
Vol.:(0123456789)

Journal of Real-Time Image Processing (2024) 21:113 
https://doi.org/10.1007/s11554-024-01493-x

RESEARCH

GPU‑based key‑frame selection of pulmonary ultrasound images 
to detect COVID‑19

Emanuele Torti1   · Marco Gazzoni1   · Elisa Marenzi1   · Francesco Leporati1 

Received: 18 April 2024 / Accepted: 5 June 2024 / Published online: 15 June 2024 
© The Author(s) 2024

Abstract
In the last decades, technological advances have led to a considerable increase in computing power constraints to simulate 
complex phenomena in various application fields, among which are climate, physics, genomics and medical diagnosis. Often, 
accurate results in real time, or quasi real time, are needed, especially if related to a process requiring rapid interventions. 
To deal with such demands, more sophisticated approaches have been designed, including GPUs, multicore processors and 
hardware accelerators. Supercomputers manage high amounts of data at a very high speed; however, despite their considerable 
performance, their limitations are due to maintenance costs, rapid obsolescence and notable energy consumption. New 
processing architectures and GPUs in the medical field can provide diagnostic and therapeutic support whenever the patient 
is subject to risk. In this context, image processing as an aid to diagnosis, in particular pulmonary ultrasound to detect 
COVID-19, represents a promising diagnostic tool with the ability to discriminate between different degrees of disease. This 
technique has several advantages, such as no radiation exposure, low costs, the availability of follow-up tests and the ease 
of use even with limited resources. This work aims to identify the best approach to optimize and parallelize the selection of 
the most significant frames of a video which is given as the input to the classification network that will differentiate between 
healthy and COVID patients. Three approaches have been evaluated: histogram, entropy and ResNet-50, followed by a 
K-means clustering. Results highlight the third approach as the most accurate, simultaneously showing GPUs significantly 
lowering all processing times.

Keywords  ResNet · K-means · High-performance computing · Key-frame selection · Artificial intelligence · Machine 
learning

1  Introduction

The SARS-CoV-2 virus belongs to the coronavirus fam-
ily and is responsible for the COVID-19 infection, which 
involves the respiratory apparatus and is transmitted through 
drops produced when coughing, sneezing or simply talking 

and breathing. The incubation period lasts usually 4–5 days 
[1].

If symptoms develop, after about a week the illness can 
either heal or worsen into a serious condition, developing 
dyspnoea due to hypoxaemia, quickly followed by respira-
tory insufficiency that evolves into an acute respiratory 
distress syndrome. This can be observed as a pulmonary 
lesion characterized by inflammation and loss of pulmonary 
tissue [1]. In certain cases, pneumonia is present, produc-
ing a decrease in oxygen saturation and alterations, such as 
anomalies of frosted glass, stain stabilization and interlobu-
lar involvement made visible thanks to radiations and other 
imaging techniques [2].

This illness has induced scientists to develop rapidly 
reliable diagnostic approaches to reduce both the spreading 
of the infection and serious complications. The traditional 
diagnostic methodology to detect and monitor pneumonia 
is computed tomography (CT) of the thorax; COVID-19 
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patients in particular show specific features: frosted or thin 
reticular opacities, reticulation, vascular thickening, traction 
bronchiectasis, bilateral involvement, predominant inferior 
lung involvement and multifocal distribution [3]. CT scans 
show high sensitivity and specificity in detecting COVID-
19 pneumonia; however in multiple studies, both sympto-
matic and asymptomatic patients did not show identifiable 
anomalies. Besides, in a considerable number of children 
undergoing CT, no pathological signs could be detected [4]. 
Therefore, new diagnostic tools are required, since many 
patients with COVID-19 pneumonia do not show alterations, 
especially in the first stages of the disease [5].

Pulmonary ultrasound is a non-invasive technique to 
diagnose and follow up pulmonary interstitial syndrome, 
since it is able to identify and discriminate between 
healthy portions of pleura from irregularities, nodules and 
thickenings [6]. This kind of approach has shown high levels 
of precision in the diagnosis of pneumonia, even compared 
to traditional and consolidated methods like CT scans. 
Therefore, nowadays it is considered an alternative to CT 
for the diagnosis of interstitial diseases and pneumonia, as 
well as acute respiratory distress syndrome, with accuracies 
always higher than 90% and higher values of sensitivity and 
specificity also [7–9].

Hence, ultrasound imaging represents a relevant technique 
both in the diagnostic and therapeutic fields, thanks to the 
opportunity to detect in real time the dynamics of organs’ 
movements and details of blood flow, as well as their low 
costs without the use of radiation. In this work, a database of 
pulmonary ultrasound videos has been made available by the 
IRCCS San Matteo General Hospital of Pavia, Italy, where 
recordings can vary greatly in terms of the number of frames, 
duration (due to the specific examination and the subject 
under test) and resolution (because of the type of instrument 
in use). Nonetheless, such data represents a fundamental 
resource for a better understanding of pulmonary issues 
and improvement of diagnostic approaches. The aim of 
this work is to provide an innovative way to diagnose the 
presence of COVID-19 and determine its severity through a 
non-invasive method, based on pulmonary ultrasound. Key-
frame selection is used to select the most informative frames 
of acquired videos, followed by a ResNet-50 and K-means 
to highlight diagnostic patterns and then group such frames 
in terms of their similarity. This methodology has been 
compared with consolidated approaches to determine the 
most appropriate frames and severity parameters. The results 
confirm the ability to correctly detect diagnostic evidence 
and severity of COVID-19.

1.1 � Related works

Imaging modalities such as chest X-ray, computed 
tomography scans and ultrasound are used for rapid and 

precise COVID-19 diagnoses; however, processing such 
images is time-consuming and susceptible to human 
error. Therefore, artificial intelligence (AI) methods and 
in particular deep learning (DL) models provide high-
performance results, since they automate all stages of 
feature extraction, selection and classification [10]. More 
specifically, numerous studies have demonstrated that both 
CT and lung ultrasound represent the most appropriate 
diagnostic tools for the early detection of the presence of 
COVID-19, with ultrasound being portable, safe and with 
better real-time characteristics compared to CT. In this 
context, different deep learning (DL) models have been 
studied and tested to automatically expose the presence 
of SARS-CoV-2 from medical images, more specifically 
involving ultrasound technology [11, 12].

However, most of them assess single frames, manually 
extracted from a video by an expert physician to ensure that 
the main patterns were present in the image, thus limiting 
its applicability [13]. In fact, DL models are able to learn 
data representations autonomously, avoiding manual feature 
extraction and the limitations imposed by dependency on 
expert physicians [14]. These models also excel in handling 
large datasets, inherently addressing scalability issues that 
often plague conventional ML models. As an example, 
Two-Stream Inflated 3D ConvNet (I3D) has been tested 
for end-to-end video classification to perform an indirect 
SARS-CoV-2 diagnosis [15], while a network based on 
convolutional neural network (CNN) and long short-term 
memory (LSTM) cells has been evaluated, but it only 
differentiates between viral and bacterial cases of pneumonia 
from healthy patients [16]. Moreover, a combination of 
multi-layer perceptron (MLP), EfficientNet and vision 
transformer (ViT) has been used, observing that the second 
method outperforms the other techniques [17]. However, no 
information is provided about the criteria chosen to select 
the most appropriate frame.

In recent years, key-frame selection has emerged as an 
additional innovative approach also in the field of medical 
image processing. As an example, considering ultrasound 
imaging for breast cancer prevention, key-frame selection 
has been applied to effectively detect the diagnostic features 
associated with malignant lesions through an automatic 
reinforcement learning-based framework using videos of 
unfixed length [18]. In the same context, echocardiography 
and colonoscopy could benefit from this kind of procedure, 
thanks to the removal of both less informative and highly 
correlated frames [19, 20]. Another application concerns 
endoscopic videos that are useful not only for diagnostic 
purposes, but also for surgical training and quality 
assurance. In this case, video summarization in the form 
of a weighted dictionary selection model was implemented 
to extract frames with the highest image quality [21]. 
Moreover, laparoscopic videos represent a critical source, 
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since their frames are very rich in details, thus requiring an 
efficient approach to extract only the relevant ones and then 
extrapolate significant characteristics [22, 23]. Even in other 
types of imaging techniques, results can be improved, like 
in the CT of the pelvis for bone segmentation to aid in the 
early diagnosis of injuries, in planning and study the effects 
of surgeries [24] and to highlight the most important frames 
during gastroscopy.

Another critical issue when dealing with image 
processing in the medical field is related to the need of 
obtaining accurate results in real time or, depending on the 
specific application, at least in a timely manner, to speed as 
much as possible the diagnostic process.

In this context, DL model adoption and acceleration have 
been significantly impacted by the use of high-performance 
computing technologies, which allow to parallelize and 
thus optimize code execution with the specific goal of 
maximizing the speedup. In this way, it is possible to best 
exploit the characteristics of the computing architecture 
at disposal and greatly reduce the computational burden, 
since parallelizing the same operation executed on different 
data allows a directly proportional gain, in terms of seconds 
or even minutes saved according to the computational 
load [25]. Numerous examples in the healthcare field, 
more specifically as an aid in the diagnostic procedure, 
are available: from the real-time detection of skin 
tumours through FPGAs for the design and development 
of portable and low-consumption systems [26], to the 
graphics processing units (GPUs) acceleration of super-
resolution techniques to enhance image quality when high-
resolution instrumentation is not available, thus resulting 
in a massively parallelized algorithm that compensates for 
the original slow execution with consistent speedup [27]. 
Even quantum machine learning could provide accurate 
predictions of disease progression by identifying ulterior 
pattern correlations and biomarkers [28]. Such technologies 
are fundamental also in applications where it is necessary 
to extract and reconstruct relevant diagnostic information 
in real time: as an example, to reproduce three-dimensional 
models of tissue surface and successively mosaic these 
models, where GPU parallelization dramatically reduces 
computational time [29]. Moreover, models like CNNs can 
be highly parallelized by exploiting most matrix operations 
when using GPUs and some preliminary implementations 
have been proposed, even for the COVID-19 diagnosis 
process, such as ResNet-18 application using a desktop GPU 
from X-ray images [30].

In this work, two classical methods and a deep learning 
approach to perform key-frame selection of medical 
video, particularly targeting lung ultrasound (LUS), were 
studied both in terms of detection accuracy and processing 
times. The aim is to evaluate three significantly different 
methodologies to compare the behaviour of the new 

deep learning one with respect to a simpler, but strongly 
consolidated, key-frame selection procedure and also a more 
complex but equally widespread technique. The performance 
of these methods regarding processing times was measured 
on different computing infrastructures, considering both 
serial and parallel processing.

The application of deep learning in the context of 
LUS for COVID-19 detection and progress monitoring 
is emerging and could show promising results, but the 
high computational demands of processing entire videos 
of varied durations could prevent its widespread usage. 
As a consequence, the research gap that this work aims 
at eliminating is to introduce an innovative AI-based 
methodology to assess COVID-19 stage through the use of 
HPC resources.

The results highlight that, on one hand, the DL 
architecture represents the most suitable combination for 
key-frame selection for the purposes of precise diagnosis and 
computational demands. Conversely, the need to consider 
high-performance computing implementations to sustain 
the impact required by such innovative approaches in terms 
of computational requirements has led to demonstrate the 
feasibility and appropriateness of a GPU cluster version of 
the deep learning method considered as a good compromise 
between complexity and accuracy.

The paper is organized as follows: firstly, the three 
key-frame selection methodologies under evaluation are 
presented, followed by their parallelization approaches on 
the different technologies used. Then, the results of the 
optimization procedure are discussed and, lastly, conclusions 
and potential future developments are stated.

2 � Methodology

The aim of this work is to optimize the pre-processing phase 
by evaluating different key-frame selection methods and 
then identifying the most appropriate approach to obtain 
accurate results while parallelizing and accelerating the 
process. Among the possible methodologies, many studies 
have been focused on single frame classification, since 
ultrasound videos are computationally demanding [13]. Such 
frames are manually extracted by an expert physician who 
visually evaluates the presence of all relevant characteristics 
(i.e., B lines and their convergence or pleural thickenings), 
thus limiting the applicability of these procedures. Here, an 
efficient and automatic process is proposed to detect and 
extract the most significant frames from an entire video 
that represents the input to deep learning classification 
models. Specifically, different key-frame selection strategies 
are evaluated to perform an ultrasound clip synthesis to 
extrapolate the most important contents, hence reducing 
the amount of data to be processed and consequently 
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leading to a faster diagnosis. To accomplish this, a series 
of methodologies can be adopted: selection of the most 
appropriate frames; reduction of the memory required 
to process and archive the videos; simplification of their 
information structure.

More specifically, three methods of key-frame selection 
are implemented and compared, all belonging to the first 
above-mentioned methodology: two metrics that represent 
well-established parameters in diagnosis evaluations, 
together with a deep learning model, combined with a 
clustering technique.

2.1 � Histogram

The histogram key-frame selection method has found 
applications in healthcare image processing when 
thresholding techniques can be of aid, for example in the 
case of wireless capsule endoscopy [31] or for human video 
activity recognition [32]. Here, its difference between two 
consecutive frames is compared using a threshold value 
[33]. In this work, frames have a depth of 8 bits (for a total 
of 256 possible values in each pixel); therefore, 128 bins 
were chosen; after that, for every two frames a score value 
is computed, followed by a normalization procedure. The 
resulting vector, of length equal to the number of bins, has 
each element corresponding to a difference: the overall score 
value is obtained by summing all vector elements. Lastly, the 
score is compared to the threshold (that is the sum between 
the score vector’s mean and the absolute value of its standard 
deviation): all the calculated distances are then listed in a 
descending order and the N most distant frames are kept. 
The value N depends on how many frames should be chosen 
for the classification algorithm. Typically, it is a trade-off 
between memory occupancy and computational complexity. 
For the COVID-19 classification task targeted in this work, 
the value of N is equal to 32.

2.2 � Entropy

The entropy is a widely used technique, especially for 
multimodal medical image fusion [34] and in CT, MRI and 
X-ray image segmentation [35]. Here, the distance between 
probability distributions is used for neighbouring frames 
to partition video sequences [36]; since the source is a 
discrete aleatory variable, the expected value is a mean of 
the information contained in each event and weighted with 
its probability to happen. In this field, it is helpful to evaluate 
the complexity and the type of information of biological 
images, with the aim of finding the intensity distribution per 
pixel among the various frames and detect the most relevant 
ones through the identification of the most “distant” frames 
in terms of entropy. At first, for every frame, the frequency 
of occurrence of each pixel is calculated, followed by their 

probability evaluation. After that, for non-null probabilities, 
the base 2 logarithm is computed to obtain the entropy value. 
Successively, for every couple of consecutive frames, a score 
parameter is calculated as the entropy difference: such value 
is then compared to a threshold obtained in a similar way 
to the previous methodology (sum of mean and standard 
deviation of the scores vector). Finally, the resulting 
distances are listed in a descending order to select the N = 32 
most distant frames.

2.3 � ResNet‑50 combined with K‑means

In this procedure, the neural network is used to code the 
relevant information present in each frame and is followed 
by the clustering technique to group images based on the 
similarity criterion [37]. The ResNet-50 is a convolutional 
neural network (CNN) that is part of the residual networks 
(ResNet) family; it is composed of 50 convolutional layers 
adopting the residual architecture and grouped into blocks. 
It is used to superimpose a kernel (or mask) function 
to an input image and then calculate the integral of their 
product between their overlapping parts. This is done for 
every possible position of the input image, thus producing 
a convolutional map that can emphasize specific details like 
boundaries and prominent characteristics. The key feature 
of this network is the introduction of residual blocks, 
made up of two paths: while in the main one, one or more 
convolutional, normalizing and activation operations are 
performed, in the residual path the output of these layers 
is added to the original input, creating a skip connection. 
This is done because it is believed that the input contains 
relevant information for the training of the successive layers. 
In this way, such networks can learn deep and complex 
representations producing high-quality results [38]. The 
general ResNet structure makes use of a combination of four 
different types of layers:

•	 convolutional layers, to extract principal features through 
the application of convolutional filters;

•	 pooling layers, to reduce the dimensions of both feature 
maps and redundant information, at the same time 
keeping the most relevant characteristics;

•	 normalization layers, applied to the feature map to 
stabilize and improve the training;

•	 ReLU activation layers, to set to zero the detected 
negative values while maintaining the positive ones. This 
kind of layer introduces a nonlinearity in neural networks 
that is helpful in overcoming the problem of gradients 
disappearing, thus fostering a more stable training and a 
more accurate learning.

The ResNet-50 in particular is composed of the following 
layers (Fig. 1):
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•	 The first convolutional layer operating on 3 input feature 
maps representing the corresponding RGB colour 
channels to obtain 64 output feature maps. This and all 
the successive convolutional layers are always followed 
by a normalization and an activation ReLU layer.

•	 Max pooling layer.
•	 In the first residual block (repeated 3 times to produce 9 

convolutional layers), a convolution is done followed by 
a similar one.

•	 In the second residual block, a convolutional layer 
producing feature maps is again followed by two 
successive convolutions. These three layers are repeated 
four times to perform a total of 12 convolutions.

•	 The third residual block is performed six times, resulting 
in 18 layers.

•	 in the last residual block, repeated three times, 
convolutions are performed obtaining 2048 output 
feature maps.

•	 Average pooling layer, followed by fully connected 
and softmax layers (for the classification of the various 
classes). In particular, the last one converts the features 
in probability values representing the network confidence 
in assigning an image to a specific class.

The K-means algorithm is used in combination with 
this network: its input corresponds to the output of the 
ResNet-50; in particular, the output of the last layer of 
the ResNet, except for the classification layer, is given as 
input to the K-means as a set of features. The agglomera-
tive clustering can be divided into three sequential phases 
(Fig. 2).

•	 Assignment of the centroid role to k selected frames, 
where in this specific context k = 32, since it is considered 
the most suitable value to adequately partition the frames 
in a likewise number of clusters, so that it is possible to 
extract a frame from a cluster in a pseudorandom way.

•	 Distance computation between vectors of all the frames’ 
features and each centroid, to associate frames with the 
closest cluster. At the end, the centre of each cluster is 
calculated again through the mean among all frames; the 
computation is stopped when the error, defined as the 
mean of the absolute values of the differences between 
the centroids’ vectors of the current and previous frame 
at each iteration, is below a predefined threshold or after 
a preset maximum number of iterations.

Fig. 1   General structure of the ResNet-50

Fig. 2   Main sequential steps of the clustering procedure, through the application of the ResNet-50 and successively the K-means



	 Journal of Real-Time Image Processing (2024) 21:113113  Page 6 of 14

•	 All the calculations needed to obtain the above-
mentioned error.

The selected frames are grouped to create summary clips, 
each composed of 32 frames, to train ad hoc neural networks 
to classify COVID-19 hallmark features.

3 � Key‑frame selection algorithms

In this work, a series of key-frame selection algorithms has 
been developed and implemented, starting with a C++ serial 
version where the focus has been on frame extraction and 
consequently the creation of the new video, composed only 
of the most informative frames. Such implementation has 
been also optimized through a parallelization in CUDA 
language and then tested on several models of NVIDIA 
GPUs, considering both consumer boards and devices 
optimized for scientific computations.

The first step of the procedure is to extract all relevant 
frames from the ultrasound video; therefore, at first, all 
frames are considered and evaluated separately and after 
that, the most significant ones are incorporated into a new 
video of reduced dimensions, more specifically composed 
of 32 frames. To do this, the OpenCV library has been 
employed to efficiently examine the video to extract each 
frame: for normalization and readability purposes, a series 
of parameters are recorded for all frames, like the height 
and the width of each frame, as well as the total number 
of frames. Every one of them is read and pixel values are 
stored in a vector, followed by a conversion of the colour 
parameters into a grey scale.

Once all frames have been individually extracted and 
stored in their corresponding vectors, it is possible to 
proceed to the application of the key-frame selection 
algorithms.

3.1 � Histogram

Each frame is evaluated pixelwise; a conditional control 
is performed on every single intensity value to determine 
whether it is an even or an odd number: in the first case, 
its value is added to the bin corresponding to the following 
formula, otherwise such value is decremented by a unit:

where i and j are the coordinates of each pixel. After all 
pixels of the entire video have been evaluated, a histogram 
for every frame is built and it is used to calculate the score 
parameter as the sum of the differences between consecutive 

(1)hist1: j + i × nbin,

(2)hist1: j + (i − 1) × nbin,

histograms in the sequence. For each couple of consecutive 
histograms, their maximum value is evaluated and then a 
normalization procedure is performed to adjust the original 
values in the new range [0;1]; in this way, the difference 
between the two histograms per bin is obtained. The score 
value is then updated by adding the previously calculated 
difference to the intermediate parameter. The successive step 
involves the computation of the threshold (that is the sum of 
mean and standard deviation values of the score vector), the 
distances listing following a descending order and the final 
selection of the 32 most informative frames, representing the 
ones showing the highest distances.

3.2 � Entropy

This method starts with calculating the probability of 
occurrence for the diverse pixels’ intensity levels inside 
each frame. To obtain such a result, a probability distribution 
for all pixels’ values is created, in a similar fashion to the 
previous approach based on the histogram. In fact, once 
all such distributions are present, the entropy score, which 
is based on the differences in entropy among consecutive 
frames, is calculated. In addition, for all non-null probability 
values, the base 2 logarithm is computed to determine the 
entropy value.

The next step is to calculate the entropy score between 
consecutive frames: the absolute difference between the 
current and the previous frame is computed.

In the same way as the histogram algorithm, in this phase 
the threshold, the descending listing of the distances vector 
and the consequent selection of the most distant frames are 
processed.

3.3 � ResNet‑50 combined with K‑means

The third method examines each extracted frame through a 
deep learning algorithm, the ResNet-50; to do so, an RGB 
tensor has to be initialized using PyTorch CPU C library to 
contain the data coming from the frame. For this application, 
it is necessary to use the 32-bit floating point representation 
and also to normalize the values in the [0;1] range. 
Moreover, to simulate an RGB image, the concatenation 
of three copies of the tensor along the first dimension is 
applied. The ResNet-50 implements a convolution and a 
normalization, followed by a ReLU activation function and 
a 2D max pooling function on the input data, by specifying 
a pooling window, a stride and a padding value.

Initially, appropriate weights are loaded for each 
convolutional layer, where a series of other fundamental 
parameters are also stored: the number of input and output 
channels, the kernel size, stride, padding, as well as the 
bias flag which is initialized to “false” to indicate that the 
corresponding layer has no bias.
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After that, the layer is set on inference mode to deactivate 
the gradients’ update, since no backpropagation is done 
while in inference mode. A tensor to incorporate the weights 
and a vector for the weights read from an input file are 
created.

The same procedure is performed for the normalization 
layers: while in the previous case only one tensor was 
necessary, here four different tensors are used, representing 
mean, standard deviation, bias and scale terms.

At this point, the frame processing is ended, and the 
output features are derived and can be stored into a tensor 
in output from the last layer of the ResNet-50.

The key-means approach makes use of this output; in 
particular, a series of parameters need to be initialized: 
the number of clusters, the error threshold employed to 
determine whether the algorithm converges or must be 
interrupted and also the maximum number of iterations 
allowed. This last parameter is set to 32, since this is the 
quantity of frames needed.

The algorithm begins by initializing the centroids through 
a pseudo-random approach; each frame is then assigned to 
a centroid, at the same time avoiding associating different 
frames to the same or adjacent centroid, compared to the 
previous iteration. This is done because adjacent frames 
could be identical, thus generating errors in the successive 
clustering phase. The output is the cluster ID, the number of 
frames belonging to such cluster and the pointer where the 
cluster’s features are stored.

The iterative part of the algorithm ends either when the 
error goes below the predefined threshold or the maximum 
number of iterations has been reached. For each iteration, 
the Euclidean distance between the centroids and the frames’ 
features is computed, with the consequent association (or 
reassociation) of each frame with the closest centroid.

Based on this calculus and on the frames assigned to 
the various clusters, new centroids are computed: more 
specifically, if the frame’s cluster coincides with the cluster 
considered, a counter is incremented to quantify the number 
of frames per cluster. A similar procedure is exploited to 
determine the mean value of all clusters’ features, so that 
the new centroids can be obtained; however, data concerning 
the previous centroids are temporarily kept. Finally, the error 
between the previous and the current centroids is calculated 
and then summed to obtain the total Euclidean distance. The 
mean error is given by the ratio between the total Euclidean 
distance and the product of number of clusters and number 
of features’ dimensions.

The output of the K-means is represented by the indices 
of the frames selected for each cluster: the first 32 elements 
will be the most significant frames.

For all the three algorithms, once the 32 most relevant 
frames have been identified, they need to be incorporated 
into a new video.

4 � GPU parallelization through CUDA 
programming language

To accelerate processing speed and reduce storage for 
the classification, a series of parallel and distributed-
based approaches have been proposed. NVIDIA’s 
Compute Unified Device Architecture (CUDA) is a 
hardware–software architecture for the development 
of massively parallel programs with GPUs, providing a 
development environment using C programming language. 
Threads run on streaming processors, each executing the 
same portion of code in single-instruction–multiple-thread 
fashion [39].

GPUs can be understood as an array of independent 
processors, where each of them corresponds to an 
independent thread of execution. The parallelism that 
can be inferred in this architecture totally differs from the 
FPGA architecture parallelism [26]. Hence, the parallelism 
inferred in the GPU can be efficiently exploited when 
there is a situation in which a set of operations is to be 
independently carried out on many different elements of 
a dataset [40].

The three algor i thms considered undergo a 
parallelization using GPU’s proprietary development 
environment and language, CUDA: all of them follow 
the same general procedure, although with important 
differences, especially concerning the ResNet-50 with the 
K-means methodology.

Data regarding each frame are stored in the device 
memory, where the histograms or the entropies are 
calculated for all frames and successively also their 
scores. Therefore, the parallelization here affects the bins 
population.

Through a series of cuBLAS (CUDA Basic Linear 
Algebra Subprograms) functions, it is possible to 
accelerate the execution of specific computations in a more 
compact and optimized way; in particular, it is applied to 
determine the histogram score.

In fact, both the histogram and the entropy algorithms 
perform their calculation through ad hoc CUDA 
kernels specifically designed to best exploit the GPU’s 
characteristics and thus optimize calculations. Once 
this portion is completed, the reciprocal values and 
successively the score are determined using functions of 
the cuBLAS library, since they are highly optimized for 
arithmetic operations that represent the best fit for this 
application. As a notable example, since the absolute 
differences are all positive values, their sum can be 
determined efficiently by means of the cublaSasum 
function.

When approaching the parallelization of the 
ResNet-50, the first step is to create a 3D tensor with 
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three channels using the cuDNN (CUDA Deep Neural 
Network) library, since its functions are tailored for 
operations involving tensors and neural networks; as a 
consequence, here their extensive use will be made. The 
configured tensor is used to store data from each frame 
in the format required by the neural network; hence also 
a descriptor is needed (provided with the ad hoc cuDNN 
function cudnnCreateTensorDescriptor) and equipped 
with its corresponding parameters: data format, data 
type, dimensions and information peculiar of the specific 
resource. The next step is to convert the data format into 
the floating point and then to perform the normalization 
when all the proper network computation can start. The 
complexity of the algorithm, particularly the high number 
of layers, requires performing a series of functional 
steps for each layer; in addition, for every block of code, 
attention needs to be paid to correctly set the network’s 
layer parameters.

The majority of the computations can be provided 
with cuBLAS and cuDNN functions that show optimized 
performance compared to designing ad hoc CUDA 
kernels. These steps are necessary before performing each 
convolution, because the output’s dimensions can vary 
depending on the convolution’s parameters (number of 
filters, kernel dimensions and so on).

For each layer of the neural network, a convolution and 
a normalization function are performed; a notable feature 
of the cuDNN library is the opportunity to provide multi-
operation fusion patterns useful for further optimizations, 
allowing the user to express a computation by defining 
an operation graph and not selecting from a fixed set of 
API calls. In fact, cuDNN has been designed to accelerate 
deep neural networks supporting functions such as 
convolutions, pooling, normalizations and activations. 
cuBLAS routines instead are optimized for vectorial and 
matrixial linear algebra operations that can be performed 
in floating point, double precision or even with complex 
numbers.

They have been implemented in this work through 
the use of appropriate cuDNN sublibraries, in particular, 
the cudnn_graph library (for example, the CUDNN_
CONVOLUTION_FWD_ALGO_GEMM in  t he 
convolutional layer function). At the end of the 50th layer, 
the examined frame undergoes the K-means algorithm.

The parallelization is not employed for the centroids’ 
initialization, since it is best exploited in the clustering 
portion of the algorithm, where the various intermediate 
computations can be efficiently done using cuBLAS 
functions. This same library is fundamental for the 
successive portion of the algorithm, where the centroids’ 
processing and the error calculation are performed.

5 � Results

To evaluate performance in terms of both disease 
detection and execution time for all the three methods 
previously presented, a series of tests was performed on 
ultrasound videos of different dimensions and on different 
architectures. In particular:

•	 the CPU is an Intel Core i7 processor with 2.90 GHz 
working frequency, Windows 10 64-bits OS and 16 GB 
of RAM memory;

•	 two different models of GPUs, more specifically the 
NVIDIA GeForce GT 1030 (Pascal architecture) and 
the RTX 4090 (Ada Lovelace architecture), which are 
both developed for advanced computer graphics but 
belong to diverse performance ranges;

•	 a university cluster composed of four processing units, 
or so-called nodes, equipped with NVIDIA A16 GPUs 
(Ampere architecture), as well as FPGAs and CPUs; 
however only the GPUs were employed in this work 
since they show the best performance for this specific 
application, due to their being optimized for scientific 
computing.

The CPU processor was adopted not only for the 
simulations, but also for the tests involving the GeForce 
GT 1030 GPU model, where the CUDA environment 11.4 
has been installed together with the cuBLAS and cuDNN 
libraries.

The processor employed with the GeForce RTX 
4090 is an Intel Core i9, 13th generation equipped with 
64 GB of RAM, Windows 11 64-bits OS and CUDA 12.0 
environment.

Only a single node of the university cluster was used. 
It is composed of two Intel Xeon Silver processors, each 
with 16 nodes, working at a frequency of 2.4 GHz and 
with 768 GB of RAM, three NVIDIA A16 GPUs and eight 
TB of memory mounted on an SSD NVMe.

Visual Studio 2019 and 2022 were adopted to compile 
both the serial and parallel versions, since the CUDA 
development environment is optimized for its graphical 
interface.

The dataset is composed of 246 ultrasound videos of two 
main typologies: the first is made of 334 frames of 600 × 800 
pixels and the second has 120 frames with 864 × 1152 pixels.

A possible limitation of this work is due to the need 
of keeping a limited number of frames, since this could 
confine the detection and classification capabilities of the 
algorithm. However, this work could pave the way for a 
better understanding of the most important frames in an 
LUS video and thus help also in identifying better clusters 
of frames, even in terms of numerosity.
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The most significant contributions in speeding up the pro-
cess and move closer to real-time performance are those of 
the various algorithms, while inputs acquisition and output 
visualization do not represent relevant percentages. Moreo-
ver, processing time is not influenced by each frame’s resolu-
tion, but only by the number of frames in the entire video, 
in particular in the case of ResNet-50 in combination with 
K-means. Figure 3 shows the results in logarithmic scale for 
one of the videos of bigger dimensions, where it is possible 
to observe the best results in terms of speedup after the par-
allelization, as well as a convergence of the algorithm after 
only three iterations.

In fact, in the cases of histogram and entropy, even though 
the algorithms’ times undergo a reduction once the CUDA 
parallelization is done, it is quite small compared to the third 
method.

In addition, considering the different GPU architectures, 
the GeForce 4090 shows better results compared to the 
GeForce 1030 model, as suggested by their different 
configurations and performance designs.

Similar considerations can be made when observing a 
single frame and successively the entire video using the 
ResNet-50 + K-means approach. Here, the speed of the 
execution is reduced dramatically, shrinking from some 
days in the case of the serial version run on the CPU to a 
few minutes employing the GPUs; in particular, the best 
performance is given by the RTX 4090.

The cluster represents the only difference in this context, 
since independently of the dataset used, the performance is 
worse for the histogram and for the entropy calculus rather 
than the ResNet-50 with the K-means. This is due to a series 
of factors: the parallelized code can only exploit 25% of the 
total computing power, since only the GPU A16 is equipped 
with the quad-GPU architecture. Moreover, the hardware 
configuration is different from the desktop GPUs evaluated 
and it is a rigid architecture that cannot be adapted to spe-
cific needs of certain applications (that may benefit more 

from other kinds of architectures in terms of optimization 
and thus performance). The third approach was able to pro-
vide the best optimization and the quickest execution of just 
about 10 min (Table 1).

It is worth noticing that since video durations vary 
between 4 and 9 s, histogram and entropy algorithms are 
performed in real time. Considering the combination of 
ResNet-50 and K-means, a serial processing takes too much 
time to summarize the video, making the final diagnosis 
too slow. On the other hand, the parallelization of this 
approach on the A16 GPU reduces the processing time to 
about 10 min, which is compatible with clinical diagnostic 
procedures. Therefore, given such application, where a 
complete diagnosis scoring the severity of the infection takes 
several minutes and requires the evaluation by an expert 
medical doctor, the parallelization allows to consider this 
specific case as real-time compliant.

6 � Discussion

Considering with more detail the performance of the 
ResNet-50, multiple experiments were conducted 
specifically on the convolutional layer with the aim of 
analysing the behaviour of the total channels with regard to 
the kernels’ dimensions. The presented models have been 

Fig. 3   Comparison of execution 
times for a single frame of the 
video, in logarithmic scale

Table 1   execution time [s] to process the entire video, composed of 
120 frames

Histogram Entropy ResNet-50 K-means 
(single 
iteration)

Serial C code 3.150 3.663 286,581.720 1.826
GT 1030 3.093 3.228 1616.400 0.178
RTX 4090 2.704 2.621 1049.460 0.176
A16 7.268 7.212 634.320 0.070
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trained in [13], where overfitting was prevented by training 
the network for the ResNet-based key-frame selection with 
images coming from a dataset different to the one considered 
for the performance metrics. In this way, a further training 
is not necessary. Moreover, the classification metrics of [13] 
were maintained, due to the fact that no modifications were 
made to the original methods and the authors validated the 
parallel algorithms against the original ones.

The results suggest that the stride and the padding do not 
significantly influence the execution time of the convolution 
step. It emerged that its duration depends not on the number 
of a single type of channel (either input or output), but only 
on their overall number (both input and output ones). This 
leads to the conclusion that the two main factors influencing 
the execution time are the kernel dimensions and the total 
number of channels (as shown in the following scatter plots 
in Fig. 4).

In fact, the execution time increases proportionally with 
regard to the number of channels and the kernel dimensions, 
but more specifically there is a difference of two orders of 
magnitude between the serial and the parallel implemen-
tations. Moreover, the first convolutional layer is always 
the most computationally demanding, even compared to 
the other convolutional layers of the ResNet in use, since it 
requires to firstly initialize the descriptors and allocate the 
memory, while the subsequent layers do not need this step 
to be repeated. Lastly, the normalization layer was evalu-
ated compared to the number of input filters (Table 2). In 
the serial implementation, the execution times increase in 
a directly proportional way with the rise in the number of 
input channels; instead, employing the parallelized version 
using the GPU, after a limited transient time interval, the 
trend is similar but with a much smaller increase, as clearly 
visible from Fig. 5.

Fig. 4   Scatter plot of all the implementations
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This is due to the usage, in this work, of only those layers 
with the same number of channels available in a traditional 
ResNet-50 and the mean value of their execution time was 
calculated. Consequently, the weight of the normalization 
layer is higher when a smaller number of channels is present, 
thus slowing the execution (similarly to what happens in the 
first convolutional layer of the network).

In addition, an important consideration must be made also 
concerning the diagnosing ability of the three approaches 
evaluated. In fact, they have been tested to detect the pres-
ence of disease, as well as three progressively worsening 
degrees. This is very relevant when considering the most 

appropriate drug and its dose that need to be tailored to the 
specific patient. With this aim, four scores were defined (no 
disease, mild, severe, dangerous) and the performance of a 
deep network proposed in [13] for this classification problem 
was measured giving as input to the network the summarized 
videos obtained by each approach and the best results were 
achieved by the ResNet + K-means.

Table 3 presents the values for the three methods con-
cerning binary, three- and four-way disease classification: 
the results clearly show that the third approach is the most 
suitable, not only in terms of computational performance 
but also of diagnostic purposes. This is true and the deep 

Table 2   Execution times [s] of 
the normalization layer batch

Number of filters Serial code NVIDIA GeForce 
GT 1030

NVIDIA GeForce 
RTX 4090

NVIDIA A16

64 0.025285 0.003285 0.003428 0.002424
128 0.038500 0.002375 0.001625 0.001931
256 0.068250 0.004062 0.003625 0.002103
512 0.122636 0.003818 0.002636 0.002295
1024 0.252428 0.004857 0.003285 0.002562
2048 0.481000 0.005750 0.004000 0.003223

Fig. 5   Normalization layer 
execution times in logarithmic 
scale against the number of 
channels

Table 3   Detection accuracy and 
precision considering binary, 
three- and four-way disease 
classification for the three key-
frame selection methods [13]

Key-frame selection method Metric Binary 
classification

Three-way 
classification

Four-way 
classification

entropy Accuracy 0.773 0.739 0.687
Precision 0.773 0.739 0.687

histogram Accuracy 0.770 0.845 0.654
Precision 0.770 0.845 0.654

ResNet + K-means Accuracy 0.862 0.843 0.743
Precision 0.862 0.843 0.743
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learning solution outperforms the other ones, especially 
when considering the four-way classification, where accu-
rately estimating the severity of the disease is crucial for 
medical personnel in the identification of the most appropri-
ate and personalized treatment for each patient. Moreover, 
when the goal is solely to detect the presence of the pathol-
ogy, the binary classification could be employed and the 
same methodology increases its accuracy and precision of a 
ten factor, compared to the entropy and the histogram.

7 � Conclusions

In this work, three key-frame selection approaches were 
proposed and evaluated to detect the most informative 
frames, which are then extrapolated to create a new and 
reduced version of the original video. This sequence of 
frames is less computationally demanding and represents 
the input to a classification network to discriminate between 
healthy subjects and patients.

In particular, the parallelization procedure using NVIDIA 
GPUs allowed to guarantee the same level of accuracy 
in the detection phase, at the same time significantly 
reducing their execution, and thus leading to a faster 
diagnosis. Therefore, based on the obtained results, the 
ResNet-50 deep learning approach proved to be the most 
suitable solution concerning the combination of accuracy 
of detection and computational demands, even compared 
with more consolidated methodologies. Moreover, the aim 
to evaluate different high-performance computing solutions 
for computational sustainability purposes shows that the best 
performance in terms of execution times is achieved through 
the implementation using a GPU cluster, still providing the 
same output compared to the other accelerating architectures 
considered that make use of both serial and parallel 
processing. With respect to the capabilities of single desktop 
GPUs, in a context where precise and accurate diagnosis 
is fundamental, the opportunity to exploit the available 
resources in a cluster represents an additional advantage.

Moreover, the classification capability of the three 
approaches was evaluated considering four scores that 
correspond to the healthy condition and three progressively 
worsening degrees. The combination of ResNet and 
K-means outperforms the results obtained with the entropy 
and the histogram, laying the foundations for a better 
identification of personalized treatments, and at the same 
time considerably improving the accuracy in detecting the 
disease.

As further developments, the key-frames selection 
methodologies can be further optimized and new approaches 
also could be envisaged to enlarge the representativeness 
of the dataset; in addition, high-performance computing 
approaches like GPU parallelizations and implementations, 

either on desktop computers or in clusters with adequate 
architectures that can best exploit the algorithms’ 
performance, could produce fast, precise and consistent 
results. The next step will be the introduction of an 
extended set of pulmonary diseases to be evaluated with 
this technique, since all interstitial pathologies could greatly 
benefit from this innovative approach. This could also 
consolidate the clinical validity of such a method and bring 
a new platform for diagnosis and monitoring.
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