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Abstract

An s-pair state in a graph is a quantum state of the form eu + sev, where u and v are
vertices in the graph and s is a non-zero complex number. If s = −1 (resp., s = 1), then
such a state is called a pair state (resp. plus state). In this paper, we develop the theory of
perfect s-pair state transfer in continuous quantum walks, where the Hamiltonian is taken
to be the adjacency, Laplacian or signless Laplacian matrix of the graph. We characterize
perfect s-pair state transfer in complete graphs, cycles and antipodal distance-regular graphs
admitting vertex perfect state transfer. We construct infinite families of graphs with perfect s-
pair state transfer using quotient graphs and graphs that admit fractional revival. We provide
necessary and sufficient conditions such that perfect state transfer between vertices in the line
graph relative to the adjacency matrix is equivalent to perfect state transfer between the plus
states formed by corresponding edges in the graph relative to the signless Laplacian matrix.
Finally, we characterize perfect state transfer between vertices in the line graphs of Cartesian
products relative to the adjacency matrix.

Keywords: continuous-time quantum walk, perfect state transfer, pair states, strong cospectral-
ity, line graph

MSC2010 Classification: 05C50; 81P45; 05C76; 15A18; 81Q10

1 Introduction

The use of a continuous-time quantum walk to transfer quantum states was proposed by Bose in
2003 [Bos03]. Since then, continuous-time quantum walks have become invaluable tools in the
theory of quantum computation and information. See [CG21] for the background on continuous-
time quantum walks.

Motivated by high probability quantum transmission, Christandl et. al introduced the con-
cept of perfect state transfer in 2004 [CDEL04]. For two decades, the focus of most studies on
perfect state transfer was between vertex states. However, a result due to Godsil implies that
perfect state transfer between vertex states is rare [God12]. This prompted Chen to extend the
study of perfect state transfer to edge states [Che19]. Chen and Godsil subsequently expanded
the preceding work to cover the so-called pair states and plus states [CG20]. In this paper, we
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study perfect state transfer between s-pair states, which is a natural generalization of both pair
states and plus states.

Let X be a connected graph on n vertices, and M be a Hermitian matrix associated with X.
The continuous-time quantum walk on X with Hamiltonian M has transition matrix

UM(t) := e−itM.

The transition matrix is unitary because M is Hermitian.
Some results in this paper apply specifically to M being the adjacency matrix A of X, the

Laplacian matrix L of X, or the signless Laplacian matrix Q of X. If we do not specify the Hamil-
tonian in a statement by using U(t) to denote the transition matrix, then one may assume it is
any real symmetric matrix associated with X. Unless explicitly stated, we assume X is a simple
connected undirected graph and all edges in X are unweighted.

A (pure) state is a 1-dimensional subspace of Cn. We represent a state by a unit vector u

spanning the 1-dimensional subspace. Note that ηu represents the same state as u, for any phase
factor η. The density matrix of this state is Du := uu∗. We say the state u is a real state if its
density matrix Du is real.

Perfect state transfer occurs from the state u to the state µ at time τ if

U(τ)u = ηµ

for some phase factor η, or equivalently,

U(τ)DuU(−τ) = Dµ.

A vertex state is the characteristic vector ea of some vertex a in X. We define an s-pair state as a
state in the form

1√
1 + |s|2

(ea + seb)

for some non-zero complex number s and distinct vertices a and b. We say u is a pair state if
s = −1, and it is a plus state if s = 1. For simpler exposition, we will drop the normalization
factor 1√

1+s2
.

When studying a quantum spin network, one considers an arbitrary graph where each vertex
represents a spin, and the weight of the edge between vertices represents the coupling strength
of interaction between the two spins in the quantum system. Strictly speaking, the vector ea rep-
resents excitation of spin a, and so the state of the system can be represented as |1〉a|0〉b|0〉c · · · ∈
C2n

. Similarly, eb corresponds to |0〉a|1〉b|0〉c · · · , where we have, without loss of generality, la-
belled our vertices so that the vertices a and b appear first. Since the excitation only occurs on
vertices a and b, we can effectively ignore the rest of the system (mathematically, we can trace
out all other qubits) and focus solely on the state of two qubits: |1〉a|0〉b + s|0〉a|1〉b, where s ∈ C

and we have again dropped the normalization factor for simplicity. In this way, an s-pair state
ea + seb represents a pair of entangled qubits, forming a state in the 1-excitation subspace Cn of
the full 2n-dimensional system of n spins. This state is always entangled for any s 6= 0.

Furthermore, although s is not in general a Schmidt coefficient (since we are allowing for s ∈
C), we can still view s as a measure of the degree of entanglement of our state |1〉a|0〉b + s|0〉a|1〉b,
in so far as the entropy of entanglement is given by

S(ρa) = S (Trb(|1〉a|0〉b + s|0〉a|1〉b)(〈1|a〈0|b + s̄〈0|a〈1|b))
= S(|1a〉〈1a|+ s|0a〉〈1a|+ s̄|1a〉〈0a|+ |s|2|0a〉〈0a|),
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where Trb is the partial trace over the b subsystem. The closer |s| is to zero, the closer the density
matrix ρ = (|1〉a|0〉b + s|0〉a|1〉b)(〈1|a〈0|b + s̄〈0|a〈1|b) is to |1a〉〈1a|, a pure state (having entropy
of zero), and therefore the closer the state |1〉a|0〉b + s|0〉a|1〉b is to a separable state (namely
|1〉a|0〉b). On the other hand, the closer |s| is to 1, the closer S(ρa) is to its maximum value, and
the closer |1〉a|0〉b is to a maximally entangled state. Thus, we may think of pair states (resp.,
plus states) as s-pair states that are maximally entangled.

We say that perfect state transfer between vertices a and b at time τ if

U(τ)ea = ηeb,

for some phase factor η. If the Hamiltonian is real and symmetric then U(τ) is symmetric and
U(τ)eb = ηea, which gives

U(τ)(ea + seb) = η(eb + sea), for s ∈ C.

Hence, we can view perfect state transfer between vertices as a special case of perfect transfer of
s-pair states.

Given two states u = ea + reb and µ = eα + seβ, we say perfect s-pair state transfer occurs
from u to µ if U(τ)u = ηµ, for some time τ. As a preliminary investigation of s-pair states, we
opt to study perfect s-pair state transfer where r = s is a non-zero real number. When s = ±1,
we have perfect pair state transfer and perfect plus state transfer as introduced in [CG20]. Since
perfect state transfer between s-pair states represents accurate transmission of a pair of entangled
qubits to another pair of entangled qubits in a quantum spin network, it follows that perfect s-
pair state transfer allows for the transfer and generation of entanglements, a property considered
desirable in quantum information theory [CCT+19]. This paper is organized as follows. In
Section 2, we provide necessary conditions for perfect s-pair state transfer and supply examples
of graphs that admit perfect s-pair state transfer. Section 3 deals with real periodic s-pair states.
In particular, we prove that for every positive integer k and positive rational s, there are only
finitely many connected graphs with maximum valency k such that ea + seb is periodic in X
relative to the adjacency, Laplacian and signless Laplacian matrix. Thus, similar to the vertex case
[God12], perfect s-pair state transfer is rare when s is a positive rational number. In Section 4, we
establish combinatorial and algebraic properties of graphs with strongly cospectral s-pair states.
Section 5 is dedicated to constructions of graphs with perfect s-pair state transfer using quotient
graphs and graphs that admit fractional revival. We also extend a transitivity property of perfect
pair state transfer in [CG20] to perfect s-pair state transfer. In Section 6, we characterize perfect
s-pair state transfer in complete graphs and cycles. It turns out that complete graphs do not
admit perfect s-pair state transfer, while C4, C6 and C8 are the only cycles that admit perfect s-
pair state transfer. For distance-regular graphs admitting perfect state transfer between vertices,
we provide necessary and sufficient conditions such that these graphs also admit perfect s-pair
state transfer. Section 7 is devoted to exploring the relationship between the existence of perfect
state transfer between plus states formed by edges in a graph relative to the signless Laplacian
matrix, and the existence of perfect state transfer between the corresponding vertices in the line
graph relative to the adjacency matrix. Then we utilize the singular values and singular vectors
of the incidence matrix of a graph to characterize strong cospectrality and perfect vertex state
transfer in the line graph. Finally, in Section 8, we characterize adjacency perfect state transfer
between vertices in the line graphs of Cartesian products. Taken together, our results broaden
the literature on pair and plus states, establishing new instances of perfect state transfer between
s-pair states, while developing techniques that will facilitate future research on this topic.

3



2 Perfect s-pair state transfer

In a graph X, perfect s-pair state transfer occurs from u = ea + seb to µ = eα + seβ at time τ if
there exists a unit complex number η, called a phase factor, such that

U(τ)u = ηµ, (1)

equivalently,
U(τ)DuU(−τ) = Dµ. (2)

If u = µ then we say the state u is periodic at time τ. Different from vertex states, it is possible
for an s-pair state ν to be an eigenvector of M corresponding to some eigenvalue λ. In this case,

U(t)ν = e−itλ
ν,

for any time t, and we call ν a fixed state.

Example 2.1. We give a weighted graph P5(w) with perfect s-pair state transfer, and an infinite family
of trees admitting pair state transfer.

(a) For a positive real number w, the weighted path P5(w) has perfect s-pair state transfer from
(

e3 − 2√
w

e1

)

to
(

e3 − 2√
w

e5

)
at time π√

w
. Note that s 6= ±1 for w 6= 4.

1 2 3 4 5

√
w 1 1

√
w

Figure 1: The weighted path P5(w)

(b) As a special case of the construction in [Pal24], the infinite family of trees Tn shown in Figure 2, with
n ≥ 0, has adjacency perfect s-pair state transfer between two states ea − eb and eα − eβ at time π√

2
.

αa

βb

0 1 n
· · ·

Figure 2: Tn

For a Hamiltonian M, we use spec(M) to denote its spectrum. Given the spectral decompo-
sition of the Hamiltonian

M = ∑
λ∈spec(M)

λEλ, (3)

we have
UM(t) = ∑

λ∈spec(M)

e−itλEλ.

Multiplying Eλ to both sides of Equation (1) yields

Eλu =
(

eiτλη
)

Eλµ, for λ ∈ spec(M).
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Since Eλ, u and µ are real, eiτλη is a real phase factor. Hence we have

Eλu = ±Eλµ, for λ ∈ spec(M). (4)

We say the s-pair states are strongly cospectral if they satisfy the above condition. As in the
case of vertex state transfer, strong cospectrality is a necessary condition for perfect s-pair state
transfer.

For an arbitrary state ν ∈ Cn, the eigenvalue support of ν relative to M is the set

Φν := {λ : Eλν 6= 0} .

It is obvious that if u = ea + seb then Φu ⊆ Φea ∪ Φeb
.

Suppose u and µ are strongly cospectral states. Equation (4) implies Φu = Φµ, and gives the
natural partition of Φu = Φ+

u,µ ∪̇ Φ−
u,µ, where

Φ+
u,µ = {λ : Eλu = Eλµ 6= 0} and Φ−

u,µ = {θ : Eθu = −Eθµ 6= 0} .

We now give a lower bound on the size of the support of an s-pair state ea + seb in terms of
the distance of a and b, denoted by dist(a, b).

Proposition 2.2. Suppose the Hamiltonian for a graph X is either A, L or Q. If u = ea + seb is a fixed
state then |Φu| = 1. Otherwise,

|Φu| ≥
⌈

dist(a, b)

2

⌉
.

Proof. Let k be the maximum degree of X and let M be I + A, (k+ 1)I − L or Q if the Hamiltonian
is A, L or Q, respectively. For each case, the support of u with respect to M is the same as that
with respect to the original Hamiltonian. Note that M is a non-negative matrix with positive
diagonal entries.

If Mu = λu then Φu = {λ}. On the other hand, if u is not an eigenvector of M, then
the number of non-zero entries in the vectors Mℓu is strictly increasing as ℓ increases from 0 to(⌈

dist(a,b)
2

⌉
− 1
)

. Hence the set

{
Mℓu : 0 ≤ ℓ ≤

⌈
dist(a, b)

2

⌉
− 1

}

is linearly independent in span {Eλu : j = 1, . . . , d} which has dimension |Φu|.

Adapting the proof of Theorems 2.4.2 to 2.4.4 in [Cou14] yields the following characterization
of perfect state transfer between real states.

Theorem 2.3. Let u and µ be real states, and Φu be closed under taking algebraic conjugates. Perfect
state transfer occurs from u to µ if and only if the following conditions hold.

(i) The s-pair states u and µ are strongly cospectral.

(ii) The elements in Φu = Φµ are either

(a) all integers, or

(b) there exists a square-free integer ∆ > 1 and an integer c such that each element in Φu is in the

form c+d
√

∆
2 , for some integer d.
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(iii) Let λ ∈ Φ+
u,µ, and

g = gcd

{
λ − θ√

∆

}

θ∈Φu

(with ∆ = 1 for Case (a) above). Then θ ∈ Φ+
u,µ if and only if λ−θ

g
√

∆
is even.

The minimum perfect s-pair state transfer time is π

g
√

∆
, and U

(
π

g
√

∆

)
u = e−iτλµ.

If u is a fixed state relative to M, then |Φu| = 1 by Proposition 2.2, and so u is not involved in
strong cospectrality. In this case, u cannot exhibit perfect state transfer relative to M by Theorem
2.3 (i). By way of example, if a and b are twin vertices in X ( i.e., a and b have the same neigh-
bours), then ea − eb is an eigenvector for M ∈ {A, L, Q} [KMP23]. Thus, ea − eb is a pair state in
X that is not involved in perfect state transfer relative to M ∈ {A, L, Q} .

Note that the following proposition applies to M ∈ {A, L, Q}
Proposition 2.4. Let u = ea + seb, for some s ∈ Q\{0}. If the entries of M are algebraic integers, then
Φu is closed under taking algebraic conjugates.

Proof. If λ and θ are algebraic conjugates, then so are Eλ and Eθ. Therefore, Eλu = 0 if and only
if Eθu = 0.

When s ∈ R\{0}, Du and Dµ are real density matrices and the following theorem follows
from Lemmas 2.3, 5.2 and Corollary 5.3 of [God17].

Theorem 2.5. Let u = ea + seb and µ = eα + seβ be distinct s-pair states, for some s ∈ R\{0}. If
perfect s-pair state transfer occurs from u to µ at time τ, then

(i) Perfect s-pair state transfer occurs from µ to u at time τ.

(ii) Both u and µ are periodic at time 2τ.

(iii) If the minimum period of u is τ then perfect s-pair state transfer between u and µ occurs at time τ
2 .

(iv) There is no perfect state transfer from u to a state with real density matrix other than Du and Dµ.

3 Periodic s-pair states

From Thereom 2.5, a real s-pair state is necessarily periodic if it is involved in perfect s-pair state
transfer in X. We focus here on the real periodic s-pair states.

A set S ⊂ R with at least two elements satisfies the ratio condition if for any λh, λj, λk, λl ∈ S
with λk 6= λl ,

λh − λj

λk − λl
∈ Q.

If |S| = 2, then S automatically satisfies the ratio condition. The following theorem follows
directly from Theorem 9.1.1 in [CG21].

Theorem 3.1. Let s ∈ R\{0}. The s-pair state u = ea + seb is periodic in X if and only if Φu satisfies
the ratio condition.

By applying Theorem 7.6.1 of [CG21], we obtain further restrictions on the eigenvalues if Φu

is closed under taking algebraic conjugates.
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Theorem 3.2. Let u = ea + seb, for some s ∈ R\{0}. If |Φu| > 2 and Φu is closed under taking
algebraic conjugates, then Φu satisfies the ratio condition if and only if one of the following holds.

(i) The elements in Φu are integers.

(ii) There is a square-free integer ∆ > 1 and an integer c such that each element in Φu is in the form

c + d
√

∆

2
, for some integer d.

If either condition holds (with ∆ = 1 in the first case), let

g = gcd

{
λ − θ√

∆

}

λ,θ∈Φu

.

The minimum period of u is 2π

g
√

∆
, and

U

(
2π

g
√

∆

)
u = e−iτλu, for λ ∈ Φu.

Corollary 3.3. If Φea ∪ Φeb
satisfies the ratio condition then the s-pair state u = ea + seb is periodic for

any s ∈ R\{0}.

Proof. This result follows immediately from the fact that Φu ⊆ Φea ∪ Φeb
.

In particular, if U(τ)ea = ηea and U(τ)eb = ηeb, then ea + seb is periodic, for any s ∈ R\{0}.
We now give a family of graphs that have periodic pair states but no periodic vertices. Let X
be a conference graph on n vertices, where

√
n 6∈ Z. (See Section 1.3 of [BCN89] for conference

graphs.) Note that X is regular with valency k = (n − 1)/2. The eigenvalue support of each
vertex with respect to the adjacency matrix consists of

λ1 = k, λ2 =
−1 +

√
n

2
, and λ3 =

−1 −√
n

2
,

which does not satisfy the ratio condition. Hence X has no periodic vertices. Let u = ea −
eb. Since Eλ1

= 1
n J, we have Eλ1

u = 0 and Φu = {λ2, λ3} satisfies the ratio condition. By
Theorem 3.1, the pair state u is periodic. Since X is regular, u is also periodic relative to the
Laplacian or the signless Laplacian matrix of X.

The next corollary follows immediately from Theorem 3.2.

Corollary 3.4. Let u = ea + seb be a real periodic s-pair state in X. If Φu is closed under taking algebraic
conjugates, then |λ − θ| ≥ 1, for all λ, θ ∈ Φu with λ 6= θ.

In [God12], Godsil showed that graphs with periodic vertices relative to the adjacency matrix
are rare. We show a similar statement about real periodic s-pair states with non-negative entries.
We denote the spectral radius of a square matrix N by ρ(N).

Corollary 3.5. For each positive integer k and positive rational number s, there are finitely many con-
nected graphs X with maximum valency at most k such that ea + seb is periodic in X with Hamiltonian
A, L, or Q.
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Proof. We let M be I + A, (k + 1)I − L and Q if the Hamiltonian is A, L or Q, respectively. Let
the spectral decomposition of M be

M = ∑
λ∈spec(M)

λEλ.

The Eλ’s are also the orthogonal projection matrices onto the eigenspaces of the original Hamil-
tonian. For each case, an s-pair state u = ea + seb is periodic with M being the Hamiltonian if
and only if u is periodic with the original Hamiltonian.

Let r be the covering radius of the set {a, b} in X, which is the smallest integer r such that
every vertex in X is at distance at most r from some vertex in {a, b}. Since the entries in M and
u are non-negative,

{Mhu : h = 0, . . . , r}
is a linearly independent set in span {Eλu : λ ∈ Φu}. Hence r < |Φu|.

Now, observe that
ρ(I + A) = ρ(A) + 1 ≤ k + 1.

For each vertex v, let d(v) be the degree of v in X. The proof of Theorem 3.1 in [Shi07] states the
inequality

ρ(L) ≤ ρ(Q) ≤
√

2 max
v

√
d(v)2 + ∑

v′∼v

d(v′) ≤ 2k.

We conclude that ρ ((k + 1)I − L) ≤ k + 1 and ρ(Q) ≤ 2k.
For all three choices of the Hamiltonian, Corollary 3.4 implies

r < |Φu| ≤ 2ρ(M) + 1 ≤ 4k + 1.

For each positive integer k, there are finitely many connected graphs with maximum degree at
most k and covering radius of a pair of vertices bounded above by 4k.

Remark 3.6.

(a) The proof of the Corollary 3.5 is adaptable to any state u with non-negative rational entries. In
particular, it applies to periodic vertex states.

(b) Corollary 3.5 does not hold when s < 0. Figure 2 gives an infinite family of trees {Tn : n ≥ 0} with
maximum degree three containing periodic s-pair state ea − eb.

We close this section with a result that will prove useful in Section 6.2.

Proposition 3.7. Let a and b be cospectral vertices in X. If (ea + seb) is periodic at time τ, then either
s = ±1 or both a and b are periodic at time τ.

Proof. Suppose U(τ)(ea + seb) = η(ea + seb) for some phase factor η, which gives
{

eT
a U(τ)ea + seT

a U(τ)eb = η

eT
b U(τ)ea + seT

b U(τ)eb = sη.

We have eT
a U(τ)ea = eT

b U(τ)eb because a and b are cospectral, and eT
b U(τ)ea = eT

a U(τ)eb

because U(τ) is symmetric. The above system of equations give

(s2 − 1)eT
a U(τ)eb = 0.

Hence either s = ±1, or eT
a U(τ)ea = eT

b U(τ)eb = η.
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4 Strongly cospectral s-pair states

In this section, we make some observations on strongly copsectral s-pair states, a necessary con-
dition for perfect s-pair state transfer as stated in Theorem 2.3.

Given the spectral decomposition M = ∑
λ∈spec(M)

λEλ, the real states u and µ are strongly

cospectral with respect to M implies

uTEλu = µ
TEλµ

for all j, which is equivalent to
uT Mhu = µ

T Mh
µ, (5)

for all non-negative integer h.

Proposition 4.1. Let u = ea + reb and µ = eα + seβ be strongly cospectral s-pair states with respect to
the adjacency matrix of X, for some real numbers r and s. If r 6= s then a is not adjacent to b and α is not
adjacent to β in X.

Proof. Applying (5) with h = 1 gives rAa,b = sAα,β. If r 6= s then Aa,b = Aα,β = 0.

Remark 4.2. Theorem 8.1 of [CG20] rules out Laplacian perfect s-pair state transfer from ea + eb to
eα − eβ. Proposition 4.1 rules out adjacency perfect s-pair state transfer from ea + eb to eα − eβ if either
a is adjacent to b or α is adjacent to β.

Proposition 4.3. Suppose u = ea + seb is strongly cospectral with µ = eα + seβ with respect to M, for
some s ∈ R\{0}. Then one of the following holds.

(i) (Mh)a,a = (Mh)α,α, (Mh)b,b = (Mh)β,β, and (Mh)a,b = (Mh)α,β, for all h ≥ 0.

(ii) s is the root of a polynomial of degree at most two.

Proof. Equation (5) gives

s2
(
(Mh)b,b − (Mh)β,β

)
+ 2s

(
(Mh)a,b − (Mh)α,β

)
+ (Mh)a,a − (Mh)α,α = 0,

for all h ≥ 0. Either Condition (i) holds, or s is a root of some polynomial of degree at most
two.

Theorem 8.3 of [CG20] relates Laplacian perfect pair state transfer to perfect plus state trans-
fer with respect to Q for bipartite graphs. In the following proposition, we give a similar result
for strong cospectrality of s-pair states in bipartite graphs.

Proposition 4.4. Let X be a bipartite graph with bipartition B1 and B2. Let a, α ∈ B1 and b, β ∈ B2.
Then the two states (ea + seb) and (eα + seβ) are strongly cospectral with respect to Q if and only if
(ea − seb) and (eα − seβ) are strongly cospectral with respect to L.

Proof. Let P be the diagonal matrix where

Pv,v =

{
1 if v ∈ B1,

−1 if v ∈ B2.

The proposition follows from
UL(t)P = PUQ(t),

and P(ev1
+ sev2 ) = ev1

− sev2 , for v1 ∈ B1 and v2 ∈ B2.

9



Proposition 4.4 does not hold when a, b ∈ B1. In Figure 3, the states (ea + eb) and (eα + eβ)
are strongly cospectral with respect to Q but (ea − eb) and (eα − eβ) are not strongly cospectral
with respect to L.

a

α

b

β

Figure 3: A counter-example of Proposition 4.4 if a, b ∈ B1

We generalize Corollary 6.4 of [GS24] to s-pair states.

Proposition 4.5. Let u = ea + seb and µ = eα + seβ be strongly cospectral s-pair states in X. If s 6= 1
then any automorphism of X that fixes (a, b) also fixes (α, β). If s = 1 then any automorphism of X that
fixes {a, b} also fixes {α, β}.

Proof. Let P be the permutation matrix of an automorphism that fixes the state u. Then P com-
mutes with each Ej. It follows from Equation (4) that

µ = ∑
λ∈Φµ

Eλµ =


 ∑

λ∈Φ+
u,µ

Eλ − ∑
θ∈Φ−

u,µ

Eθ


 u.

Hence

Pµ =


 ∑

λ∈Φ+
u,µ

Eλ − ∑
θ∈Φ−

u,µ

Eθ


 Pu,

and Pu = u if and only if Pµ = µ.

5 More s-pair state transfer

In this section, we use existing vertex state transfer and s-pair state transfer to build more exam-
ples of s-pair state transfer.

5.1 Fractional revival

Fractional revival occurs from vertex a to vertex b at time τ if

U(τ)ea = ηea + ̟eb (6)

for some complex numbers η and ̟ 6= 0 satisfying |η|2 + |̟|2 = 1. (Vertex) perfect state transfer
occurs between a and b if η = 0, so it is a special case of fractional revival. For more information
about fractional revival, we refer the reader to [CCT+19].

Proposition 5.1. Let a and b be distinct vertices in X. Let s ∈ R\{−1, 0, 1}. Perfect s-pair state transfer
occurs between u = ea + seb and µ = eb + sea if and only if (vertex) perfect state transfer occurs between
a and b at the same time.

10



Proof. We first show that u and µ are strongly cospectral if and only if ea and eb are strongly
cospectral. The states u and µ are strongly cospectral if and only if there exists σλ ∈ {±1}, for
λ ∈ Φu, such that

Eλu = σλEλµ,

which is equivalent to
(1 − sσλ)Eλea = (1 − sσλ)σλEλeb.

As s 6= ±1, the above equations hold if and only if ea and eb are strongly cospectral and

Φ+
ea,eb

= Φ+
u,µ and Φ−

ea,eb
= Φ−

u,µ.

These equalities imply that u and µ satisfy the conditions in Theorem 2.3 if and only if ea and eb

satisfy the conditions in Theorem 2.3.

In Theorem 6.5, we see that C8 has perfect s-pair state transfer with s = ±1 but C8 does not
admit (vertex) perfect state transfer.

Proposition 5.2. Let the entries of M be algebraic integers. Suppose (vertex) perfect state transfer occurs
between a and α at time τ and v is periodic at τ. Then perfect s-pair state transfer occurs between ea + sev

to eα + sev at time τ, for s ∈ Q\{0}, if and only if there exist λ ∈ Φ+
ea,eα

and λ′ ∈ Φev such that

λτ = λ′τ (mod 2π).

Proof. Let λ ∈ Φ+
ea,eα

and λ′ ∈ Φev . By Proposition 2.4, Theorems 2.3 and 3.2, we have

U(τ)ea = e−iτλeα and U(τ)ev = e−iτλ′
ev.

Then
U(τ) (ea + sev) = e−iτλeα + se−iτλ′

ev = η (eα + sev)

if and only if e−iτλ = e−iτλ′
= η.

Suppose the Hamiltonian M is non-negative and irreducible, for example M = A or Q. Then
the condition on the eigenvalue supports in Proposition 5.2 always holds with λ = λ′ being the
Perron-Frobenius-eigenvalue of M.

Example 5.3. Consider the path P3 on vertex set {1, 2, 3} where the vertex 2 has degree two. At time
τ = π√

2
,

UA(τ) = −




0 0 1
0 1 0
1 0 0




For any positive integer m, the Cartesian power P✷m
3 has transition matrix UA(t)

⊗m. Thus P✷m
3 has per-

fect state transfer from a = (1, 1, . . . , 1) to α = (3, 3, . . . , 3) at time τ and is periodic at v = (2, 2, . . . , 2)
at the same time. As m

√
2 ∈ Φ+

ea,eα
∩ Φev , Proposition 5.2 implies that perfect s-pair state transfer occurs

from (ea + sev) to (eα + sev) at time τ for all s ∈ R\{0}.

Suppose that fractional revival occurs from a to b, and both η and ̟ in Equation (6) are non-
zero. As U(τ) is unitary, we have

U(τ)eb = ̟ea − ̟
( η

̟

)
eb, (7)

11



and

U(τ) (ea + seb) = (η + s̟)ea + ̟

(
1 − s

( η

̟

))
eb.

The s-pair state on the right-hand side is a scalar multiple of (ea + seb) if and only if s is a root of
the quadratic

x2 +

(
η

̟
+
( η

̟

))
x − 1 = 0.

If s is a root of the above quadratic, then the s-pair state (ea + seb) is periodic at time τ. Otherwise,
perfect s-pair state transfer occurs from ea + seb to the state on the right-hand side of Equation (7),
but this state might not be a real state.

Example 5.4. Let X := X(12, 8, 24) denote the graph obtained from identifying 8 leaves from K1,20 and
K1,32. Let a and b denote the vertices of degree 20 and 32, respectively, see Figure 4. Let A be the adjacency
matrix of X. Fractional revival from ea to eb occurs at time τ := π

2 [GZ22], and

UA(τ)ea =
3

5
ea −

4

5
eb and UA(τ)eb = −4

5
ea −

3

5
eb.

Then

UA(τ)(ea + seb) =
(3 − 4s)

5
ea +

(−4 − 3s)

5
eb.

When s ∈
{

2,− 1
2

}
, the state ea + seb is periodic.

a b

.

.

.

.

.

.

.

.

.

12 vertices
8 vertices

24 vertices

Figure 4: X(12, 8, 24)

Let Y := X✷K2 and B be the adjacency matrix of Y. Since the transition matrix of K2 with adjacency
Hamiltonian at time τ is [

0 −i
−i 0

]
,

we get

UB(τ)
(

e(a,0) + se(b,0)

)
=

(−3 + 4s)i

5
e(a,1) +

(4 + 3s)i

5
e(b,1). (8)

When s ∈
{

2,− 1
2

}
, perfect s-pair state transfer occurs in Y from the s-pair state

(
e(a,0) + se(b,0)

)
to

(
e(a,1) + se(b,1)

)
at time π

2 .

12



5.2 Quotient

Let M be a real and symmetric Hamiltonian associated with a graph X on n vertices. Let P be an
n × m real matrix satisfying

PTP = I and MP = PB, (9)

for some m × m real symmetric matrix B called a quotient matrix. Then the column space of P is
M-invariant and (

PPT
)

M = M
(

PPT
)

. (10)

It follows from the conditions in (9) and (10) that

PUB(t) = UM(t)P.

As a result, if (vertex) perfect state transfer with Hamiltonian B occurs at time τ from eh to eℓ,
then UM(τ) (Peh) = η(Peℓ). We have perfect s-pair state transfer if each of Peh and Peℓ has two
non-zero entries.

Example 5.5. For (a) and (b), let M be the adjacency matrix of C8, viewed as the Cayley graph on Z8

with connection set {−1, 1}.

(a) Let P be the 8 × 3 matrix given by

PT =




1√
2

0 0 0 1√
2

0 0 0

0 1
2 0 1

2 0 1
2 0 1

2

0 0 1√
2

0 0 0 1√
2

0


 ,

which satisfies (9). The quotient matrix is

B =
√

2




0 1 0
1 0 1
0 1 0




which gives

UB

(π

2

)



1
0
0


 = −




0
0
1


 .

We conclude that
UM

(π

2

)
(e0 + e4) = − (e2 + e6) .

Thus, perfect s-pair state transfer occurs in C8 between (e0 + e4) and (e2 + e6) at time π
2 .

(b) Let P be the 8 × 4 matrix given by

PT =




1√
2

0 − 1√
2

0 0 0 0 0

0 0 0 1√
2

0 0 0 − 1√
2

0 0 0 0 1√
2

0 − 1√
2

0

0 1
2 0 − 1

2 0 1
2 0 − 1

2


 ,

13



which satisfies (9). The quotient matrix is

B =




0 −1 0 0
−1 0 1 0
0 1 0 0
0 0 0 0




which gives

UB

(
π√

2

)



1
0
0
0


 =




0
0
1
0


 .

We conclude that

UM

(
π√

2

)
(e0 − e2) = (e4 − e6) .

Thus, perfect s-pair state transfer occurs in C8 between (e0 − e2) and (e4 − e6) at time π√
2
.

(c) Let M be the adjacency matrix of the graph X(m), m ≥ 1, given in Figure 5. Let P be a normal-
ized characteristic matrix corresponding to the equitable partition indicated in the figure. (Please
see [CG21] for more information about equitable partitions.) Then the quotient matrix B is the√

mA(C8), where A(C8) is the adjacency matrix of C8. It follows from the above examples that
X(m) has perfect s-pair state transfer between (e0 + e4) and (e2 + e6) at time π

2
√

m
, and between

(e0 − e2) and (e4 − e6) at time π√
2m

.

0

2

4

6

...
...

...
...

m vertices

m verticesm vertices

m vertices

Figure 5: X(m) with an equitable partition

5.3 Transitivity

We extend Theorem 6.1 of [CG20] to s-pair states. To simplify the proof, we represent a real s-pair
state u = ea + seb using its density matrix

Du =
1

(1 + s2)
uuT.

Theorem 5.6. Suppose perfect s-pair state transfer occurs in graph X from u = ea + reb to µ = eα + reβ

at time τ, and from v = eb + sec to ν = eβ + seγ at time τ. Then perfect s-pair state transfer occurs
from w = ea − rsec to ω = eα − rseγ at time τ.

14



Proof. First observe that

Dw =
1 + r2

(1 + r2s2)
Du +

r2(1 + s2)

(1 + r2s2)
Dv −

(1 + r2)(1 + s2)

(1 + r2s2)
(DuDv + DvDu) ,

and similarly,

Dω =
1 + r2

(1 + r2s2)
Dµ +

r2(1 + s2)

(1 + r2s2)
Dν −

(1 + r2)(1 + s2)

(1 + r2s2)

(
DµDν + DνDµ

)
.

The result follows from U(τ)DuU(−τ) = Dµ, U(τ)DvU(−τ) = Dν,

U(τ)DuDvU(−τ) = [U(τ)DuU(−τ)] [U(τ)DvU(−τ)] = DµDν,

and U(τ)DvDuU(−τ) = DνDµ.

6 Special classes

In this section, we determine all incidences of perfect s-pair state transfers in three families of
graphs. Since the graphs considered in this section are all regular, the classifications are the
same for any Hamiltonian in {A, L, Q}. Without loss of generality, we work with UA(t) in the
following subsections.

6.1 Complete graphs

Let Jn denote the n × n matrix of all ones and 1n denote the vector of all ones of length n. The
transition matrix of Kn is

UA(t) =
e−it(n−1)

n
Jn + eit

(
I − 1

n
Jn

)
.

For any distinct vertices a and b, ea − eb is a fixed state. Without loss of generality, let u =
e1 + se2, for some s 6= −1. Then

UA(t)u =
(

e−it(n−1) − eit
) (1 + s)

n
1n + eitu.

We conclude that, for n ≥ 3, u is periodic with minimum period 2π
n .

For K2, e1 ± e2 are fixed states. If s 6= ±1 then e1 + se2 is periodic with minimum period
π. Meanwhile, for n ≥ 2, Kn does not have perfect s-pair state transfer between distinct s-pair
states.

6.2 Cycles

We have shown in the previous section that K3 does not have perfect s-pair state transfer, now
we consider cycles of order n ≥ 4.

The cycle on n vertices, Cn is a Cayley graph on Zn with connection set {−1, 1}. For j =

0, . . . , ⌊ n
2 ⌋, let λj = 2 cos

2π j
n be the j-th eigenvalues of A, the adjacency matrix of Cn. Let Eλj

be

matrix of the orthogonal projection onto the λj-eigenspace. Then the (a, b)-entry of Eλj
is





1
n if j = 0,

2
n cos

2π j(a−b)
n if 1 ≤ j < n

2 ,

(−1)a+b

n if n is even and j = n
2 ,

(11)
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for a, b ∈ Zn and for j = 0, . . . , ⌊ n
2 ⌋.

Without loss of generality, we let the initial state be u = e0 + seb, for some b ∈ {1, 2, . . . , ⌊ n
2 ⌋}

and s ∈ R\{0}. Then λj ∈ Φu if and only if Eλj
(e0 + seb) 6= 0.

We first classify periodic s-pair states u = e0 + seb in Cn, for s = 1, s = −1 and s 6= ±1. The
following result [Leh33] is useful in our proofs.

Lemma 6.1. If cos 2π
n ∈ Q, then n ∈ {1, 2, 3, 4, 6}. If the minimal polynomial of cos 2π

n has degree two,
then n ∈ {5, 8, 10, 12}.

Lemma 6.2. The s-pair state u = e0 + eb, for 1 ≤ b ≤ n
2 , is periodic in Cn, n ≥ 4, with minimum

period τ if and only if the triple (n, eb, τ) belongs to
{
(4, e1, π) ,

(
4, e2,

π

2

)
, (6, e1, 2π) , (6, e2, 2π) ,

(
6, e3,

2π

3

)
, (8, e4, π) , (12, e6, 2π)

}
.

Proof. Suppose u is periodic. From (11), for 1 ≤ j < n
2 ,

eT
0 Eλj

u =
2

n

(
cos

2πbj

n
+ 1

)
.

Hence λj ∈ Φu when
bj
n − 1

2 6∈ Z.

If b 6= n
2 then λ0, λ1 ∈ Φu. Since λ0 = 2, Proposition 2.4 and Theorem 3.2 imply 2 cos 2π

n ∈ Z.

Similarly, if b = n
2 then λ0, λ2 ∈ Φu and 2 cos 4π

n ∈ Z. It follows from Lemma 6.1 that n ∈
{4, 6, 8, 12}.

For n ∈ {4, 6, 8, 12}, we computationally search for all s-pair states e0 + eb that satisfy the
conditions in Theorem 3.2 to get the list above. The minimum period of each case is computed
using the expression given in Theorem 3.2.

Lemma 6.3. The s-pair state u = e0 − eb, for 1 ≤ b ≤ n
2 , is periodic in Cn if and only if

(n, eb, τ) ∈
{
(4, e1, π) ,

(
5, e1,

2π√
5

)
,

(
5, e2,

2π√
5

)
, (6, e1, 2π) , (6, e2, π) ,

(
6, e3,

2π

3

)
,

(
8, e2,

2π√
2

)
,

(
8, e4,

π√
2

)
,

(
12, e6,

2π√
3

)}
.

Moreover, (e0 − e2) is a fixed state of C4.

Proof. Suppose u is periodic. From (11), for 1 ≤ j < n
2 ,

eT
0 Eλj

u =
2

n

(
cos

2πbj

n
− 1

)
.

Hence λj ∈ Φu if
bj
n 6∈ Z.

If 1 ≤ b < n
2 then λ1, λ2 ∈ Φu. If follows from Corollary 3.4 that |λ2 − λ1| ≥ 1 which implies

n ≤ 10. Similarly, if b = n
2 then λj ∈ Φu for odd j. Proposition 2.4, Theorem 3.2 and Lemma 6.1

imply
n ∈ {4, 5, 6, 8, 10, 12}.

For n ∈ {4, 5, 6, 8, 10, 12}, we computationally search for all s-pair states e0 − eb that satisfy
the conditions in Theorem 3.2 to get the list above. The minimum period of each case is computed
using the expression given in Theorem 3.2.
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Lemma 6.4. For s 6= ±1, the s-pair state u = e0 + seb is periodic in Cn if and only if one of the following
holds.

i. n = 4, u = e0 + seb is periodic at minimum time π, for 1 ≤ b ≤ 3 and s ∈ R\{±1}.

ii. n = 6, u = e0 + seb is periodic at minimum time 2π, for 1 ≤ b ≤ 5 and s ∈ R\{±1}.

Proof. It follows from Proposition 3.7 that 0 and b are periodic vertices in Cn, and C4 and C6 are
the only cycles with periodic vertices.

Case (i) follows from the fact that the transition matrix for C4 is equal to the identity matrix
at minimum time π. Case (ii) follows from the fact that the transition matrix for C6 is equal to
the identity matrix at minimum time 2π.

Theorem 6.5. Perfect s-pair state transfer occurs from initial state e0 + seb, for 1 ≤ b ≤ n
2 , in Cn if and

only if one of the following holds.

i. n = 4, perfect s-pair state transfer from e0 + se1 to e2 + se3 at minimum time π
2 , for s ∈ R\{0}.

ii. n = 4, perfect s-pair state transfer from e0 + se2 to e2 + se0 at minimum time π
2 , for s ∈ R\{−1, 0, 1}.

iii. n = 4, perfect s-pair state transfer from e0 + e2 to e1 + e3 at minimum time π
4 .

iv. n = 6, perfect s-pair state transfer from e0 − e2 to e3 − e5 at minimum time π
2 .

v. n = 6, perfect s-pair state transfer from e0 + 2e2 to e0 + 2e4 at minimum time π.

vi. n = 6, perfect s-pair state transfer from e0 +
1
2 e2 to e4 +

1
2 e2 at minimum time π.

vii. n = 8, perfect s-pair state transfer from e0 − e2 to e4 − e6 at minimum time π√
2
.

viii. n = 8, perfect s-pair state transfer from e0 + e4 to e2 + e6 at minimum time π
2 .

Proof. By Theorem 2.5 (iii), it is sufficient to check if perfect s-pair state transfer occurs at half of
the minimum periods list in Lemmas 6.2, 6.3 and 6.4.

6.3 Antipodal distance-regular graphs

In this section, we determine all occurrences of perfect s-pair state transfers in the distance-
regular graphs that have (vertex) perfect state transfer. See [BCN89] for a background of distance-
regular graphs.

Coutinho et al. [CGGV15] proved that if a distance regular graph X admits (vertex) perfect
state transfer and d is the diameter of X, then every vertex in X is at distance d from a unique
vertex. We call such a graph an antipodal distance-regular graph with class size two, and we say
two vertices are antipodal in X if they are at distance d from each other.

Suppose X is an antipodal distance-regular graph of class size 2 and it has diameter d. For j =
0, . . . , d, let Aj be the j-th distance matrix of X. Then A0 = I, Ad is the anti-diagonal permutation
matrix (up to permutation of vertices), and

Aj Ad = Ad−j, for j = 0, . . . , d,

Let kj be the column sum of Aj, for j = 0, . . . , d. Then k0 = kd = 1 and the sequence k0, k1, . . . , kd−1, kd

is unimodal, see Theorem 5.1.1 (i) of [BCN89]. Further, if X is not a cycle then Theorem 5.1.1 (ii)
of [BCN89] implies that kj ≥ 3, for j = 1, . . . , d − 1.
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Since {A0, A1, . . . , Ad} is a basis of the adjacency algebra of X over C,

U(t) := UA1
(t) ∈ span {A0, A1, . . . , Ad}.

If X admits perfect state transfer between two vertices at time τ then

U(τ) = ηAd, (12)

for some phase factor η.

Theorem 6.6. Let X be a distance-regular graph that is not a cycle. If X admits (vertex) perfect state
transfer, then X has perfect s-pair state transfer from u = ea + seb to µ = eα + seβ if and only if one of
the following holds.

(i) {a, b} is not an antipodal pair, {a, α} and {b, β} are antipodal pairs, for s ∈ R\{0}.

(ii) {a, b} is an antipodal pair, α = b and β = a, for s ∈ R\{−1, 0, 1}.

Proof. Let d be the diameter of X, and let τ be the minimum (vertex) perfect state transfer time.
Suppose dist(a, b) < d. Let α and β be vertices in X that are antipodal to a and b, respectively.

It follows from Equation (12) that

U (τ) (ea + seb) = η(eα + seβ).

Since both Du and Dµ are real, it follows from Theorem 2.5 (iv) that perfect state transfer does
not occur from u to another real state.

Suppose dist(a, b) = d, that is, eb = Adea. Then Equation (12) gives

U (τ) (ea + seb) = η(eb + sea).

For s 6= ±1, (ea + seb) and (eb + sea) represent distinct real states and Theorem 2.5 (iv) implies
perfect state transfer does not occur from u to another real state. When s = ±1, the state u =
(I + sAd)ea is periodic at τ. Let τ′ be the minimum period of u. Let

U

(
τ′

2

)
=

d

∑
j=0

ϕj Aj,

for some ϕ0, . . . , ϕd ∈ C. Then

U

(
τ′

2

)
(ea + seb) = U

(
τ′

2

)
(I + sAd)ea =

d

∑
j=0

(
ϕj + sϕd−j

)
Ajea.

If there exists 1 ≤ j ≤ d − 1 such that ϕj + sϕd−j 6= 0, then U
(

τ′
2

)
(ea + seb) has at least kj ≥ 3

non-zero entries because X is not a cycle, so it is not an s-pair state. Otherwise,

U

(
τ′

2

)
u = U

(
τ′

2

)
(I + sAd)ea

= ((ϕ0 + sϕd)I + (ϕd + sϕ0)Ad) ea

= (ϕ0 + sϕd) (I + sAd) ea

= (ϕ0 + sϕd)u,

which contradicts the assumption that τ′ is the minimum period of u. By Theorem 2.5 (iii), we
conclude that no perfect s-pair state transfer occurs from the states (ea ± eb).
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Please see [CGGV15] for a list of distance-regular graphs that have (vertex) perfect state trans-
fer, which includes the n-cubes.

Note that every even cycle is an antipodal distance-regular graph of class size two. The cycle
C4 is the only cycle admitting (vertex) perfect state transfer. From Theorem 6.5, C6 and C8 are the
only other cycles that have perfect s-pair state transfer.

7 Line graphs

Given a graph X, we use V(X) and E(X) to denote its vertex set and its edge set, respectively.
The line graph of X, denoted by L(X), is the graph with vertex set E(X) and two vertices (or
two edges of X) are adjacent in L(X) if and only if they are incident in X.

When X admits perfect plus state transfer between ea + eb and eα + eβ, for some edges {a, b},
{α, β} in X, a natural question arises: does the line graph L(X) admit (vertex) perfect state
transfer between the corresponding vertices, and vice versa? We address this question in this
section, where we assume that Q is the Hamiltonian of X and the adjacency matrix, AL, is the
Hamiltonian of L(X).

Suppose X has n vertices and m edges. The incidence matrix of X is an n × m matrix R
satisfying

Ra,ε =

{
1 if the vertex a is incident to the edge ε in X,

0 otherwise.

Note that each column of R is a plus state ea + eb, for some edge {a, b} ∈ E(X). It also follows
immediately that

Q = RRT, AL = RTR − 2I, (13)

and
RUAL(t) = e2itUQ(t)R, (14)

for any time t ∈ R.
To simplify notations, for an edge {a, b} in X, we use ab to denote the corresponding vertex

in L(X), and fab for its vertex state. We use Λfab
to denote the support of fab with respect to AL.

Theorem 7.1. Let {a, b}, {α, β} ∈ E(X). If L(X) admits (vertex) perfect state transfer between fab and
fαβ, then X admits perfect plus state transfer between ea + eb and eα + eβ.

Proof. Suppose there exist τ > 0 and phase factor η such that UAL(τ)fab = ηfαβ. Left-multiplying
R to the both sides yields

RUAL(t)fab = e2itUQ(t)Rfab = e2itUQ(t) (ea + eb) ,

and
ηRfαβ = η

(
eα + eβ

)
.

Therefore, we get UQ(t) (ea + eb) =
(
ηe−2it

) (
eα + eβ

)
.

The null space of R plays a significant role in whether the converse of Theorem 7.1 holds.
Note that

nullity of R =

{
m − n + 1 if X is bipartite,

m − n if X is non-bipartite.

19



Proposition 7.2. Suppose X is either a tree or a unicylic graph with an odd cycle, and {a, b}, {α, β} ∈
E(X). Perfect plus state transfer occurs between (ea + eb) and (eα + eβ) in X if and only if (vertex)
perfect state transfer occurs between fab and fαβ in L(X).

Proof. Suppose UQ(τ)(ea + eb) = η(eα + eβ). Equation (14) gives

R (UAL(τ)fab) = R
(
e2iτηfαβ

)
.

As the columns of R are linearly independent, we get

UAL(τ)fab = e2iτηfαβ.

The converse follows from Theorem 7.1.

Example 7.3. For n ≥ 1, let a and α be the two vertices of degree 4n in K2,4n. Let b be a vertex of degree
two in K2,4n. Then

UQ

(π

2

)
(ea + eb) = −(eα + eb) and UAL

(π

2

)
fab = fαb.

The converse of Theorem 7.1 is not true in general, see Corollary 7.7. We proceed to charac-
terize when the converse of Theorem 7.1 holds by investigating strong cospectrality between fab

and fαβ in L(X). Let the spectral decomposition of Q be

Q = ∑
λ∈spec(Q)

λEλ,

and the spectral decomposition of AL be

AL = ∑
θ∈spec(AL)

θFθ.

It follows from (13) that if λ > 0 is an eigenvalue of Q then (λ − 2) is an eigenvalue of AL, and
vice versa.

Lemma 7.4. For λ ∈ spec(Q)\{0},

F(λ−2)fab = ±F(λ−2)fαβ

if and only if
Eλ(ea + eb) = ±Eλ(eα + eβ).

Proof. If Qx = λx with λ > 0, then ALRTx = (λ − 2)RTx and the column space of RTEλR is the
(λ − 2)-eigenspace of AL. Further, as

(
RTEλR

) (
RTE′

λR
)
=

{
λ
(

RTEλR
)

if λ = λ′,

0 otherwise.

We see that
F(λ−2) = λ−1

(
RTEλR

)
(15)

is the matrix of orthogonal projection onto the (λ − 2)-eigenspace of AL.
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Left-multiplying both sides of Equation (15) with R yields RF(λ−2) = EλR. As

Rfab = (ea + eb) and Rfαβ = (eα + eβ),

F(λ−2)fab = ±F(λ−2)fαβ implies Eλ (ea + eb) = ±Eλ

(
eα + eβ

)
.

Conversely, Eλ(ea + eb) = ±Eλ(eα + eβ) implies RF(λ−2)fab = ±RF(λ−2)fαβ. Right multiply-

ing both sides with RT gives

(AL + 2I) F(λ−2)fab = ± (AL + 2I) F(λ−2)fαβ.

Since λ 6= 0, we get F(λ−2)fab = ±F(λ−2)fαβ.

Note that 0 ∈ spec(Q) if and only if X is bipartite. Let x be an 0-eigenvector of the signless
Laplacian matrix of a bipartite graph X. Then, for {a, b} ∈ E(X), we have xa = −xb. Thus the
eigenvalue support of the plus state ea + eb does not contain the eigenvalue 0. We conclude that
strong cospectrality of the vertex states fab and fαβ in L(X) implies strong cospectrality of the
plus states ea + eb and eα + eβ in X. For the converse, we need an additional condition given in
the lemma below.

Lemma 7.5. Let X be a graph with n vertices and m edges, where m ≥ n if X is bipartite and m > n
otherwise. Suppose, for some {a, b}, {α, β} ∈ E(X), the plus states (ea + eb) and (eα + eβ) are strongly
cospectral with respect to Q. Then fab and fαβ are strongly cospectral with respect to AL if and only if

F−2fab = ±F−2fαβ.

Note that −2 6∈ spec(AL) if and only if X is a tree or a non-bipartite unicyclic graph (see
Proposition 7.2). For all other graphs, we see from the proofs of Theorems 1 and 2 in [AGKM06]
that −2 6∈ Λfab

only if {a, b} is a cut-edge in X.

Lemma 7.6. Suppose X is a bipartite graph on n vertices with m ≥ n edges. If fab and fαβ are strongly
cospectral vertices in L(X), then {{a, b}, {α, β}} is an edge-cut in X.

Proof. Let {a, b} and {α, β} be edges in X that do not form an edge-cut of X. From the proof of
Theorem 1 of [AGKM06], using a spanning tree of X\ {{a, b}, {α, β}}, we can construct a vector
y in the null space of R such that

fT
aby = 1 and fT

αβy = 0.

Now y is an (−2)-eigenvector of AL, which implies F−2fab 6= ±F−2fαβ. The result follows from
Lemma 7.5.

Theorem 6.6 implies that n-cube has plus state transfer, for n ≥ 2. We now rule out perfect
state transfer in the line graph of n-cube, for n ≥ 3.

Corollary 7.7. For n ≥ 3, the line graph of the n-cube does not admit (vertex) perfect state transfer.

Proof. It is well-known that the n-cube is a bipartite graph with edge-connectivity n. This result
follows immediately from Lemma 7.6.

Lemma 7.8. Suppose X is a non-bipartite graph on n vertices with m > n edges. If fab and fαβ are
strongly cospectral vertices in L(X), then the removal of the edges {a, b} and {α, β} from X results in
either a disconnected graph or a bipartite graph.
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Proof. Let {a, b} and {α, β} be edges in X whose removal result in a connected non-bipartite
subgraph of X. From the proof of Theorem 2 of [AGKM06], there exists a vector y in the null
space of R such that

fT
aby = 1 and fT

αβy = 0.

Now y is an (−2)-eigenvector of AL, which implies F−2fab 6= ±F−2fαβ. The result follows from
Lemma 7.5.

We are ready to characterize when L(X) has (vertex) perfect state transfer, based on informa-
tion from the signless Laplacian matrix of X.

Theorem 7.9. Let u = ea + eb and µ = eα + eβ, for some edges {a, b} and {α, β} in X. The line graph
of X admits (vertex) perfect state transfer between fab and fαβ if and only if the following conditions hold.

(i) X admits perfect plus state transfer between u and µ.

(ii) If −2 ∈ Λfab
then F−2fab = ±F−2fαβ, and either the elements in Λfab

= Λfαβ
are

(i) all integers, or

(ii) there exists a square-free integer ∆ > 1 such that each element of Λfab
is in the form −2+ d

√
∆

2 ,
for some d ∈ Z.

(iii) Let θ′ ∈ Λ+
fab,fαβ

, and

g = gcd

{
θ′ − θ√

∆

}

θ∈Λfab

(with ∆ = 1 for Case (a) above). Then θ ∈ Λ+
fab,fαβ

if and only if θ′−θ

g
√

∆
is even.

Proof. If −2 6∈ Λfab
then spec(AL) = {θ − 2 : θ ∈ Φu}, and it follows from Lemma 7.4 and

Theorem 2.3 that Condition (i) implies perfect state transfer occurring between fab and fαβ in
L(X).

Suppose −2 ∈ Λfab
. Then Condition (i), F−2fab = ±F−2fαβ and Lemma 7.4 imply that fab

and fαβ are strongly cospectral with respect to AL. Conditions (ii) and (iii) are equivalent to
Theorem 2.3 (ii) and (iii).

Remark 7.10. If −2 ∈ Λfab
then Λfab

= {θ − 2 : θ ∈ Φu} ∪ {−2}. Suppose Theorem 7.9 (iiii) holds,
let

h = gcd

{
λ√
∆

,
λ − λ′
√

∆

}

λ,λ′∈Φu

(with ∆ = 1 for Case (a) above). Then Theorem 7.9 (iii) can be expressed as

Φ
ς
u,µ =

{
λ ∈ Φu :

λ

h
√

∆
is even

}

if −2 ∈ Λ
ς
fab,fαβ

, for ς ∈ {+,−}.
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8 Line graphs of Cartesian products

In Corollary 7.7, we ruled out (vertex) perfect state transfer in the line graph of the n-cube, for
n ≥ 3. In this section, we characterize adjacency perfect state transfer in L(X) when X is a
Cartesian product of two connected graphs.

We introduce some notation for this section. Let X = X1�X2 where X1 and X2 are connected
graphs on n1 and n2 vertices with m1 and m2 edges, respectively. We assume n1, n2 ≥ 2. For
j = 1, 2, we let Rj be the nj × mj 01-incidence matrices of Xj, and let rj = rankRj. From [FTL22],
we can assume that R has the form

R =
[
In1

⊗ R2 R1 ⊗ In2

]
, (16)

which has rank (n1r2 + r1n2 − r1r2).
Let Qj = RjR

T
j be the signless Laplacian matrix of Xj, for j = 1, 2. Then the signless Laplacian

matrix of X1�X2 is
QL = In1

⊗ Q2 + Q1 ⊗ In2 ,

and the adjacency matrix, AL, of L(X1�X2) satisfies

AL + 2I(n1m2+n2m1) =

[
In1

⊗ (AL2 + 2In2) R1 ⊗ RT
2

RT
1 ⊗ R2 (AL1 + 2In1

)⊗ In2

]
,

where AL j is the adjacency matrix of L(Xj) for j = 1, 2.

X1:
a b c

ec =




0
0
1



 L(X1):
ab bc

fab =

[
1
0

]

X2:
1 2

e1 =

[
1
0

]
L(X2):

12
f12 =

[
1
]

X1�X2:

(a, 1)

(b, 1)

(c, 1)

(a, 2)

(b, 2)

(c, 2)

ε1

ε2

L(X1�X2):

ε1

ε2

hε1 =

[
0

fab ⊗ e1

]
=




0
0
0
1
0
0
0




hε2 =

[
ec ⊗ f12

0

]
=




0
0
1
0
0
0
0




Figure 6: L(P3�K2)

For an edge ε of X1�X2, we use hε to denote the characteristic vector of ε as a vertex state of
L(X1�X2). If ε1 joins vertices (a, γ) and (b, γ) in X1�X2, for some {a, b} ∈ E(X1) and γ ∈ V(X2),
then

hε1
=

[
0

fab ⊗ eγ

]
.

(Recall {a, b} is a vertex in L(X1) and fab is the corresponding vertex state in L(X1). Also eγ

is the vertex state for γ in X2.) If ε2 joins vertices (c, α) and (c, β), for some c ∈ V(X1) and
{α, β} ∈ E(X2), then

hε2 =

[
ec ⊗ fαβ

0

]
.
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See Figure 6 for an example of these vectors when X1 = P3 and X2 = K2.
Suppose Qjxj = λjxj, for j = 1, 2. Then

QL (x1 ⊗ x2) = (λ1 + λ2) (x1 ⊗ x2)

and

ALRT (x1 ⊗ x2) = AL

[
x1 ⊗ RT

2 x2

RT
1 x1 ⊗ x2

]
= (λ1 + λ2 − 2)

[
x1 ⊗ RT

2 x2

RT
1 x1 ⊗ x2

]
. (17)

Hence (λ1 + λ2 − 2) belongs to the eigenvalue support of hε1
with respect to AL only if fT

abRT
1 x1 6=

0, which implies (λ1 − 2) ∈ Λfab
, the eigenvalue support of fab with respect to AL1. Similarly,

if (λ1 + λ2 − 2) belongs to the eigenvalue support of hε2 , then (λ2 − 2) ∈ Λfαβ
, the eigenvalue

support of fαβ with respect to AL2.
For j = 1, 2, let Nj be a mj × (mj − rj) matrix whose column space is equal to the null space of

Rj. Let N be a matrix whose column space is the null space of R. The matrix N has (n1m2 + n2m1)
rows and (n1(m2 − r2) + n2(m1 − r1) + r1r2) columns. Moreover, it follows from the proofs of
Theorems 1 and 2 in [AGKM06] that Nj has a zero row only if the corresponding edge is a cut-
edge in Xj.

Proposition 8.1. Let X = X1�X2. For j = 1, 2, let R̃j be a matrix consisting rj linearly independent

columns of Rj, and let Ĩj be the (mj × rj) matrix whose l-th column is fab if the l-th column of R̃j is the
column in Rj indexed by {a, b} ∈ E(Xj). Then the column space of

N =

[
In1

⊗ N2 0 −R̃1 ⊗ Ĩ2

0 N1 ⊗ In2 Ĩ1 ⊗ R̃2

]
(18)

is exactly the null space of R.

Proof. For j = 1, 2, we have Rj Ĩj = R̃j and RjNj = 0. It follows immediately that RN = 0. Since

N has
(
n1(m2 − r2) + n2(m1 − r1) + r1r2

)
linearly independent columns, we conclude that the

column space of N is equal to the null space of R.

In the following, we assume N is the matrix given in Equation (18). Let F−2 denote the ma-
trix of orthogonal projection on the (−2)-eigenspace of the adjacency matrix AL of L(X1�X2),
which is equal to the null space of R. It follows that, for vertices ε1 and ε2 in L(X1�X2),

F−2 (hε1
± hε2) = 0 if and only if (hε1

± hε2)
T N = 0.

Lemma 8.2. Let ε1 and ε2 be distinct vertices of L(X1�X2). Then F−2hε1
= ±F−2hε2 if and only if one

of the following holds.

(i) Without loss of generality, X2 = K2. Let V(X2) = {1, 2}. Then

hε1
=

[
0

fab ⊗ e1

]
and hε2 =

[
0

fab ⊗ e2

]
,

for some edge {a, b} in X1 such that −2 6∈ Λfab
.

(ii)

hε1
=

[
ea ⊗ fαβ

0

]
and hε2 =

[
0

fab ⊗ eα

]
,

for some pendant vertices a ∈ V(X1) and α ∈ V(X2), and edges {a, b} ∈ E(X1) and {α, β} ∈
E(X2) such that −2 6∈ Λfab

and −2 6∈ Λfαβ
.
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In addition, F−2hε1
= F−2hε2 6= 0 in Case (i), and F−2hε1

= −F−2hε2 6= 0 in Case (ii).

Proof. Suppose (hε1
± hε2)

T N = 0. There are two possible cases.
Without loss of generality, for j = 1, 2, the edge ε j joins the vertices (aj, γj) to (bj, γj) in

X1�X2, for some {aj, bj} ∈ E(X1) and γj ∈ V(X2). That is,

hε1
=

[
0

fa1b1
⊗ eγ1

]
and hε1

=

[
0

fa2b2
⊗ eγ2

]
.

(It is possible that {a1, b1} = {a2, b2} or γ1 = γ2.) We can then assume that the columns of R̃1

contain R1fa1b1
and R1fa2b2

. Thus for j = 1, 2,

fT
ajbj

Ĩ1 6= 0.

From Equation (18), (hε1
± hε2)

T N = 0 implies

fT
a1b1

Ĩ1 ⊗ eT
γ1

R̃2 ± fT
a2b2

Ĩ1 ⊗ eT
γ2

R̃2 = 0. (19)

Note that fT
ajbj

Ĩ1 and eγj
R̃2 are 01-vectors, for j = 1, 2. Equation (19) holds only for the difference

of the two terms with fT
a1b1

Ĩ1 = fT
a2b2

Ĩ1 and eT
γ1

R̃2 = eT
γ2

R̃2. We conclude that {a1, b1} = {a2, b2} in
X1, and γ1 and γ2 are incident to the same set of edges in X2. Since ε1 6= ε2, γ1 and γ2 are distinct
vertices in X2. As X2 is simple, we conclude that X2 = K2.

Further (hε1
± hε2)

T N = 0 implies that fT
abN1 = 0 (unless N1 has no column). Thus −2 6∈

Λfab
. This proves (a).
For the second case, we assume without loss of generality that

hε1
=

[
ec ⊗ fαβ

0

]
and hε2 =

[
0

fab ⊗ eγ

]
.

We can assume that the columns of R̃1 contain R1fab and the columns of R̃2 contain R2fαβ. From

Equation (18), (hε1
± hε2)

T N = 0 yields

−eT
c R̃1 ⊗ fT

αβ Ĩ2 ± fT
ab Ĩ1 ⊗ eT

γ R̃2 = 0. (20)

Since eT
c R̃1, fT

αβ Ĩ2, fT
ab Ĩ1 and eT

γ R̃2 are 01-vectors, Equation (20) holds only when we add the two

terms with
eT

c R̃1 = fT
ab Ĩ1 and fT

αβ Ĩ2 = eT
γ R̃2.

This implies c ∈ {a, b} and γ ∈ {α, β}. Without loss of generality, let c = a and γ = α. That is, ε1

joins vertices (a, α) and (a, β) and ε2 joins vertices (a, α) and (b, α) in X1�X2.
Suppose X1�X2 is bipartite. By the proof of Lemma 7.6, F−2 (hε1

± hε2) = 0 implies {ε1, ε2}
is an edge-cut in X1�X2.

Suppose, without loss of generality X1 is non-bipartite so that X1�X2 is not bipartite. But
X1�X2\{ε1, ε2} contains an odd cycle, so it follows from the proof of Lemma 7.8 that {ε1, ε2} is
an edge-cut in X1�X2.

The set {ε1, ε2} is an edge-cut in X1�X2 only when a is a pendant vertex in X1 and α is a
pendant vertex in X2.

In addition, (hε1
± hε2)

T N = 0 implies that fT
abN1 = 0 (unless N1 has no column) and fT

αβN2 =

0 (unless N2 has no column). Thus −2 6∈ Λfab
and −2 6∈ Λfαβ

. This proves (b).
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We first consider Case (i) of Lemma 8.2.

Lemma 8.3. Let ε1 and ε2 be vertices of L(X1�X2) satisfying Lemma 8.2 (i). Then one of the following
holds.

(i) X1 is a non-bipartite unicyclic graph and {a, b} is an edge in the odd cycle of X1, or

(ii) {a, b} is a cut-edge in X1.

Proof. In Lemma 8.2 (i), if N1 has at least one column then fT
abN1 = 0 implies that {a, b} is a

cut-edge in X1. If N1 has no column then X1 is either a tree or a unicycle graph with an odd
cycle.

We use Ψhε
to denote the eigenvalue support of the vertex state hε with respect to AL. For

vertex states hε1
and hε2 , let

Ψ±
hε1

,hε2
=
{

ϑ ∈ Ψhε1
: Fϑhε1

= ±Fϑhε2

}
,

where Fϑ is the matrix of orthogonal projection onto the ϑ-eigenspace of AL.

Lemma 8.4. Let ε1 and ε2 be vertices of L(X1�X2) satisfying Lemma 8.2 (i). Then hε1
and hε2 are

strongly cospectral with respect to AL if and only if |ϑ − ϑ′| 6= 2, for ϑ, ϑ′ ∈ Λfab
.

Further, if hε1
and hε2 are strongly cospectral then

Ψ−
hε1

,hε2
= Λfab

, Ψ+
hε1

,hε2
=
{

ϑ + 2 : ϑ ∈ Λfab

}
∪ {−2}. (21)

Proof. Let Q1x = λx and

y1 =

[
1
1

]
and y2 =

[
1
−1

]
.

From Equation (17), for s = 1, 2,

AL

[
x ⊗ RT

2 ys

RT
1 x ⊗ ys

]
= ϑs

[
x ⊗ RT

2 ys

RT
1 x ⊗ ys

]
,

where ϑ1 = λ and ϑ2 = λ − 2. For j, s ∈ {1, 2},

hT
ε j

[
x ⊗ RT

2 ys

RT
1 x ⊗ ys

]
=

{
−fT

abRT
1 x if s = j = 2,

fT
abRT

1 x otherwise.

Hence λ, λ − 2 ∈ Ψhε j
if and only if λ − 2 ∈ Λfab

, which implies Ψhε1
= Ψhε2

. In addition,

hT
ε1

[
x ⊗ RT

2 ys

RT
1 x ⊗ ys

]
= (−1)s−1hT

ε2

[
x ⊗ RT

2 ys

RT
1 x ⊗ ys

]
. (22)

Suppose Λfab
contains ϑ and ϑ′ = ϑ + 2. Let x and x′ be an ϑ-eigenvector and an ϑ′-

eigenvector of Q1, respectively, such that fT
abRT

1 x and fT
abRT

1 x′ are non-zero. Then ϑ ∈ Ψhε j
, for

j = 1, 2, and

hT
ε1

[
x ⊗ RT

2 y1

RT
1 x ⊗ y1

]
= hT

ε2

[
x ⊗ RT

2 y1

RT
1 x ⊗ y1

]
and hT

ε1

[
x′ ⊗ RT

2 y2

RT
1 x′ ⊗ y2

]
= −hT

ε2

[
x′ ⊗ RT

2 y2

RT
1 x′ ⊗ y2

]
.
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Since both [
x ⊗ RT

2 y1

RT
1 x ⊗ y1

]
and

[
x′ ⊗ RT

2 y2

RT
1 x′ ⊗ y2

]

are ϑ-eigenvectors of AL, we conclude that hε1
and hε2 are not strongly cospectral with respect

to AL.
Conversely, assume that for all ϑ, ϑ′ ∈ Λfab

, |ϑ − ϑ′| 6= 2. It follows from Equation (22) that,
for λ − 2 ∈ Λfab

,
λ − 2 ∈ Ψ−

hε1
,hε2

and λ ∈ Ψ+
hε1

,hε2
.

From Lemma 8.2, −2 6∈ Λfab
implies −2 ∈ Ψ+

hε1
,hε2

. Hence Ψ+
hε1

,hε2
∩ Ψ−

hε1
,hε2

= ∅ and (21)

holds. As a result, hε1
and hε2 are strongly cospectral with respect to AL.

We now consider Case (ii) of Lemma 8.2.

Lemma 8.5. Let ε1 and ε2 be vertices of L(X1�X2) satisfying Lemma 8.2 (ii). Then hε1
and hε2 are not

strongly cospectral with respect to AL.

Proof. Assume ε1 and ε2 satisfy Condition (ii) in Lemma 8.2, and hε1
and hε2 are strongly cospec-

tral with respect to AL.
For j = 1, 2, let xj be a λj-eigenvector of the signless Laplacian matrix Qj of Xj. From Equa-

tion (17),

(hε1
± hε2)

T
(

RT(x1 ⊗ x2)
)
= 0

implies (
eT

a x1

)
⊗
(

fT
αβRT

2 x2

)
±
(

fT
abRT

1 x1

)
⊗
(

eT
α x2

)
= 0. (23)

Since a is a pendant vertex in X1, we have

fT
abRT

1 = (ea + eb)
T = eT

a Q1.

Similarly, fT
αβRT

2 = eT
α Q2. Equation (23) gives

(λ2 ± λ1)
(

eT
a x1 ⊗ eT

α x2

)
= 0.

Therefore, λ1 = ∓λ2 when eT
a x1 and eT

α x2 are non-zero. Since the eigenvalues of Q are non-
negative, we conclude that the eigenvalue support of ea with respect to Q1 has size at most one.
But X1 is a connected graph on at least two vertices, and the eigenvalue support of ea has at least
two vertices. We conclude that hε1

and hε2 are not strongly cospectral

We are now ready to characterize the line graphs of X1�X2 that admit (vertex) perfect state
transfer.

Theorem 8.6. Let ε1 and ε2 be edges in X1�X2. Then (vertex) perfect state transfer occurs between hε1

and hε2 in L(X1�X2) if and only if the following conditions hold.

(i) X2 = K2, and X1 either has an cut-edge or it is a non-bipartite unicyclic graph, with

(ii) ε1 and ε2 satisfying Lemma 8.2 (i),

(iii) Ψhε1
⊂ Z and Ψhε1

\{−2} ⊂ 4Z.

27



Proof. Suppose (vertex) perfect state transfer occurs between ε1 and ε2 in L(X1�X2). From Lem-
mas 8.2, 8.3 and 8.5, Conditions (i) and (ii) hold. From (21), we see that Ψhε

does not satisfy
Condition (ii) in Theorem 7.9 (ii). Hence Ψhε1

⊂ Z. Let

g = gcd{ϑ′ − ϑ}ϑ,ϑ′∈Ψhε1
.

Then (21) implies g|2. By Theorem 2.3 (iii), g = 2 and Ψhε1
\{−2} ⊂ 4Z.

Conversely, assume Conditions (i) to (iii) hold. Then |ϑ − ϑ′| 6= 2, for ϑ, ϑ′ ∈ Λfab
. By

Lemma 8.4, hε1
and hε2 are strongly cospectral. Condition (iii) and (21) imply that both Theo-

rem 2.3 (ii) and (iii) hold. Hence there is perfect state transfer between hε1
and hε2 in L(X1�X2).

From Theorem 7.1, we see that the conditions given in Theorem 8.6 are sufficient for per-
fect state transfer between the plus states corresponding to edges ε1 and ε2 using the signless
Laplacian matrix of X1�X2 as the Hamiltonian.

Remark 8.7.

(a) The n-cube, for n ≥ 3, gives a family of graphs in the form X1�X2 that have perfect plus state transfer
but no (vertex) perfect state transfer in its line graph.

(b) For m ≥ 2, X1 = K1,m and X2 = K2 satisfy the conditions in Lemma 8.4 but not Condition (iii) of
Theorem 8.6.

(c) C4 is the only known graph in the form X1�X2 that has both perfect plus state transfer between
antipodal edges and (vertex) perfect state transfer in its line graph.

A natural question is to find other graphs satisfying all conditions in Theorem 8.6, or to show that C4 is
the only one.

9 Further questions

We list some questions arising from this paper:

1. In Example 5.4, we rewrite Equation (8) as

UB(τ)

(
1√

1 + |s|2
(

e(a,0) + se(b,0)

))
=

η√
1 + |r|2

(
e(a,1) + re(b,1)

)
.

Note that r 6= s if s 6∈
{

2,− 1
2

}
.

We propose to investigate perfect s-pair state transfer between s-pair states in the form of

1√
1 + |s|2

(ea + seb) and
1√

1 + |r|2
(
eα + reβ

)
,

where r 6= s.

Christopher van Bommel has pointed out that in the union of K2 and C4, for any vertex a
in C4 and b in K2, there is adjacency perfect s-pair state transfer from ea + eb to ea − eb at
time π. Does there exist a connected graph admitting adjacency perfect s-pair state transfer
from ea + eb to eα − eβ?
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2. Example 2.1 (b) gives a family of trees admitting adjacency pair state transfer. Is it possible
to have adjacency perfect s-pair state transfer in trees from initial state ea + seb where s 6=
−1? Is it possible to have Laplacian perfect s-pair state transfer in trees?

3. In Section 6.3, we determine all instances of perfect s-pair state transfer in distance regular
graphs that admit (vertex) perfect state transfer. The cycle C8 is an example of a distance-
regular graph admitting perfect s-pair state transfer but it has no (vertex) perfect state
transfer nor fractional revival. We ask for the characterization of distance-regular graphs
that have perfect s-pair state transfer. In particular, determine if perfect s-pair state transfer
can occur in a primitive distance-regular graph.
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