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Abstract

An s-pair state in a graph is a quantum state of the form e, 4 se,, where u and v are
vertices in the graph and s is a non-zero complex number. If s = —1 (resp., s = 1), then
such a state is called a pair state (resp. plus state). In this paper, we develop the theory of
perfect s-pair state transfer in continuous quantum walks, where the Hamiltonian is taken
to be the adjacency, Laplacian or signless Laplacian matrix of the graph. We characterize
perfect s-pair state transfer in complete graphs, cycles and antipodal distance-regular graphs
admitting vertex perfect state transfer. We construct infinite families of graphs with perfect s-
pair state transfer using quotient graphs and graphs that admit fractional revival. We provide
necessary and sufficient conditions such that perfect state transfer between vertices in the line
graph relative to the adjacency matrix is equivalent to perfect state transfer between the plus
states formed by corresponding edges in the graph relative to the signless Laplacian matrix.
Finally, we characterize perfect state transfer between vertices in the line graphs of Cartesian
products relative to the adjacency matrix.

Keywords: continuous-time quantum walk, perfect state transfer, pair states, strong cospectral-
ity, line graph

MSC2010 Classification: 05C50; 81P45; 05C76; 15A18; 81Q10

1 Introduction

The use of a continuous-time quantum walk to transfer quantum states was proposed by Bose in
2003 [Bos03]]. Since then, continuous-time quantum walks have become invaluable tools in the
theory of quantum computation and information. See [CG21] for the background on continuous-
time quantum walks.

Motivated by high probability quantum transmission, Christandl et. al introduced the con-
cept of perfect state transfer in 2004 [CDEL04]. For two decades, the focus of most studies on
perfect state transfer was between vertex states. However, a result due to Godsil implies that
perfect state transfer between vertex states is rare [God12]. This prompted Chen to extend the
study of perfect state transfer to edge states [Chel9]. Chen and Godsil subsequently expanded
the preceding work to cover the so-called pair states and plus states [CG20]. In this paper, we
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study perfect state transfer between s-pair states, which is a natural generalization of both pair
states and plus states.

Let X be a connected graph on n vertices, and M be a Hermitian matrix associated with X.
The continuous-time quantum walk on X with Hamiltonian M has transition matrix

UM(f) = E_itM.

The transition matrix is unitary because M is Hermitian.

Some results in this paper apply specifically to M being the adjacency matrix A of X, the
Laplacian matrix L of X, or the signless Laplacian matrix Q of X. If we do not specify the Hamil-
tonian in a statement by using U(t) to denote the transition matrix, then one may assume it is
any real symmetric matrix associated with X. Unless explicitly stated, we assume X is a simple
connected undirected graph and all edges in X are unweighted.

A (pure) state is a 1-dimensional subspace of C". We represent a state by a unit vector u
spanning the 1-dimensional subspace. Note that 7u represents the same state as u, for any phase
factor n. The density matrix of this state is D, := uu*. We say the state u is a real state if its
density matrix Dy, is real.

Perfect state transfer occurs from the state u to the state y at time 7 if

U(t)u = p
for some phase factor 7, or equivalently,
U(T)DyU(—T) = D,.

A vertex state is the characteristic vector e, of some vertex a in X. We define an s-pair state as a
state in the form

(eq + sep)

1
V 1+ |s|?

for some non-zero complex number s and distinct vertices 2 and b. We say u is a pair state if

s = —1, and it is a plus state if s = 1. For simpler exposition, we will drop the normalization
S
factor Vet

When studying a quantum spin network, one considers an arbitrary graph where each vertex
represents a spin, and the weight of the edge between vertices represents the coupling strength
of interaction between the two spins in the quantum system. Strictly speaking, the vector e, rep-
resents excitation of spin 4, and so the state of the system can be represented as |1),|0),|0). - - - €
C?". Similarly, e, corresponds to |0),]1);|0). - - -, where we have, without loss of generality, la-
belled our vertices so that the vertices a and b appear first. Since the excitation only occurs on
vertices a and b, we can effectively ignore the rest of the system (mathematically, we can trace
out all other qubits) and focus solely on the state of two qubits: |1),]0); + 5|0)4|1),, where s € C
and we have again dropped the normalization factor for simplicity. In this way, an s-pair state
e, + sey, represents a pair of entangled qubits, forming a state in the 1-excitation subspace C" of
the full 2"-dimensional system of n spins. This state is always entangled for any s # 0.

Furthermore, although s is not in general a Schmidt coefficient (since we are allowing for s €
C), we can still view s as a measure of the degree of entanglement of our state |1),]0), + 5]0),|1),
in so far as the entropy of entanglement is given by

S(pa) = S(Trp(]1)al0)s + 5[0)al1)p) ((1]a(0ls + 5(0[a(1]5))
S(11a)(Lal + 5|04) (1a] +5|14) (04| + |5’2|Oa><0a|)/

2



where Tr; is the partial trace over the b subsystem. The closer |s| is to zero, the closer the density
matrix p = (|1)4]0)p +5]0)4|1)5) ((1]2(0]p + 5(0]a(1]p) is to |1,) (14|, a pure state (having entropy
of zero), and therefore the closer the state |1),|0), + 5|0),|1); is to a separable state (namely
|1)4/0)3). On the other hand, the closer |s| is to 1, the closer S(p,) is to its maximum value, and
the closer [1),|0); is to a maximally entangled state. Thus, we may think of pair states (resp.,
plus states) as s-pair states that are maximally entangled.

We say that perfect state transfer between vertices a and b at time 7 if

U(T)e, = ney,

for some phase factor 5. If the Hamiltonian is real and symmetric then U(7) is symmetric and
U(t)ep = ne,, which gives

U(t)(e, +sep) =1n(e, +se,), forse C.

Hence, we can view perfect state transfer between vertices as a special case of perfect transfer of
s-pair states.

Given two states u = e, +re, and y = e, + seg, we say perfect s-pair state transfer occurs
from u to p if U(7T)u = npu, for some time 7. As a preliminary investigation of s-pair states, we
opt to study perfect s-pair state transfer where r = s is a non-zero real number. Whens = =£1,
we have perfect pair state transfer and perfect plus state transfer as introduced in [CG20]. Since
perfect state transfer between s-pair states represents accurate transmission of a pair of entangled
qubits to another pair of entangled qubits in a quantum spin network, it follows that perfect s-
pair state transfer allows for the transfer and generation of entanglements, a property considered
desirable in quantum information theory [CCT™19]. This paper is organized as follows. In
Section 2] we provide necessary conditions for perfect s-pair state transfer and supply examples
of graphs that admit perfect s-pair state transfer. Section 3 deals with real periodic s-pair states.
In particular, we prove that for every positive integer k and positive rational s, there are only
finitely many connected graphs with maximum valency k such that e, + se; is periodic in X
relative to the adjacency, Laplacian and signless Laplacian matrix. Thus, similar to the vertex case
[God12], perfect s-pair state transfer is rare when s is a positive rational number. In Section] we
establish combinatorial and algebraic properties of graphs with strongly cospectral s-pair states.
Section[B]is dedicated to constructions of graphs with perfect s-pair state transfer using quotient
graphs and graphs that admit fractional revival. We also extend a transitivity property of perfect
pair state transfer in [CG20] to perfect s-pair state transfer. In Section[6] we characterize perfect
s-pair state transfer in complete graphs and cycles. It turns out that complete graphs do not
admit perfect s-pair state transfer, while C4, Cs and Cg are the only cycles that admit perfect s-
pair state transfer. For distance-regular graphs admitting perfect state transfer between vertices,
we provide necessary and sufficient conditions such that these graphs also admit perfect s-pair
state transfer. Section[7]is devoted to exploring the relationship between the existence of perfect
state transfer between plus states formed by edges in a graph relative to the signless Laplacian
matrix, and the existence of perfect state transfer between the corresponding vertices in the line
graph relative to the adjacency matrix. Then we utilize the singular values and singular vectors
of the incidence matrix of a graph to characterize strong cospectrality and perfect vertex state
transfer in the line graph. Finally, in Section [8, we characterize adjacency perfect state transfer
between vertices in the line graphs of Cartesian products. Taken together, our results broaden
the literature on pair and plus states, establishing new instances of perfect state transfer between
s-pair states, while developing techniques that will facilitate future research on this topic.



2 Perfect s-pair state transfer

In a graph X, perfect s-pair state transfer occurs from u = e, + se, to p = e, + seg at time 7 if
there exists a unit complex number 7, called a phase factor, such that

U(t)u = np, 1)

equivalently,
U(T)DyU(—T) = D,. (2)

If u = p then we say the state u is periodic at time 7. Different from vertex states, it is possible
for an s-pair state v to be an eigenvector of M corresponding to some eigenvalue A. In this case,

U(t)y = e iy,
for any time t, and we call v a fixed state.

Example 2.1. We give a weighted graph Ps(w) with perfect s-pair state transfer, and an infinite family
of trees admitting pair state transfer.

(a) For apositive real number w, the weighted path Ps(w) has perfect s-pair state transfer from (e3 — %q)

to <63 — %65) at time % Note that s # £1 for w # 4.

Vw 1 1 Vw
O
1 2 3 4 5

Figure 1: The weighted path P5(w)

(b) As a special case of the construction in [Pal24], the infinite family of trees T,, shown in Figure[2} with
n > 0, has adjacency perfect s-pair state transfer between two states e, — e, and e, — eg at time %

Figure 2: T,

For a Hamiltonian M, we use spec(M) to denote its spectrum. Given the spectral decompo-
sition of the Hamiltonian

M= Z AE,, 3)
Aespec(M)

we have

UM(t) = Z e_iME/\.
A€spec(M)

Multiplying E, to both sides of Equation (1) yields

Eyu = (eim17> Eapu, for A € spec(M).
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Since E,, u and  are real, ¢/™7 is a real phase factor. Hence we have

Eyu=*xE)u, forA € spec(M). (4)

We say the s-pair states are strongly cospectral if they satisfy the above condition. As in the
case of vertex state transfer, strong cospectrality is a necessary condition for perfect s-pair state
transfer.

For an arbitrary state v € C", the eigenvalue support of v relative to M is the set

D, :={A:Eyv #0}.

It is obvious that if u = e, + se, then &, C ®,, U D,,.
Suppose u and yu are strongly cospectral states. Equation @) implies ®, = ®,, and gives the

natural partition of &, = & ” U @ ., where

CD;”” ={A:Eyu=Eu#0} and D, = {6 : Egu = —Egu # 0} .

We now give a lower bound on the size of the support of an s-pair state e, + se; in terms of
the distance of 2 and b, denoted by dist(a, b).

Proposition 2.2. Suppose the Hamiltonian for a graph X is either A, L or Q. If u = e, + sey, is a fixed
state then |®y| = 1. Otherwise,

Proof. Let k be the maximum degree of X and let Mbe I + A, (k+1)I — L or Q if the Hamiltonian
is A, L or Q, respectively. For each case, the support of u with respect to M is the same as that
with respect to the original Hamiltonian. Note that M is a non-negative matrix with positive
diagonal entries.

If Mu = Au then &, = {A}. On the other hand, if u is not an eigenvector of M, then
the number of non-zero entries in the vectors M‘u is strictly increasing as ¢ increases from 0 to

wa _1>.Hence the set
{Méu:OSKS [Mw _1}

is linearly independent in span {E u : j = 1,...,d} which has dimension |®,]. O

Adapting the proof of Theorems 2.4.2 to 2.4.4 in [Coul4] yields the following characterization
of perfect state transfer between real states.

Theorem 2.3. Let u and p be real states, and ®y be closed under taking algebraic conjugates. Perfect
state transfer occurs from u to p if and only if the following conditions hold.

(i) The s-pair states u and y are strongly cospectral.
(i1) The elements in &, = ®,, are either

(a) all integers, or
(b) there exists a square-free integer A > 1 and an integer c¢ such that each element in Oy is in the
form SHYB for some integer d.



(iii) Let A € ®F  and

upu

g = ged {—A - }
\/Z 0cd,
(with A = 1 for Case (a) above). Then 6 € ® , if and only z'fﬁg is even.

R _ . . ‘o T T — —iTA
The minimum perfect s-pair state transfer time is VA and U (g\/Z> u=-e "

If u is a fixed state relative to M, then |®,| = 1 by Proposition[2.2] and so u is not involved in
strong cospectrality. In this case, u cannot exhibit perfect state transfer relative to M by Theorem
@i). By way of example, if a and b are twin vertices in X (i.e., 2 and b have the same neigh-
bours), then e, — e, is an eigenvector for M € {A, L, Q} [KMP23]. Thus, e, — e, is a pair state in
X that is not involved in perfect state transfer relative to M € {A,L,Q} .

Note that the following proposition applies to M € {A, L, Q}

Proposition 2.4. Let u = e, + se;, for some s € Q\{0}. If the entries of M are algebraic integers, then
D, is closed under taking algebraic conjugates.

Proof. If A and 6 are algebraic conjugates, then so are E) and Ey. Therefore, Eyu = 0 if and only
if Egu = 0. ]

When s € R\{0}, Dy and D,, are real density matrices and the following theorem follows
from Lemmas 2.3, 5.2 and Corollary 5.3 of [God17].

Theorem 2.5. Let u = e, +se, and p = e, + seg be distinct s-pair states, for some s € R\{0}. If
perfect s-pair state transfer occurs from u to p at time T, then

(i) Perfect s-pair state transfer occurs from p to u at time T.
(ii) Both u and p are periodic at time 27.
(iii) If the minimum period of u is T then perfect s-pair state transfer between w and p occurs at time 3.

(iv) There is no perfect state transfer from u to a state with real density matrix other than Dy and D,,.

3 Periodic s-pair states

From Thereom [2.5] a real s-pair state is necessarily periodic if it is involved in perfect s-pair state
transfer in X. We focus here on the real periodic s-pair states.

Aset S C R with at least two elements satisfies the ratio condition if for any Ay, Aj, Ay, A; € S
with A, # Ay,

Ap—Aj
PR R
If |S| = 2, then S automatically satisfies the ratio condition. The following theorem follows

directly from Theorem 9.1.1 in [CG21]].

Theorem 3.1. Let s € R\{0}. The s-pair state u = e, + sey, is periodic in X if and only if @ satisfies
the ratio condition.

By applying Theorem 7.6.1 of [CG21], we obtain further restrictions on the eigenvalues if ®,
is closed under taking algebraic conjugates.



Theorem 3.2. Let u = e, + sey, for some s € R\{0}. If |®y| > 2 and Oy is closed under taking
algebraic conjugates, then ®y satisfies the ratio condition if and only if one of the following holds.

(i) The elements in @ are integers.

(ii) There is a square-free integer A > 1 and an integer c such that each element in ®y is in the form

dv A
#, for some integer d.

If either condition holds (with A = 1 in the first case), let

g—gcd{—A_g}
\/K )\,9€<I>u'

The minimum period of w is and

21
gV’

27 ~
Ul = |u=e™u, for\ecd,
(2%) praca,
Corollary 3.3. If ®., U O, satisfies the ratio condition then the s-pair state u = e, + sey, is periodic for
any s € R\{0}.

Proof. This result follows immediately from the fact that &, C ®¢, U Pe,. O

In particular, if U(7)e, = ne, and U(7)e, = 1je;, then e, + se,, is periodic, for any s € R\{0}.
We now give a family of graphs that have periodic pair states but no periodic vertices. Let X
be a conference graph on n vertices, where /n ¢ Z. (See Section 1.3 of [BCN89] for conference
graphs.) Note that X is regular with valency k = (n — 1)/2. The eigenvalue support of each
vertex with respect to the adjacency matrix consists of

1 1
A =k, Ag:%ﬁ, and M:#,

which does not satisfy the ratio condition. Hence X has no periodic vertices. Let u = e, —
ep. Since E), = % J, we have Ej;u = 0 and ®, = {Ay, A3} satisfies the ratio condition. By
Theorem [3.1] the pair state u is periodic. Since X is regular, u is also periodic relative to the
Laplacian or the signless Laplacian matrix of X.

The next corollary follows immediately from Theorem[3.2

Corollary 3.4. Let u = e, + sey, be a real periodic s-pair state in X. If Oy, is closed under taking algebraic
conjugates, then |\ — 6| > 1, forall A,0 € &y with A # 6.

In [God12]], Godsil showed that graphs with periodic vertices relative to the adjacency matrix
are rare. We show a similar statement about real periodic s-pair states with non-negative entries.
We denote the spectral radius of a square matrix N by p(N).

Corollary 3.5. For each positive integer k and positive rational number s, there are finitely many con-
nected graphs X with maximum valency at most k such that e, + sey, is periodic in X with Hamiltonian
A, L orQ.



Proof. We let Mbe I + A, (k+1)I — L and Q if the Hamiltonian is A, L or Q, respectively. Let
the spectral decomposition of M be

M= Y AE,.
Aespec(M)

The E)’s are also the orthogonal projection matrices onto the eigenspaces of the original Hamil-
tonian. For each case, an s-pair state u = e, + se;, is periodic with M being the Hamiltonian if
and only if u is periodic with the original Hamiltonian.

Let r be the covering radius of the set {a,b} in X, which is the smallest integer r such that
every vertex in X is at distance at most r from some vertex in {a,b}. Since the entries in M and
u are non-negative,

{M'a:h=0,...,r}
is a linearly independent set in span {E u : A € ®}. Hence r < |®y|.

Now, observe that
p(I+A)=p(A)+1<k+1

For each vertex v, let d(v) be the degree of v in X. The proof of Theorem 3.1 in [Shi07] states the
inequality

p(L) < p(Q) < V2max \/d<v>2 + Y d(v') <2k

v/~

We conclude that p ((k+1)I — L) < k+1and p(Q) < 2k.
For all three choices of the Hamiltonian, Corollary [3.4]implies

r<|®y] <20(M)+1 < 4k+1.

For each positive integer k, there are finitely many connected graphs with maximum degree at
most k and covering radius of a pair of vertices bounded above by 4k. O

Remark 3.6.

(a) The proof of the Corollary is adaptable to any state u with non-negative rational entries. In
particular, it applies to periodic vertex states.

(b) Corollary [3.5does not hold when s < 0. Figure 2l gives an infinite family of trees {T, : n > 0} with
maximum degree three containing periodic s-pair state e, — ey,.

We close this section with a result that will prove useful in Section[6.21

Proposition 3.7. Let a and b be cospectral vertices in X. If (e, + sey) is periodic at time T, then either
s = %1 or both a and b are periodic at time T.

Proof. Suppose U(T)(e, + se;) = 1(e, + sep,) for some phase factor 77, which gives

elU(t)e, +selU(t)e, =71
el U(t)e, +sel U(t)e, = sy.

We have elU(7)e, = elU(7)e, because a and b are cospectral, and e/ U(7)e, = elU(1)e,
because U(7) is symmetric. The above system of equations give

(s> —1)elU(r)e, = 0.

Hence either s = £1, or el U(7)e, = e] U(7)e, = 7. O
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4 Strongly cospectral s-pair states

In this section, we make some observations on strongly copsectral s-pair states, a necessary con-
dition for perfect s-pair state transfer as stated in Theorem [2.3]
Given the spectral decomposition M = ) AE,, the real states u and p are strongly
A€spec(M)
cospectral with respect to M implies

u'Eyu=pu"E\p

for all j, which is equivalent to
u'M'u = u" My, )
for all non-negative integer h.

Proposition 4.1. Let u = e, + re, and p = e, + seg be strongly cospectral s-pair states with respect to
the adjacency matrix of X, for some real numbers r and s. If r # s then a is not adjacent to b and « is not
adjacent to B in X.

Proof. Applying B) withh =1 givesrA,, = sA,p. lf r #sthen A,;, = Ay p = 0. O

Remark 4.2. Theorem 8.1 of [CG20] rules out Laplacian perfect s-pair state transfer from e, + ey to
e, — eg. Proposition d. T rules out adjacency perfect s-pair state transfer from e, + ey, to e, — eg if either
a is adjacent to b or « is adjacent to B.

Proposition 4.3. Suppose u = e, + sey, is strongly cospectral with y = e, + seg with respect to M, for
some s € R\{0}. Then one of the following holds.

(i) (Mh)a,a = (Mh)a,a, (Mh)b,b = (Mh)lg,ﬁ, and (Mh)a,h = (Mh)a,l;,for all h > 0.
(ii) s is the root of a polynomial of degree at most two.

Proof. Equation (B) gives
32 (M"Y — (MM 56) +25 (M) — (M) ) + (M")0 = (M")g0 = 0,

for all h > 0. Either Condition (i) holds, or s is a root of some polynomial of degree at most
two. ]

Theorem 8.3 of [CG20] relates Laplacian perfect pair state transfer to perfect plus state trans-
fer with respect to Q for bipartite graphs. In the following proposition, we give a similar result
for strong cospectrality of s-pair states in bipartite graphs.

Proposition 4.4. Let X be a bipartite graph with bipartition By and B,. Let a,a € Byand b, € B,.
Then the two states (e, + sey) and (e, + seg) are strongly cospectral with respect to Q if and only if
(e, —sey) and (e, — sep) are strongly cospectral with respect to L.

Proof. Let P be the diagonal matrix where
1 ifvebB,
Py,a _ 1 U € by
-1 ifv € B,.

The proposition follows from
Up(t)P = PUQ(t),

and P(ey, + se,,) = e, — sey,, for vy € By and v, € By. O
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Proposition 4.4l does not hold when a,b € By. In Figure[3] the states (e, + e;) and (e, + ep)
are strongly cospectral with respect to Q but (e, — e;) and (e, — eg) are not strongly cospectral
with respect to L.

@ g

Figure 3: A counter-example of Propositiond.4lif a,b € B;

We generalize Corollary 6.4 of [GS24] to s-pair states.

Proposition 4.5. Let u = e, + se, and p = e, + seg be strongly cospectral s-pair states in X. If s # 1
then any automorphism of X that fixes (a,b) also fixes («, B). If s = 1 then any automorphism of X that

fixes {a, b} also fixes {«, B}.

Proof. Let P be the permutation matrix of an automorphism that fixes the state u. Then P com-
mutes with each E;. It follows from Equation () that

”:ZEAI‘: ZEA_ZEQ u.

Acd, AeDE, fedy,
Hence
Pu=| ) Ex— ) Eo|Pu
AeDE, 0Dy,
and Pu = u if and only if Py = p. O

5 More s-pair state transfer

In this section, we use existing vertex state transfer and s-pair state transfer to build more exam-
ples of s-pair state transfer.
5.1 Fractional revival

Fractional revival occurs from vertex a to vertex b at time T if
U(T)e, = 17e, + ey, (6)

for some complex numbers 77 and @ # 0 satisfying |17|*> + |@|? = 1. (Vertex) perfect state transfer
occurs between a and b if # = 0, so it is a special case of fractional revival. For more information
about fractional revival, we refer the reader to [CCT"19].

Proposition 5.1. Let a and b be distinct vertices in X. Let s € R\{—1,0,1}. Perfect s-pair state transfer
occurs between u = e, + se, and y = ey, + se, if and only if (vertex) perfect state transfer occurs between
a and b at the same time.
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Proof. We first show that u and p are strongly cospectral if and only if e, and e, are strongly
cospectral. The states u and p are strongly cospectral if and only if there exists 0, € {£1}, for
A € Dy, such that

E AU =0, AE AU,

which is equivalent to
(1 — SUA)EAQQ = (1 - SUA)UAEAeb.

As s # *1, the above equations hold if and only if e, and e, are strongly cospectral and

@ o, =Py, and D, =Dy,

ey,ep €4,€p

These equalities imply that u and yu satisfy the conditions in Theorem[2.3]if and only if e, and e,
satisfy the conditions in Theorem 2.3 O

In Theorem [6.5] we see that Cg has perfect s-pair state transfer with s = +1 but Cg does not
admit (vertex) perfect state transfer.

Proposition 5.2. Let the entries of M be algebraic integers. Suppose (vertex) perfect state transfer occurs
between a and « at time T and v is periodic at T. Then perfect s-pair state transfer occurs between e, + se,
to e, + sey at time T, for s € Q\{0}, if and only if there exist A € @ , and A" € D, such that

At =M1 (mod 2nm).
Proof. Let A € ®f . and A’ € ®e,. By Proposition 2.4, Theorems[2.3]and B.2, we have
U(t)e, = e ™e, and U(T)e, =e ™e,.

Then . .
U(T) (e, +5€y) = e e, +se ™ e, = 1 (eq + sey)
if and only if e 71T} = ¢=iTA = . O
Suppose the Hamiltonian M is non-negative and irreducible, for example M = A or Q. Then

the condition on the eigenvalue supports in Proposition[5.2] always holds with A = A’ being the
Perron-Frobenius-eigenvalue of M.

Example 5.3. Consider the path Ps on vertex set {1,2,3} where the vertex 2 has degree two. At time
T==1
\/il

0
UA(T) =—10
1

S = O

1
0
0

For any positive integer m, the Cartesian power Py™ has transition matrix U (t)®™. Thus P3™ has per-
fect state transfer froma = (1,1,...,1) toa = (3,3,...,3) at time T and is periodic at v = (2,2, ...,2)
at the same time. As m~/2 € O . NDe,, Proposition B.2implies that perfect s-pair state transfer occurs
from (e, + sey) to (e, + sey) at time T for all s € R\{0}.

Suppose that fractional revival occurs from a to b, and both # and @ in Equation (6) are non-
zero. As U(7) is unitary, we have

€p, (7)

/N
8=
N—

U(T)e, = we; — @

11



and L
U(T) (e + sep) = (17 +50)eq + @ (1 . s(%)) ep.

The s-pair state on the right-hand side is a scalar multiple of (e, + se;) if and only if s is a root of

the quadratic
2+ <1+ (1)>x—1:o.
@ @

If s is a root of the above quadratic, then the s-pair state (e, + sey,) is periodic at time 7. Otherwise,
perfect s-pair state transfer occurs from e, + se;, to the state on the right-hand side of Equation (7),
but this state might not be a real state.

Example 5.4. Let X := X(12,8,24) denote the graph obtained from identifying 8 leaves from Kj o and
K 3. Let a and b denote the vertices of degree 20 and 32, respectively, see Figureldl Let A be the adjacency
matrix of X. Fractional revival from e, to ej, occurs at time T := 5 [GZ22l], and

3 4 4 3

Then
(3 —4s) (—4 —3s)

5 e, + 5

Ua(T) (e, +sep) =

When s € {2, —3}, the state e, + sey, is periodic.

12 vertices .
-~ 8 vertices
-2\

Figure 4: X(12,8,24)

Let Y := XOK5 and B be the adjacency matrix of Y. Since the transition matrix of K, with adjacency
Hamiltonian at time T is
0 —i
—-i 0]’

—3+4s)i 4 4 3s)i
Up(T) (e(a,O) + Se(b,0)> = %e(m) + %e(b,ly 8)

we get

When s € {2,—1}, perfect s-pair state transfer occurs in'Y from the s-pair state <e(a,0) + se(b,0)> to
(e(all) + Se(b,1)> at time 7.

12



5.2 Quotient

Let M be a real and symmetric Hamiltonian associated with a graph X on n vertices. Let P be an
n x m real matrix satisfying
P’P=1 and MP = PB, 9)

for some m x m real symmetric matrix B called a quotient matrix. Then the column space of P is
M-invariant and
(PPT) M=M (PPT> . (10)

It follows from the conditions in @) and (10) that
PUg(t) = Upm(t)P.

As a result, if (vertex) perfect state transfer with Hamiltonian B occurs at time T from ey, to ey,
then Up(7) (Pey,) = 1n(Pey). We have perfect s-pair state transfer if each of Pe;, and Pe, has two
non-zero entries.

Example 5.5. For (@ and (), let M be the adjacency matrix of Cs, viewed as the Cayley graph on Zg
with connection set {—1,1}.

(a) Let P be the 8 x 3 matrix given by

L L
) 5 0.0 0 5 0 0 0
PP=|0 3 0 53 0 3 0 3,
00 5 0 00 5 0
which satisfies (Q). The quotient matrix is
010
B=v2 |1 0 1
010
which gives
|1 0
us(5) o] == [0
0 1

We conclude that

Upm (g) (eo -+ e4) = — (82 + e6) .

Thus, perfect s-pair state transfer occurs in Cg between (eg + e4) and (e2 + eq) at time 7.

(b) Let P be the 8 x 4 matrix given by

0
1

2

7

o4 ©
(a)

0

0
_1

V2
0 _

0

0
1
V2
0

o O O§|H
N

N O O O
|
N O O O

N

1
2
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which satisfies (9). The quotient matrix is

0 -1 0 0
-1 0 10
B= 0 1 00
0 0 0O
which gives
1 0
T 0 0
us (75) fo] = |1
0 0

We conclude that

Um <%> (ep —e2) = (es —eg).

Thus, perfect s-pair state transfer occurs in Cg between (ey — ep) and (ey — e¢) at time \%

(c) Let M be the adjacency matrix of the graph X(m), m > 1, given in Figure[Bl Let P be a normal-
ized characteristic matrix corresponding to the equitable partition indicated in the figure. (Please
see [CG21l] for more information about equitable partitions.) Then the quotient matrix B is the
VmA(Cg), where A(Cs) is the adjacency matrix of Cs. It follows from the above examples that

X(m) has perfect s-pair state transfer between (eo + es) and (ep + e¢) at time ﬁ, and between

(ep — ep) and (es — e¢) at time \/%

m vertices m vertices
bk -

Figure 5: X(m) with an equitable partition

5.3 Transitivity

We extend Theorem 6.1 of [CG20] to s-pair states. To simplify the proof, we represent a real s-pair
state u = e, + se;, using its density matrix

1 T

Dy=——uu’.
T arsy)™

Theorem 5.6. Suppose perfect s-pair state transfer occurs in graph X fromu = e, +re, topy = e, +reg
at time T, and from v = e, + sec to v = ep + se, at time T. Then perfect s-pair state transfer occurs
fromw = e, — rse. to w = e, —rse, at time T.

14



Proof. First observe that

1+72 r2(1+s%) (1472)(1+s?)
Dy =——— ————~Dy — DyDy + DyDy),
Y (14282 * (14 72s2) (1+r2s2) (DuDy + w)
and similarly,
1+72 r2(1+s%) (1472)(14s?)
Dy=——5> ———=D, — D,D, + D,D,) .
w (1 +,,252) nt (1 +r252) v ( uBPv + Dy 14)

(1+1r2s2)
The result follows from U(7)DyU(—7) = D, U(T)DyU(—T) = D,,
U(1)DyDyU(—7) = [U(T)DyU(—7)] [U(T)DyU(—T)] = D,D,,
and U(T)DyDyU(—1) = D,D,. O

6 Special classes

In this section, we determine all incidences of perfect s-pair state transfers in three families of
graphs. Since the graphs considered in this section are all regular, the classifications are the
same for any Hamiltonian in {A, L, Q}. Without loss of generality, we work with U, () in the
following subsections.

6.1 Complete graphs

Let ], denote the n x n matrix of all ones and 1,, denote the vector of all ones of length n. The
transition matrix of K, is

n

—it(n—1) ) 1
Ua(t) = S, + e (I - En) |

For any distinct vertices a and b, e, — e}, is a fixed state. Without loss of generality, let u =
e + sey, for some s # —1. Then

Ua(t)u = (e_“(”_l) — eit) 7(1 :S) 1, + e'u.

We conclude that, for n > 3, u is periodic with minimum period 27”

For K3, e; £ e, are fixed states. If s # =+1 then e; + se; is periodic with minimum period
7t. Meanwhile, for n > 2, K,, does not have perfect s-pair state transfer between distinct s-pair
states.

6.2 Cycles

We have shown in the previous section that K3 does not have perfect s-pair state transfer, now
we consider cycles of order n > 4.
The cycle on n vertices, C, is a Cayley graph on Z, with connection set {—1,1}. For j =

o,..., L%J, let A; = 2cos ? be the j-th eigenvalues of A, the adjacency matrix of C,. Let E A be
matrix of the orthogonal projection onto the A;-eigenspace. Then the (a,b)-entry of E,, is

ifj =0,

cos T ey <<t (11)
_1)a+b

N =

—~ =

. -
o ifnisevenand j = 7,
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fora,b € Z,and forj=0,...,|%].

Without loss of generality, we let the initial state be u = e + sep, forsome b € {1,2,..., L%J }
and s € R\{0}. Then A; € @y if and only if E,(eo + se;) # 0.

We first classify periodic s-pair states u = eg + se, in Cp,, fors = 1,s = —1 and s # £1. The
following result [Leh33] is useful in our proofs.

Lemma 6.1. If cos 27” € Q, thenn € {1,2,3,4,6}. If the minimal polynomial of cos 27” has degree two,
then n € {5,8,10,12}.

Lemma 6.2. The s-pair state u = ey + ey, for 1 < b < %, is periodic in C,, n > 4, with minimum

period T if and only if the triple (n, ey, T) belongs to

2
{(4, e, ), (4e2,5 ) (6,€,27), (6,e2,27), <6, e, §> ,(8e4,7),(12, e6,2n)} .
n
27

Proof. Suppose u is periodic. From (1), for 1 <j <
2 27thj
egEAju = (cos% + 1> .

Hence A; € &, when % — % ¢ Z.

If b # 5 then Ag, A € ®y. Since Ag = 2, Proposition2.4land Theorem[3.2]imply 2 cos 27” cZ.
Similarly, if b = 7 then Ag, A2 € &, and 2cos 47” € Z. It follows from Lemma [6.1] that n €
{4,6,8,12}.

For n € {4,6,8,12}, we computationally search for all s-pair states ey + e, that satisfy the
conditions in Theorem 3.2 to get the list above. The minimum period of each case is computed
using the expression given in Theorem[3.2] O

Lemma 6.3. The s-pair state u = eg — ey, for 1 < b < 7, is periodic in Cy, if and only if

V5 V5

(5o (20) (o ) (203}

Moreover, (eg — e2) is a fixed state of C.

2 2
(n,e,,7) € { (4 e1,77), <5, e, —”) , <5, ez,—”> (6,e1,277) , (6,e5, 7).

Proof. Suppose u is periodic. From (), for1 <j < 7,

2 27thj
egEAju:E<cos 7:1]—1>.

Hence A; € @, if % ¢ 7.

If1 < b < 5 then Ay, Ay € ®y. If follows from Corollary B.4l that [A; — A1 > 1 which implies
n < 10. Similarly, if b = 5 then A; € @, for odd j. Proposition 2.4 Theorem[3.2]land Lemma 6.1
imply

n € {4,5,6,8,10,12}.

Forn € {4,5,6,8,10,12}, we computationally search for all s-pair states ey — e, that satisfy
the conditions in Theorem[3.2]to get the list above. The minimum period of each case is computed
using the expression given in Theorem[3.2] O
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Lemma 6.4. For s # +1, the s-pair state u = eg + sey, is periodic in C,, if and only if one of the following
holds.

i. n =4, u= e+ sey is periodic at minimum time 7, for 1 < b < 3ands € R\{£1}.
ii. n=6,u=ey+ sey is periodic at minimum time 277, for 1 <b < 5and s € R\{£1}.

Proof. Tt follows from Proposition 3.7 that 0 and b are periodic vertices in C,,, and C4 and Cg are
the only cycles with periodic vertices.

Case (i) follows from the fact that the transition matrix for Cy4 is equal to the identity matrix
at minimum time 7. Case (i) follows from the fact that the transition matrix for Ce is equal to
the identity matrix at minimum time 27r. O

Theorem 6.5. Perfect s-pair state transfer occurs from initial state eq + sey, for 1 < b < 7,in Cy if and
only if one of the following holds.

i. n =4, perfect s-pair state transfer from ey + seq to ey + sez at minimum time 7%, for s € R\{0}.

ii. n = 4, perfect s-pair state transfer from ey + se; to e + seg at minimum time %,for s € R\{-1,0,1}.
iii. n = 4, perfect s-pair state transfer from ey + ey to e; + ez at minimum time 7.

iv. n = 6, perfect s-pair state transfer from ey — ey to ez — es at minimum time 7.

v. n = 6, perfect s-pair state transfer from e + 2e, to ey + 2e4 at minimum time 7.

vi. n = 6, perfect s-pair state transfer from eg + e, to e4 + 35 at minimum time 7.

L , . g
vil. n = 8, perfect s-pair state transfer from ey — ey to ey — eq at minimum time N

viii. n = 8, perfect s-pair state transfer from e + e4 to e + eg at minimum time 7.
Proof. By Theorem [2.5] (i), it is sufficient to check if perfect s-pair state transfer occurs at half of
the minimum periods list in Lemmas [6.3land O

6.3 Antipodal distance-regular graphs

In this section, we determine all occurrences of perfect s-pair state transfers in the distance-
regular graphs that have (vertex) perfect state transfer. See [BCN89] for a background of distance-
regular graphs.

Coutinho et al. [CGGV15]] proved that if a distance regular graph X admits (vertex) perfect
state transfer and 4 is the diameter of X, then every vertex in X is at distance 4 from a unique
vertex. We call such a graph an antipodal distance-regular graph with class size two, and we say
two vertices are antipodal in X if they are at distance d from each other.

Suppose X is an antipodal distance-regular graph of class size 2 and it has diameter d. For j =
0,...,d, let A; be the j-th distance matrix of X. Then Ag = I, A, is the anti-diagonal permutation
matrix (up to permutation of vertices), and

AjAd = Ad—j/ fOI‘jZO,...,d,

Letk; be the columnsumof Aj, forj =0,...,d. Thenko = k; = 1and the sequenceko, k1, ..., ki_1,ks
is unimodal, see Theorem 5.1.1 (i) of [BCN89]]. Further, if X is not a cycle then Theorem 5.1.1 (ii)
of [BCN89] implies that k; > 3, forj=1,...,d — 1.
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Since { Ao, A1, ..., Az} is a basis of the adjacency algebra of X over C,
U(t) := Uy, (t) € span {Ag, A1,..., Ag}.
If X admits perfect state transfer between two vertices at time 7 then
U(t) = nAq, (12)
for some phase factor 7.

Theorem 6.6. Let X be a distance-regular graph that is not a cycle. If X admits (vertex) perfect state
transfer, then X has perfect s-pair state transfer from u = e, + se, to p = e, + seg if and only if one of
the following holds.

(i) {a, b} is not an antipodal pair, {a,a} and {b, B} are antipodal pairs, for s € R\{0}.
(ii) {a,b} is an antipodal pair, x = band p = a, fors € R\{-1,0,1}.

Proof. Let d be the diameter of X, and let T be the minimum (vertex) perfect state transfer time.
Suppose dist(a,b) < d. Let « and  be vertices in X that are antipodal to 2 and b, respectively.
It follows from Equation (I2) that

U (T) (eq +sep) = 17(eq + sep).

Since both Dy and D, are real, it follows from Theorem 2.5 (iv) that perfect state transfer does
not occur from u to another real state.
Suppose dist(a, b) = d, that is, e, = Aje,. Then Equation (12) gives

U (7T) (eq +sep) = 1(ep + sey).

Fors # £1, (e, + sep) and (ej, + se,) represent distinct real states and Theorem 2.5 ([iv) implies
perfect state transfer does not occur from u to another real state. When s = =£1, the state u =
(I+sA,)e, is periodic at 7. Let T’ be the minimum period of u. Let

' d
o(5)~Fom
]:

/ / d
U<%> (ea+seb):U<T2>(I+sAd ea—z @i +59a—j) Ajeq.

for some ¢y, ..., ps € C. Then

If there exists 1 < j < d — 1 such that ¢; +s¢;_; # 0, then U (%’) (e; + sey) has at least k; > 3
non-zero entries because X is not a cycle, so it is not an s-pair state. Otherwise,

d(Z)e = u(Z)0rsne
= ((po+59a)] + (¢a +sp0)Aa) €a

= (@o+s@q) (I+5A,)e,
= (@o+spq)u,

which contradicts the assumption that 7/ is the minimum period of u. By Theorem 2.5 (iii), we
conclude that no perfect s-pair state transfer occurs from the states (e, * ey). O
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Please see [CGGV15] for a list of distance-regular graphs that have (vertex) perfect state trans-
fer, which includes the n-cubes.

Note that every even cycle is an antipodal distance-regular graph of class size two. The cycle
Cy is the only cycle admitting (vertex) perfect state transfer. From Theorem|6.5] Cs and Cg are the
only other cycles that have perfect s-pair state transfer.

7 Line graphs

Given a graph X, we use V(X) and E(X) to denote its vertex set and its edge set, respectively.
The line graph of X, denoted by L£(X), is the graph with vertex set E(X) and two vertices (or
two edges of X) are adjacent in £(X) if and only if they are incident in X.

When X admits perfect plus state transfer between e, + e, and e, + eg, for some edges {a,b},
{a, B} in X, a natural question arises: does the line graph £(X) admit (vertex) perfect state
transfer between the corresponding vertices, and vice versa? We address this question in this
section, where we assume that Q is the Hamiltonian of X and the adjacency matrix, A, is the
Hamiltonian of £(X).

Suppose X has n vertices and m edges. The incidence matrix of X is an n X m matrix R
satisfying

R — 1 if the vertex a is incident to the edge € in X,
e 0 otherwise.

Note that each column of R is a plus state e, + e;, for some edge {a,b} € E(X). It also follows
immediately that
Q=RRT, A;=RTR-2I, (13)
and .
RUy, () = e'Ug(H)R, (14)

for any time t € R.
To simplify notations, for an edge {a,b} in X, we use ab to denote the corresponding vertex
in £(X), and f,, for its vertex state. We use A¢,, to denote the support of f,, with respectto A.

Theorem 7.1. Let {a,b},{a, B} € E(X). If L(X) admits (vertex) perfect state transfer between f,;, and
fup, then X admits perfect plus state transfer between e, + e, and e, + eg.

Proof. Suppose there exist T > 0 and phase factor 77 such that U, (7)f,, = 77fsp. Left-multiplying
R to the both sides yields

RUa, (D = e Ug(t) Rz = e Ug(t) (ea +€p),
and
nREp =1 (ex +ep).
Therefore, we get Uq () (e, + e;) = (17e7 %) (ex + ep). O
The null space of R plays a significant role in whether the converse of Theorem [7.1] holds.

Note that

nullity of R — m—n+1 ?f X ?s bipart‘ite, ‘
m—n if X is non-bipartite.
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Proposition 7.2. Suppose X is either a tree or a unicylic graph with an odd cycle, and {a,b},{a, B} €
E(X). Perfect plus state transfer occurs between (e, + e;) and (e, + eg) in X if and only if (vertex)
perfect state transfer occurs between fq, and f5 in L(X).

Proof. Suppose Up(T)(e; + ;) = 17(eq + eg). Equation ([14) gives
R (Ua,(T)fm) = R (e Tnfup) -
As the columns of R are linearly independent, we get
Ua, (7)o = e nfyp.
The converse follows from Theorem [7.1] O

Example 7.3. For n > 1, let a and « be the two vertices of degree 4n in Ky 4,. Let b be a vertex of degree
two in Ky a,. Then

7T

Ug (2> (es+ey) =—(eg+e,) and Uy, (n

E) o = fap-

The converse of Theorem [Z.1]is not true in general, see Corollary [Z.7l We proceed to charac-
terize when the converse of Theorem [T holds by investigating strong cospectrality between f,,
and f,p in £(X). Let the spectral decomposition of Q be

Q = Z )\E)\/

Aespec(Q)

and the spectral decomposition of A, be

Ar= ). 6F.
Oespec(Ar)

It follows from (13) that if A > 0 is an eigenvalue of Q then (A — 2) is an eigenvalue of A, and
vice versa.

Lemma 7.4. For A € spec(Q)\{0},

Fa—o)fap = £F) 2)fap

if and only if
EA(eg + eb) = :|:E)\(e0é + el;).

Proof. If Qx = Ax with A > 0, then A;RTx = (A — 2)RTx and the column space of RTE,R is the
(A — 2)-eigenspace of A.. Further, as

(reak) (w7ei) = {3 78 00

We see that
Firgy = A" (RTEAR) (15)

is the matrix of orthogonal projection onto the (A — 2)-eigenspace of A.
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Left-multiplying both sides of Equation (I5) with R yields RF,_,) = E\R. As
Rf,, = (e; +e;) and Rf,p = (e, +ep),

Fir—o)fay = £F(y_o)fap implies E; (e, +e,) = £E, (eq + ep).
Conversely, E, (e, + ep) = +E) (e, + ep) implies RF(y_5)fsy = £RF(y_y fap. Right multiply-
ing both sides with R gives

(Az+2I) Fpo)fap = £ (Ag +21) Fp o) fap
Since A # 0, we get F(A—2)fab = :I:F(A—Z)facﬁ- ]

Note that 0 € spec(Q) if and only if X is bipartite. Let x be an 0-eigenvector of the signless
Laplacian matrix of a bipartite graph X. Then, for {a,b} € E(X), we have x, = —x;. Thus the
eigenvalue support of the plus state e, + e, does not contain the eigenvalue 0. We conclude that
strong cospectrality of the vertex states f,, and f,p in £(X) implies strong cospectrality of the
plus states e, + e, and e, + eg in X. For the converse, we need an additional condition given in
the lemma below.

Lemma 7.5. Let X be a graph with n vertices and m edges, where m > n if X is bipartite and m > n
otherwise. Suppose, for some {a, b}, {w, B} € E(X), the plus states (e, + e;) and (e, + eg) are strongly
cospectral with respect to Q. Then f,, and f,g are strongly cospectral with respect to A if and only if

F_of, = :|:F,2f“l;.

Note that —2 ¢ spec(Ay) if and only if X is a tree or a non-bipartite unicyclic graph (see
Proposition[Z.2). For all other graphs, we see from the proofs of Theorems 1 and 2 in [AGKMO06]
that —2 ¢ A¢, only if {a, b} is a cut-edge in X.

Lemma 7.6. Suppose X is a bipartite graph on n vertices with m > n edges. If £, and f,g are strongly
cospectral vertices in L(X), then {{a, b}, {«, B}} is an edge-cut in X.

Proof. Let {a,b} and {«, B} be edges in X that do not form an edge-cut of X. From the proof of
Theorem 1 of [AGKMO06], using a spanning tree of X\ {{a,b}, {«, B} }, we can construct a vector
y in the null space of R such that

fly=1 and fgﬁy =0.

Now y is an (—2)-eigenvector of A, which implies F_»f,;, # +F_>f,p. The result follows from
Lemmal[Z.0 O

Theorem [6.6] implies that n-cube has plus state transfer, for n > 2. We now rule out perfect
state transfer in the line graph of n-cube, for n > 3.

Corollary 7.7. For n > 3, the line graph of the n-cube does not admit (vertex) perfect state transfer.

Proof. It is well-known that the n-cube is a bipartite graph with edge-connectivity n. This result
follows immediately from Lemma O

Lemma 7.8. Suppose X is a non-bipartite graph on n vertices with m > n edges. If f,, and f,p are
strongly cospectral vertices in L(X), then the removal of the edges {a, b} and {a, B} from X results in
either a disconnected graph or a bipartite graph.
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Proof. Let {a,b} and {«, B} be edges in X whose removal result in a connected non-bipartite
subgraph of X. From the proof of Theorem 2 of [AGKMO06|, there exists a vector y in the null
space of R such that

fly=1 and fgﬁy =0.

Now y is an (—2)-eigenvector of A, which implies F_»f,, # £F »f,5. The result follows from
Lemma O

We are ready to characterize when £(X) has (vertex) perfect state transfer, based on informa-
tion from the signless Laplacian matrix of X.

Theorem 7.9. Let u = e, + e, and p = e, + e, for some edges {a, b} and {a, B} in X. The line graph
of X admits (vertex) perfect state transfer between £, and £,z if and only if the following conditions hold.

(i) X admits perfect plus state transfer between u and p.
(ii) If =2 € Ay, then F_of;, = £F f,5, and either the elements in Ag, = Afaﬁ are
(i) all integers, or

(ii) there exists a square-free integer A > 1 such that each element of Ag,, is in the form —2 + %Z,
for some d € Z.

(iii) Let ' € A;:b,fa;;’ and

g = ged { - }
\/Z GEAfab
(with A =1 for Case (a) above). Then 6 € A;;brfaﬂ if and only if Z’,;fz is even.

Proof. If —2 ¢ Ag, then spec(Az) = {6 —2 : 0 € ®y}, and it follows from Lemma [Z4] and
Theorem 2.3] that Condition @) implies perfect state transfer occurring between f,;, and f,z in
L(X).

Suppose —2 € Ag,. Then Condition @), F-2f,; = £F of,s and Lemma [Z.4 imply that f,,
and f,4 are strongly cospectral with respect to A;. Conditions ({i) and (ii) are equivalent to

Theorem 2.3| (ii) and (). O

Remark 7.10. If =2 € Ag, then Ag, = {6 —2: 60 € &y} U{—-2}. Suppose Theorem holds,
let

h —gcd{i A_A/}
\/E’ \/Z AN ED,
(with A =1 for Case (a) above). Then Theorem can be expressed as
D, = {AE@ 'Liseven}
i VA

if—2¢ Afﬂb,faﬁ,for ce{+ -}
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8 Line graphs of Cartesian products

In Corollary [Z.7] we ruled out (vertex) perfect state transfer in the line graph of the n-cube, for
n > 3. In this section, we characterize adjacency perfect state transfer in £(X) when X is a
Cartesian product of two connected graphs.

We introduce some notation for this section. Let X = X;0X, where X; and X5 are connected
graphs on n; and n, vertices with m; and my edges, respectively. We assume 11,1, > 2. For
j = 1,2, welet R; be the n; X m; 0l-incidence matrices of Xj, and let r; = rankR;. From [ETL22],
we can assume that R has the form

R=[L,®R Ri®Ly,|, (16)

which has rank (n1rp 4+ riny — rir).
LetQ; = R]-R]T be the signless Laplacian matrix of X, for j = 1,2. Then the signless Laplacian
matrix of X;0X5 is
Qr=In®Q+ Q& L,

and the adjacency matrix, Az, of £(X;0X5) satisfies

Inl & (A£2 + 2In2) Rl X Rg

Ap+2I = '
L (nymy+nomy) R{ ® Ry (A£1 + ZInl) & Inz

where A; is the adjacency matrix of £(X;) for j =1,2.

0
X;: 0—O0—0 e=10 L(X1): o0—0 fup= [(1)]
a b ¢ 1 ab be
1
X o——=o0O e = |:0] E(XQ): O fio = [1}
1 2 12

= o o

_lec®@fia|
-

(el

X1DX2: E(X1DX2)
(a,1) (a,2) €1
€1 0
o B o =)=
(¢, 1) B (¢,2)

Figure 6: £(P;0K3)

For an edge € of X;0X>, we use h, to denote the characteristic vector of ¢ as a vertex state of
L(X10X>). If &7 joins vertices (a,y) and (b, ) in X10X>, for some {a,b} € E(X;) and y € V(Xa),

then
0
ey = [fab ® eJ '

(Recall {a,b} is a vertex in £(X;) and f, is the corresponding vertex state in £(X;). Also e,
is the vertex state for ¢ in Xp.) If ¢, joins vertices (¢, «) and (¢, B), for some ¢ € V(X;) and
{Dé,ﬁ} € E(Xz), then

hSz = |:eC %fﬁﬁ] .
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See Figure[fl for an example of these vectors when X; = P; and X, = Kj.
Suppose Q;x; = Ajx;, for j = 1,2. Then
Qr (X1 & Xz) = ()Ll + )Lz) (X] X Xz)

and
x| ® Rg X)

RIx; @ x;

xX] ® Rgx2

ART(xi@x)=A
cR" (x1 ®x2) c RTx1 &%

= (M 4+A—2) (17)

Hence (A1 + Az — 2) belongs to the eigenvalue support of h,, with respectto A only if f1, RTx; #
0, which implies (A1 —2) € Ag,, the eigenvalue support of f,, with respect to Az;. Similarly,
if (A1 + A2 —2) belongs to the eigenvalue support of he,, then (A2 —2) € Ayg,,, the eigenvalue
support of f,z with respect to A,.

For j = 1,2,let N; be a m; x (m; — rj) matrix whose column space is equal to the null space of
R;. Let N be a matrix whose column space is the null space of R. The matrix N has (nymy + nymy )
rows and (n1(my — r2) + na(mq —r1) + r1r2) columns. Moreover, it follows from the proofs of
Theorems 1 and 2 in [AGKMO06] that N; has a zero row only if the corresponding edge is a cut-
edgein X;.

Proposition 8.1. Let X = X;01X,. Forj = 1,2, let ﬁj be a matrix consisting r; linearly independent

columns of R;, and let T] be the (m; x r;) matrix whose I-th column is £y, if the I-th column of ﬁj is the
column in R; indexed by {a,b} € E(X;). Then the column space of

In,®N, 0 -R®Db

N ~ ~
0 Ni®IL, LH®R,

(18)

is exactly the null space of R.

Proof. For j = 1,2, we have R]-T]- = ﬁj and R;N; = 0. It follows immediately that RN = 0. Since
N has (n1(my — 1) + na(my — r1) + rirz) linearly independent columns, we conclude that the
column space of N is equal to the null space of R. O

In the following, we assume N is the matrix given in Equation (I8). Let F_, denote the ma-
trix of orthogonal projection on the (—2)-eigenspace of the adjacency matrix A, of £(X10X>),
which is equal to the null space of R. It follows that, for vertices €1 and ¢ in £(X10X>),
F 5 (he, £h,,) = 0if and only if (h,, + h,)" N = 0.

Lemma 8.2. Let &1 and €, be distinct vertices of L(X10X). Then F_yh,, = +F_h,, if and only if one
of the following holds.

(i) Without loss of generality, X, = Kp. Let V(X2) = {1,2}. Then

0 0
he, = |:fab ® el] andhe, = |:fab ® ez] ’

for some edge {a, b} in Xy such that =2 & Ag,,.
(ii)
e ® f“ﬁ - 0
hel - |: 0 :| and hgz == |:fab ® e“:| s

for some pendant vertices a € V(Xy) and a € V(Xy), and edges {a,b} € E(Xy) and {a, B} €
E(Xy) such that =2 & Ay, and =2 & Ag, ;.
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In addition, F_yh., = F_sh,, # 0in Case @, and F_h,, = —F_sh,, # 0 in Case (i.

Proof. Suppose (he, £ hgz)T N = 0. There are two possible cases.
Without loss of generality, for j = 1,2, the edge ¢; joins the vertices (a;,7;) to (bj,7;) in
X,0Xy, for some {a;,b;} € E(X;) and y; € V(Xy). That s,

0 0
ey = |:fﬂ1b1 ® e’h] and he, = [fﬂzbz ® e’n] '

(It is possible that {a1,b1} = {a2,b2} or 71 = 72.) We can then assume that the columns of Ry
contain Rif, j, and Rif,,;,. Thus forj=1,2,

fa,11 # 0.
From Equation (I8), (h,, = h,,)” N = 0 implies

Note that f;jbjINl and e%ﬁz are Ol-vectors, for j = 1,2. Equation (I9) holds only for the difference

of the two terms with f;blfl = f;‘;bzfl and egl Ry = e%ﬁz. We conclude that {a1,b1} = {a2, by} in
X1, and 71 and v, are incident to the same set of edges in X». Since €1 # €3, y1 and 7, are distinct
vertices in Xp. As Xj is simple, we conclude that X; = Kj.

Further (h,, £ h.,)" N = 0 implies that £, Ny = 0 (unless Ny has no column). Thus —2 ¢
Ag,. This proves (a).

For the second case, we assume without loss of generality that

® £ 0

We can assume that the columns of R; contain R1f,;, and the columns of R, contain Rof,p. From
Equation (8), (h,, + h,,)" N = 0 yields

—e/ Ry @35 + 5,1 @ e] Ry = 0. (20)

Since eCTﬁl, fzﬁfz, f;b]vl and e£ R, are 01-vectors, Equation (20) holds only when we add the two

terms with N N N N
eZRl = fz;bll and fZ;BIz = eng.

This implies ¢ € {a,b} and v € {«a, B}. Without loss of generality, let c = a and v = «. That s, €;
joins vertices (a4, &) and (a, B) and ¢; joins vertices (4, «) and (b, a) in X;0Xo.

Suppose X10Xj; is bipartite. By the proof of Lemmal7.6 F_, (he, = h,,) = 0 implies {e1,¢€,}
is an edge-cut in X;[1X>.

Suppose, without loss of generality X; is non-bipartite so that X;[1X, is not bipartite. But
X10X5\{¢1, €2} contains an odd cycle, so it follows from the proof of Lemma [Z.8|that {e1,€>} is
an edge-cut in X;0X>.

The set {e1,¢2} is an edge-cut in X;0X, only when 4 is a pendant vertex in X; and « is a
pendant vertex in X5.

In addition, (h, hgz)T N = 0implies that f;{le = 0 (unless N7 has no column) and fzﬁ N, =
0 (unless N has no column). Thus —2 € A¢, and —2 ¢ At This proves (b). O
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We first consider Case (i) of Lemma

Lemma 8.3. Let ¢1 and ¢, be vertices of L(X10Xy) satisfying Lemma[8.21(@). Then one of the following
holds.

(i) X is a non-bipartite unicyclic graph and {a, b} is an edge in the odd cycle of X1, or
(ii)) {a,b} is a cut-edge in X;.

Proof. In Lemma B2 (i), if Ny has at least one column then f/,N; = 0 implies that {a,b} is a
cut-edge in Xj. If Nj has no column then X; is either a tree or a unicycle graph with an odd
cycle. O

We use Y}, to denote the eigenvalue support of the vertex state h, with respect to A;. For
vertex states h,, and hy,, let

¥y, = {9 € ¥, Bhy = £Fhe, |,

where Fy is the matrix of orthogonal projection onto the ¢-eigenspace of A.

Lemma 8.4. Let &1 and ¢ be vertices of L(X10Xy) satisfying Lemma 82 @. Then h,, and h,, are
strongly cospectral with respect to A if and only if |¢ — O'| # 2, for 9,9 € Ay,
Further, if he, and he, are strongly cospectral then

oo by = Moy T n, = {8+2:0 € A, JU{-2}. (21)

ab’

e[ e[

Proof. Let Q1x = Ax and

From Equation [I7), fors = 1,2,

x ® Ry,
RIx®ys

x ® Rlys
RIx®vy;

L = Us

7

where 9 = Aand 8, = A — 2. For j,s € {1,2},

x® Rlys
RlTx X Ys

T
g

_JfR{x ifs=j=2,
fgleTx otherwise.

Hence A, A —2 € ¥y, if and only if A — 2 € A¢ , which implies Thel = Thez' In addition,
]

T [X®RJys] _ , so11 [X©RIy,
h;, [RlTx Rys| (=1)""h,, RIx®vy,|" (22)
Suppose Ag, contains ¢ and ¥ = ¢ + 2. Let x and x’ be an ¢-eigenvector and an ¢'-

eigenvector of Qy, respectively, such that £}, RTx and fI, RTx’ are non-zero. Then ¢ € ‘Fhe/’ for
j=1,2,and

T x ® Rly; T x ® Rly; and hT x' @ Ry, Y x' @ Ry,
€1 fo®y1 :



Since both . ) .
X® Ryy1 X ®R,y2
[RlTx ® yJ and [Rf X @ y2

are ¥-eigenvectors of A;, we conclude that h,, and h,, are not strongly cospectral with respect
to A L-

Conversely, assume that for all 9, 9" € A¢,,, [ — ¢'| # 2. It follows from Equation (22) that,
forA —2 € A¢

ab’

— +
A=2c¢ Thelrhez and A € Thelrhsz'

From LemmaB2 —2 ¢ A¢, implies =2 € ¥{ |, . Hence ¥} , NY¥, , = @and @I
Slr €2 Slr €2 €1/ €2
holds. As a result, he, and h,, are strongly cospectral with respect to A. O

We now consider Case (i) of Lemma

Lemma 8.5. Let ¢1 and ¢, be vertices of £L(X10X>) satisfying Lemmal82 (il). Then he, and h,, are not
strongly cospectral with respect to A.

Proof. Assume ¢ and ¢; satisfy Condition () in Lemmal8.2] and h,, and h,, are strongly cospec-
tral with respect to A..
For j = 1,2, let x; be a Aj-eigenvector of the signless Laplacian matrix Q; of X;. From Equa-

tion (12),
(he, £he)" (RT(a @%2)) =0

implies
<egx1> ® <f£ﬁR2Tx2) + (faTleTxl) ® <ezxz) =0. (23)
Since a is a pendant vertex in X;, we have
fLR] = (es+ ;)" = el Q1.

Similarly, fzﬁRg = el Q,. Equation (23) gives
(A2 £ Aq) (e;{xl ® e;xz> =0.

Therefore, \; = FA, when e/x; and elx, are non-zero. Since the eigenvalues of Q are non-
negative, we conclude that the eigenvalue support of e, with respect to Q; has size at most one.
But X is a connected graph on at least two vertices, and the eigenvalue support of e, has at least
two vertices. We conclude that h,, and h, are not strongly cospectral O

We are now ready to characterize the line graphs of XX, that admit (vertex) perfect state
transfer.

Theorem 8.6. Let €1 and e, be edges in X1[1X,. Then (vertex) perfect state transfer occurs between hy,
and h, in £(X10X>) if and only if the following conditions hold.

(i) Xo = Ky, and X, either has an cut-edge or it is a non-bipartite unicyclic graph, with
(i1) €1 and e, satisfying Lemmal8.21 (@),
(i) Yn,, C Zand ¥n, \{-2} C 4Z.
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Proof. Suppose (vertex) perfect state transfer occurs between &1 and ¢; in £(X;0X5). From Lem-
mas [8.2] 8.3] and [8.5] Conditions (i) and (i) hold. From (2I), we see that ¥}, does not satisfy
Condition (ii) in Theorem[Z.9] (ii). Hence Yh, CZ. Let

g = ged{?®' — Otovct, -

Then (2I) implies g|2. By Theorem 2.3/ (i), g = 2 and ¥y, \{—2} C 4Z.

Conversely, assume Conditions @) to (@) hold. Then |¢ — ¢'| # 2, for 8,¢' € A¢,. By
Lemma h,, and h,, are strongly cospectral. Condition (iii) and @) imply that both Theo-
rem 2.3/ (@) and (i) hold. Hence there is perfect state transfer between h,, and h,, in £(X;0X>).

|

From Theorem [7.1] we see that the conditions given in Theorem [8.6] are sufficient for per-
fect state transfer between the plus states corresponding to edges €; and e, using the signless
Laplacian matrix of X;[1X; as the Hamiltonian.

Remark 8.7.

(a) The n-cube, for n > 3, gives a family of graphs in the form X,U1X> that have perfect plus state transfer
but no (vertex) perfect state transfer in its line graph.

(b) Form > 2, X1 = Ky and Xy = Ky satisfy the conditions in Lemma[8.4 but not Condition of
Theorem 8.6

(c) Cq is the only known graph in the form X1UX, that has both perfect plus state transfer between
antipodal edges and (vertex) perfect state transfer in its line graph.

A natural question is to find other graphs satisfying all conditions in Theorem or to show that Cy is
the only one.

9 Further questions

We list some questions arising from this paper:

1. In Example[5.4] we rewrite Equation (8) as

U

1
) (g (oo ) ) = s (o 7e00).

Note thatr £ sifs & {2,—3}.

We propose to investigate perfect s-pair state transfer between s-pair states in the form of

1
(e +sep) and ———— (es +reg),

1
VI+ 5] VIt

where r # s.

Christopher van Bommel has pointed out that in the union of K, and Cy, for any vertex a
in C4 and b in K, there is adjacency perfect s-pair state transfer from e, + e, to e, — e} at
time 77. Does there exist a connected graph admitting adjacency perfect s-pair state transfer
from e, + e, to e, — eﬁ?
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2. Example211(b) gives a family of trees admitting adjacency pair state transfer. Is it possible
to have adjacency perfect s-pair state transfer in trees from initial state e, + se, where s #
—1? Is it possible to have Laplacian perfect s-pair state transfer in trees?

3. In Section[6.3] we determine all instances of perfect s-pair state transfer in distance regular
graphs that admit (vertex) perfect state transfer. The cycle Cg is an example of a distance-
regular graph admitting perfect s-pair state transfer but it has no (vertex) perfect state
transfer nor fractional revival. We ask for the characterization of distance-regular graphs
that have perfect s-pair state transfer. In particular, determine if perfect s-pair state transfer
can occur in a primitive distance-regular graph.
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