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Abstract
This paper proposes a new boundary uncertainty-based estimation method that has significantly higher accuracy, scalability,
and applicability than our previously proposed boundary uncertainty estimation method. In our previous work, we introduced
a new classifier evaluation metric that we termed “boundary uncertainty.” The name “boundary uncertainty” comes from
evaluating the classifier based solely on measuring the equality between class posterior probabilities along the classifier
boundary; satisfaction of such equality can be described as “uncertainty” along the classifier boundary. We also introduced
a method to estimate this new evaluation metric. By focusing solely on the classifier boundary to evaluate its uncertainty,
boundary uncertainty defines an easier estimation target that can be accurately estimated based directly on a finite training set
without using a validation set. Regardless of the dataset, boundary uncertainty is defined between 0 and 1, where 1 indicates
whether probability estimation for the Bayes error is achieved. We call our previous boundary uncertainty estimation method
“Proposal 1” in order to contrast it with the new method introduced in this paper, which we call “Proposal 2.” Using Proposal
1, we performed successful classifier evaluation on real-world data and supported it with theoretical analysis. However,
Proposal 1 suffered from accuracy, scalability, and applicability limitations owing to the difficulty of finding the location of
a classifier boundary in a multidimensional sample space. The novelty of Proposal 2 is that it locally reformalizes boundary
uncertainty in a single dimension that focuses on the classifier boundary. This convenient reduction with a focus toward the
classifier boundary provides the new method’s significant improvements. In classifier evaluation experiments on Support
Vector Machines (SVM) and MultiLayer Perceptron (MLP), we demonstrate that Proposal 2 offers a competitive classifier
evaluation accuracy compared to a benchmark Cross Validation (CV) method as well as much higher scalability than both
CV and Proposal 1.

Keywords Pattern classification · Generalization ability · Bayes error · Model selection

1 Introduction

A fundamental problem in statistics, machine learning, and
pattern classification is to obtain an accurate estimate for
the generalization ability of a learning algorithm trained
on a finite dataset. The generalization ability of a pattern
classifier is traditionally measured in terms of classification
error probability. The goal of pattern classification is to
execute the optimal classification rule (aka a Bayes decision
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rule) that corresponds to the minimum classification error
probability (aka a Bayes error). However, the estimate of the
error probability based on a finite amount of training data is
so seriously biased that it cannot directly indicate the error
probability [1].

A major conventional approach to classification error
probability is Structural Risk Minimization (SRM)[2].
SRM provides an analytic estimation of the classification
error probability. However, the resulting estimation can be
loose in practice. Furthermore, the difficulty of deriving
the necessary SRM in a case-by-case manner hinders its
application [1, 3].

Hold Out (HO) evaluation bypasses the bias intrinsic
to the training data by splitting the available data into
training data and validation data. Then, the empirical error
rate of the validation data is used as an estimate of the
error probability. However, the error probability estimate
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obtained from a particular validation split may also be
biased. To resolve this issue, Cross Validation (CV) [4]
averages the error probability estimates obtained in turn
from different validation sets partitioned from the data. The
particular case where every sample is subsequently used as
a validation set is called Leave-One-Out (LOO). LOO is
known to converge to the expected error probability [5].

Bootstrap [6] reduces the variance of the error probability
estimation by averaging the estimations obtained from
different training sets by sampling with replacement. One
drawback of the resampling approaches (CV, Bootstrap) is
their costly training repetition that can be prohibitive in real-
world tasks [7], along with the sacrifice of separate data
for evaluation. In principle, training and evaluation on the
training data to directly target the Bayes error would be
preferable, although this has been difficult so far.

Moreover, error rate smoothing methods can improve
error probability estimation [8] based only on the training
set. For example, Minimum Classification Error training
[9] optimally determines the degree of smoothing of the
empirical error rate to target the Bayes error. However, the
settings and effect of this automatic smoothing are ongoing
research issues [10].

Likelihood methods such as information criteria [11]
and Bayesian model selection [12, 13] rely on class
posterior probability estimation instead of estimating
the error probability. However, classification focuses
the quality of the estimation on the boundaries that
delineate class distributions, not on the class distributions
themselves. Therefore, likelihood approaches are not
necessarily optimal for classifier evaluation [14, 15].

The limitations described above come from the intrinsic
difficulty of estimating the error probability. To circumvent
these limitations, we proposed finding the optimally trained
classifier through a new classifier evaluation metric that is
uniquely easy to estimate in principle, which we termed
“boundary uncertainty” or alternately “Bayes-boundary-
ness” [16–18]. We chose the name “boundary uncertainty”
because this evaluation metric measures the generalization
ability of a classifier based on how equal class posterior
probabilities are along the classifier boundary. It is known
that the optimal classifier boundary is defined by equality
among the class posterior probabilities, and this situation
can be described as “uncertainty” along the boundary.
Boundary uncertainty is fundamentally easier to estimate
for two reasons: focusing the estimation on the classifier
boundary instead of integrating estimations over the
entire multidimensional space is easier, and the classifier
boundary is defined based on classifier parameters that
are precisely known. Furthermore, the value of boundary
uncertainty implies how close we are to the Bayes risk.

In addition to defining boundary uncertainty, our
previous work also proposed a boundary uncertainty

estimation method that here we refer to as “Proposal 1.”
Through experiments and theoretical analysis, we showed
that Proposal 1 could perform classifier evaluation using
neither sample distribution assumptions nor data resampling
methods [16–18]. However, Proposal 1 relied on largely
unclear settings and heavy treatment that seriously limited
both its accuracy and its scalability. This motivates our work
on a new boundary uncertainty estimation method that we
call “Proposal 2” and comprehensively introduce in this
paper.

The paper is organized as follows. In Section 2, we
prepare the formalization of the classification problem. In
Section 3, we summarize the previous method, i.e., Proposal
1. In Section 4, we introduce Proposal 2 as a new method.
Then, in Section 5, we discuss the time costs of classifier
evaluation for the two methods. In Section 6, we perform
experiments using these two methods and provide extensive
discussion. In Section 7, we finally summarize the paper.

Table 1 presents the main notations used in this paper.
The first column of the table indicates the section where
each notation is first used.

2 Formalization of Classification Problem

2.1 Bayes Decision Rule

We assume a d-dimensional sample space X , where we
intend to discriminate between J classes. Given j ∈ [[1, J ]]
and x ∈ X , we denote by P(Cj |x) the (true) class posterior
probability of Cj given x. The goal of a classifier is to
minimize the following classification risk:

R =
∫

x∈X
R(C(x)|x)p(x)dx. (1)

We can see that Eq. 1 operates over the entire multidi-
mensional sample space. C(x) represents the classification
decision for sample x (decision is one of the classes Cr ,
where r ∈ [[1, J ]]). R(C(x)|x) represents the risk when
assigning class C(x) to x:

R(Cr |x) =
J∑

j=1

λ(Cr |Cj )P (Cj |x), (2)

where λ(Cr |Cj ) denotes the cost of classifying a member of
class Cj as a member of class Cr . We assume the following
cost:

λ(Cr |Cj ) =
{
1, if r �= j,

0, otherwise.
(3)

This leads to the risk R(Cr |x) = 1 − P(Cr |x). This risk is
minimized by choosing Cr such that P(Cr |x) is the highest
among all of the class posterior probabilities at x. Based
on this consideration, the decision rule that achieves the
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Table 1 Summary of main notations.

Section Notation Description

Section 2.1 X Sample space, assumed to be fixed-dimensional in this paper for simplicity

Section 2.1 J Number of classes

Section 2.1 d Dimensionality of the sample space

Section 2.1 Cl Class label, where class index l ∈ [[1, J ]]
Section 2.2 N Number of training samples

Section 2.2 T Training set defined as {(xn, yn)}n∈[[1,N ]]. xn ∈ X : training sample; yn ∈ [[1, J ]]: its given class index

Section 2.2 Λ Set of classifier parameter values (“classifier status”)

Section 2.2 C(x;Λ) Given Λ, class label predicted by the classifier at x

Section 2.2 gl(x;Λ) Given Λ, discriminant function for class Cl at x

Section 3.1.1 {i∗(x), j∗(x)} Given Λ, indexes of the two (true) class posterior probabilities whose values at x are highest

Section 3.1.1 B∗ Bayes boundary defined as the set of samples x ∈ X that satisfy P(Ci∗(x)|x) = P(Cj∗(x)|x)

Section 3.1.2 {i(x;Λ), j (x;Λ)} Given Λ, indexes of the two discriminant functions whose values at x are highest

Section 3.1.2 B(Λ) Given Λ, classifier boundary defined as the set of samples x ∈ X that satisfy gi(x;Λ)(x;Λ) = gj(x;Λ)(x;Λ)

Section 3.1.3 ·̂ Hat notation: estimated quantity, in contrast to its expected (true) value

Section 3.1.3 Û (Λ) Given Λ, empirical boundary uncertainty

Section 3.1.3 Û (x;Λ) Given Λ, estimated local uncertainty at sample x

Section 3.1.3 Umin, Umax Minimum and maximum possible values of the local uncertainty function, respectively

Section 3.3 imax Imposed maximum number of dichotomy iterations when interpolating on a random segment

Section 3.3 RA Imposed number of anchors generated by Step 1 of Proposal 1

Section 3.4.1 NB(Λ) Near-boundary set selected by Step 1 of Proposal 1

Section 3.4.2 | · | Cardinal operator

Section 3.4.2 ¶Λ Set of clusters obtained by a single Tree Divisive Clustering (TDC)

Section 3.4.2 Nmin, Nmax Imposed minimum and maximum number of samples for each cluster in ¶, respectively

Section 3.4.2 iK Imposed maximum number of iterations during a 2-means clustering

Section 3.4.2 RT Imposed number of TDC repetitions

Section 3.4.4 Û (1)(x;Λ) Given Λ, estimate of empirical boundary uncertainty using Proposal 1

Section 4.2.1 fkl(x;Λ) Given Λ, given class indexes k, l ∈ [[1, J ]], near-boundary-ness measurement of sample x relative

to class indexes k and l

Section 4.2.2 ·̃ Tilde notation: operation that describes a perturbation (e.g., T̃ is the perturbated version of T ).

Section 4.2.2 x(m) m-th nearest training sample to x

Section 4.3.1 I∗ Set of couples of class indexes that compose the Bayes boundary B∗

Section 4.3.1 B∗(k, l) Set of training samples x ∈ X that satisfy {i∗(x), j∗(x)} = {k, l}
Section 4.3.2 P(Ckl |x) Given {k, l} ∈ I∗ and x ∈ X , probability that {i∗(x), j∗(x)} = {k, l}
Section 4.3.2 λU (C(x;Λ)| Ckl) Given Λ, given {k, l} ∈ I∗ and x ∈ X , boundary-wise cost of the classifier decision C(·;Λ) at

x in regard to class indexes k, l

Section 4.3.2 U(Λ) Given Λ, expected boundary uncertainty

Section 4.3.2 Ukl(Λ) Given Λ, given classes indexes {k, l} ∈ I∗, two-class boundary uncertainty relative to Ck, Cl

Section 4.4.1 NM(x) Set of M nearest training samples to x

Section 4.4.1 hx Given Λ, Parzen width estimated using Silverman’s rule of thumb on the (perturbated) projected

set {fi(x;Λ)j (x;Λ)(x̃
′;Λ)}x′∈NM(x)

Section 4.4.1 k̂(x;Λ) Given Λ and a sample x, count of how many samples in {fi(x;Λ)j (x;Λ)(x̃
′;Λ)}x′∈NM(x) fall

in [−hx;hx ]
Section 4.4.1 k̂m(x;Λ) Given Λ and a sample x, count of how many samples in {fi(x;Λ)j (x;Λ)(x̃

′;Λ)}x′∈NM(x) with

given class label m ∈ {i(x;Λ), j (x;Λ)} fall in [−hx;hx ]
Section 4.4.1 Û (2)(Λ) Given Λ, finite estimate of local uncertainty provided by Proposal 2

Section 4.4.3 Tj Given j ∈ [[1, J ]], set of training samples with given class label Cj

Section 4.4.3 Kj Given j ∈ [[1, J ]], number of prototypes used to represent class Cj

Section 4.4.4 Nj Given j ∈ [[1, J ]], number of training samples with given class label Cj

Section 4.5 Û (3)(Λ) Given Λ, estimate of expected boundary uncertainty provided by Proposal 2 for separability cases
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Table 1 (continued)

Section Notation Description

Section 5.1 cadd Time costs of a scalar addition

Section 5.1 cmul Time costs of a scalar multiplication

Section 5.1 cexp Time costs to compute exponential function

Section 5.1 ccomp Time costs of a scalar comparison

Section 5.1 cCL(d, J, Λ) Given Λ, time cost of one classification in the sample space that has d dimensions and J classes

Section 5.1 c(2)(Λ) Given Λ, time costs of Proposal 2 to estimate U(Λ)

Section 5.1 c
(2)
shared Preliminary time cost of Proposal 2 to estimate U(Λ), which is shared across L candidate classifier statuses and

applied only once, regardless of L

Section 5.1 RK Number of values that we try for K

Section 5.2 c(1)(Λ) Given Λ, time costs of Proposal 2 to estimate U(Λ)

minimum classification error probability (aka a Bayes error)
is [19]

C∗(x) = Cr ⇔ r = argmax
j∈[[1,J ]]

P(Cj |x). (4)

This optimal classification decision is called the Bayes
decision rule. Unfortunately, class posterior probabilities are
unknown and difficult to accurately estimate in practice.

2.2 Classifier Decision Rule

We denote by T = {(xn, yn)}n∈[[1,N]] the training set that
consists of N pairs of a training sample xn ∈ X and of
its class index yn ∈ [[1, J ]]. We emphasize the difference
between y(xn) = yn, the given class index at xn, and
C(xn; Λ), the class label predicted by the classifier at any
sample xn. The decision of most classifiers is formalized as

C(x; Λ) = Cr ⇔ r = argmax
j∈[[1,J ]]

gj (x; Λ). (5)

The parameter vector Λ encompasses trainable parameters
that are optimized on the training data (e.g., network
weights) as well as hyperparameters that are traditionally set
using validation data (e.g., regularization parameters). We
refer to a specific value of Λ as “classifier status.” gj (·; Λ)

is called a discriminant function. Its value at a sample x

estimates the degree to which x belongs to Cj . gj (x; Λ)

does not necessarily directly estimate P(Cj |x) [20]. The
goal of this training is to findΛ so that the values of gj (·; Λ)

result in a classifier decision rule (5) that executes the Bayes
decision rule (4).

2.3 Classifier Evaluation and Classifier Selection

A classifier evaluation metric measures the generalization
ability of a classifier. This evaluation metric is traditionally
the error probability, and its estimate is usually obtained
using validation data. A lower classification error proba-
bility value indicates a classifier decision that has higher
generalization ability.

As illustrated in Fig. 1, classifier selection is the
process of evaluating different classifier statuses ΛTR =
{Λm}m∈[[1,L]] (green boxes on the left feed into the blue
evaluation box in the center) in terms of a classifier
evaluation metric (values for L different classifier statuses
obtained are represented by red boxes on the right) and then
selecting the status that scores the best (black box on the
right).

3 Previous Boundary Uncertainty
Estimation: Proposal 1

3.1 Previous Definition of Boundary Uncertainty

3.1.1 Bayes Boundary

We denote by B∗ the classification boundary that is
uniquely defined by Eq. 4, and we term it “Bayes boundary.”
B∗ is the optimal classification boundary that a classifier
should execute. B∗ is locally defined by the equality
between the highest class posterior probabilities. At a given

Figure 1 Classifier selection. A
“classifier status” Λ corresponds
to the set of values of parameters
(trainable parameters and
hyperparameters) of a classifier.
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x ∈ X , there can be equality between the three or
more highest class posterior probabilities. For simplicity,
we assume that equality is achieved only between the two
highest class posterior probabilities at x in practice. We
denote by {i∗(x), j∗(x)} the indexes of the two highest
(true) class posterior probabilities at x. By convention, we
order them so that i∗(x) < j∗(x). With these notations,

B∗ = {
x ∈ X

∣∣P(Ci∗(x)|x) = P(Cj∗(x)|x)
}
. (6)

This definition conveys the true impossibility of deciding
for a single class along B∗. We interpret this situation as
uncertainty along B∗.

3.1.2 Classifier Boundary

We denote by B(Λ) the classifier boundary that corre-
sponds to the decision rule given by Eq. 5. Similarly
to Section 3.1.1, we assume that B(Λ) involves equality
between only the two classes that yield the highest discrim-
inant function values at x. We denote by {i(x; Λ), j (x; Λ)}
the indexes of these two classes at x; by convention, we
order them so that i(x; Λ) < j(x; Λ). With these notations,

B(Λ) = {
x ∈ X

∣∣gi(x;Λ)(x; Λ) = gj(x;Λ)(x; Λ)
}
. (7)

3.1.3 Boundary Uncertainty

Boundary uncertainty relies on two principles. First, the
Bayes boundary B∗ solely consists of uncertain samples,
whose two highest class posterior probabilities are equal.
Second, there is a one-to-one relationship between a
classifier decision and its corresponding classification
boundary. Based on these considerations, we previously
proposed to evaluate the generalization ability of a classifier
parameterized by Λ in terms of the optimality of its
classifier boundary. We defined boundary uncertainty as
a classifier evaluation metric that measures the degree of
equality between B∗ and B(Λ).

In order to define boundary uncertainty, our previous
work considered the “local uncertainty” of samples x that
are on B(Λ) and then denoted it by Û (x; Λ).1 In principle,
the local uncertainty U(x; Λ) takes as input the class
posterior probability P(Ci(x;Λ)|x).2 U(x; Λ) measures the
degree of equality between class posterior probabilities
P(Ci(x;Λ)|x) and P(Cj(x;Λ)|x). We only expect from
U(·; Λ) that it takes a higher value, since P(Ci(x;Λ)|x)

and P(Cj(x;Λ)|x) are closer to equality, and lower values

1In our previous work, we used the notation H(x) instead of Û (x;Λ)

[18].
2In this paragraph, we do not use the ·̂ notation because we refer
to the local uncertainty function in principle, rather than its estimate
measured by Proposal 1.

otherwise. U(x; Λ) implicitly contains the top indexes
{i(x; Λ), j (x; Λ)} through its arguments x and Λ.

Figure 2 illustrates two possible choices of local uncer-
tainty function: a triangle function (orange curve) and the
binary Shannon entropy (blue curve). The horizontal axis
of the graph is indifferently P(Ci(x;Λ)|x) or P(Cj(x;Λ)|x).
The minimum and maximum values of these local uncer-
tainty functions are Umin = 0 and Umax = 1, respectively.
This results in a convenient range of values [0, 1] that is
the same regardless of the dataset, where “1” indicates
optimality of the boundary at x.

Then, given a classifier status Λ, Proposal 1 empirically
defined the following classifier evaluation metric that we
estimated from the training set [18] and termed “boundary
uncertainty”:

Û (Λ) = 1

|NB(Λ)|
∑

x∈NB(Λ)

Û(x; Λ). (8)

NB(Λ) refers to a “near-boundary set” that ideally would
consist of samples exactly on B(Λ). NB(Λ) acted as a
practical approximation of B(Λ) consisting of training
samples that were very close to B(Λ), all along B(Λ). | · |
refers to the cardinal operator. The notation ·̂ in this paper
refers to estimated quantities based on a finite dataset, in
order to contrast with their expected value (based on an
infinite dataset).

In Eq. 8, boundary uncertainty is defined as the
finite expectation of the local uncertainty function over
the NB(Λ). Owing to the characterization of the Bayes
boundary B∗ and to the property of the local uncertainty
function, boundary uncertainty reaches a higher value
because the classifier boundary is more highly optimal,
and lower values otherwise. Furthermore, the relationship
between classification error probability and boundary
uncertainty was the equivalence between achieving Umax

Figure 2 Two possible local uncertainty functions: binary Shannon
entropy (blue) and a triangle function (orange).
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and achieving the minimum error probability (Bayes error).
We describe this matter in more detail in later sections.

To compute (8), Proposal 1 consists of two steps
described in Sections 3.3 and 3.4, respectively. Before
reviewing these two steps, we review the k Nearest
Neighbor (kNN) regression rule that Proposal 1 relied upon
to estimate the class posterior probability P(Ci(x;Λ)|x)

input into the local uncertainty.

3.2 Nonparametric Posterior Probability Estimation
using kNN Regression

To estimate local uncertainties, both Proposal 1 and
Proposal 2 rely on the kNN regression because it estimates
class posterior probabilities without globally imposing a
probability model on the class distributions. Given x ∈
X and j ∈ [[1, J ]], in order to estimate P(Cj |x), kNN
regression requires a small volume V (x) that contains x.
We denote by k(x) the number of samples that are contained
in V (x), and by kj (x) the number of samples among
them that carry the label Cj (the basic version of kNN
regression considers a uniform k across X , but adaptative
kNN regression methods adapt k to each sample x).

kNN regression gives P̂ (Cj |x) = kj (x)/k(x). A higher
k(x) provides more samples for the estimation (lower
variance), but these samples are farther away from x (higher
bias). This requires a tradeoff. k(x) is usually set using
validation data.

3.3 Step 1: Generation of Anchors

Sections 3.3 and 3.4 refer to Panels 1A to 1D of Fig. 3.
Panel 1A illustrates Step 1 of Proposal 1: We consider a

training set T whose samples of given labels C1 and C2 are
represented by triangles and squares, respectively. Proposal
1 evaluates a candidate classifier status Λ that it takes as
Input (left-hand side of Fig. 3). We illustrate B(Λ) with a
blue curve.

Proposal 1 directly applied the definition of B(Λ) (7) to
find B(Λ). It searched for zeros of the function f (x; Λ) =
gi(x;Λ)(x; Λ) − gj(x;Λ)(x; Λ) in X . a is characterized by
f (a; Λ) = 0, so the theorem of intermediate values applied
to f (·; Λ) guarantees the existence of a sample a ∈ B(Λ)

on any segment [x, x′] that satisfies f (x; Λ) > 0 and
f (x′; Λ) < 0. We termed such an on-boundary sample
as a an “anchor” (anchors are represented by red dots in
Panel 1A). Proposal 1 therefore searched for anchors along
the segments that join randomly picked couples of training
samples {x; x′} that satisfy f (x; Λ) > 0 and f (x′; Λ) < 0.
The search along [x; x′] can be done by a dichotomy: at
each dichotomy iteration, we checked the sign of f (·; Λ)

at the middle of the segment, and then considered only the
half of the segment that contains a change of sign of f (·; Λ)

(namely, an anchor). In practice, we imposed a maximum
number of dichotomy iterations that we denoted by
imax .

How many and where anchors should be generated was
a priori not obvious. In Eq. 6, the equality of class posterior
probabilities should be checked all along B(Λ). To get as
close to this ideal situation as possible, Proposal 1 generated
a large number of anchors denoted by RA, each of which
we obtained from a random pair of training samples as
described above. In the multiclass case, Proposal 1 had to
check i(·; Λ), j (·;Λ) at each dichotomy iteration. Indeed,
if we generate an anchor defined by equality between two
discriminant functions whose class indexes are not locally

Figure 3 Estimation of Û (Λ)

by our previous Proposal 1 on
two-class and two-dimensional
data. Samples of given class
labels C1 and C2 are represented
by yellow squares and green
triangles, respectively. For a
given Λ, B(Λ) is represented by
a blue curve. We provide
step-by-step explanations in
Sections 3.3 and 3.4.
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the highest, then this anchor is actually generated on a
non-existing classifier boundary (in the sense of Eq. 7).

3.4 Step 2: Near-Boundary Local Uncertainty
Estimation

3.4.1 Filtering Out Off-Boundary Samples

Given an anchor a ∈ B(Λ), the most direct way to apply
kNN regression would be to use as target volume V (a),
the volume defined by the k training samples that are
nearest to a. However, this approach led to poor quality
of the boundary uncertainty estimate, especially for higher-
dimensional data, because a naive spherical target volume
largely contains off-boundary samples that are biased
in terms of boundary uncertainty estimation. Proposal 1
filtered out this bias by forming target volumes that only
contain near-boundary samples. Proposal 1 defined the set
of near-boundary samples denoted by NB(Λ) as the set of
one-nearest training sample for each anchor generated in
Step 1 (Panel 1B).

3.4.2 Partitioning Near-Boundary Set into Target Volumes

Proposal 1 used Tree Divisive Clustering (TDC), of which
imposed number of repetitions is RT , to break downNB(Λ)

into clusters that we used as target volumes for kNN
regression. We used such a clustering method so that the
obtained target volumes could adapt to the distribution. As
described in the next paragraph, the iterative nature of TDC
enabled us to progressively keep some control over the size
of clusters.

Every step of the TDC consists of a 2-means clustering
that ends after an imposed iK number of iterations: TDC
thus adaptatively broke down NB(Λ) into clusters (Panel
1C). We denote by ¶Λ the set of resulting clusters, and
by C ∈ ¶Λ one of the clusters. Here, the dependency in
Λ emphasizes that the partition obtained by clustering is
defined for a given NB(Λ). Proposal 1 applied the kNN
regression by using each C as a target volume (Panel 1D), or
in other words, the “k” of “kNN regression” is set to |C| for
each cluster C.

Clusters should contain enough samples to perform kNN
regression, while focusing on B(Λ) as locally as possible
(local uncertainties ideally measure equality between class
posteriors on points along B(Λ)). Proposal 1 therefore
continued to divide NB(Λ) into smaller clusters so long as
the clusters obtained at a given TDC step contained more
than Nmax samples. Then, Proposal 1 only retained clusters
that contained more than Nmin samples.

3.4.3 Local Uncertainty Computation

Proposal 1 adopted binary Shannon entropy as the local
uncertainty function (blue curve in Fig. 2). When using the
kNN regression to estimate class posterior probabilities, we
do not consider individual samples but rather target volumes
(in our case, elements of ¶Λ). Therefore, in the following,
we explicitly describe the local uncertainty of clusters rather
than that of individual samples.

Given a near-boundary cluster C ∈ ¶Λ, for each given
class index j ∈ [[1, J ]], we count the number of samples that
have predicted class index j . To estimate {i(C; Λ), j (C; Λ)}
defined in Section 3.1.2, we define {î(C; Λ), ĵ (C; Λ)} as the
pair of predicted class indexes that have the most samples
in C. Then, we estimate the local uncertainty of this cluster
as

Û (C; Λ) = −P̂ (C
î(C;Λ)

|C) log
(
P̂ (C

î(C;Λ)
|C)

)

−P̂ (C
ĵ(C;Λ)

|C) log
(
P̂ (C

ĵ(C;Λ)
|C)

)
. (9)

Recall that our estimation goal is ideally B(Λ) itself, so we
hope that C is centered on B(Λ). Unfortunately, the TDC
may result in some Cs “completely on one side of B(Λ),”
which results in a kind of bias in terms of local uncertainty
estimation.

3.4.4 Boundary Uncertainty Computation

Sampling elements (clusters) from the partition ¶Λ means
that we are sampling independent outcomes (clusters) from
the vicinity NB(Λ) of the classifier boundary. Each cluster
C has probability |C|

|¶Λ| . The finite expectation of the local
uncertainty function over ¶ is thus

Û (1)(¶Λ, Λ) =
∑
C∈¶Λ

Û(C; Λ)
|C|
|¶Λ| . (10)

Superscript “(1)” refers to Proposal 1, in order to distinguish
it from the boundary uncertainty estimate obtained by
Proposal 2. ¶Λ obtained by a TDC depends on the random
clustering seeds used at each TDC step (i.e., a 2-means
clustering). Step 2 of Proposal 1 accordingly performed
RT > 1 different runs of TDCs. Each run indexed by
r ∈ [[1, RT ]] has its own different set of random clustering
seeds and results in a partition we denote by ¶(r)

Λ . Then,
Proposal 1 estimates Û (Λ) in Eq. 8 by averaging over the
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boundary uncertainty estimates obtained by each run. This
results in the following estimate denoted by Û (1)(Λ):

Û (1)(Λ) = 1

RT

RT∑
r=1

∑
C∈¶(r)Λ

Û (C; Λ)
|C|

|¶(r)
Λ |

. (11)

We illustrate (11) with Panel 1D contained in the black box
that indicates RT repetitions of Step 2.

3.5 Issues in Step 1 of Proposal 1

On the one hand, anchors and then the selection of their
nearest training samples answered the difficult question
“what is closest to B(Λ)?” by accurately executing the
definition of B(Λ). On the other hand, an approach that
revolves around anchors to search for B(Λ) may not be
practical, since it is impossible to generate infinitely many
anchors as required by the definition of B(Λ).

Moreover, generating anchors from random pairs of
training samples (that may be far from each other) results in
costly treatments as described in Section 3.3. For example,
resuming the notations of Section 3.3, for every checked
position xc along [x, x′], finding i(xc; Λ), j (xc; Λ) using
QuickSort costs O(J log(J )) comparisons between J

discriminant function values. This cost explodes as it is
multiplied by the number imax of dichotomy iterations, then
by the large number RA of anchors, and finally by the
number of classifier statuses to evaluate.

3.6 Issues in Step 2 of Proposal 1

On the one hand, previous experiments showed that the
restriction to NB(Λ) of target volumes used for kNN
regression efficiently increases the accuracy of Û (1)(Λ)

[18]. On the other hand, a discrete selection of “what is
close to B(Λ) or not” unavoidably leads to the following
dilemma: either taking too few samples that are not
representative of B(Λ) or taking too many samples that are
farther from B(Λ).

Moreover, the centering of target volumes on B(Λ) is
not explicitly guaranteed, which can result in a bias of the
boundary uncertainty estimate. Furthermore, the formation
of clusters obeys a certain clustering criterion, and we thus
do not have direct control over the size of clusters (e.g.,
when applying the 2-means clustering, some clusters may
persistently be broken into most of the cluster itself, and a
“leftover” that consists of just one or two samples). This
may result in a partition that has some persistently large-
sized clusters that do not measure locally the boundary
uncertainty, as well as remaining “leftover” clusters that are
too small to estimate local uncertainty. Last but not least,
the RT repetitions of Step 2 increase both time and memory
costs.

4 New Boundary Uncertainty Formalization
and Estimation: Proposal 2

4.1 Overview of Proposal 2

To avoid the costly generation of anchors in the multidi-
mensional space (Section 3.5), Proposal 2 smoothly and
implicitly filters off-boundary samples in a single shot. This
is made possible by using a single dimension that represents
a kind of distance of a sample to the classifier boundary
(Section 3.1.3).

In contrast to Proposal 1, which did not guarantee that
near-boundary clusters are centered on B(Λ) (Section 3.6),
Proposal 2 can explicitly focus its estimation on B(Λ)

(Section 4.4.1). This is possible because the value “zero” of
the aforementioned single dimension is equivalent to being
on B(Λ).

In contrast to the difficulty of controlling the size of
clusters in Proposal 1 (Section 3.6), Proposal 2 uses target
volumes where the number of samples is directly specified.
Then, the effectively used number of samples in each target
volume is adjusted automatically in one shot by Proposal
2. The determination of the effective number of samples
for each cluster and each candidate classifier status is both
cheap and justified (Section 4.4.2): it is determined so that
the local uncertainty estimation appropriately focuses on
B(Λ) (Section 4.4.1).

The empirical formalization of boundary uncertainty
used in Proposal 1 actually left some unclear items, such as
the possible confusion of whether to use {i∗(x), j∗(x)} (top
given class indexes) or {i(x; Λ), j (x; Λ)} (top predicted
class indexes). Such confusion was especially possible in
the several intricate branching treatments that appeared in
Proposal 1, as well as in the treatment of multiclass data
[18]. In contrast, this paper introduces a more complete
formalization of boundary uncertainty (Section 4.3). This
formalization clarifies these items and permits a more
systematic approach to boundary uncertainty estimation.

4.2 Near-Boundary-Ness Measurement

4.2.1 Definition of Near-Boundary-Ness Measurement

Given any two class indexes k, l ∈ [[1, J ]], a classifier
status Λ, and x ∈ X , we define the near-boundary-ness
measurement as follows:

fkl(x; Λ) = gk(x; Λ) − gl(x; Λ). (12)

A smaller value of |fkl(x; Λ)| means that x is closer
to Bkl(Λ), hence we termed fkl(x; Λ) a “near-boundary-
ness measurement.” The sign of fkl(x; Λ) indicates which
“side” of Bkl(Λ) the sample x is, namely whether the
classifier assigns x to Ck or to Cl . To simplify notations,
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we shorten fi(x;Λ)j (x;Λ)(x; Λ) to f (x; Λ) in the particular
case {k, l} = {i(x; Λ), j (x; Λ)}, as well as in the two-class
case. fkl(·; Λ) can be computed for any classifier whose
formalization follows Section 2. For example, in the case of
a neural network, fkl(x; Λ) is obtained by monitoring the
output layer.

4.2.2 Estimation of Near-Boundary-Ness Measurement
Values at Perturbated Samples Instead of at Training
Samples

The goal of this section is to provide a reliable represen-
tation of X in the near-boundary-ness measurement space.
This lengthy section describes a preliminary treatment that
we use throughout Proposal 2, so we cover it here before
describing Proposal 2 itself to provide the necessary clar-
ity for following the later sections. We temporarily assume
two-class data for simplicity of notation in this section.

Application of the function f (·; Λ) on training set T can
be understood as sampling a mapped training set in the near-
boundary-ness measurement space. We denote by f (T ; Λ)

this projection. As covered in the next sections, Proposal
2 performs some density estimations on f (T ; Λ) in the
near-boundary-ness measurement space. The goal of such
density estimations is to estimate the density of f (X ; Λ), or
in other words to generalize effectively to the density of the
entire mapped sample space. However, f (·; Λ) reflects the
classifier decision, and it is well known that the classifier
decision values can be quite different on the training set and
on some (unseen) testing set X te. This phenomenon is one
aspect of overfitting.

In other words, even if T and X te follow similar
distributions in the sample space, their mapped counterparts
f (T ; Λ) and f (X te; Λ) may follow quite different
distributions in the near-boundary-ness measurement space.
This sampling issue in the near-boundary-ness measurement
space may be seen as a case of covariate shift [21].

Naively using f (T ; Λ) may not lead to an accurate
estimation of the density of f (X ; Λ). We propose slightly
perturbating training samples and then applying f (·; Λ) at
such perturbated versions of the training samples instead
of at the training samples themselves. We denote by T̃
this perturbated version, where ·̃ (tilde notation) denotes
the operation of “perturbation.” Our hope is that f (T̃ ; Λ)

suffers the covariate shift issue to a lesser extent than
f (T ; Λ).

Algorithm 1 describes the generation of T̃ . Given a
training sample x, we denote by x(m) its m-th nearest
training sample. The perturbation is uniform across the
features of each training sample. The amplitude of the
perturbation is adaptatively set small to stay as close as
possible to the training set in the sample space. A detailed
description of Proposal 2 itself is given in the next section

to explain why we want to stay close to the training set in
the sample space.

T̃ may be simple to obtain in principle for a wide range
of classification tasks. For example, in the case of speech
data, our perturbation can be obtained by adding some noise
to the speech signal, which seems to be a common practice
when preparing speech data [22].

4.3 Formalization of Boundary Uncertainty

In order to more adequately derive an estimation procedure
for boundary uncertainty, we start by defining the expected
boundary uncertainty that we denote by U(Λ).

4.3.1 Notations

Recall that we denoted by {i∗(x), j∗(x)} in Eq. 6 the
indexes of the two class posterior probabilities whose values
are highest at x. We denote by I∗ the set of pairs of indexes
that compose the Bayes boundary:

I∗ = {{i∗(x), j∗(x)}}
x∈X . (13)

∀{k, l} ∈ I∗, and we denote by B∗(k, l) the set of training
samples whose two top indexes are k and l:

B∗(k, l) = {
x ∈ X

∣∣{i∗(x), j∗(x)} = {k, l}} . (14)

4.3.2 Expected Boundary Uncertainty

Similarly to the definition of the risk in Eq. 1, we propose

− U(Λ) =
∫

x∈(B(Λ)+δV )

RU

(
C(x)

∣∣x)
p(x)dx, (15)

where RU (C(x)|x) represents the penalization of non-
boundary uncertainty of the classification decision C(x) at
x. We consider −U(Λ) instead of U(Λ), since U(Λ) is the
opposite of a loss: Higher values of U(Λ) correspond to
more optimal classifier decisions. The infinitesimal width
δV is introduced to avoid a probability measure equal to
zero. We will clarify this formalization item in a future
work. p(x) denotes the density at x.
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We now consider a classification decision C(x; Λ) made
by a classifier that is parameterized by Λ, where C(x; Λ) is
described in Eq. 5. In the boundary uncertainty framework,
our quantity of interest in C(x; Λ) is the pair of the two top
predicted indexes (Sections 3.1.1 and 3.1.2). In this section,
we write Ci(x;Λ)j (x;Λ)(x; Λ) instead of C(x; Λ) in order
to emphasize this quantity of interest. The penalization of
non-boundary uncertainty of the classifier at x is

RU

(
Ci(x;Λ)j (x;Λ)(x; Λ)

∣∣x) =
∑

{k,l}∈[[1,J ]]2
k �=l

×λU

(
Ci(x;Λ)j (x;Λ)(x; Λ) |Ckl

)
P(Ckl |x), (16)

where we introduced the output variable Ckl . Once more,
the subscript in Ckl involves two class indexes {k, l} owing
to the focus of boundary uncertainty on the pair of class
indexes that define the boundaries. We define Ckl through
the following discrete probability distribution: ∀{k, l} ∈
[[1, J ]]2, k �= l,

P(Ckl |x) =
{
1, if {k, l} = {i∗(x), j∗(x)},
0, otherwise.

(17)

To evaluate the classification decision at x, the “boundary-
wise cost” λU

(
Ci(x;Λ)j (x;Λ)(x; Λ) |Ckl

)
penalizes at x the

non-uncertainty of the two-class classifier boundary that is
relative to top indexes i(x; Λ), j (x; Λ) as follows:

λU

(
Ci(x;Λ)j (x;Λ)(x; Λ) |Ckl

)

=
{ −U(x; Λ) if {i(x; Λ), j (x; Λ)} = {k, l},

−Umin, otherwise.
(18)

The integration of Eqs. 17 and 18 into Eq. 16 reveals that
at a sample x, we consider only the two true top class
indexes {i∗(x), j∗(x)}, and then we evaluate the optimality
of the two-class classifier boundary Bi(x;Λ)j (x;Λ)(Λ) at
x. If the indexes {i(x; Λ), j (x; Λ)} do not even coincide
with the true top indexes {i∗(x), j∗(x)}, this indicates that
the classifier boundary is strongly biased around x, and
thus (18) locally assigns the default worst uncertainty value
−Umin at x. If {i(x; Λ)j (x; Λ)} = {i∗(x), j∗(x)} (as it
should be in most cases if the classifier training did not
fail), then we evaluate the classifier boundary at x using
the sign-reversed local uncertainty function −U(x; Λ).
This branching treatment in our formalization reflects the
branching treatments that appeared in Proposal 1 [18].

The Bayes theorem gives P(Ckl |x)p(x) =
p(x|Ckl)P (Ckl), where P(Ckl) corresponds to the overall
probability in the sample space X that {k, l} are the true top
class indexes. Substituting (17), (18) and using the Bayes
theorem in Eq. 16 gives

U(Λ) = −
∑

{k,l}∈I∗
P(Ckl)

∫
B∗(k,l)∩(B(Λ)+δV )

×λU

(
Ci(x;Λ)j (x;Λ)(x; Λ) |Ckl

)
p(x|Ckl)dx,(19)

where we note that B∗(k, l) is defined in Eq. 14 and
λU

(
Ci(x;Λ)j (x;Λ)(x; Λ) |Ckl

)
is −U(x; Λ) in most cases.

Equation 19 appears as a sum only over pairs {k, l} ∈ I∗
because the definition in Eq. 17 implies that the terms of
Eq. 19 are non-zero only for pairs {k, l} ∈ I∗. ∀{k, l} ∈ I∗,
we define

Ukl(Λ) = −
∫

B∗(k,l)∩(B(Λ)+δV )

×λU

(
Ci(x;Λ)j (x;Λ)(x; Λ) |Ckl

)
×p(x|Ckl)dx. (20)

Equation 19 shows that in a multiclass setting, U(Λ)

appears as a weighted combination of two-class uncertainty
boundaries {Ukl(Λ)}{k,l}∈I∗ . The above expressions gener-
alize both our previous empirical understanding of boundary
uncertainty defined by Eq. 8 and Proposal 1.

4.3.3 Property of Boundary Uncertainty

As we described in Section 3.1.3, our previous work implic-
itly assumed equivalence between Umax and achieving the
Bayes decision rule. We now consider this statement more
carefully:

U(Λ) = Umax

⇔ ∀x ∈ B(Λ), P (Ci(x;Λ)|x) = P(Cj(x;Λ)|x) (21)

⇔ B(Λ) ⊂ B∗ (22)

(in practice) ⇔ B(Λ) = B∗ (23)

⇔ Bayes decision rule defined by Eq. 4 is achieved. (24)

Section 6.9 discusses the successive equivalences (21)
to (24) in more detail. The next sections describe the
estimation of U(Λ).

4.4 Estimation of Expected Boundary Uncertainty

4.4.1 Empirical Boundary Uncertainty and its Implicit
Centering on Classifier Boundary

In Proposal 2, we attempt to estimate the expected boundary
uncertainty defined by Eq. 19 with the following empirical
sum:

Û (Λ) =
∑

{k,l}∈Î∗
P̂ (Ckl)

∑
x∈B̂∗(k,l)∩(B(Λ)+δV )

×λ̂U

(
Ci(x;Λ)j (x;Λ)(x; Λ) |Ckl

)
. (25)

B̂∗(k, l) is the approximation of B∗(k, l) obtained from
the training set, and λ̂U

(
Ci(x;Λ)j (x;Λ)(x; Λ) |Ckl

)
is the

empirical version of Eq. 18, which is discussed in detail in
Section 4.4.4. We note that execution of the sum defined by
Eq. 25 requires a preliminary estimation of I∗, and we give
details of its estimate denoted by Î∗ in Section 4.4.3.
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Figure 4 Illustration of the locally one-dimensional count by Proposal
2 on a two-class and two-dimensional dataset. Samples of given class
labelsC1 andC2 are represented by yellow squares and green triangles,

respectively. For a given Λ, we represent B(Λ) with a blue curve. The
horizontal axis f (·;Λ) is described in Section 4.2.

A key point of Proposal 2 is to implicitly perform
the filtering expressed by “∩ (B(Λ) + δV )” in Eq. 25
without having to explicitly generate anchors. This actually
draws inspiration from a work that used a one-dimensional
space based on the discriminant functions to estimate the
classification error probability [23]. Here, we describe how
to implicitly define clusters that are centered on B(Λ).

Given an integer M > 0, ∀x ∈ T , we denote by NM(x)

the set (cluster) formed by x and its M−1 nearest neighbors
in T :

NM(x) = {x, x(1), · · · , x(M−1)}. (26)

We consider a given x ∈ T . Given a kernel function (e.g.,
Gaussian kernel) and a small hx > 0 to specify, we define
∀m ∈ {i(x; Λ), j (x; Λ)},

k̂m(x; Λ) =
∑

x′∈NM(x) | y(x′)=m

×φ

(
0 − fi(x;Λ)j (x;Λ)(x̃

′; Λ)

hx

)
, (27)

where we note that y(x′) is the given class index of training
sample x′ and that x ∈ B(Λ) ⇔ fi(x;Λ)j (x;Λ)(x; Λ) =
0. An important factor is the tilde notation (operation
of perturbation) when computing the near-boundary-ness
measurement in Eq. 27 according to the considerations
mentioned in Section 4.2.2. k̂m(x; Λ) counts how many
samples with given class indexm fall within a distance hx of
B(Λ) in the near-boundary-ness measurement space.3 We
define

k̂(x; Λ) = k̂i(x;Λ)(x; Λ) + k̂j (x;Λ)(x; Λ). (28)

3The formalism of Eq. 27 forms the basis of deriving the Kernel
Density Estimation [24].

k̂(x; Λ) implicitly delineates an on-boundary cluster con-
tained in [−hx; hx] in the near-boundary-ness measurement
space, and that only contains (a total of k̂(x; Λ)) samples
with given class labels Ci(x;Λ) and Cj(x;Λ). As we describe
in Section 4.4.2, hx is usually a small value. The probabil-
ity mass contained in a small volume is conserved through
a change of variable. Therefore, the “implicitly defined on-
boundary cluster that is centered on fi(x;Λ)j (x;Λ)(·; Λ) = 0
in the near-boundary-ness measurement space” corresponds
to a “small region δV (x) that is centered on B(Λ) around x

in the sample space.” We denote by δV the union of these
individual volumes δV (x); Eqs. 27 and 28 thus adaptatively
execute the filtering expressed by “ ∩ (B(Λ) + δV ) ” in
Eq. 25, without having to explicitly generate anchors nor
select their nearest training samples.

Figure 4 illustrates (28) with M = 5 on a two-
class dataset. We illustrate the cluster NM(x) with a red
circle, and the projection of (the perturbated) NM(x) onto
f (·; Λ) with a zooming effect. The Parzen kernels are
represented by black kernels centered on each projection of
a perturbated sample in the cluster.

For convenience, we introduce ∀{k, l} ∈ Î∗,

wkl(Λ) =
∑

x∈B̂∗(k,l)

k̂(x; Λ). (29)

Each on-boundary implicit cluster contains k̂(x; Λ) sam-
ples, and thus the probability of each cluster among all
clusters for B̂∗(k, l) is k(x; Λ)/wkl(Λ). Therefore, we can
re-write (25) as the finite expectation of the local uncer-
tainty function over the set of implicit on-boundary clusters
described above:

Û (2)(Λ) =
∑

{k,l}∈Î∗
P̂ (Ckl)

∑
x∈B̂∗(k,l)

k̂(x; Λ)

wkl(Λ)

×λ̂U

(
Ci(x;Λ)j (x;Λ)(x; Λ) |Ckl

)
, (30)
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where superscript “(2)” distinguishes this from the estimate
obtained by Proposal 1 in Eq. 11. For convenience we define
the estimated two-class boundary uncertainty: ∀{k, l} ∈ Î∗,

Û
(2)
kl (Λ) =

∑
x∈B̂∗(k,l)

k̂(x; Λ)

wkl(Λ)
λ̂U

× (
Ci(x;Λ)j (x;Λ)(x; Λ) |Ckl

)
. (31)

4.4.2 Determination of Parameters Defining On-Boundary
Implicit Clusters

Given x ∈ T , the parameters hx and M determine the
on-boundary cluster that is implicitly defined by Eq. 27
(M determines the “radius” of NM(x), and then hx is
set in the direction orthogonal to B(Λ)). The appropriate
setting of hx temporarily requires us to consider a density
estimation instead of a count estimation, since a count goes
to infinity as the size of the dataset goes to infinity. The
density estimation that corresponds to Eq. 27 is obtained by
dividing (27) by Mhx [24]. A possible way of setting hx for
optimal density estimation is to minimize the Mean Squared
Integrated Error (MISE). This results in “Silverman’s rule
of thumb” [25]:

hx = 0.9min

(
σ̂x,

IQRx

1.34
M− 1

5

)
, (32)

where σ̂x and IQRx correspond to the standard deviation
and the interquartile range estimated on the distribution{
fi(x;Λ)j (x;Λ)(x̃

′)
}
x′∈NM(x)

, respectively.
Givenm ∈ {i(x; Λ), j (x; Λ)}, Eq. 32 may return hx = 0

if all values
{
fi(x;Λ)j (x;Λ)(x̃

′)
}
x′∈NM(x)

are identical. In
this case, provided this unique value is not zero (which we
can safely assume), we set k̂m(x; Λ) = 0.

Equation 27 also depends on the hyperparameter M . We
discuss how the setting of M is quite insensitive and is
actually more controlled by practical constraints. Can the
value of M be too high? Even if M is set quite high, the
Parzen counts will automatically smooth out samples that
are away from B(Λ). Nevertheless, M should be as small
as possible to locally estimate uncertainty. Can the value of
M be too low? The estimation of hx using Eq. 32 requires a
minimum number of samples to be meaningful. These two
questions compelled us to set a uniform M = 40 in practice
(same value M for all the samples to obtain NM(x)).

4.4.3 Estimation ofI∗ and its Related Quantities

By “quantities that are related to I∗,” we refer to ∀{k, l} ∈
I∗, B∗(k, l) and P(Ckl). I∗ assumes knowledge of true
class posterior probabilities. However, rather than requiring

an accurate knowledge of true class posterior probabilities,
I∗ only requires knowledge of the indexes of the two
highest class posterior probabilities at each sample. In other
words, a rougher estimate of class posterior probabilities is
sufficient for our purpose, so long as the two top indexes are
correctly estimated.

Independently from the classifier model that we want to
evaluate, in order to estimate class posterior probabilities,
we propose using a generative classifier model that
we explain in detail in Eq. 35. We denote by Λgen

the trained classifier status of this generative classifier
model. Then, ∀x ∈ T , we estimate {i∗(x), j∗(x)} as{
i(x; Λgen), j (x; Λgen)

}
. Application of Eq. 13 to these

estimated pairs of indexes gives Î∗. Then, ∀{k, l} ∈ Î∗,

B̂∗(k, l) =
{
x ∈ X

∣∣∣{î∗(x), ĵ∗(x)} = {k, l}
}

, (33)

and then

P̂ (Ckl) = |B̂∗(k, l)|
N

. (34)

Regarding the choice of a generative classifier model,
the above considerations imply that a simple model may
be enough for our purpose. For this reason, we chose the
following prototype-based classifier (PBC), which has low
computation costs. ∀j ∈ [[1, J ]], we denote by Tj the
set of training samples with given class label Cj , namely
Tj = {x ∈ T |y(x) = j}. Our PBC represents Tj by Kj

prototypes. We denote by
{
pk

j

}
k∈[[1,Kj ]] the corresponding

set that consists of Kj prototypes. We obtain
{
pk

j

}
k∈[[1,Kj ]]

by performing K-means clustering on Tj . The discriminant
functions for such PBC are ∀j ∈ [[1, J ]], ∀x ∈ X ,

gj (x; Λgen) = − min
k∈[[1,Kj ]]||x − pk

j ||, (35)

where Λgen corresponds to the set of prototypes obtained by
class-wise K-means clustering.

As one possibility, ∀j ∈ [[1, J ]], we set the value
of Kj based on the Akaike Information Criterion (AIC).
AIC can be used to determine the number of a Gaussian
mixture model, and a K-means algorithm is a particular
instance of the Classification Expectation algorithm for a
Gaussian mixture model with equal mixture weights and
equal isotropic variances [26]. We used existing results
to adapt AIC to each class-wise K-means [26]. We give
these results in the Appendix. Algorithm 2 summarizes the
estimation of I∗ and that of its related quantities.
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4.4.4 Estimation of Boundary-Wise Cost

Given {k, l} ∈ Î∗ and x ∈ T , the estimated boundary-wise
cost that appears in Eq. 25 is

λ̂U

(
Ci(x;Λ)j (x;Λ)(x;Λ) |Ckl

)=
{

−Û (x;Λ) if {î∗(x), ĵ∗(x)} = {k, l},
−Umin, otherwise.

(36)

Instead of the binary Shannon entropy used by Proposal
1, Proposal 2 uses a triangle-shaped function (orange curve
in Fig. 2) as a local uncertainty function. This corresponds to
the following local uncertainty: ∀m ∈ {i(x; Λ), j (x; Λ)},
Û (x; Λ) = 1 −

∣∣∣2P̂ (Cm|x; Λ) − 1
∣∣∣ . (37)

The reason for this choice was to achieve a more neutral
penalization of non-uncertainty than the binary Shannon
entropy. The binary Shannon entropy weakly penalizes non-
uncertainty in a wide range of [0.3; 0.7] around 0.5, while
outside this range it strongly penalizes non-uncertainty.

Just as done in Proposal 1, Proposal 2 estimates
class posterior probabilities using the kNN regression rule

(Section 3.2). ∀m ∈ {i(x; Λ), j (x; Λ)}, the kNN regression
applied in the near-boundary-ness measurement space gives

P̂ (Cm|x; Λ) =

⎧⎪⎨
⎪⎩

k̂m(x; Λ)

k̂(x; Λ)
if k̂(x; Λ) > 0,

0, if k̂(x; Λ) = 0.

(38)

When we input P̂ (Cm|x; Λ) in the local uncertainty
function defined in Eq. 37, the first and second cases of the
branching in Eq. 38 result in the first and second cases of
the branching in Eq. 36, respectively.

∀j ∈ [[1, J ]], we denote by P̂j the estimate of class
prior probability, and Nj is the number of training samples
whose given class label is Cj : P̂j = Nj/N . In order
to address class imbalance [29], Proposal 1 replaced each
estimate P̂ (Cl |x; Λ) by P̂ (Cl |x; Λ)/P̂l [18]. Proposal 2
does not perform such adjustment. Indeed, if we assume an
adequate sampling, then unequal class prior probabilities are
implicitly handled by the kNN regression.

4.5 Two-Class Boundary Uncertainty Estimate
Ûkl (Λ) in Separability Case

This section assumes a pair {k, l} ∈ Î∗ and refines (31)
to handle the case where wkl(Λ) = 0 (29). This case
occurs when class distributions in the sample space are
well-separated.

Let us assume that class distributions are separated by
a nearly empty region in the sample space. In this case,
the Bayes boundary B∗ is located in the empty region. We
consider the three possible cases ofB(Λ) and illustrate them
in Fig. 5.

Case 1: B(Λ) (green curve) is close to B∗ (red curve). In
this case, we are likely to get wkl(Λ) = 0. As a
result, Eq. 31 cannot be computed. However, we
would like Proposal 2 to assign a best boundary
uncertainty value Umax to U

(2)
kl . We notice that

all samples in B̂∗(k, l) are correctly classified by
such a B(Λ).

Case 2: B(Λ) is so biased that it crosses the class
distributions. Proposal 2 returns the worst values
of local uncertainties whenever it crosses the
class distributions, since well-separated class
distributions locally have only one class label with
high probability (in Panel 2, every cluster NM(x)

along B(Λ) contains either all yellow or all purple
given class labels). As a result, Eq. 31 can return
the worst value Umin, which is already what we
want.

Case 3: B(Λ) is so biased that it lies in an empty
region outside the range of the class distributions.
Similarly to Case 1, Eq. 31 cannot be computed.
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Figure 5 Illustration of separability in the sample space on two classes
Ci and Cj of a two-dimensional dataset called GMM separable. The
given class labels are represented by yellow and purple crosses, respec-
tively. The class distributions of GMM separable are separated by an

empty region. B∗ is represented by a red curve in Panel 1. We repre-
sent different B(Λ)s by a green curve in Panels 1, 2, and 3. These three
panels respectively correspond to Cases 1, 2, and 3, which we describe
in Section 4.5.

However, we would like Proposal 2 to assign a
worst value Umin. We note that samples of either
class Ck or class Cl are all misclassified because,
in this case, B(Λ) assigns all samples of B̂∗(k, l)

to the same class.

We must refine (31) so that it can output a reasonable value
of Ûkl(Λ) even in Cases 1 and 3. Based on the observation
of Cases 1 and 3, we can quite simply identify these two
cases by checking the classification error rate on T̃ . We do
not check the error rate on T but instead on T̃ , since the
error rate itself directly depends on the values of the near-
boundary-ness measurement. As described in Section 4.2.2,
we always use f (T̃ ; Λ) instead of f (T ; Λ). We denote
by L̃kl

tr (Λ) the classification error rate on the perturbated
version of B̂∗(k, l) (namely,

{
x + rx ||x − x(1)||}

x∈B̂∗(k,l)
).

This results in the following extended definition of Ûkl(Λ)

that we use instead of Eq. 31:

Û
(3)
kl (Λ)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Umax, if wkl(Λ)=0 and L̃kl
tr =0,

Umin, if wkl(Λ)=0 and L̃kl
tr >0,∑

x∈B̂∗(k,l)

λ̂U(Ci(x;Λ)j (x;Λ)(x;Λ)|Ckl )

× k̂(x; Λ)

wkl(Λ)
, otherwise.

(39)

We then re-define the boundary uncertainty estimate as

Û (3)(Λ) =
∑

{k,l}∈Î∗
P̂ (Ckl)Û

(3)
kl (Λ). (40)

Superscript “(3)” distinguishes this from the estimate
defined by Eq. 30, but we still consider it a part of Proposal
“2”.

4.6 Implementation of Proposal 2

Algorithm 3 summarizes the implementation of Proposal 2.
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5 Time Costs of Classifier Evaluation

One of the goals of Proposal 2 is to achieve scala-
bility, since the scalability of resampling-based classi-
fier evaluation methods such as CV is limited. There-
fore, this section describes the time costs of Pro-
posal 2 to evaluate ΛTR = {Λm}m∈[[1,L]]. We denote
the cost of one addition, multiplication, computation
of the exponential function, comparison, and classifica-
tion as cadd , cmul, cexp, ccomp, cCL(d, J, Λ), respectively.
cCL(d, J, Λ) increases with d, J and with the number of
parameters in Λ. For comparison, we will also describe the
time costs of Proposal 1.

5.1 Time Costs of Proposal 2

We denote by c
(2)
shared the costs of Proposal 2 that are shared

across all classifier statuses, or in other words, that appear
only once. Here, superscript “(2)” distinguishes them from
the time costs of Proposal 1. We denote by c

(2)
Λ the costs that

are exclusive to the evaluation of one classifier statusΛ. The
costs to estimate L classifier statuses ΛTR = {Λm}m∈[[1,L]]
is

c(2)(Λ1, · · · , ΛL) = c
(2)
shared +

L∑
m=1

c(2)(Λm). (41)

5.1.1 Estimation of c(2)shared

Regardless of the number of candidate statuses Λ to
evaluate, Proposal 2 requires us to compute and store the
set of clusters {NM(x)}x∈T , as well as the set of distances
{||x − x(1)||}x∈T . We obtained these clusters and distances
using a KDTree, so the total cost of the construction and
search of the nearest neighbors is O(N log(N)) distance
computations [30]. The cost of one distance computation in
X is O(d)(cadd + cmul).

As summarized in Algorithm 3, the generation of T̃ is
done only once. The cost of generating T̃ is O(dN)cadd .

K-means clustering costs KN distance computations
at each K-means iteration. A distance computation costs
O(d)(cadd +cmul). We denote by iK the imposed maximum
number of iterations of K-means. If we assume that each
class contains roughly the same number of training samples
N/J , then the total time costs of obtaining our trained
PBC in Algorithm 2 are O(iKdN)(cadd + cmul). We repeat
these costs as many times as we attempt different values for
the number of prototypes per class. We denote by RK the
number of tried values of K . The preliminary time costs of
Proposal 2 are thus

c
(2)
shared = c

(2,shared)
add + c

(2,shared)
mul , (42)

where

c
(2,shared)
add = O(dNRKiK)cadd

c
(2,shared)
mul = O(dNRKiK)cmul .

5.1.2 Estimation of c(2)
Λ

Given one candidate classifier status Λ, finding the top
indexes i(x; Λ), j (x; Λ) for the N training samples using
QuickSort requires O(NJ log(J )) comparisons.

Then, the cost of the set of operations defined by
Eqs. 27, 32, 38 is independent of J and d. As stated
above, it only requires simple arithmetic operations (e.g.,
mean on M samples, multiplications, application of the
exponential function) on a two-dimensional array of size
at most (N, M), whose rows each correspond to a training
sample x ∈ T and whose columns each correspond
to a single perturbated element of NM(x). The cost of
computing near-boundary-ness measurement values on T̃ is
the cost of classifying T̃ .

c(2)(Λ) = c
(2)
add + c

(2)
mul + c(2)

comp+c(2)
exp + c

(2)
CL(d, J, Λ), (43)

where

c
(2)
add = O(NM)cadd

c
(2)
mul = O(NM)cmul

c(2)
comp = O(NJ log(J ))ccomp

c(2)
exp = O(NM)cexp

c
(2)
CL(d, J, Λ) = O(N)cCL(d, J, Λ).

Overall, the cost of Proposal 2 scales reasonably with J , and
d mainly shows up only once when computing the clusters
NM(x) in the sample space. Obtaining the rest of the costs
in c

(2)
Λ boils down to operations on the one-dimensional data

obtained from the projection of each (perturbated) NM(x)

on the axis fi(x;Λ)j (x;Λ)(·; Λ). The operations defined by
Eqs. 27, 32, 38 define simple operations on N arrays that
each contain exactly M elements. These operations can be
efficiently parallelized on the hardware as operations on
two-dimensional arrays of size (N, M), despite whether
it’s on the CPU4 or the GPU. This is another desirable
characteristic of Proposal 2 in terms of scalability.

5.2 Time Costs of Proposal 1

We denote by c(1)(Λ) the time costs to estimate U(Λ)

for a single candidate classifier status Λ. We denote by
c(1,1)(Λ) and c(1,2)(Λ) the time costs of Step 1 and Step
2 of Proposal 1, respectively. We detail these costs in

4https://numpy.org/
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the following sections. Step 1 and Step 2 are executed
independently, hence

c(1)(Λ) = c(1,1)(Λ) + c(1,2)(Λ). (44)

The evaluation of each candidate classifier status Λ is
performed independently by Proposal 1, so the costs of
estimating L classifier statuses Λ1, · · · , ΛL are

c(1)(Λ1, · · · , ΛL) =
L∑

m=1

c(1)(Λm). (45)

5.2.1 Time Costs of Step 1 in Proposal 1

Here, we take up the notations from Section 3.3. The
cost of Step 1 is the cost of generating RA anchors and
then searching for their nearest neighbor. Given a random
segment [x; x′], the search for an anchor between x and
x′ is executed by dichotomy, whose maximum number of
iterations we denote by imax . Each dichotomy iteration
generates one artificial sample. Given one such artificial
sample that we denote by xc, the corresponding treatments
are the interpolation between x and x′ to obtain xc (cost:
O(d)cadd ), the classification of xc (cost: cCL(d, J, Λ)), the
sorting among the J discriminant function values to select
{i(xc; Λ), j (xc; Λ)} (cost: O(J log(J ))ccomp), and then
one subtraction gi(x;Λ)(x; Λ) − gj(x;Λ)(x; Λ) (negligible
cost: cadd ).

The cost of searching for and generating one anchor
is thus O

(
imax(dcadd + cCL(d, J, Λ) + J log(J )ccomp)

)
.

Then, searching for the nearest neighbor of an anchor with
a KDTree costs O(log(N)) distance computations [30],
namely O(d)(cadd + cmul). The cost of Step 1 of Proposal
1 is thus as follows:

c(1,1)(Λ) = c
(1)
add + c

(1)
mul + c(1)

comp + c
(1)
CL(d, J, Λ), (46)

where

c
(1,1)
add = O (RAimaxd + RA log(N)) cadd

c
(1,1)
mul = O (RA log(N)) cmul

c(1,1)
comp = O(RAimaxJ log(J ))ccomp

c
(1,1)
CL (d, J, Λ) = O(RAimax)cCL(d, J, Λ).

5.2.2 Time Costs of Step 2 in Proposal 1

We now take up the notations from Section 3.4. We assume
for simplification that at the end of the TDC, each cluster
contains Nmax samples. During the first step of a given
TDC, the main cost of the 2-means clustering is to compute
the distance between each of the N samples and the two
cluster centroids. This results in 2N distance computations.
There are iK iterations in 2-means clustering, so the cost of
the 2-means clustering on N samples is O(2iKdN)cadd .

During the second step of a given TDC, 2-means
clustering is applied to each of the two clusters that consist
ofN/2 samples. This corresponds to the computation of two
times 2N/2 distances, namely 2N distance computations
overall. More generally, we note that 2N distances are
computed regardless of the dividing step in a given
TDC, and thus the cost of each TDC step is always
O(2iKdN)(cadd + cmul).

To obtain the total cost of a given TDC, we estimate the
number of TDC steps that we denote by iT for convenience.
Assuming clusters of roughly equal size within each step, iT
satisfiesN/2iT = Nmax , and thus iT = 
log(N/Nmax)�+1.
The cost of Step 2 of Proposal 1 is therefore

c(1,2)(Λ) = c
(1,2)
add + c

(1,2)
mul , (47)

where

c
(1,2)
add = O (RT iKdN log(N/Nmax)) cadd

c
(1,2)
mul = O (RT iKdN log(N/Nmax)) cmul .

The time costs of Step 1 and Step 2 in Proposal 1 are simply
added up, and we group operations by elementary costs for
convenience:

c
(1)
add = c

(1,1)
add + c

(1,2)
add

c
(1)
mul = c

(1,1)
mul + c

(1,2)
mul

c(1)
comp = c

(1,1)
add

c
(1)
CL(d, J, Λ) = c

(1,1)
CL (d, J, Λ).

6 Experiments

The goal of our experiments is three-fold. Goal (a): Assess
whether Proposal 2 accurately estimates the boundary
uncertainty defined by Eq. 15 even without costly traditional
estimation methods such as re-sampling. Goal (b): Confirm
once more that boundary uncertainty is a relevant quantity
to perform classifier evaluation and classifier selection.
Goal (c): Compare Proposal 2 in terms of the accuracy
of classifier selection and scalability with existing widely
applicable and powerful methods (HO and CV), but also
with Proposal 1.

6.1 Classifiers

In this early stage of our research, we focus on the careful
design and analysis of boundary uncertainty estimation and
thus restrict our experiments to the selection of a single
hyperparameter.

We assessed Proposal 2 in the evaluation and then selec-
tion of classifier statuses of the Gaussian kernel SVM
classifier for two reasons. First, this classifier has only two
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hyperparameters: the Gaussian kernel width and the regu-
larization coefficient. Second, we can easily obtain extreme
cases of insufficient or excessive representation capabil-
ity by controlling the values of these two hyperparameters,
owing to the infinite VC capacity of Gaussian kernel SVMs
and to the possibility of analytically obtaining the global
minimum of training objectives of SVMs [27]. Gaussian
kernel SVMs thus provide a simple way of analyzing Pro-
posal 2 over a wide range of classifier boundary cases. We
varied the hyperparameter values by powers of 2 in order
to easily sweep a large range of values, while avoiding an
excessively rough search (as powers of 10 may result in),
e.g., 2−15, 2−14, · · · , 214, 215.

To simplify the analysis, we preliminarily selected the
regularization coefficient using CV [18]. Our experiments
focused on the selection of the Gaussian kernel width.
Following the notations of the SVM implementation that we
used,5 we denote by γ the inverse of the Gaussian kernel
width. A higher γ corresponds to a higher capacity of the
classifier to draw a more complex B(Λ). For each value of
γ , we performed full SVM training, and then we evaluated
the resulting classifier status with Proposal 2, HO, and CV.

Just to ensure that Proposal 2 can also perform evaluation
of other classifier models, we also succinctly assessed
Proposal 2 on a MultiLayer Perceptron (MLP). The goal
in our experimental setting was not really to achieve state-
of-the-art performance but rather to perform analysis of
Proposal 2 on MLP. Therefore, we simply considered
an MLP with two hidden layers of 128 and 64 units,
respectively. Both layers use ReLu activation functions. The
output layer uses cross entropy as the objective function
that we optimized with RMSProp, using a library available
online.6 As an MLP selection experiment, we performed
an early stopping experiment, namely we looked for the
optimal number of training epochs inside a single instance
of classifier training.

6.2 Datasets

We performed our experiments on real-world benchmark
datasets available online7 that are quite small and basic
but that provide some diversity in terms of dimensionality,
number of samples, nature of the features, and class overlap.
Furthermore, we prepared three synthetic two-dimensional
and two-class datasets using Gaussian Mixture Models:
GMM, GMM separable, and GMM inclusion .We illustrate
these datasets in Figs. 10, 14, and 15, respectively. For
the GMM dataset, we generated a testing set from the

5https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.
html
6https://keras.io/
7UCI repository: https://archive.ics.uci.edu/ml/index.php

same mother distribution as T to provide more exhaustive
experimental results. Owing to its larger number of available
samples, we could also afford to split the Letter Recognition
dataset into a training set and a testing set of equal size.

6.3 Data Preparation

On all of the datasets, we standardized independently each
feature by removing the mean and then scaling to unit
variance across the entire training set.8 For the datasets that
also have a testing set, we applied the same standardization
to the testing set, based on the means and variances that were
measured from the training set.

To obtain T̃ , we applied Algorithm 1 on the standardized
data, using the nearest distances ||x − x(1)|| that were
measured on the standardized data.

The two hyperparameters of Proposal 2 are M and K ,
which appear in Sections 4.4.1 and 4.4.3, respectively. For
all of the datasets, we set M to 40 because a meaningful
computation of Eq. 32 seems to require at least 30-40
samples. In all of the datasets, we searched for K in the
range [1, 40] with a step of 2, and then we selected its value
as described in the Appendix.

6.4 Accuracy of Boundary Uncertainty-Based
Classifier Selection

6.4.1 Exhaustive Results on Synthetic Data

In Fig. 6, we display the SVM selection results for the GMM
dataset. There are two ideal alternatives for assessing Goal
(a) (for our three goals, see the beginning of Section 6).
One alternative is to visualize the similarity between B∗
and B(Λ) in the multidimensional sample space; however,
this is not practical. Another alternative is to use a large
testing set (not to be confused with the validation sets that
are used by HO and CV) as a reference truth that gives
estimates as close as possible to the expected values. In this
case, for each Λ that is preliminarily obtained by training
the classifier on T , we obtain Ûtr (Λ) by using T as input
of Algorithm 3, and then we separately obtain Ûte(Λ) by
using the testing set as input of Algorithm 3. If Proposal 2
is an accurate boundary uncertainty estimation method, then
Proposal 2 should satisfy ∀Λ, Ûtr (Λ) ≈ Ûte(Λ) .

In Panel 3 of Fig. 6, we plot −Ûtr (Λ) (blue) and
−Ûte(Λ) (black) against γ . We can see that the blue and
black curves in Fig. 6 are nearly identical. This seems to
validate the accurate estimation of the boundary uncertainty
by Proposal 2 without relying on resampling methods,
and thus it achieves Goal (a). We note that the boundary

8https://scikit-learn.org/stable/modules/generated/sklearn.
preprocessing.StandardScaler.html
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Figure 6 SVM classifier selection results using Proposal 2 on the syn-
thetic GMM dataset. Horizontal axis for Panels 1 to 3: inverse γ of
the Gaussian kernel width. Panel 1: L̂te(Λ) (red) on the left vertical
axis, −Ûte(Λ) (black) on the right vertical axis. Panel 2: LHO (dot-
ted black), L̂tr (Λ) (orange), L̂val(Λ) (green) on the left vertical axis.

Panel 3: −Ûtr (Λ) (blue), −Ûte(Λ) (black) on the right-hand axis. Fol-
lowing the same conventions as Panels 1 and 3, Panels 1bis and 3bis
were obtained by applying Proposal 2 without using T̃ , namely by
computing the values of the near-boundary-ness measurement on T .

uncertainty estimation in Proposal 2 essentially relies on
Eqs. 27 and 32. Accurate and scalable estimation of ratios
for multidimensional data such as in the kNN regression
usually requires advanced estimation methods [28]. In our
case, accurate estimation of the ratio formed by Eqs. 27
and 28 with the accuracy shown in Fig. 6 may be explained
by the local reduction of the boundary uncertainty task
to the single dimension formed by the near-boundary-
ness measurement. This local reduction enabled the use of
analytic estimation rules such as Eq. 32, which may be
sufficiently accurate on one-dimensional data by simply
requiring training data.

We can assess Goal (b) by comparing the behavior of
−U(Λ) with the behavior of well-established classifier
evaluation metrics such as error probability. A more optimal
classifier status corresponds to a lower error probability,
and to a lower sign-reversed boundary uncertainty −U(Λ).
We can thus expect the two evaluation metrics to mutually
confirm their validity by following the same trends, and
especially by hitting a minimum for the same Λ (hopefully

the Bayes error status). Incidentally, we can assess Goal (a)
by checking whether −U(Λ) reaches its minimum value -
1 when the minimum error probability is achieved. We thus
check −Ûte(Λ) and L̂te(Λ) against γ for the GMM dataset
on Panel 1 of Fig. 7, and we see that Goal (b) is achieved.

In Panel 1, −Ûte(Λ) actually shows a sharper mini-
mum than L̂te(Λ). This sharper trend can be explained
by the focus of boundary uncertainty precisely on the
classifier boundary: Overall similar error probabilities can
correspond to quite different classifier boundaries. Bound-
ary uncertainty-based classifier evaluation may discriminate
between classifier statuses more finely than error probabil-
ity, provided that the estimation method is accurate enough.
This implies that even though we can expect some simi-
lar trend between −Ûte(Λ) and L̂te(Λ), expecting exactly
the same trend between the two curves is not necessarily
the goal of boundary uncertainty. We emphasize that the
purpose here is not to provide exactly the same trend as
L̂te(Λ), and that L̂te(Λ) is simply used as a default infor-
mative reference. This is the reason why we do not try

Figure 7 SVM classifier selection results using Proposal 2 on the Let-
ter Recognition dataset. Horizontal axis for Panels 1 to 3: inverse γ of
the Gaussian kernel width. Panel 1: L̂te(Λ) (red) on the left vertical

axis, −Ûte(Λ) (black) on the right vertical axis. Panel 2: LHO (dotted
black), L̂tr (Λ) (orange), and L̂val(Λ) (green) on the left vertical axis.
Panel 3: −Ûtr (Λ) (blue) and −Ûte(Λ) (black) on the right-hand axis.
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to quantitatively measure the correlation between −Ûte(Λ)

and L̂te(Λ), since this might imply that our goal is to fit
L̂te(Λ) with −Ûte(Λ).

In practice, we may not always have access to a
testing set. Instead, CV may be used to estimate the error
probability. Therefore, we also assessed CV-based estimates
of the classification error probability. Our experiments
adopted stratified CV9 with a high number of folds (10 to
40) to get closer to LOO, whose asymptotic unbiasedness
is proven. We also tried HO, by viewing HO as a more
practical competitor of Proposal 2 than CV in terms of
computation cost. For HO, we applied a ratio (75%, 25%)
for the split (train, validation).

We illustrate CV and HO in Panel 2 of Fig. 6: average
L̂tr (Λ) over the error probability estimated on the training
folds of CV (orange); average L̂val(Λ) over the error
probability estimated on the validation folds of CV (green);
error probability estimated on a holdout validation set
L̂HO(Λ) (dotted-black); error probability estimated on a
large testing set L̂te(Λ) (red); sign-reversed boundary
uncertainty estimated on the training set −Ûtr (Λ) (blue);
and sign-reversed boundary uncertainty estimated on a large
testing set −Ûte(Λ) (black).

Curiously, L̂HO(Λ) (dotted black) seems closer to
L̂te(Λ) (red) than L̂val(Λ) (green). While L̂tr (Λ) is a
seriously biased estimate of the error probability, −Ûtr (Λ)

seems to estimate the expected boundary uncertainty quite
accurately.

6.4.2 Results on Real-Life Data

For the Letter Recognition dataset, we have a testing set,
so we separately display more detailed results in Fig. 7,
that follows the same layout as in the upper row of Fig. 6.
We note how −Ûtr (Λ) and −Ûte(Λ) are strikingly close
in Panel 3, which seems to confirm that Proposal 2 can
accurately estimate boundary uncertainty. This contrasts
once more with the impossibility of estimating L̂te(Λ)

simply with L̂tr (Λ) (orange curve in Panel 2).
We observe that the minimum value of L̂val(Λ) on the

Letter Recognition dataset is nearly zero, which implies that
this dataset may be easy to classify and that performance
for the Bayes risk can be achieved at this minimum
value of L̂val(Λ). The minimum of L̂val(Λ) and Ûtr (Λ)

coincide, but the minimum value of −Ûtr (Λ) is not -1,
as it would be if the classifier executed B∗. If we assume
that Proposal 2 accurately estimates boundary uncertainty
(based on observations from Panel 3), then it would be
reasonable to assume that a classifier status could be nearly
optimal in terms of classification error probability, while

9https://scikit-learn.org/stable/modules/generated/sklearn.
model selection.StratifiedKFold.html

boundary uncertainty may not appear quite optimal so
long as B(Λ) does not even get closer to optimal B(Λ).
In other words, boundary uncertainty may evaluate the
generalization ability more strictly than the classification
error probability.

For the other real-life datasets, we did not have access
to a large testing set. In this case, the best available
estimates of the classification error probability and of
−U(Λ) are L̂val(Λ) and−Ûtr (Λ), respectively.10 We apply
the same checks as in Section 6.4.1 but by replacing L̂te(Λ)

and Ûte(Λ) with L̂val(Λ) and −Ûtr (Λ), respectively. We
expect similar trends and minimum values of L̂val(Λ) and
−Ûtr (Λ) against the classifier status.

For comparison, we also consider −Ûtr (Λ) obtained by
Proposal 1 with Eq. 11. The slightly different trends of
L̂val(Λ) between Proposal 1 and Proposal 2 may be due to
slightly different splittings between our former experiments
of Proposal 1 [18] and the experiments in this paper. Owing
to the range of values of the binary Shannon entropy in
Proposal 1, we rescaled −Ûtr (Λ) in the results of Proposal
1 by a factor ln(2) so that the range of values becomes [0, 1]
as in Proposal 2. In Proposal 2, the minimum values of
−Ûtr (Λ) are closer to −1 for each dataset, which achieves
Goal (a).

Figure 8 shows that for most of the datasets, Proposal
2 matches the benchmark CV in terms of trends and
minimum, which reaches Goal (b). Additionally, the trends
of −Ûtr (Λ) in Proposal 2 provide a sharper minimum than
either their counterpart in Proposal 1 or L̂val(Λ). This
higher ability to sharply select an optimal classifier status
achieves Goal (c).

Figure 9 shows the MLP selection results for the Letter
Recognition dataset. The layout is the same as in Fig. 7, but
in this case the horizontal axis corresponds to the training
epoch. Once more, Proposal 2 seems to achieve the three
goals we described in Section 6.4.1 for the GMM dataset.

6.5 Effect of ˜T

6.5.1 Illustration of Covariate Shift in Near-Boundary-Ness
Measurement Space

In order to illustrate the covariate shift in the near-
boundary-ness measurement space f (·; Λ), as well as the
usefulness of T̃ covered in Section 4.2.2, we selected
an SVM classifier status Λ that has a rather high
representation capability. We then plotted in Fig. 10 the
three distributions f (T ; Λ), f (T̃ ; Λ), f (X te; Λ) in the

10One motivation of boundary uncertainty is to avoid resampling
methods. Therefore, we do not estimate U(Λ) using validation folds
but using all of the available data, (i.e., non-testing data).
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Figure 8 SVM classifier selection results using Proposal 2 on real-
world datasets (green boxes). From left to right, and top to bottom:
Abalone, Banknote, Breast Cancer, Cardiotocography, German, Spam-
base, Landsat Satellite, Letter Recognition, Wine Quality Red, and
Wine Quality White. For each dataset, horizontal axis: inverse γ of

the Gaussian kernel width; left vertical axis: L̂val(Λ) (green), LHO
(dotted black); and right vertical axis: −Ûtr (Λ) (blue). SVM classifier
selection results using Proposal 1 on the Cardiotocography, Spambase,
Wine Quality Red, and Wine Quality White datasets (red box), which
we considered difficult.
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Figure 9 MLP classifier selection results using Proposal 2 on the
Letter Recognition dataset. Horizontal axis for Panels 1 to 3: index
of training epochs. Panel 1: L̂te(Λ) (red) on the left vertical axis,

−Ûte(Λ) (black) on the right vertical axis. Panel 2: LHO (dotted
black), L̂tr (Λ) (orange) on the left vertical axis. Panel 3: −Ûtr (Λ)

(blue), −Ûte(Λ) (black) on the right-hand axis.

sample space by representing the values of the near-
boundary-ness measurement using a colormap. The plots
confirm that f (T ; Λ) is quite different from f (X te; Λ),
whereas f (T̃ ; Λ) is quite closer to f (X te; Λ).

6.5.2 Effect of ˜T in Boundary Uncertainty Estimation

To show the effect of T̃ , we display in Fig. 11 and in Panels
1bis and 3bis of Fig. 7 the results obtained by Proposal
2 when naively computing the values of f (·; Λ) on T .
For almost all datasets, we observe that −Ûtr (Λ) assigns a
favorable uncertainty value even to excessively high values
of γ that are clearly not optimal (high L̂val(Λ) as indicated
on the left vertical axis). Such clear degradation of the
accuracy of −Ûtr (Λ) for higher values of γ confirms the
usefulness of T̃ . For the Spambase dataset, we see a noisier
trend of −Ûtr (Λ) in Fig. 8 compared to Fig. 11. This may
call for refinements of the definition of T̃ (Algorithm 1) in
order to more “naturally” perturbate T .

6.6 Influence of Hyperparameter M on Û (3)(Λ)

To ensure that Proposal 2 is not sensitive to the setting of
M , we performed the above SVM selection experiments
not only for M = 40 but also for a wide range of values:
M = 20, 40, 80, 120, 160. We show the corresponding

results in Fig. 12 for the GMM and Wine Quality White
datasets. Figure 12 shows that Proposal 2 is quite insensitive
to the value of M . The minimum and trend of Û (3)(Λ) seem
quite insensitive to M , although the value of Û (3)(Λ) itself
may slightly change. This insensitivity was observed for all
datasets, so we only display the results for two datasets.
Despite this apparent insensitivity, we prefer the smaller
value M = 40 in order to have just enough samples for the
estimation described by Eq. 27, while focusing locally along
B(Λ).

6.7 Influence of Hyperparameter K on Û (3)(Λ)

In order to perform the classifier selection, as Section 4.4.3
implies, Proposal 2 requires that model selection be per-
formed on a generative classifier model, using another
model selection criterion (AIC in our case). This require-
ment may seem to defeat the purpose of our proposal, both
conceptually and in terms of time costs. However, we show
that this requirement is not a bottleneck but rather a rough
initialization for Proposal 2.

First, the time costs incurred by the class-by-class search
of the optimal number of prototypes are not high, as
described in Section 6.10. Second, the setting of each Kj is
actually quite insensitive. Figure 13 illustrates the classifier
evaluation results of Proposal 2 obtained by imposing

Figure 10 Usefulness of T̃ . Panel 1: the GMM dataset with its given
class labels represented by yellow and purple crosses, respectively.
The classifier used is a Gaussian kernel SVM, whose regularization
coefficient was preliminarily set. For a given Λ, the three distributions
f (T ;Λ), f (T̃ ;Λ), f (X te;Λ) in the sample space are represented

using a colormap in Panels 2, 3, and 4, respectively. Cyan and pink
colors correspond to lower and higher algebraic values of f (·; Λ),
respectively. Negative and positive values of f (·;Λ) correspond to a
classifier decision that assigns data to the yellow and purple classes,
respectively.
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Figure 11 SVM classifier selection results using Proposal 2 by naive
computation of values of the near-boundary-ness measurement on T ,
without using T̃ . From left to right and top to bottom: Abalone, Ban-
knote, Breast Cancer, Cardiotocography, German, Spambase, Landsat

Satellite, Letter Recognition, Wine Quality Red, and Wine Quality
White. For each dataset, horizontal axis: inverse γ of the Gaussian ker-
nel width; left vertical axis: L̂val(Λ) (green), LHO (dotted black); and
right vertical axis: −Ûtr (Λ) (blue).
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Figure 12 Influence of M over Û (3)(Λ). We displayed the SVM
selection results of Proposal 2 obtained for the GMM and Wine
Quality White datasets in the left and right panels, respectively. Hor-
izontal axis: inverse γ of the Gaussian kernel width. Right vertical

axis: −Ûtr (Λ). Estimates of −Ûtr (Λ) based on different values of
M = 20, 40, 80, 120, 160 are distinguished by different colors. For
the GMM dataset, we also plotted Ûte(Λ) (black curve) to serve as a
reference.

different values of the number of prototypes per class, which
we set the same for all classes for simplicity and which we
denote by K . We attempted the values K = 3, 10, 20, 40.
We also display the results obtained by setting each Kj

using AIC as described in Algorithm 2. I∗ has no influence
on two-class datasets, so we only display results for multi-
class datasets. We only show two datasets, since results on
other datasets show the same phenomenon. We set M = 40
in this paragraph. Figure 13 shows that results are almost
the same despite the quite broad range of values for K .
This insensitivity may be the result of I∗ only requiring
the determination of the indexes of the two highest class
posterior probabilities, instead of their actual values.

6.8 Handling of Datasets withWell-Separated
Classes

This section illustrates the usefulness of the branching treat-
ment proposed by Eq. 39 on a synthetic dataset that features
well-separable classes, which we call GMM separable.
Figure 14 shows details of the SVM evaluation results
obtained on the GMM separable dataset.

For this dataset, B∗ obviously lies in the middle of
the empty region that separates the two classes, as also
illustrated in Fig. 5. For four classifier statuses γ1 to γ4, we
represent the location of B(Λ) by plotting the values of the
probability weights k(·; Λ)/w12(Λ) in a colormap. Training
samples that are close to B(Λ) are represented in cyan, and
those even closer to B(Λ) are represented in pink.

The colormap shows that γ1 results in a biased B(Λ)

that diagonally crosses the two classes, instead of passing
between them. γ2 results in a better B(Λ), although the
classifier appears quite uncertain as B(Λ) seems to spread

widely around the empty region (samples in cyan). γ3
executes the Bayes boundary, namely B(Λ) ≈ B∗: In this
case,B(Λ) lies in the center of the empty region between the
class distributions, and it is far from either class distribution,
so no training sample appears in cyan or pink. γ4 is too
high: The resulting B(Λ) unnecessarily encircles both class
distributions, which shows overfitting to the training set.

While all of γ1, γ2, γ3, γ4 are assigned a quite favorable
score L̂val(Λ), Proposal 2 can discriminate quite sharply
between a classifier that truly executes B∗, and a classifier
that is actually quite far from executing B∗, despite
apparently low classification error on the finite data at hand.
This sharp evaluation ability of Proposal 2 seems to be
the result of the sharp estimation focus on B(Λ) and B∗,
combined with the perturbation used when evaluating the
near-boundary-ness measurement that efficiently reacts to
overfitting.

6.9 Experimental Considerations of Equivalence
between Umax and B∗

The equivalence between achieving Umax and achieving
the Bayes decision rule is a key component of boundary
uncertainty. Therefore, we further discuss the equivalences
introduced in Section 4.5.

Equivalences (21) and (22) are obvious, based on the
definitions of B(Λ), B∗ and U(Λ). Equivalence (24) (i.e.,
equivalence between B∗ and Bayes decision rule) is also
quite straightforward. There may be one counter-example
to Equivalence (24): Given a two-class task, we may have
B(Λ) = B∗, while all of the class labels may be mistaken.
This counter-example is highly unlikely in practice, and
even more unlikely in the case of multiclass classification.

Figure 13 Influence of K over Û (3)(Λ). The SVM selection results of
Proposal 2 obtained for the Landsat and Wine Quality White datasets
are displayed in the left and right panels, respectively. Horizontal axis:
inverse γ of the Gaussian kernel width. Right vertical axis: −Ûtr (Λ).

Estimates of −Ûtr (Λ) based on the different values K = 3, 10, 20, 40
are distinguished by different colors. We also display the estimate of
−Ûtr (Λ) based on each Kj set by AIC, labeled as “Kaic”.
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Figure 14 Handling of well-separated classes by Proposal 2. Upper
row, left: scatter plot of GMM inclusion. Training samples with
given class labels C1 and C2 represented with yellow and purple
crosses, respectively. Upper row, middle panel: SVM evaluation results
obtained from Proposal 2 on the GMM inclusion dataset; horizontal
axis: inverse γ of the kernel width; left vertical axis: L̂val(Λ) (green);
right vertical axis: −Ûtr (Λ) (blue). Lower row: for four classifier

statuses obtained from γ1, γ2, γ3, γ4 indicated with the red arrows, we
provide the scatter plot of GMM inclusion along with the probabil-
ity weights k(·;Λ)/w12(Λ) represented in a colormap that varies from
cyan to pink. Training samples that appear in more fully cyan and more
fully pink values are further and closer to B(Λ), respectively. Only
strictly positive probability weights appear in the colormap, and thus
training samples that are far fromB(Λ) just appear in yellow or purple.

We now elaborate on Equivalence (23). Strictly speaking,
maximum boundary uncertainty measures the inclusion
B(Λ) ⊂ B∗. Here, the main point is that the perfect
inclusion B(Λ) ⊂ B∗ is unlikely, and that even a nearly
included B(Λ) is likely to have bias (un-Bayes-boundary-
ness) that can be detected with an accurate boundary
uncertainty estimation. We first illustrate the inclusion issue
on two-class data using the GMM inclusion dataset (top-left
corner of Fig. 15).

We generated the GMM inclusion dataset so that B∗
consists of two fragments, denoted by B∗(1) and B∗(2),
respectively. B∗(1) is a gentle curve between the blue
(left) and red (right) sample crowds. B∗(2) is an ellipse
surrounding the blue dense crowd at the right side. We
plot the classifier selection results by Proposal 2 on
the GMM inclusion dataset with a Gaussian kernel SVM
following the conventions used in Fig. 8. ΛA and ΛB are
two trained classifier statuses that were obtained from γA

and γB , respectively. Panels A and B visualize the classifier
decision that corresponds to ΛA and ΛB , respectively, by
showing the training samples with their predicted class
labels (red and blue dots) as well as some estimated anchors
(black dots).

B(ΛA) is nearly included in B∗: B(ΛA) ≈ B∗(1),
but B(ΛA) “omitted” B∗(2). We can explain this by the
insufficient representation capability of the SVM for ΛA.
B(ΛB) is nearly equal to B∗. Thus Û (ΛA) ≈ Umax ,
even though B(ΛA) is clearly not optimal. In practice,
the graph in Fig. 15 shows that Proposal 2 quite clearly
outputs Û (ΛB) ≥ Û (ΛA), despite the near inclusion
owing to the unavoidable (although admittedly small) bias

of B(ΛA) when trying to reproduce B∗(1) with insufficient
representation capability.

Assuming that B(ΛA) was even closer to inclusion in
B∗, there may be a simple way of detecting the obvious
non-optimality of B(ΛA). To fix the ideas, we represent in
the rectangle box below Panel A the schematic histograms
of the distributions {f (x; ΛA)}x∈C1 and {f (x; ΛA)}x∈C2

in blue and red, respectively. We note that f (x; ΛA) =
g1(x; ΛA) − g2(x; ΛA). Misclassifications are represented
by the yellow areas under the histograms. We observe that
the omission by B(ΛA) of the entire fragment of Bayes
boundary B∗(2) results in a high amount of misclassification
quite far away from f (·; ΛA) = 0. However, the number
of misclassifications usually become smaller and smaller
as we go further away from B(Λ). In order to safely
avoid the erroneous selection of classifier statuses with
excessively low representation capability, investigating the
detection and incorporation of such a suspicious burst of
misclassifications far from B(Λ) in the computation of
Û (Λ) remains a possible future work.

6.10 Time Costs of Proposal 2

6.10.1 Time Cost Comparison between Proposal 2 and
Proposal 1

This section quantifies the speed improvement of Proposal
2 compared to Proposal 1. For several real-life datasets used
in our experiments and for any given classifier status Λ,
Table 3 displays the multiplicative gain of Proposal 2 over
Proposal 1 in regard to each elementary cost introduced
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Figure 15 Discussion of Equivalence (23). Left side: scatter plot of
GMM inclusion. Training samples with given class labels C1 and C2
represented with blue and red dots, respectively. Middle panel: SVM
evaluation results obtained from Proposal 2 on the GMM inclusion
dataset; horizontal axis: inverse γ of the kernel width; left vertical
axis: L̂val(Λ) (green); and right vertical axis: −Ûtr (Λ) (blue). γA: We
nearly have B(ΛA) ⊂ B∗. γB : We nearly have B(ΛB) = B∗. Right
side (Panels A and B): training samples with the predicted class labels

(purple and red dots), and on-boundary anchors (black dots) for ΛA

and ΛB , respectively. We denote by B∗(1), B∗(2) the two fragments
that constituteB∗. Rectangle box under PanelA: schematic histograms
of the distributions {f (x;Λ)}x∈C1 and {f (x;Λ)}x∈C2 in blue and
red, respectively. We note that f (x;Λ) = g1(x;Λ) − g2(x;Λ).
Misclassifications are represented with the yellow areas under the
histograms.

in Section 5 when estimating the boundary uncertainty.
We only consider the time costs that are exclusive to the
evaluation of a classifier status. For example, Gadd(Λ) =
c
(1)
add(Λ)/c

(2)
add(Λ). We could not compute a gain in regard

to cexp because this elementary cost was not present in
Proposal 1.

To compute the values in Table 3, we optimistically
assumed that RA ∼ N , although for higher-dimensional
datasets, quite higher values of RA seemed necessary (i.e.,
Step 1 of Proposal 1 kept selecting different training
samples even as the number of generated anchors increased
well above N). We set the following values in Proposal 1
and Proposal 2: imax = 20, RT = 10, iK = 20, M = 40.

The values of d, J, N depend on the dataset, and they are
given in Table 2.

Table 3 shows that even for the relatively small datasets
used in our experiments, Proposal 2 is 100 to 1000 times
faster than Proposal 1, and this gain increases with d, J, N

(Section 5).

6.10.2 Time Costs comparison between Proposal 2 and CV

The time costs of SVM training are between O(N2)

and O(N3) [31]. Along with the cost of classifying the
validation folds, such training costs are repeated as many
times as there are validation folds in CV. To obtain an

Table 2 Datasets.

Dataset N Nte d J Remarks

GMM 2,000 18,000 2 2 class overlap

GMM inclusion 2,000 0 2 2 discontinuous B∗

GMM separable 2,000 0 2 2 well-separated classes

Abalone 4,177 0 7 3 class overlap

Banknote 1,372 0 4 2 well-clustered classes

Breast Cancer 683 0 9 2 well clustered classes

Cardiotocography 1,831 0 30 2 10:1 imbalance

German 1,000 0 26 2 sparse

Letter Recognition (LR) 10,000 10,000 16 26 well-clustered classes

Satimage (Landsat Satellite) 6,435 0 36 7

Spambase 4,601 0 57 2 sparse

Wine Quality Red 1,000 0 11 2 class overlap

Wine Quality White 3,961 0 11 3 class overlap
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Table 3 Gain of elementary time costs of Proposal 2 compared to
Proposal 1.

Dataset Gadd(Λ) Gmul(Λ) Gcomp(Λ) GCL(d, j, Λ)

Abalone 2E + 02 2E + 02 2E + 01 2E + 01

Cardiotocography 7E + 02 7E + 02 2E + 01 2E + 01

Letter Recognition 6E + 02 6E + 02 2E + 01 2E + 01

Landsat 1E + 03 1E + 03 2E + 01 2E + 01

Spambase 2E + 03 2E + 03 2E + 01 2E + 01

accurate CV estimate, 5 to 10 folds are usually required.
In contrast, Proposal 2 can be accurately evaluated through
only a single instance of classifier training, directly on
the training data. The time costs of classifier training are
usually the predominate costs of classifying the data. Given
a candidate classifier status, comparing the time costs of
Proposal 2 with CV is thus equivalent to comparing the time
costs of repeated classifier training with those of estimating
boundary uncertainty. Equation 43 shows that the time costs
of Proposal 2 are linear with N , J and nearly independent
of d (d only appears in the first block in Algorithm 3). This
shows that, at least for SVMs, Proposal 2 can be applied
to obtain accurate classifiers even for large-scale tasks, in
contrast to CV.

7 Discussion and Conclusion

In this paper, we formalized a new boundary uncertainty
estimation method that provides more accurate, applicable,
and scalable classifier evaluation (no anchor generation,
no random repetitions, no unclear settings). The new
proposal also clarified the two main reasons why boundary
uncertainty can be accurately estimated based on a finite
amount of training data without costly methods such as
Cross Validation (CV). First, a tight focus relative to the
classifier boundary implies that there is locally a single
dimension of interest in the boundary uncertainty estimation
task: such an estimation task is fundamentally easier and can
be accurately performed even analytically. Second, both the
classifier boundary and the Bayes boundary are identified
by known conditions that can be accurately approximated
from the training data. Performing classifier evaluation in
a single shot without averaging, as done in CV, may in a
sense improve interpretability: “what we got is what we
evaluated.” This contrasts with CV, where the final model
is the result of separately re-training the entire available
dataset, which is also different from each of the models
averaged over the training folds.

Our approach to classifier evaluation starts from the
statistical assumption that there is class overlap around
the Bayes boundary. In practice, the feature-extraction step
before classification aims to generate well-separated classes
where no sample is close to the Bayes boundary (Bayes risk
is equal to zero). In this regard, our approach may seem
paradoxical. Nevertheless, in practice, the data may be high-
dimensional and difficult to separate, implicitly containing
irreducible misclassification. Traditional approaches based
on classification error tend to easily overfit such difficult
data, and the design of more and more powerful classifier
models may also make them prone to overfitting unless
adequate classifier evaluation is carried out. Our proposed
approach may be especially useful in such settings.
Meanwhile, our proposal can also handle simple cases with
well-separated classes.

So far, we have focused our efforts on designing the
concept of boundary uncertainty and obtaining reasonably
accurate, scalable and applicable results. However, we have
not yet obtained results that quantitatively show a definite
gain in generalization ability compared to traditional
approaches in state-of-the-art classification tasks. For now,
boundary uncertainty can be used to determine whether the
Bayes risk is achieved, and to design classifiers directly
based on the training data. Boundary uncertainty actually
defines another metric for generalization ability that could
even be used as a reference to describe the performance on
a testing set. Future steps will aim at careful consideration
of how to evaluate boundary uncertainty itself, and how to
make the most of it for accurate classification.

Other future steps for boundary uncertainty-based clas-
sifier evaluation include strengthening the equivalence
between maximum boundary uncertainty and Bayes deci-
sion rule; deepening the formalization of boundary uncer-
tainty and performing quantitative analysis of our classifier
evaluation method, for example by establishing the rate
of convergence of our boundary uncertainty estimator; and
investigating applications to challenging tasks, including
large-scale tasks where many parameters and hyperparame-
ters are simultaneously optimized.

Appendix A: Class-Wise Application of AIC
to Determine the Number of Prototypes per
Class

We consider a class index j ∈ [[1, J ]]. We denote by Tj the
set of training samples with given class label Cj and by Mj

the set of prototypes that represents class Cj , namely Mj =
{pk

j }k∈[[1,Kj ]]. Given a training sample x ∈ Tj , the likelihood
of x can be calculated by assigning x to the mixture
component of class Cj that has the highest probability,
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namely to the prototype of class Cj that is closest to x. We
denote this prototype by pj (x). The likelihood of x is thus

P(x|Mj, σ
2
j ) = 1√

2πσ 2
j

exp

(
−

(
x − pj (x)

)2
2σ 2

j

)
, (48)

where we take the variance σ 2
j to be the within-cluster

variance:

σ 2
j = 1

|Tj |
∑
x∈Tj

||x − pj (x)||2. (49)

The likelihood of Tj is

P(Tj |Mj, σ
2
j ) =

∏
x∈Tj

P (x|Mj, σ
2
j ). (50)

Finally, the AIC score for class Cj represented with the
number of prototypes Kj is

AIC(Kj ) = logP(Tj |Mj, σ
2
j ) − (Kjd + 1). (51)

We select the value of Kj that yields the highest value of
AIC(Kj ).
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