68
SGC 69.93 53.75 91.08 80.78
Ours 71.21 57.50 94.86 81.95

the relation vector based message-passing, which can produce more accurate assimila-
tion and dissimilation effects between nodes according to homophily and heterophily
connections.

5.6 Hyper-parameter Analysis

In this section, we investigate the sensitivity of hyper-parameters used in VR-GNN.
We take Chameleon, Squirrel, Cora and Pubmed as example datasets.

17

Weight Parameter γ.

To investigate the influence of KL divergence loss (encoder loss) for learning effect,
we conduct the sensitivity experiment for parameter γ (equation 25). We test the
node classification accuracy of VR-GNN with γ ranging from 0.1 to 0.9. The results
are reported in figure 4. We can discover that the trends of γ are the same in all
datasets where a low point slowly rise to a maximum and then gradually decline. This
is because KL loss restricts the generated relation vector not to deviate far from the
prior distribution, and the small γ may lead to too large or too small embedding, while
the large γ will harm the learning of classification task.

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
cc
u
ra
cy

Chameleon Squirrel

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
cc
u
ra
cy

Cora Pubmed

Fig. 4: Influence of weight parameter γ on Chameleon, Squirrel, Cora and Pubmed dataset.

Weight Parameter θ.

The parameter θ balances the node’s original feature and neighbor aggregation infor-
mation (equation 21). A larger θ indicates a greater role graph structure plays. We
test the node classification accuracy of VR-GNN with θ from 0.1 to 0.9. The results
are shown in figure 5. We can observe that VR-GNN has greater θ on Chameleon and
Squirrel datasets. This is because in Chameleon and Squirrel graph structure is more
important, while in Cora and Pubmed node feature is more important. This can also
be proven in table 4 and table 5: VR-GNN improves 49.6% and 81.2% over MLP on
Chameleon and Squirrel, while only 13.4% and 4.6% on Cora and Pubmed.

Analysis of Parameters αs, αf , αl.

Figure 6 shows the best results of αs, αf and αl on four datasets. We can observe that
although the parameters of different datasets are not completely consistent, they still
show some similarity, which is related to the characteristics of corresponding datasets.
Previous work [35] has shown that the label distribution of Chameleon and Squirrel
greatly improves the results, so the weights of αl are the largest on these two datasets.
Cora and PubMed have better initial feature, so αf has more weight.This further
illustrates the necessity of combining all three relations to achieve stable performance
across datasets.

18

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
cc
u
ra
cy

Chameleon Squirrel

0.85

0.86

0.87

0.88

0.89

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
cc
u
ra
cy

Cora Pubmed

Fig. 5: Influence of weight parameter θ on Chameleon, Squirrel, Cora and Pubmed dataset.

0

0.2

0.4

0.6

0.8

1

1.2

Chameleon Squirrel Cora PubMed

structure feature label

Fig. 6: Analysis of parameters αs, αf , αl.

5.7 Visualization Analysis of Relation Vectors

In this section, we give some intuitive demonstrations of the relation vector and com-
pare it with the signed message method, which models the heterophilic edge as a high
frequency signal and is the mainstream of current methods.

For the message passing on edge eji, we denote the relation vector message as mrel
ji

and compute it according to equation 16:

mrel
ji = Whj + zji

19

cosine

similarity

(a) Signed Message

cosine

similarity

(b) Relation Vector Message

Fig. 7: Similarity visualization between the message passed and the central node class.
Different node colors represent different classes. The edge shade indicates the cosine similarity
value from −1 to 1.

0.56

Relation

Vector Message

Signed Message

edge

original

representation

new

representation

(a) Homophily Connection

0.94

Relation

Vector Message

Signed Message

original

representation

new

representation

edge

(b) Heterophily Connection

Fig. 8: Relation vector message and signed message for assimilating and dissimilating nodes.
The two edges are e56,6 and e126,18 in Texas dataset. Red and purple colors denote the node
classes, and light coloring represents the new representation after “aggregation”. The number
of edges indicate the Euclidean distance of two nodes.

For the signed message, we directly assign the correct sign for the connection, with
+1 for homophily and −1 for heterophily:

m
sign
ji =

{

Whj , yj = yi

−Whj , yj ̸= yi

20

where matrix W is the same in mrel
ji and m

sign
ji . Then we conduct two aspects of

analysis, to compare the effect of two messages for modeling homophily/heterophily
connections and helping node classification task.

Effect for Modeling Homophily/Heterophily

Modeling homophily/heterophily property of a connection means that the message
could conduct effective assimilating/dissimilating operation between connected nodes.
To evaluate this, we utilize the embedding of VR-GNN in L − 1 layer and compute
the relation vector message mrel

ji and signed message m
sign
ji for each edge. Then by

adding the messages to hi respectively, we can get the new representation of central
node hrel

i and h
sign
i . We compare hrel

i , hsign
i and original representation hi with the

neighbor hj , to evaluate the distance change. For demonstration, we take two edges
of Texas dataset as the example. The results are shown in figure 8. We can see that
the “aggregation” of relation vector message makes the connected nodes closer under
homophily and more distant under heterophily, which shows its superiority over signed
message method.

Effect for Helping Node Classification

In addition to accurately describe the connection property, a valid message should also
be consistent with the central node class, so as to facilitate the node classification. To
show this, we first calculate the mean center for each node class, based on L layer’s
node embedding of VR-GNN. Then we compute the message mrel

ji and m
sign
ji of L− 1

layer. For each edge, we compare mrel
ji and m

sign
ji with the class center of node vi using

cosine similarity. The results are shown in figure 7. We can observe that relation vector
messages are more similar with the central node class than signed messages on most
edges, which achieves a more center-cohesive node representation for classification and
corresponds to the node visualization results in figure 3.

6 Related Work

GNNs have been established as powerful and flexible tools for graph representation
learning. A large class of GNNs build multilayer models, where each layer operates on
the previous layer to generate new representations using a message-passing mechanism
to aggregate local neighborhood information. According to the connection characteris-
tics of the applied graphs, we introduce two families of GNN works: homophily-based
GNNs and heterophily-based GNNs.

6.1 Homophily-based GNNs

The homophily-based GNNs are developed mainly for homophilic graphs, which are
the earliest proposed and extensively studied. It contains two major types: spectral-
based GNNs and spacial-base GNNs. Spectral-based GNNs use spectral graph theory
to design aggregation strategy: GCN [4] propose the most common graph convolu-
tion mode with simplifying the polynomial convolution kernel and renormalization
trick; SGC [27] emphasizes that the entanglement of convolutional filters and weight

21

matrices may be harmful to the performance of GNNs and propose a lightweight
GNN model. Spatial-based GNNs design the GNN aggregation mechanism based
directly on the connections of graph: GAT [2] applies the self-attention mechanism
to adaptively adjust aggregation weights; GraphSage [36] proposes an inductive node
embedding method with sampling and aggregating features from neighborhood. GIN
[37] designs a simple yet effective convolution mechanism to explore the upper bound
of message-passing based GNNs under homophily. These methods directly use the
original neighbor information to enhance node representation, which perform well on
homophilic graphs, where connected nodes tend to possess similar features and belong
to the same class. However, these methods suffer from poor performance and even
underperform MLP that completely ignores the graph structure on heterophilic graphs
where connected nodes have dissimilar features and different labels.

6.2 Heterophily-based GNNs

The poor performance of homophily-based GNNs on heterophilic scenarios inspires
the study of heterophily-based GNNs. Heterophily-based GNNs can be mainly divided
into two families based on designing methodologies: mixing high-order neighbors and
passing signed messages. Mixing high-order neighbors expects to aggregate more
homophilic nodes and remove heterophilic nodes. Specific introduction is as fol-
lows: Geom-GCN [10] proposes a novel geometric aggregation scheme to acquire
more homophilic neighbors; BM-GCN [11] explores block-guided neighbors and con-
ducts classified aggregation for both homophilic and heterophilic nodes; GloGNN [30]
learns a coefficient matrix from graph and utilizes it to aggregate nodes with global
homophily. HOC-GCN [29] incorporate a learnable homophily degree matrix into
graph convolution framework for modeling the homophily and heterophily of networks.
H2GCN [28] applies some key designs, such as higher-order neighborhoods aggrega-
tion and combination of intermediate representations, to boost learning from graph
with heterophily. However, these methods require specific priors to rewrite the graph
structure, and such priors may not be applicable to all cases. Passing signed messages
uses positive and negative signs to modify neighbor information. Specific introduc-
tion is as follows: FAGCN [12] proposes an adaptive method to capture both low and
high-frequency graph signal by passing signed message; GPR-GNN [24] learns signed
weighting of different orders of graph structure to deal with both homophily and
heterophily. ACM-GCN [14] proposed a multi-channel mixing mechanism to enable
adaptive filtering at different nodes. However, the single numerical sign suffers from
limited expressing capacity, which causes the modeling to be inflexible and insufficient.
In summary, current methods are faced with the problem of insufficient aggregation of
neighbor information and inflexible aggregation mode, which is difficult to fully model
homophily and heterophily.

7 Conclusion

In this paper, we investigate the influence of fine-grained edge semantic information
on the node representation of heterophily graphs and propose a novel idea that intro-
duces the concept of relation vector into the message-passing framework for modeling

22

the implicit semantic of each edge. Based on the initial experimental verification of
the effectiveness of relation vector, we further present Variational Relation Vector
Graph Neural Network (VR-GNN), where relations are modeled as latent variable and
inferred by three kinds of graph data, and the downstream node classification task
is treated as the generation process guided by the learned latent variable. We show
that VR-GNN can serve as a more effective way for relation inferring and applying,
and extensive experiments on both homophily and heterophily datasets validate the
superiority of our method.

References

[1] Wang, H., Xu, T., Liu, Q., Lian, D., Chen, E., Du, D., Wu, H., Su, W.: Mcne:
an end-to-end framework for learning multiple conditional network representa-
tions of social network. In: Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 1064–1072 (2019)

[2] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.:
Graph Attention Networks. International Conference on Learning Representa-
tions (2018). accepted as poster

[3] Sanyal, S., Anishchenko, I., Dagar, A., Baker, D., Talukdar, P.: Proteingcn: Pro-
tein model quality assessment using graph convolutional networks. bioRxiv (2020)
https://doi.org/10.1101/2020.04.06.028266

[4] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: International Conference on Learning Representations (ICLR)
(2017)

[5] Klicpera, J., Bojchevski, A., Günnemann, S.: Predict then propagate: Graph
neural networks meet personalized pagerank. In: International Conference on
Learning Representations (2018)

[6] Chen, M., Wei, Z., Huang, Z., Ding, B., Li, Y.: Simple and deep graph convolu-
tional networks. In: International Conference on Machine Learning, pp. 1725–1735
(2020). PMLR

[7] McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: Homophily in
social networks. Annual Review of Sociology 27(1), 415–444 (2001) https://doi.
org/10.1146/annurev.soc.27.1.415 https://doi.org/10.1146/annurev.soc.27.1.415

[8] Lim, D., Hohne, F., Li, X., Huang, S.L., Gupta, V., Bhalerao, O., Lim, S.N.:
Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. Advances in Neural Information Processing Systems 34 (2021)

[9] Li, Q., Han, Z., Wu, X.-M.: Deeper insights into graph convolutional networks
for semi-supervised learning. In: Thirty-Second AAAI Conference on Artificial
Intelligence (2018)

23

https://doi.org/10.1101/2020.04.06.028266
https://doi.org/10.1146/annurev.soc.27.1.415
https://doi.org/10.1146/annurev.soc.27.1.415
https://arxiv.org/abs/https://doi.org/10.1146/annurev.soc.27.1.415

[10] Pei, H., Wei, B., Chang, K.C.-C., Lei, Y., Yang, B.: Geom-gcn: Geometric graph
convolutional networks. In: International Conference on Learning Representations
(2019)

[11] He, D., Liang, C., Liu, H., Wen, M., Jiao, P., Feng, Z.: Block modeling-guided
graph convolutional neural networks. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 36, pp. 4022–4029 (2022)

[12] Bo, D., Wang, X., Shi, C., Shen, H.: Beyond low-frequency information in graph
convolutional networks. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, pp. 3950–3957 (2021)

[13] He, M., Wei, Z., Huang, Z., Xu, H.: Bernnet: Learning arbitrary graph spectral
filters via bernstein approximation. In: NeurIPS (2021)

[14] Luan, S., Hua, C., Lu, Q., Zhu, J., Zhao, M., Zhang, S., Chang, X.-W., Pre-
cup, D.: Revisiting heterophily for graph neural networks. Conference on Neural
Information Processing Systems (2022)

[15] Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Trans-
lating embeddings for modeling multi-relational data. Advances in neural
information processing systems 26 (2013)

[16] Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural mes-
sage passing for quantum chemistry. In: International Conference on Machine
Learning, pp. 1263–1272 (2017). PMLR

[17] Kingma, D.P., Welling, M.: Auto-Encoding Variational Bayes. In: 2nd Interna-
tional Conference on Learning Representations, ICLR 2014, Banff, AB, Canada,
April 14-16, 2014, Conference Track Proceedings (2014)

[18] Mnih, A., Gregor, K.: Neural variational inference and learning in belief networks.
In: International Conference on Machine Learning, pp. 1791–1799 (2014). PMLR

[19] Suresh, S., Budde, V., Neville, J., Li, P., Ma, J.: Breaking the limit of graph neural
networks by improving the assortativity of graphs with local mixing patterns. In:
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, pp. 1541–1551 (2021)

[20] Yang, L., Li, M., Liu, L., Wang, C., Cao, X., Guo, Y., et al.: Diverse message
passing for attribute with heterophily. Advances in Neural Information Processing
Systems 34 (2021)

[21] Zhu, J., Rossi, R.A., Rao, A., Mai, T., Lipka, N., Ahmed, N.K., Koutra, D.:
Graph neural networks with heterophily. In: Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 35, pp. 11168–11176 (2021)

24

[22] Bahdanau, D., Cho, K., Bengio, Y.: Neural Machine Translation by Jointly Learn-
ing to Align and Translate. (2015). 3rd International Conference on Learning
Representations, ICLR 2015 ; Conference date: 07-05-2015 Through 09-05-2015

[23] Kipf, T.N., Welling, M.: Variational graph auto-encoders. NIPS Workshop on
Bayesian Deep Learning (2016)

[24] Chien, E., Peng, J., Li, P., Milenkovic, O.: Adaptive universal generalized
pagerank graph neural network. In: International Conference on Learning Repre-
sentations (2020)

[25] Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.:
Collective classification in network data. AI magazine 29(3), 93–93 (2008)

[26] Namata, G., London, B., Getoor, L., Huang, B., EDU, U.: Query-driven active
surveying for collective classification. In: 10th International Workshop on Mining
and Learning with Graphs, vol. 8, p. 1 (2012)

[27] Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph
convolutional networks. In: International Conference on Machine Learning, pp.
6861–6871 (2019). PMLR

[28] Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., Koutra, D.: Beyond
homophily in graph neural networks: Current limitations and effective designs.
Advances in Neural Information Processing Systems 33, 7793–7804 (2020)

[29] Wang, T., Jin, D., Wang, R., He, D., Huang, Y.: Powerful graph convolutional
networks with adaptive propagation mechanism for homophily and heterophily.
In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp.
4210–4218 (2022)

[30] Li, X., Zhu, R., Cheng, Y., Shan, C., Luo, S., Li, D., Qian, W.: Finding global
homophily in graph neural networks when meeting heterophily. arXiv preprint
arXiv:2205.07308 (2022)

[31] Zheng, X., Zhang, M., Chen, C., Zhang, Q., Zhou, C., Pan, S.: Auto-
heg: Automated graph neural network on heterophilic graphs. arXiv preprint
arXiv:2302.12357 (2023)

[32] Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geomet-
ric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds
(2019)

[33] Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., Zemel, R.: Neural relational infer-
ence for interacting systems. In: International Conference on Machine Learning,
pp. 2688–2697 (2018). PMLR

25

[34] Hinton, G., Maaten, L.: Visualizing data using t-sne journal of machine learning
research (2008)

[35] Ma, Y., Liu, X., Shah, N., Tang, J.: Is homophily a necessity for graph neural
networks? In: The Tenth International Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, ??? (2022). https:
//openreview.net/forum?id=ucASPPD9GKN

[36] Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. Advances in neural information processing systems 30 (2017)

[37] Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural
networks? In: International Conference on Learning Representations (2018)

8 Declarations

8.1 Ethical Approval

Not applicable.

8.2 Funding

This work is supported by the National Key Research and Development Program of
China (NO.2022YFB3102200) and Strategic Priority Research Program of the Chinese
Academy of Sciences with No. XDC02030400.

8.3 Availability of data and materials

All datasets are available in PyTorch Geometric (PyG) library [32].

26

https://openreview.net/forum?id=ucASPPD9GKN
https://openreview.net/forum?id=ucASPPD9GKN

	Introduction
	Preliminary
	Problem Definition
	Message-passing Framework
	Homophily Ratio

	Effectiveness Verification of Relation Vector
	Methodology
	VR-GNN Framework
	Encoder: Relation Vector Generation
	Structure Sub-relation Vector
	Feature Sub-relation Vector
	Label Sub-relation Vector
	Relation Vector Generation

	Decoder: Message Passing with Relation Vector
	Training and Inference
	Training
	Inference

	Algorithm Complexity Analysis

	Experiments
	Experiment Setup
	Datasets
	Baselines

	Results of Node classification Task
	Ablation Study of Three Sub-relations
	Compared with Other Encoder Designs
	Visualization Analysis
	Hyper-parameter Analysis
	Weight Parameter .
	Weight Parameter .
	Analysis of Parameters s,f,l.

	Visualization Analysis of Relation Vectors
	Effect for Modeling Homophily/Heterophily
	Effect for Helping Node Classification

	Related Work
	Homophily-based GNNs
	Heterophily-based GNNs

	Conclusion
	Declarations
	Ethical Approval
	Funding
	Availability of data and materials

