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In this paper, we present a method of quantifying the
heterogeneity of cervical cancer tumors for use in radiation
treatment outcome prediction. Features based on the
distribution ofmaskedwavelet decomposition coefficients
in the tumor region of interest (ROI) of temporal dynamic
contrast-enhanced magnetic resonance imaging (DCE-
MRI) studies were used along with the imaged tumor
volume to assess the response of the tumors to treatment.
The wavelet decomposition combined with ROI masking
was used to extract local intensity variations in the tumor.
The developedmethodwas tested on a data set consisting
of 23 patients with advanced cervical cancer who
underwent radiation therapy; 18 of these patients had
local control of the tumor, and five had local recurrence.
Each patient participated in two DCE-MRI studies: one
prior to treatment and another early into treatment (2–
4 weeks). An outcome of local control or local recurrence
of the tumor was assigned to each patient based on a
posttherapy follow-up at least 2 years after the end of
treatment. Three different supervised classifiers were
trained on combinational subsets of the full wavelet and
volume feature set. The best-performing linear discrimi-
nant analysis (LDA) and support vector machine (SVM)
classifiers each hadmean prediction accuracies of 95.7%,
with the LDA classifier being more sensitive (100% vs.
80%) and the SVM classifier being more specific (100%
vs. 94.4%) in those cases. The K-nearest neighbor
classifier performed the best out of all three classifiers,
having multiple feature sets that were used to achieve
100% prediction accuracy. The use of distribution mea-
sures of the masked wavelet coefficients as features
resulted in much better predictive performance than those
of previous approaches based on tumor intensity values
and their distributions or tumor volume alone.
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INTRODUCTION

C ervical cancer is the second most incident
neoplastic disease worldwide1, trailing only

breast cancer. Even with an aggressive treatment
plan, the mortality rate is 34% in the USA and other
developed countries and 50% in developing
countries. Radiation therapy is the current modality
recommended for treatment of advanced cervical
cancer (stages IB2–IVB of the International Feder-
ation of Gynecology and Obstetrics guidelines)2.
The use of tumor-imaging studies, such as

dynamic contrast-enhanced magnetic resonance
imaging (DCE-MRI), can provide information
about the tumor environment that is important for
treatment planning and delivery3. It has been
shown that the intensity responses of a DCE-MRI
scan are related to the oxygen content, and
therefore the vascularity, in different areas of the
tumor4. The lower intensity regions on a DCE-
MRI scan correspond to areas of decreased
vascularity or even necrosis. The resultant reduc-
tion in perfusion hinders oxygen delivery to the
tumor. This inhibits the production of oxygen-free
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radicals which are the effectors of radiation
therapy. Hence, the tumor may not respond to
treatment. The early identification of poor treat-
ment response allows for more aggressive treat-
ment with the current treatment modality or the
possible addition of adjuvant therapies.
The use of DCE-MRI for quantification of

tumor vascularity, tumor staging, or treatment
efficacy has been explored for cancers of the
prostate5,6, colon7, liver8, breast9, and cervix. For
the case of cervical cancer, the change in volume
over the first 2–4 weeks of therapy has been shown
to be related to treatment outcome10. In addition,
the kinetics of DCE-MRI response has also been
employed for outcome prediction11,12. These
parameters are calculated either voxel by voxel or
using an entire region of interest (ROI). It should
be noted that, for our current data set, a thorough
kinetic analysis was not feasible since the DCE-
MRI studies for the participating patients consisted
of only two time points—one just prior to contrast
injection and another 75 s after injection.
Previous work on this data set focused on the

calculation of intensity distribution values, such as
mean, standard deviation, skewness, and kurtosis,
with the addition of fractal dimension as a measure
of texture13,14. These features were then used,
along with the temporal relationships between the
multiple studies and series for each patient, to
predict the outcome of radiation treatment. The use
of intensity distribution measures allowed for the
quantification of the overall response to tumor
perfusion. However, much of the tumor micro-
environment information is captured in DCE-MRI
by small, local variations in image intensity. A
drawback of basic intensity distribution calcula-
tions is that local variations may be inadequately
quantified. The fractal dimension measure was
included with the intensity distribution character-
istics in order to offset this shortcoming. As a
discriminating feature for treatment outcome pre-
diction, it performed well. However, the overall
prediction performance of the feature sets was
marginal. It was concluded that a more thorough
texture analysis may be better suited to capture the
local variation rather than a simple intensity
distribution analysis. In this paper, the wavelet
decomposition is used to robustly extract informa-
tion about the small, local variations or texture of
the DCE-MRI images. In order to accurately
analyze the variation only within the tumor, we

proposed the use of tumor masks to identify
texture components only within the region of
interest, while not contaminating the results from
information coming from the surrounding tissue.

MATERIALS AND METHODS

Data

The data set consisted of 23 patients with
cervical cancer who underwent radiation therapy.
The data was collected with a protocol approved
by the Ohio State Institutional Review Board. The
data set included 18 patients with an outcome of
local control of the tumor and five with local
recurrence. Local control and local recurrence
were defined as the absence or presence, respec-
tively, of the cancer on biopsy during posttherapy
follow-up. The minimum follow-up for patients in
this study was 2 years.
The patients underwent multiple DCE-MRI

studies (Table 1). Two T1-weighted DCE-MRI
studies, consisting of sagittal scans of the abdom-
inal/pelvic area (resolution, 256×256), were per-
formed for each patient—one pretreatment and the
other during early treatment (2–4 weeks). The
volume of the gadolinium-chelated contrast agent
used for the studies was 0.1 mmol/kg, injected at a
rate of 5 mL/s. There were two subsets of patients
with respect to the study setup. The first subset
consisted of patients who had two series in each
study—one before injection of contrast agent and
another 75 s after injection. The second subset

Table 1. Summary of the Data Set Used in the Analysis

Patients 23 (18 local control,
5 local recurrence)

Patient age (years) Minimum, 31; maximum, 88;
mean, 51

Studies Pretreatment
Early treatment (2–4 weeks)

Series Precontrast injection (0 s)
Postcontrast injection (75 s)

Number of slices Minimum, 12; maximum, 14
Size of slices
(voxels × voxels) 256×256

Resolution (mm/voxel) X, 1.5625; Y, 1.5625; Z, 8.0000
Contrast agent Gadolinium chelate, 0.1 mmol/kg;

rate 5 mL/s
Signal weighting T1
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consisted of patients who had between 13 and 14
series per study, with a pre-injection series
followed by multiple post-injection series, each
25 s apart. All other study protocols were the same
between the two patient subsets. In order to
provide uniformity across the database, the data
set that was used for the analysis consisted of the
DCE-MRI series directly before injection of con-
trast agent and a second series 75 s after the
injection from each patient subset (Fig. 1).
Only one time point of the time-activity DCE-

MRI curve was used for the data analysis. The
imaging data was acquired using the DCE-MRI
technique, and the plateau phase of the DCE curve

was based upon the single time point in the current
study. This specific point was chosen to estimate
the plateau signal intensity (SI) of the DCE-MRI
curve after bolus injection of the contrast agent.
The correlation of DCE-MRI and the vascular
density and effectiveness of delivery of cytotoxic
agents were mostly based upon the plateau SI of
the DCE-MRI curve but not the rate of washout.
The plateau SI usually becomes relatively steady
between 50 and 100 s of the DCE curve11.
Therefore, we chose to analyze the DCE-MRI
response at the 75-s time point.
The images in Figure 1 are taken from the

central, largest slices of two patients’ tumors in the

Fig. 1. Central sagittal slices of tumors from two different patients. a, b Pre- and postcontrast images, respectively, of patient with
local recurrence of the tumor. c, d Pre- and postcontrast images, respectively, of patient with local control of the tumor. Notice that the
tumor of the first patient, shown in a, b, is smaller than the tumor of the second patient, shown in c, d. This difference demonstrates that
tumor volume information may not be sufficient for accurate treatment outcome prediction.
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sagittal plane. Figure 1 demonstrates that the
volume of a tumor is not sufficient for prediction
of treatment outcome. In this figure, the patient
with the smaller tumor volume (Fig. 1a, b) actually
experienced local recurrence of the tumor, while
the patient with the larger tumor (Fig. 1c, d) had
local control. This difference highlights the impor-
tance of complementing volume information with
spatial information in the prediction of tumor
response to treatment.
A T2-weighted sagittal scan was also acquired

for use in delineation of the tumor region of
interest. The T2-weighted scan exhibited better
contrast between the cervical tumor and the
surrounding structures than the T1-weighted scan.
This allowed for a more accurate manual segmen-
tation of the tumor.

Preprocessing

For each study, the regions of interest were
manually delineated for each anatomical scan
image that included a portion of the tumor. The
trained readers who marked the images were
blinded to all patient information, including treat-
ment plan and outcome. A single reader marked
tumor ROIs for all 23 patients, while two others
marked ten patients each in order to quantify inter-
and intrareader reproducibility for tumor delinea-
tion. The mean interreader similarities for each
combination of readers, measured using the Zij-
denbos similarity index18, were 0.80, 0.72, and
0.76. The intrareader variability calculated for a
single reader who created two separate markings
was found to be 0.85. An index value greater than
0.7 corresponds to an “excellent” agreement. The
remaining parts of the analysis were then carried
out using the markings from the first reader, who
marked all 23 cases.
The ROIs drawn on each anatomical scan slice

were then matched with the corresponding slice in
each of the DCE-MRI series. In addition, 12
studies required registration of the DCE-MR
images to the anatomical images due to movement
of the patient between the different scans. These
Euclidean registrations were performed manually
by identifying six salient points between the
vertebral columns of the images to establish the
correspondence, using Matlab’s (Mathworks,
Natick, MA, USA) registration tool (Fig. 2). The
amount of rotation and translation were then

estimated using each set of two two-point corre-
spondences. The means of these rotations and
translations were used as the final transformation
for registration.

The Wavelet Transform

The discrete wavelet transform (DWT) provides
a method of describing a signal in the set of
square-integrable signals, L2, by use of a finite-
length signal known as a wavelet. A wavelet can
be scaled and shifted to produce an orthonormal
basis for vector spaces Vk, which are subspaces
(approximations) of L2, such that limk!�1 Vk ¼ L2.
In this way, the DWT is a multiresolutionmethod of
signal representation.
Given an L2 signal, x(t), and a wavelet basis
yk;n tð Þ : k; n 2 Z

� �
, the DWT transform pair is

x tð Þ ¼
X1

k¼�1

X1

n¼�1
dk;nyk;n tð Þ

dk;n ¼ yk;n tð Þ; x tð Þ� � ¼
Z

y*k;n tð Þx tð Þdt

where the dk;n
� �

are the wavelet coefficients.
Therefore, the wavelet coefficients representing the
original signal are found by projecting the original
signal onto the wavelet basis. For the case of two-
dimensional images (i.e., signals in R2), local
variations of particular orientations can be extracted
by using the filterbank approach of separable
multiresolution approximations15.
The single-level two-dimensional wavelet de-

composition was calculated for each DCE-MR
image (Fig. 3). Each decomposition resulted in
four sets of coefficients: approximation (A),
horizontal detail (H), vertical detail (V), and
diagonal detail (D). The nomenclature of the
coefficient sets (A, H, V, D) used in this paper is
for descriptive purposes. The naming relates to the
standard nomenclature as such: A = LL, H = LH,
V = HL, D = HH, where LL represents the output
from the lowpass–lowpass filter chain, LH from
lowpass–highpass, HL from highpass–lowpass,
and HH from highpass–highpass.
The decomposition was calculated separately for

five different mother wavelets: Daubechies (db)
wavelets: 1, 2, 4, 8, and 16. Each patient had two
series, precontrast (PrC) and postcontrast (PoC), in
each of two studies, pretreatment (PT) and early
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treatment (ET). Therefore, each patient had four
series of images which underwent wavelet decom-
position for each mother wavelet. The wavelet
analysis was performed with Matlab’s wavelet
toolbox dwt2 function, using symmetric padding.

Feature Extraction

A diagram of the feature extraction process is
shown in Figure 4. The wavelet transform is
performed on each image in a series in which a
portion of the tumor appears. The result is four sets
of coefficients—A, H, V, and D—for each image.
These coefficient sets retain the same two-dimen-
sional structure as the original images. However,
each of the sets are one fourth of the size of the

original image as a result of the downsampling of
the original image by 2 in both the vertical and
horizontal dimensions. The ROIs that were defined
for each image were also downsampled by 2 in
each dimension and used to mask the wavelet
transform coefficients. The result was a collection
of masked wavelet coefficient sets which corre-
sponded to the tumor ROIs. The coefficients for all
images in a series were then pooled into A, H, V,
and D coefficient sets for the entire tumor volume.
Statistics were calculated for these pooled distri-
butions. The results were the wavelet features used
for classifier training.
It should be emphasized that the wavelet

decomposition was performed before masking of
the tumor ROI. It was found that ROI masking

Fig. 2. a, b Salient point correspondences (marked by asterisks) between anatomical and DCE scans, respectively; c initial alignment; d
registered alignment using transformation calculated from a, b point correspondences.
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Fig. 3. Example of the wavelet decomposition performed on a DCE-MRI scan a using the db2 mother wavelet. b Absolute values of the
approximation coefficients, A, c horizontal detail coefficients, H, d vertical detail coefficients, V, and e diagonal detail coefficients, D.
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followed by the wavelet decomposition produced
heightened wavelet coefficient values around the
edge of the delineated tumor (Fig. 5). This was due
to the artificial edge around the tumor created by

the masking. However, masking the ROI after
decomposition could lead to inclusion of pixels
outside of the ROI in the calculation of decompo-
sition coefficients—an effect that would be in-

Fig. 4. Diagram of methodology of wavelet feature extraction from a DCE-MRI series.

Fig. 5. a Tumor ROI shown on a T1-weighted DCE scan, 75 s after contrast injection; b, c absolute values of the horizontal and vertical
detail coefficients, respectively, when wavelet decomposition is performed before masking of the tumor ROI; d, e absolute values of the
horizontal and vertical detail coefficients, respectively, when wavelet decomposition is performed after masking of the tumor ROI. Notice
that the outer pixels of d, e have greater intensity than the pixels in the rest of the tumor. This is due to the “false edge” created by the
masking of the tumor before calculating the wavelet decomposition. This is in contrast to the coefficient maps in b, c, which show no
heightened intensity edges.
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creased with increasing length of the filter used to
represent the mother wavelet (e.g., db2 filter length
is 4, while db1 filter length is 2). This effect was
partially resolved by removing the outer edge of
pixels in the delineated tumor ROI region. How-
ever, the inclusion of intensity responses of
structures outside the ROI is not altogether
unwarranted, due to the intimate relationship
between a tumor and its surrounding environment.
Therefore, masking after decomposition focused
mainly on the tumor ROI without introducing
“artificial” responses, while at the same time
including a small amount of information about
the surrounding environment. Performing the
masking after the wavelet decomposition and
subsequently removing the outer edge of pixels
in the ROI is a novel method of focusing on the
interior of the tumor for the feature extraction
while including some information about the im-
mediate surrounding environment.
The different decomposition coefficients (A, H,

V, D) from each image in a given series were
pooled with the decomposition coefficients from
other images in that series to produce four sets of
coefficient distributions representing the entire
tumor volume. In addition, the detail coefficients

(H, V, D) were pooled to create a fifth coefficient
distribution. Therefore, each series had a set of five
different coefficient distributions for a given
mother wavelet.
Since each patient had four series, and each

series underwent wavelet decomposition with five
different mother wavelets, each producing five
coefficient distributions, the total number of
wavelet distributions produced for a given patient
was 100. Characteristics of these distributions
were then calculated, to be used as features in the
prediction of treatment outcome. The distribution
characteristics calculated were mean, median,
mode, standard deviation, skewness, and kurtosis
(Fig. 6). The higher-order statistics (skewness and
kurtosis) were included as previous studies have
shown the efficacy of these distribution measures
in characterization of pathological images16. The
calculation of six features from each of 100
wavelet coefficient distributions resulted in 600
total wavelet features. With the addition of the two
volume measurements (one PT and one ET), each
patient was associated with 602 total features.
Due to this large number of features, the

analysis was separated into smaller parts based
on the mother wavelet and the coefficient set. For

Fig. 6. Histogram and distribution statistics of approximation coefficients, A, from a wavelet decomposition using the db2 mother
wavelet. The original images were from a precontrast series of an early treatment study.
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each patient, each set of 24 series–wavelet–
coefficient features (four series, one mother wave-
let, one coefficient set, six features) was paired
with the PT and ET volume values for use in
classifier training, testing, and comparison. For
example, the distribution parameters (mean, medi-
an, etc.) calculated from the approximation coef-
ficients (A) of the wavelet analysis using the db1
mother wavelet on each of the four series (PT-PrC,
PT-PoC, ET-PrC, ET-PoC) along with the PT and
ET tumor volumes of each patient were used as
one set of 26 features to train the classifiers.

Dimensionality Reduction and Feature
Selection

The feature sets used for classifier training were
pulled from the complete set of 24 wavelet and
two volume features for each mother wavelet and
coefficient set. Each possible combination of one,
two, or three features was used in order to
exhaustively search for the best-performing feature
subset. The feature space was limited to three
dimensions due to the small sample size and in
order to focus on strong relationships between the
input features and the output treatment outcome
classification, thereby avoiding the “curse of
dimensionality.”17 In the case of the three-feature
sets, the dimensionality of the set was first reduced
from three to two using principal components
analysis (PCA) before running the exhaustive
search for the best-performing set of features17.

Classifiers

The linear discriminant analysis (LDA), support
vector machine (SVM), and K-nearest neighbor
(KNN) classifiers were used for treatment outcome
prediction using the calculated wavelet features17.
The classifiers were trained using a leave-one-out
methodology, in which a single sample was left
out for testing, while the rest were used in
classifier training. The training and testing fol-
lowed a round-robin format in which each of the
23 patients was tested once on a classifier trained
using the remaining patients.
The KNN classifier assigns a class to a sample

based on a majority vote of the K closest samples
(nearest neighbors), where “closeness” is defined
by a distance metric. In the simplest case, the vote
of a neighbor is simply its assigned class. In this

analysis, the Euclidean distance metric was used,
and the number of neighbors was set to one.
Therefore, the tested sample was assigned the class
of its closest neighbor in Euclidean space.
The LDA classifier is based on a discriminant

function, g, which has the following form

g xð Þ ¼ wtxþ w0

Where x is the feature vector, w is the
weighting vector, and w0 is the bias or threshold
weight. Given two classes, w1 and w2, the weight-
ing vector is the normal to the maximal class-
separating hyperplane. It is calculated with the
assumption that the underlying distributions of the
classes are normal. For testing, a sample, xt, is
assigned to class w1 if g(xt)90 or class w2 if g(xt)G
0. For a point lying on the hyperplane (g(xt)=0),
the sample can be assigned to either class.
The SVM classifier is based on a preprocessing

of the data to a higher dimension, using a
nonlinear mapping function. A discriminant func-
tion is then calculated by maximizing the margin
or the distance between the discriminant function
and the closest samples in either class. A set of
support vectors are then chosen to represent the
separating function. For our analysis, the SVM
classifier was implemented using a linear kernel.

Performance Measures

The performance of each feature set used to
train the classifiers was quantified by calculating
the prediction accuracy, sensitivity, and specificity
for the set of 23 leave-one-out tests. The prediction
accuracy was calculated as the total number of
correct classifications divided by the total number
of tests. The sensitivity was calculated as the
number of correctly classified local recurrence
patients divided by the total number of actual local
recurrence patients in the data set. The specificity
was calculated as the number of correctly classi-
fied local control patients divided by the total
number of actual local control patients in the data
set.

RESULTS

In this study, it is important to select the best-
performing set of features. The features change
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based on the set of coefficients and mother
wavelets. Table 2 lists all combinations of features
used and their corresponding indices. Table 3
shows the best-performing feature sets, given a
particular set of wavelet coefficients.
Due to the size of the data set, we selected up to

three features for classification. Experimentally,
we observed that, regardless of the selected
features, the classifiers trained and tested using
three features performed better than the classifiers
trained using sets of one or two features. The
performance was measured in terms of mean
prediction accuracy, sensitivity, and specificity.
Therefore, the data presented in this section will
focus on the case of three-feature sets. In the case
of multiple feature sets having equivalent mean
prediction accuracy, the feature set which had the
highest sensitivity was chosen as the best set. If
there were still equivalent sets, then the specificity
was used as a tie-breaker. Finally, those that
performed equally in areas of mean prediction
accuracy, sensitivity, and specificity were listed in
the tables as co-best performers (in curly brackets).
The histograms in Figure 7 show the distribution

of features that participated in the best-performing

Table 3. LDA, SVM, and KNN Classifiers, Best-Performing Mother Wavelets, and Feature Sets for a Given Coefficient Set, Based on Best
Mean Prediction Accuracy

Classifier Coefficient set Wavelet(s)

Prediction accuracy

Feature set(s)Mean (%) Sensitivity (%) Specificity (%)

LDA A db2 91.3 100.0 88.9 6,12,20
H db2 91.3 100.0 88.9 13,18,24
V db2 95.7 100.0 94.4 11,20,23
D db1 91.3 80.0 94.4 1,6,14
H, V, D db8 95.7 100.0 94.4 1,9,14

SVM A db2 95.7 80.0 100.0 12,20,26
H db{1;4} 91.3 60.0 100.0 1,13,{14;7}
V db{2,8,16} 87.0 60.0 94.4 {9,10,20; 4,7,12; 1,6,14}
D db8 95.7 80.0 100.0 2,10,19
H, V, D db8 91.3 80.0 94.4 1,9,14

KNN A db{2;4} 95.7 100.0 94.4 12,13,{9; 10}
H db{8;16} 95.7 100.0 94.4 {7,9,16; 3,4,25}
V db8 100.0 100.0 100.0 6,11,12
D db{1;4} 100.0 100.0 100.0 {1,4,23; 3,9,16}
H, V, D db{1;4;8;16} 95.7 80.0 100.0 {2,15,17; 8,17,20; 9,22,25; 17,22,25}

See Table 2 for feature hash table
A approximation, H horizontal, V vertical, D diagonal, H, V, D horizontal–vertical–diagonal

Fig. 7. Histograms showing the number of occurrences of
each feature, listed in Table 2, that appeared in the best-
performing feature sets (of Tables 3, 4, and 5) for the a LDA, b
SVM, and c KNN classifiers.

bTable 2. Conversion Table, for Use with Table 3, with Each
Feature and Corresponding Feature Number

Study Series Feature Index

PT n/a Volume 1
PrC Mean 2

Median 3
Mode 4
Std 5
Skewness 6
Kurtosis 7

PoC Mean 8
Median 9
Mode 10
Std 11
Skewness 12
Kurtosis 13

ET n/a Volume 14
PrC Mean 15

Median 16
Mode 17
Std 18
Skewness 19
Kurtosis 20

PoC Mean 21
Median 22
Mode 23
Std 24
Skewness 25
Kurtosis 26

All features, except for volume, are based on the distribution of
the wavelet coefficients
PT pretreatment, ET early treatment, PrC precontrast, PoC

postcontrast, Std standard deviation, n/a not applicable

TEMPORAL ANALYSIS OF TUMOR HETEROGENEITY AND VOLUME 351



352 PRESCOTT ET AL.



classifiers in Table 3. For the LDA and SVM
classifiers, the pretreatment and early treatment
tumor volumes are well performing discriminatory
features for local control or local recurrence. The
pretreatment kurtoses, both precontrast and post-
contrast, are also shown to be important features in
the training of LDA classifiers. The distribution of
discriminatory features for the KNN classifier is
more evenly spread than for the LDA and SVM
classifiers, suggesting that most of the feature data
may have a greater propensity to clustering than to
linear separation.
The LDA classifier had two best-performing

feature sets. The first set was calculated using the
vertical detail coefficients (V) of the wavelet
decomposition with the db2 mother wavelet, with
measures of PT-PoC standard deviation, ET-PrC
kurtosis, and ET-PoC mode. The second set was
calculated from the db8 wavelet’s horizontal–
vertical–diagonal (H, V, D) combined detail
coefficient distribution and consisted of the PT
volume, ET volume, and ET-PoC median of the
coefficient distribution. Both feature sets were
used to train LDA classifiers with a mean
prediction accuracy of 95.7%, a sensitivity of
100% (5/5 positives), and a specificity of 94.4%
(17/18 negatives). There were also two best-
performing SVM feature sets. The first was created
by the db2 wavelet’s approximation (A) coefficient
distribution and included the PT-PoC skewness,
ET-PrC kurtosis, and ET-PoC kurtosis. The second
feature set was calculated from the db8 wavelet’s
diagonal detail coefficients (D) and included the
PT-PrC mean, PT-PoC mode, and ET-PrC skew-
ness measures. The mean prediction accuracy was
95.7% with 80% (4/5) sensitivity and 100% (18/
18) specificity using either feature set. Finally, the
KNN classifier had several best-performing sets,
which are more easily referenced in Table 3 than
reproduced here.
The tests were also rerun, leaving the volume

feature out, in order to analyze the texture features
as discriminating features in their own right. It was
found that the KNN classifier performed just as
well as with volume measurements, which was
expected. The histogram in Figure 7c shows that
volume was a relatively less important feature for
this classifier. The LDA and SVM classifiers fared
worse, with both classifiers’ average performance
decreasing due to approximately one to two more
misclassifications. Finally, simulations were run

that included the mean intensity of the entire tumor
volume along with the wavelet and volume
features. It was found that the addition of the
mean intensity did not improve the performance of
the classifiers, i.e., there was no change in mean
prediction performance, sensitivity, and specificity.

DISCUSSION

The LDA and SVM classifiers exhibit similar
performances, in some cases using the same
feature sets. However, it is interesting to note that,
while both classifiers in general exhibit nearly
equivalent mean prediction accuracies, the LDA
classifier has better sensitivity, and the SVM has
better specificity. The KNN classifier produces
better results than both the LDA and SVM
classifiers when judged by the combination of mean
prediction accuracy, sensitivity, and specificity.
As can be seen in Table 3, the best-performing

classifiers were in general trained on features with
wavelet coefficients that were calculated using the
db1, db2, db4, and db8 mother wavelets. The
increase in numbers in the Daubechies wavelet
family (n=1, 2, 4, etc.) signifies the increasing
filter length for implementation of the wavelet
(filter length=2n). The increasing filter length can
be thought of as an increasing neighborhood
surrounding a given pixel that affects the wavelet
coefficients associated with that pixel. Thus, it
appears that a small neighborhood would provide
the best local information for a given tumor pixel.
This may also be due to better modeling of the
tumor intensity profiles by these mother wavelets.
The size of the feature set was also important

with respect to the classifier performance. The use
of three features invariably resulted in classifiers
which outperformed those classifiers trained on
one or two features. This may be due to a
synergistic combination of pretreatment and early
treatment studies along with precontrast and post-
contrast series, as exemplified by the case of the
best-performing KNN classifier which used the
feature set of PT-PrC median, PT-PoC median,
and ET-PrC median. These temporal and perfusion
response relationships cannot be extracted using
only one or two features.
As can be seen in Table 3, the most discrimi-

natory features among all the classifiers were the
tumor volume and the median and kurtosis of the
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wavelet coefficient distributions. The usefulness of
tumor volume in prediction of radiation treatment
outcome for cervical cancer has been shown
previously10. The utility of the median and kurtosis
of the wavelet coefficient distributions, however, is

a novel approach. The discriminatory power of
both features suggests that the value of outliers is
not as essential as the number of outliers (median,
as opposed to mean) and the density about a
central value (kurtosis).

Fig. 8. Plot showing distribution of patient features of KNN classifier best-performing three-feature set of PT-PrC median, PT-PoC
median, and ET-PrC median calculated from db4 wavelet decomposition diagonal coefficients. LC local control, LR local recurrence. The
values on the x- and y-axes correspond to linear combinations of the original three-feature set after reduction to two dimensions by PCA.

Fig. 9. Plot showing distribution of patient features of SVM classifier best-performing three-feature set of PT-PoC skewness, ET-PrC
kurtosis, and ET-PoC kurtosis calculated from db2 wavelet decomposition approximation coefficients. LC local control, LR local
recurrence. The values on the x- and y-axes correspond to linear combinations of the original three-feature set after reduction to two
dimensions by PCA.
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The discriminatory power of the median of the
wavelet coefficients is best demonstrated in the
case of the KNN classifier. Using the db4 mother
wavelet and the PT-PrC, PT-PoC, and ET-PrC
medians of the diagonal detail coefficients, a
prediction accuracy of 100% was achieved. An
example of a KNN classifier trained using these
features is shown in Figure 8. In this case, the
three-dimensional feature set has been reduced to
two dimensions by PCA. The concentration of the
local recurrence feature set around the origin of the
reduced feature space can easily be seen.
The use of the kurtosis measure is demonstrated

by one of the best-performing SVM classifiers,
which was trained on a feature set containing the
PT-PoC skewness, ET-PrC kurtosis, and ET-PoC
kurtosis calculated from the approximation coeffi-
cient distribution of the db2 wavelet decomposition.
A plot of the classifier trained on the PCA-reduced
feature set is presented in Figure 9. The two
classes can be nearly cleanly separated due to the
synergistic discriminatory effect of the three
features (which, again, were reduced to two
dimensions based on a linear combination calcu-
lated using PCA).
Previous work with this data set focused on

distribution measures of the absolute intensities of
the DCE-MR images13,14. The methodology used
to generate features, train classifiers, and predict
the outcome of treatment was the same as that used
in this paper, except that there were not as many
features (only 26 total). The results from this work
are shown in Table 4. Interestingly, the classifiers
showed the same relative strengths in measures of
prediction accuracy (mean, sensitivity, and speci-
ficity) as the classifiers in the wavelet analysis: the
LDA classifier was the most sensitive, the SVM

classifier was the most specific, and the KNN
classifier was the most accurate. However, none of
these classifiers achieved absolute performance
equivalent to the classifiers trained on feature sets
containing wavelet statistics. The most discrimi-
nant features for these classifiers were measures of
volume, kurtosis, and fractal dimension. The
appearance of the fractal dimension as one of the
most discriminant features suggested that quantifi-
cation of texture could offer more powerful
measures for treatment outcome prediction. In the
previous analysis, the mean intensity of the tumor
volume was not one of the most discriminatory
features. For the current wavelet analysis, the mean
intensity was added as a tested feature to see if it
would complement the texture-based wavelet
coefficients in predictive ability by adding a
baseline reference value for the texture values.
Interestingly, it was found that it did not improve
the predictive ability of any of the classifiers when
used as a feature.
The data set was large enough to show that the

analysis of texture in DCE-MRI studies using

Table 4. Best-Performing Feature Sets for the LDA, SVM, and KNN Classifiers Using Measures of the Absolute Intensity Distribution

Classifier Num features

Prediction accuracy

Feature setMean (%) Sensitivity (%) Specificity (%)

LDA 1 78.3 60.0 83.3 ET volume
2 87.0 100.0 83.3 ET-PrC fractal dimension, ET-PoC kurtosis
3 87.0 100.0 83.3 PT-PrC standard deviation, ET-PrC fractal dimension, ET-PoC kurtosis

SVM 1 87.0 40.0 100.0 ET volume
2 87.0 40.0 100.0 PT volume, ET volume
3 87.0 40.0 100.0 PT volume, ET volume, ET-PoC fractal dimension

KNN 1 82.6 40.0 94.4 ET volume
2 87.0 40.0 100.0 PT-PoC kurtosis, ET-PoC fractal dimension
3 95.7 80.0 100.0 ET-PoC mode, ET-PoC mean, ET-PoC median

Table 5. Intraclass Mean and Standard Deviation for Patients
with Local Recurrence (LR) or Local Control (LC)

Treatment
Outcome

Class
statistic

Feature set

PT-PoC
skewness ET-PrC kurtosis

ET-PoC
kurtosis

LC Mean 0.60 4.82 2.83
Std 0.51 2.87 1.02

LR Mean 0.06 3.49 3.09
Std 0.53 1.72 1.61

The features are from the best-performing feature set used with
the SVM classifier
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wavelet decomposition allowed for better perfor-
mance in prediction of treatment outcome than the
comparable analyses using only measures of the
absolute intensity of the tumor volume. Although
we observed striking differences in outcome, our
data set is too small to draw general conclusions
on outcome correlations. A study with a larger data
set could demonstrate the power of the wavelet
analysis, especially in patients who had local
recurrence.
The KNN classifier performs better than the

linear SVM and LDA classifiers. This may simply
be due to the fact that the features are in general
not linearly separable and instead exhibit a more
“cluster and outlier” distribution for the two
classes (this behavior is seen in Fig. 8). However,
the best-performing LDA and SVM classifiers
only misclassify a single testing sample. An
example of an SVM classifier trained using a
best-performing feature set was presented in
Figure 9. In that figure, there is a local recurrence
patient whose features align more closely with the
local control patients. Table 5 shows some intra-
class statistics for the SVM classifier’s best-
performing feature set. It can be seen that the
main significant feature which discriminates
between the two classes, judged by the separation
of means and the corresponding class standard
deviations, is the PT-PoC skewness. The principal
component vectors used for the reduction of the
feature space from three to two (as shown in
Fig. 9), stated as (PT-PoC skewness coefficient,
ET-PrC kurtosis coefficient, ET-PoC kurtosis
coefficient), were (−0.0971, 0.4486, −0.8884) and
(−0.9905, −0.1311, 0.0420). Therefore, the value
along the x-axis in Figure 9 mainly incorporates
the kurtosis measurements, while the value along
the y-axis mainly incorporates the skewness. The
single misclassification, then, is due to a small
variation of that local recurrence patient’s skew-
ness measure or combined kurtosis measure.

CONCLUSION

The use of the wavelet transform for analysis of
local variations in DCE-MRI scans over time can
complement the measure of changes in tumor
volume for use in outcome prediction for radiation
treatment of cervical cancer. The orthogonal
separation of high-scale perfusion (the approxima-

tion coefficients) from the lower-scale variations in
perfusion (the detail coefficients) offers a robust
way of extracting local information for use in
determining both intra- and intersubject differences
in tumor microenvironment. This paper showed
that the quantification of these tumor microenvi-
ronment differences using wavelet coefficient dis-
tribution statistical measures (especially the
median and kurtosis) produces a good basis for
prediction of radiation treatment outcome for
cervical cancer. In addition, a novel method of
calculating the wavelet coefficients before masking
was shown to focus the analysis on the tumor ROI,
without including surrounding tissue, and remove
the partial volume effects. The analysis can still be
extended, however, by investigating the spatial
relationships between the wavelet parameters,
without histogram binning and subsequent dis-
tribution calculations. In our future work, we
will investigate methods for retaining these
spatial relationships, along with developing fully
automated tumor segmentation and registration
routines.
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