
Software and Systems Modeling (2021) 20:2111–2130
https://doi.org/10.1007/s10270-021-00883-0

REGULAR PAPER

Characteristics, potentials, and limitations of open-source Simulink
projects for empirical research

Alexander Boll1 · Florian Brokhausen2 · Tiago Amorim3 · Timo Kehrer1 · Andreas Vogelsang3

Received: 11 September 2020 / Revised: 25 January 2021 / Accepted: 11 March 2021 / Published online: 14 April 2021
© The Author(s) 2021

Abstract
Simulink is an example of a successful application of the paradigm of model-based development into industrial practice.
Numerous companies create and maintain Simulink projects for modeling software-intensive embedded systems, aiming
at early validation and automated code generation. However, Simulink projects are not as easily available as code-based
ones, which profit from large publicly accessible open-source repositories, thus curbing empirical research. In this paper, we
investigate a set of 1734 freely available Simulinkmodels from194 projects and analyze their suitability for empirical research.
We analyze the projects considering (1) their development context, (2) their complexity in terms of size and organization
within projects, and (3) their evolution over time. Our results show that there are both limitations and potentials for empirical
research. On the one hand, some application domains dominate the development context, and there is a large number ofmodels
that can be considered toy examples of limited practical relevance. These often stem from an academic context, consist of only
a few Simulink blocks, and are no longer (or have never been) under active development or maintenance. On the other hand,
we found that a subset of the analyzed models is of considerable size and complexity. There are models comprising several
thousands of blocks, some of them highly modularized by hierarchically organized Simulink subsystems. Likewise, some of
the models expose an active maintenance span of several years, which indicates that they are used as primary development
artifacts throughout a project’s lifecycle. According to a discussion of our results with a domain expert, many models can be
considered mature enough for quality analysis purposes, and they expose characteristics that can be considered representative
for industry-scale models. Thus, we are confident that a subset of the models is suitable for empirical research.More generally,
using a publicly available model corpus or a dedicated subset enables researchers to replicate findings, publish subsequent
studies, and use them for validation purposes. We publish our dataset for the sake of replicating our results and fostering
future empirical research.

Keywords Simulink · Open source · Empirical research · Sample study

Communicated by Jeff Gray.

B Andreas Vogelsang
vogelsang@cs.uni-koeln.de

Alexander Boll
boll@informatik.hu-berlin.de

Florian Brokhausen
florian.brokhausen@tu-berlin.de

Tiago Amorim
amorim@cs.uni-koeln.de

Timo Kehrer
timo.kehrer@informatik.hu-berlin.de

1 Humboldt University of Berlin, Berlin, Germany

2 Technical University of Berlin, Berlin, Germany

3 University of Cologne, Cologne, Germany

1 Introduction

Domain-specific models are the primary artifacts of model-
based development of software-intensive systems [10,66].
They serve as a central means for abstraction, facilitate anal-
ysis and simulation in the early stages of development, and
provide a starting point for automated software production.
Over the last two decades, Matlab/Simulink1 (in the sequel
referred to as Simulink, for short) has emerged in various
domains (e.g., automotive, avionics, industrial automation,
medicine) as a de facto standard for the industrial model-
based development of embedded systems [40].

However, Simulink projects and models created and
maintained in an industrial context are usually not pub-

1 http://www.mathworks.com/products/simulink

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-021-00883-0&domain=pdf
https://orcid.org/0000-0002-9881-9748
https://orcid.org/0000-0002-8003-4344
http://orcid.org/0000-0003-0930-2307
https://orcid.org/0000-0002-2582-5557
http://orcid.org/0000-0003-1041-0815
http://www.mathworks.com/products/simulink

2112 A. Boll et al.

licly available due to confidentiality agreements or license
restrictions [2,21,51,63]. Access to these models, in general,
is limited, making research results hard if not impossible
to replicate [7]. Publicly available projects do not reflect
“real-world” models [6,12,13,31,33], which severely lim-
its empirical research. Additionally, there are no commonly
established benchmarks for assessing and comparing the
effectiveness of new techniques and tools, and little is known
about the usage of these models in practice. As a conse-
quence, scientific insights into model-based development
with Simulink are not nearly as deep and substantial as for
classical code-based development, which highly profits from
large publicly available open-source software repositories
[22,23,25,27,35].

As a step to overcome this situation, we investigate a set
of 1,734 freely available Simulink models from 194 projects,
originally collected by Chowdhury et al. [15] and updated in
terms of our study. The set comprises projects from Mat-
lab Central2, SourceForge3, GitHub4, and other web pages,
as well as two smaller sets [9,34]. We first analyze these
projects and models concerning their basic characteristics,
including (i) their development context, (ii) their complex-
ity in terms of size and model organization within projects,
and (iii) their evolution over time. Thereupon, we discuss the
corpus’ potentials and limitations for empirical research.

We found that the projects and models comprised by the
corpus are very heterogeneous concerning these character-
istics. For (i), the projects stem from different origins and
application domains.Most projects come fromacademia, and
the distribution over application domains is skewed toward
the energy sector. For (ii) and (iii), most of the projects
are relatively small, exposing a short lifetime and hardly
any collaborative development effort. Many of them are toy
examples with limited practical relevance. However, some
large-scale projects provide sophisticated Simulink mod-
els in a mature project structure, and the most long-living
projects have a lifetime of several years of active develop-
ment. Besides these limitations, our results show that there
are also potentials for empirical research in theSimulink area.
According to our results’ validation with a domain expert,
many models expose several characteristics that can be con-
sidered representative of industrymodels, and are suitable for
empirical research, the circumstances of which are discussed
in this paper. The validity of this study may be threatened
internally by a subjective classification of a project’s context
and externally by the limited size of our data set.

2 https://www.mathworks.com/matlabcentral/fileexchange
3 https://sourceforge.net
4 https://github.com

We publish the updated corpus5 for the sake of replicating
our results and fostering future empirical research, which is
the major impact we aim for with this paper.

2 Model-based development with Simulink

Simulink is a Matlab-based graphical programming envi-
ronment for modeling, simulating, and analyzing multi-
domain dynamical systems. Its primary interface is a graph-
ical block diagramming tool and a customizable set of block
libraries. Different kinds of blocks can be connected via
ports to transmit outputs and receive inputs, thus yielding a
dataflow-oriented model. Subsystems are special blocks that
contain another Simulink diagram, thus enabling hierarchical
modeling.

Figure 1 shows an example of a Simulink diagram (taken
from [42]). The model shows a dual-clutch control of an
automatic transmission system of a vehicle with two sep-
arate clutches. Blocks of various types are connected via
signal lines. The four smaller blocks on the left side are inport
blocks, which transport input values from the model’s con-
text. One of them is the car’s current speed (VehSpd), which
is further processed to compute the next gear shift. Also,
there are three outport blocks (the same symbol as inports
but with incoming signal lines), which transport output val-
ues of the model to its context. The four rectangular blocks
shaded in gray are subsystems. The subsystems are part of
the model, and the contained behavior can be displayed on
request. The other shapes represent basic blocks (i.e., non-
composite blocks). The pentagon at the top (trq_dem) is a
goto block that transports its signal to some other part of the
model (to a point deeper in one of the subsystems). The tri-
angle (Tmax) is a gain block, which multiplies a signal with
a constant. The black bar is a multiplexer block, which com-
bines inputs with the same data type and complexity into a
vector output. The rectangle with the label “[0,1]” is a satura-
tion block, which produces an output signal that is the input
signal’s value bounded to some upper and lower values.

The process of computing the states of a Simulink model
at successive time steps is known as solving the model. This
way, models can be simulated for the sake of validation or
verification. Simulink comes with two classes of solvers: (1)
Fixed-step solvers, as the name suggests, solve the model
using the same step size from the beginning to the end of the
simulation; (2) variable-step solvers vary the step size during
the simulation. Within one simulation step, each block of the
model updates its state and output values according to the
specified behavior and this step’s input values.

Several add-on tools allow to model state-based systems
(Stateflow), generate code from Simulink models (e.g., Tar-

5 https://doi.org/10.6084/m9.figshare.13636589

123

https://www.mathworks.com/matlabcentral/fileexchange
https://sourceforge.net
https://github.com
https://doi.org/10.6084/m9.figshare.13636589

Characteristics, potentials, and limitations of open-source Simulink projects… 2113

Fig. 1 Example of a Simulink block diagram modeling the dual-clutch
control of an automatic transmission system of a vehicle with two sep-
arate clutches [42]

getLink, Embedded Coder), or to do formal verification and
test case generation (e.g., Design Verifier).

3 Related work

3.1 Empirical studies onmodel characteristics

Several authors have investigated existing UML models
regarding their characteristics and perception. Hebig et al.
[28] released the currently largest set of open-source UML
models mined from GitHub repositories (the Lindholmen
dataset). They described content- and process-related charac-
teristics of the UML models and the corresponding projects.
In a follow-up study [30], they triangulated their results with
qualitative surveys. They found that collaboration seems
to be the most important motivation for using UML, and
teams use UML during communication and planning of joint
implementation efforts. Störrle analyzed the impact of UML
diagram size on the understanding of the diagrams [60]. He
found a strong negative correlation between diagram size
and modeler performance. He used in his experiments class
diagrams, state charts, and sequence diagrams with a mean
diagram size of 25 to 30 elements, which were smaller than
the models found in the Lindholmen dataset [28].

Regarding works describing characteristics of Simulink
models, Dajsuren et al. [18,19] reported coupling and cohe-
sion metrics they found in ten industrial Simulink models.
They measured the inter-relation of subsystems as well as
the inter-relation of blocks within subsystems. Stephan et
al. [57] developed a taxonomy to describe Simulink model
mutations. The mutations are organized by categories based
on the types of model clones (Type 1, 2 or 3) they inject,
and further broken down into mutation classes that resem-
ble typical edit operations on Simulink models. In order to
evaluate the representativeness of the edit operations, the
taxonomy has been applied to three Simulink projects, two
of them being publicly available. Although the work’s main
aim was to establish a framework for evaluating model clone
detectors, the taxonomy can be considered general enough to
describe aspects of Simulink model evolution from a quali-

tative perspective. Kehrer et al. [37] defined Simulink model
editing operations which have been used to study the evo-
lution of a cruise control model. Balasubramaniam et al.
[3] conducted an empirical study investigating the types and
quantity of software changes in the context of embedded con-
trol systems. Insights are gained from two widely adopted
open-source control software suites, namely ArduPilot and
Paparazzi UAV. These are used to develop a code mutation
framework mimicking typical evolution in control software.
Later on, they apply this framework to explore the impact
of software evolution on the behavior of three controllers
designed with Simulink, focusing on the mismatches that
arise between control models and the corresponding con-
trol software. Chowdhury et al. [15] reported on a large set
of freely available Simulink models that they crawled from
various sources on the Internet. They analyzed these mod-
els in terms of content and reported basic measures such
as the number of blocks and connections. Their set is used
in this paper as the basis for further analysis. Moreover, we
update their corpus by collecting the latest project and model
snapshots, and we extract additional meta-data from those
projects hosted on GitHub to assess their evolutionary char-
acteristics.

3.2 Relevance of open source models for empirical
research

Conducting extensive empirical studies in modeling and
model-based development can be challenging due to the lack
of repositories with large numbers of freely accessible mod-
els. Badreddin et al. studied 20 free open-source software
(FOSS) projects with high numbers of commits without find-
ing UML and concluded that it is barely used in FOSS [2].
Similarly, Ding et al. found only 19 projects with UMLwhen
manually studying 2,000 FOSS projects from popular FOSS
repositories [21].

Most empirical studies on modeling in practice are case
studies analyzing limited sets of models in specific contexts
(e.g., [11,26,32,43,64]) or qualitative studies including inter-
views and surveys (e.g., [1,44,49]). Some studies approach
the use of models in FOSS from a quantitative perspective,
studying a large number and variety of projects. For example,
to study the use of sketches, Chung et al. collected insights
from 230 persons contributing to 40 FOSS projects [16].
Langer et al. studied the lifespan of 121 enterprise architect
models in FOSS projects [39]. Collections ofmodels used for
experimental evaluations of model-based development tools
can be found, e.g., in [29,47] .

Some authors created datasets of Simulink models as
benchmarks. For example, Bourbouh et al. [8] compiled a
set of 77 Stateflow models to demonstrate the effectiveness
of their tool. Similarly, Sanchez et al. [52] downloaded 70

123

2114 A. Boll et al.

Simulink models larger than 1MB from GitHub. Another
benchmark of Simulink models was created as part of the
Applied Verification for Continuous and Hybrid Systems
(ARCH) workshop [24]. This benchmark offers six mod-
els in four projects used as study objects in a competition to
solve a range of general problems (e.g., falsification or model
checking).

Due to the lack of publicly available models, most experi-
mental evaluations of tools rely on models that have been
synthetically created using a dedicated model generator
[45,46,53–55,61]. Specifically, there is a line of research on
the generation of realistic models conducted by Yazdi et al.
[69–72]. The basic idea is to analyze model histories to learn
statistical properties of model editing sequences, which are
then used to configure amodel generator that aims to generate
realistic models by simulating such editing sequences.

Stol and Ali Babar performed a systematic literature
review on empirical studies in FOSS [58]. Based on their
observation of the analyzed studies’ low methodological
quality, they proposed a guideline for conducting empirical
studies in FOSS projects. In the guideline, they emphasized
the importance of reporting the characteristics of the ana-
lyzed sample: “Such details can include: the size of the FOSS
software (expressed as lines of code), size of community
(expressed as the number of active and inactive participants),
and the domain of the FOSS software (e.g., operating sys-
tems, desktop software, infrastructural such asweb servers).”
In our paper, we augment themeta-data of models with infor-
mation about content, project context, and process context.
This information allows researchers to derive and justify suit-
able samples for their research.

In code-based development, a large research community
focuses on analyzing [22,23,25,27,35], and building [62]
FOSS repositories, especially in the context of platforms
with social features (e.g., GitHub) [17,36]. However, mod-
els known from model-based development, including UML,
Simulink and other domain-specific kinds of models, have
not yet made it into typical research on mining software
repositories.

4 Study design

4.1 Research objective

Our research aims at understanding the characteristics of
publicly available Simulink models to assess their poten-
tial for empirical research. We characterize these models
according to three perspectives: context, size, and evolution.
We selected these perspectives because we found indications
in the literature that those perspectives should be considered
when conducting empirical studies. For example, the ACM

SIGSOFT Empirical Standards [50] lists “describes the con-
text of the case in rich detail” as an essential part of any case
study or action research study. Baltes and Ralph [4] argue
that representativeness of corpora can be improved by “(1)
Including artifacts from diverse domains (e.g., aerospace,
finance, personal computing, robotics). […] (3) Making the
corpus large enough to support heterogeneity sampling and
bootstrapping. (4) Attempting to match the parameters we
can discern […]”. Moreover, we considered existing studies
on model characteristics (see Sect. 3.1) and found that these
consistently report the context of the analyzed models, size
and complexity [19,60], and evolution [28].

Therefore, we analyzed the mentioned three perspectives
as formulated by the following research questions.
RQ1: In which context are Simulink projects created?
Information regarding the project context is a necessary pre-
requisite to assess the external validity of any future empirical
research based on our Simulink project corpus. For example,
the validity of research results might be limited to dedicated
application domains.
RQ2: What is the size of the Simulink models and how are
they organized within their defining projects?
The primary motivation for assessing the size of models is
that future benchmarks or experiments being based on our
corpus might require models that exceed a certain degree of
complexity and are not just toy models. In particular, we are
interested in whether our corpus comprises industry-scale
models useful for further research.
RQ3:How do Simulink projects and their models evolve over
time?
The motivation to understand how Simulink projects and
models evolve is to assess their suitability for learning
from their development history. Thus, we are particularly
interested in whether there are any projects under active
development or maintenance for a long time.

The research objective is summarized using aGoal Ques-
tion Metric [5] model, illustrated in Fig. 2. Metrics and
respective extraction methods will be presented in detail in
the remainder of this section.

4.2 Study subjects

This study can be classified as a quantitative and qualitative
non-probability sample study [59]. Our sample is based on
the largest [14] set of publicly available Simulink models,6

collected by Chowdhury et al. [15]. The set by Chowd-
hury et al. comprises a smaller Simulink model collection
[34], a Stateflow model collection by the CoCo-Sim-Team
[9], and many other projects from Matlab Central, Source-
Forge, GitHub, and other sources such as web sites of

6 https://github.com/verivital/slsf_randgen

123

https://github.com/verivital/slsf_randgen

Characteristics, potentials, and limitations of open-source Simulink projects… 2115

GOAL: Understand the characteristics of
publicly available Simulink models to assess

their potential for empirical research

RQ1: In which context are
Simulink projects created?

RQ2: What is the size of the Simulink
models and how are they organized

within their defining projects?

RQ3: How do Simulink projects
and their models evolve over

time?

- Origin
- Traceability to a
scientific publication
- Application domain
- Solver mode
- Code generation

- Number of models per project
- Number of blocks
- Number of different block types
- Number of signal lines
- Number of subsystems
- Cyclomatic Complexity
- Halstead Difficulty
- Henry-Kafura Information Flow
- Card and Glass’s System Complexity
- File format

Project level
- Total number of commits
- Ratio of merge commits
- Number of authors
- Project lifetime
- Commits per day
- Model commits
- Model authors

Model level
- Number of updates
- Number of authors
- Absolute Lifetime
- Relative Lifetime

- Distribution of commits
- Ratio of models that are under
active development

Goal
Question
Metric

Fig. 2 Goal Question Metric model of the research objective

university projects. Although critical open-source reposi-
tory sites could have been missed, the set by Chowdhury
et al. covers a wide range of sources. Instead of using the
provided dataset as it is, we re-collected a current snap-
shot in August 20207 consisting of all constituent Simulink
models based on the information provided in the meta-data
of the corpus of Chowdhury et al. The main motivation
for this new snapshot arises from several inconsistencies
we found between the actual corpus and the results pre-
sented in [15]. According to personal correspondence with
the authors, these inconsistencies may originate from only a
subset of the entire corpus models being used in their study.
For many projects, the newer snapshot also provided updated
models and a richer model evolution history for answering
RQ3.

We collected the Simulink projects and models of our
updated corpus using the project URLs provided in the orig-
inal corpus’ meta-data. Out of the 205 projects listed in the
meta-data, 204 mention a URL. We visited these 204 web
pages and found 193 to be still online. Out of the remain-
ing 11 projects, we were able to find one additional project
in the original dataset. In sum, we could thus analyze 194
projects comprising a total of 1,736 Simulink models. Two
of these models are invalid and cannot be opened by Matlab
Simulink, which reduces the number of actually analyzable
models to 1,734.

Our corpus comprising all the projects and models used
in this study, including the respective meta-data, is available
in our replication package.

7 https://doi.org/10.6084/m9.figshare.13636589

4.3 Data analysis

4.3.1 RQ1: Project context

To get a basic understanding of the context in which a
Simulink project has been created, we classify each project
with respect to the following dimensions:

Origin: We use the categories academia, industry, and
Mathworks to classify the origin of a project. The categoriza-
tion is determined based on the affiliations of the developers
associated with the projects. Although Mathworks’ model-
ing projects might also be classified as industry projects, we
assume that Mathworks developers do not represent typical
“end-users” of Simulink from industry, which is why we dif-
ferentiate among the two.

Application domain: We use the domains energy, elec-
tronics, automotive, avionics, robotics, domain independent,
and other to classify the projects with respect to their appli-
cation domain. Domain-independent projects commonly
encompass tools (e.g., Simulink analyzers, diagram layout
managers or general toolboxes). These projects are assumed
to be applicable in any domain.

Both classifications were performed manually by four
researchers basedonmultiple sources of information.Besides
the project data itself and the project’s web site, a web
search was performed to gather additional information like
developer affiliation or associated scientific publications.
Concerning the list of possible application domains, we first
used the classification scheme of [65], which comprises eight
application domains. We revised this initial classification
scheme during our analysis, as some of the analyzed projects

123

https://doi.org/10.6084/m9.figshare.13636589

2116 A. Boll et al.

did not fit into that scheme and some domains were not
represented by a single project. We ended up reusing their
domains automotive, avionics, and “unclear”. Newly created
domains were decided upon together and were added if a
projectwould not fit into another domain: energy, electronics,
domain-independent, robotics, military, biology, wearable.
The domains railway and automation were adjusted to trans-
port and home automation. The domains finance, health
care, public, and telecommunication were not used in our
classification. To mitigate classification errors, a consensus
needed to be reached among the four researchers, which was
achieved through iterative discussions. Without a consensus,
no useful project description available, or when a project
domain remains unclear, we used the categories unclear and
not enough information for domain and origin, respectively.

Traceability to a scientific publication: Moreover, particu-
larly for those projects originating from an academic context,
we are interested in whether there is a scientific publication
associated with the project. Such publications may be useful
for additional research as they provide a more detailed con-
text of a project and its models. It also gives an insight into
the scientific diligence of the academic work.

Solver mode: The usage of a fixed-step solver might indi-
cate that a model is used for code generation; otherwise, the
model may only be used for simulation or other abstract pur-
poses. If the model state is changed in fixed time steps, code
generation for hardware on embedded systems as a deploy-
ment target is possible. The solvermode can be automatically
extracted using the Simulink API.

Codegeneration using a standard code generator: In addi-
tion to the extraction of the solver mode, we searched for
TargetLink, and Embedded Coder traces in the models, as
these are the two most commonly used code generators in
model-driven development with Simulink.

4.3.2 RQ2: size and organization of Simulink models

To characterize the size and complexity of the Simulinkmod-
els and their organization within projects, we use a collection
of standard Simulink model and complexity metrics from
Olszewska et al. [48].We collect and reportmeasurements on
a model level and on a project level by aggregating the mea-
surements from a project’s models. Our Matlab and Python
scripts used for computation of all the metrics are published
on Figshare.8

The number of models per projects helps to judge the
projects’ overall size. The number of blocks further helps
in assessing the size of the models as well as, in an aggre-
gated manner, the magnitude of the projects (i.e., if projects
consist of multiple small models or fewer large ones). We
include masked subsystems in the calculation of the num-

8 https://doi.org/10.6084/m9.figshare.13636589

ber of blocks. The number of different block types used in a
model represents the modeling diversity. When aggregated,
this metric serves to judge and compare the modeling diver-
sity on a project level. Further, the comparison of model and
project block diversity yields insights into how the different
models within projects are modularized, i.e., if the models
of a project contain similar blocks or not. The number of
signal lines represents the connectivity within the models,
demonstrating the complexity of interaction between differ-
ent functional blocks. This metric is also analyzed regarding
the number of blocks to examine if there is a correlation. The
number of subsystems characterizes a model from an archi-
tectural point of view and gives a hint on its modularization.

To assess the complexity of the models in our corpus, we
use several complexity metrics that have been proposed by
Olszewska et al. [48]. In their work, the authors have adapted
several well-known code complexity metrics to Simulink.
Cyclomatic Complexitywas first introduced byMcCabe [41]
and assesses a program’s complexity by counting the inde-
pendent paths of program flow. Olszewska et al. adapt this
for Simulink by mapping conditional statements of C to cor-
responding blocks in Simulink.

The Halstead metrics are another set of complexity met-
rics. For our study, wemeasure the Halstead difficulty, which
is calculated by the following formula:

D = n1
2

∗ N2

n2

where n1 is the number of distinct Simulink block types, n2
is the number of distinct input signals, and N2 is the total
number of input and output signals [48].

The Henry–Kafura Information Flow defines a subsys-
tem’s complexity based on the fan-in and fan-out of infor-
mation flow for that subsystem. It is calculated as:

HKIF = size ∗ (fanIn ∗ fanOut)2

where si ze is the number of contained blocks (including sub-
system blocks), f anIn and f anOut represent the number
of afferent and efferent blocks of a subsystem. [48].

As last complexity metric, we calculate Card and Glass’s
System Complexity. System Complexity adds up two sub-
metrics: structural complexity and data complexity (SC =
StructC + DataC). Structural complexity is defined as the
mean of squared values of fan-out for all subsystems (n):

StructC =
∑n

i=1 fanOut
2
i

n

Data complexity is defined as a function that is directly
dependent on the number of input and output signals (Si)
and inversely dependent on the number of fan-outs in the

123

https://doi.org/10.6084/m9.figshare.13636589

Characteristics, potentials, and limitations of open-source Simulink projects… 2117

module:

DataC = 1

n
∗

n∑

i=1

Si
fanOuti + 1

In addition to size and complexity,we assess thefile format
of the model. This information originates from the default
file format of Simulink models changing from .mdl to .slx-
extensions with the second annual release of Simulink in
2012. The file format may be necessary for tool and orga-
nization compatibility across versions. Finally, we establish
any peculiarities to be observed between themanually identi-
fied domains of projects (e.g., if industry projects differ from
academic ones). Additionally, the identified industries them-
selves are analyzed concerning project and model structure.

4.3.3 RQ3: project andmodel evolution

We use meta-data extracted from a version control system to
get an overview of howSimulink projects andmodels evolve,
as it is customary in the field of software repository mining
[22,23]. We use a subset of our corpus’ projects hosted on
GitHub. We analyze only this subset as we can easily access
the commit history of these Git projects9. On the contrary,
the commit history is not provided for the other projects,
thus excluded here. TheGitHub subset comprises 35 projects
containing 579 models, accounting for 18% of all projects
and 33% of all models of the entire corpus.

On the project level, the total number of commits assesses
the project’s general development activity. In contrast, the
ratio of merge commits to total commits and the number of
authors serve as indicators of how the development is per-
formed collaboratively. By extracting the project lifetime,
we determine whether there are any long-living projects.
We are particularly interested in whether any projects are
actively maintained over time or whether they are just stored
in the repository. Therefore, the lifetime comprises the time
between the first and the last commit. Further, the com-
mits per day provide a first indicator of how frequently the
projects are updated. Since the total commits extracted from
GitHub refer to all the project files, we are additionally inter-
ested in the proportion ofmodel commits that change at least
one Simulink model in the project. Similarly, regarding the
total number of project authors, we are also interested in
the authors’ proportion that changed at least one model file
(model authors) during a project’s lifetime.

On the model level, the number of updates reports the
number of commits on the model file. The number of authors
per model reports the number of different committers that
have modified this model at least once. The lifetime in days

9 https://git-scm.com

encompasses the time between the first and the last commit
that changed the model. In contrast, the lifetime in % denotes
the model’s relative lifetime concerning the overall lifetime
of the project that comprises themodel.We compute all mod-
els’ lifetime according to the model files’ inherent meta-data
in addition to thesemetrics extracted fromGitHubmeta-data.
This information provides a date for the first creation date and
the last modification used to calculate the lifetime in days of
all models.

Finally, we are interested in how the development work-
load, particularly the number of model modifications, is
distributed over the lifetime of projects and models. There-
fore, we calculate the distribution of project commits, the
distribution of model commits, and the ratio of models that
are under active development over the lifetime of a project.
We assume a model to be under active development between
the first and last commit of a model.

5 Study results

In this section, we report the results of the analyses detailed
in Sect. 4.3, structured by our research questions RQ1–RQ3.

5.1 RQ1: Project context

Origin and traceability to a scientific publication: As illus-
trated in Fig. 3, of 194 projects, 113 (58%) originate from an
academic context, 34 (17%) are provided byMathworks, and
25 (13%) projects are from industry. We could not classify
the origin of the remaining 22 (12%) projects due to miss-
ing information. We measured the agreement of the manual
classification by computing Krippendorff’s alpha [38] to be
0.85, which is reliable (Alpha values ≥ 0.80 are considered
reliable). Further, we found links to scientific publications
for 26 (13%) projects. Of these projects, 18 (9%) originate
from an academic context, while the remaining eight (4%)
projects are not classified concerning their context.
Application domains: Figure 4 shows the results of our
domain classification. Most projects represent applications
in the energy sector: 52 (27%). The second-largest domain
is electronics, with 47 (24%) projects. These two domains
make up more than half of all projects. 36 (19%) of the
models are classified as “domain-independent”—e.g., used
to demonstrate a Simulink tool. The avionics, robotics, and
automotive domain together make up another 21%.
The remaining categories are summarized as “other” in
Fig. 4. The “other” categories comprise 18 projects (9%): six
of which we could not classify at all and are thus “unclear”,
five telecommunication projects, and two audio projects. The
remaining domains only contribute a single project to the cor-
pus: biology, home automation,wearable, transportation, and
military.

123

https://git-scm.com

2118 A. Boll et al.

Academic Industry-Mathworks Industry No information
0

20

40

60

80

100

N
um

be
r
of

pr
oj
ec
ts

113

34

25 22

Fig. 3 Origin of the projects comprised by our corpus

En
erg
y

El
ec
tro
nic
s

Do
ma
in
ind
ep
en
de
nt

Av
ion
ics

Ro
bo
tic
s

Au
to
mo
tiv
e

Ot
he
r

0

10

20

30

40

50

N
um

be
r
of

pr
oj
ec
ts

52
47

36

15 14 12

18

Fig. 4 Application domains in which the projects have been developed

A Krippendorff’s alpha of 0.86 was computed for the
researchers’ inter-rater agreement for domain classification,
which, analogously to the original classification, can be con-
sidered reliable.
Solver mode and code generation: In our corpus, 576 mod-
els (33%) use a fixed-step solver mode, while the remaining
1,158 (67%) models apply a variable-step solver mode.
Therefore, with two-thirds of the models, the majority of
models use variable-step solvers. When aggregating this to
the project-level, there are 119 projects (61%) that exclu-
sively contain models applying a variable-step solver and
28 projects (14%) use fixed-step solvers only. Another 47
projects (24%) exhibit a mixture of both. Surprisingly, none
of the models uses one of the two most widely established
code generators, TargetLink,10 and Embedded Coder.11

10 https://www.dspace.com/en/pub/home/products/sw/pcgs/
targetlink.cfm
11 https://www.mathworks.com/products/embedded-coder.html

Su
bS

ys
te
m

O
ut
po

rt

In
po

rt

C
on

st
an

t

Su
m

G
ai
n

M
ux

T
er
m
in
at
or

S-
Fu

nc
ti
on

Sc
op

e

D
em

ux

P
ro
du

ct

G
ro
un

d

G
ot
o

Fr
om

Sw
it
ch

In
te
gr
at
or

R
el
at
io
na

lO
pe

ra
to
r

Sa
tu
ra
te

D
at
aT

yp
eC

on
ve
rs
io
n

P
M
IO

P
or
t

L
og
ic

Se
le
ct
or

C
lo
ck

M
at
h

0

500

1000

1500

N
um

be
r
of

m
od

el
s

Fig. 5 The 25 most common block types according to the number of
models they are used in

RQ1: In which context are Simulink projects created?
We were able to determine the origin of 172 projects,
65% of those originate from an academic context, and
17% of projects are from industry. Further, 13% of all
projects are associated with a scientific publication. 27%
of all projects are developed in the energy domain, and
another 24% are from the electronics domain. Although
one-third of all models use fixed-step solvers, none uses a
standard code generator such as TargetLink or Embedded
Coder.

5.2 RQ2: model sizes and project organization

Overall project comparison: Table 1 shows the different met-
rics on the project and model level. On the project level, all
metrics are aggregated for all models in each project. The
model-level metrics are calculated without relation to the
projects.

The standard deviation is much larger for all metrics than
the mean values (except for the number of different block
types), which shows the diverse range of projects and mod-
els. Further, for these metrics, the median is significantly
smaller than the mean value. Therefore, the metric values
are rather small for most models and projects, while some
exceptions are much larger than the median accounts. Some
of the models are even empty, in the sense that they do not
contain a single line or block.Modelswithout any signal lines
are usually library models, which are merely a collection of
different types of blocks. In contrast, empty models might
indicate “orphan models” or models that are not yet under
active development.

The number of models per project varies substantially.
Ninety-eight projects (50.5%) contain only one model. The
five largest projects contain 42% of all models. Overall,
no predominant trend is evident concerning the number of
blocks, neither per model nor per project.

The number of signal lines also varies substantially
between projects andmodels. Sixty-eight librarymodels con-
tain only blocks but no signal lines.Additionally, somemodel

123

https://www.dspace.com/en/pub/home/products/sw/pcgs/targetlink.cfm
https://www.dspace.com/en/pub/home/products/sw/pcgs/targetlink.cfm
https://www.mathworks.com/products/embedded-coder.html

Characteristics, potentials, and limitations of open-source Simulink projects… 2119

Table 1 Calculated metrics for
the project size. The metrics are
reported per project and per
model

Metric per Min. Max. Mean Median Std. Dev.

Number of Models project 1.0 252.0 8.93 1.00 25.84

model - - - - -

Number of Blocks project 2.0 319,108.0 6,076.56 553.50 28,786.19

model 0.0 59,860.0 679.85 70.00 2,746.76

Number of Block types project 2.0 199.0 47.59 40.00 36.46

model 0.0 66.0 16.11 13.00 12.97

Number of Signal lines project 0.0 41,340.0 1,137.76 158.00 3,863.64

model 0.0 12,844.0 127.29 28.00 470.32

Number of Subsystems project 0.0 3,372.0 118.63 18.50 391.63

model 0.0 1,791.0 13.27 4.00 50.14

Cyclomatic Complexity project 1.0 384.0 14.45 2.41 37.49

model 1.0 859.0 10.50 1.00 39.68

Halstead Difficulty project 0.0 118.0 16.55 11.53 19.99

model 0.0 118.0 10.37 0.00 15.99

Henry–Kafura Information Flow project 0.0 7,936.0 161.49 1.06 828.75

model 0.0 96,042.9 131.43 0.00 2,393.25

System Complexity project 0.0 1,173.1 12.73 3.24 84.41

model 0.0 1,173.1 4.31 2.00 29.14

files contain just a single high-level subsystem,which is a ref-
erence to another model in the project. On the other hand,
450 models show high connectivity with equally as many or
more signal lines than blocks.Apart from these two extremes,
there is no common scheme in the correlation of signal lines
and blocks. This phenomenon is also apparent when ana-
lyzing the average signal lines per block over all models,
which amounts to 0.82 ± 1.52. One may expect models to
contain more signal lines than blocks, in general. However,
many models are library models, one signal line can connect
more than two blocks, and models can contain descriptions
or comment blocks that are not connected to other blocks.

As with the previously presented metrics, the number of
subsystems per project and per model does not show any par-
ticular pattern. Again, some very large projects are causing
the high maximum value and the high standard deviation.

Similarly, with all of the reported complexity metrics, the
mean, median, and standard deviation distribution show the
diversity of models and projects regarding their complexity.
The large maximum values of the Cyclomatic Complexity
originate from extensive library models from a drive-train
simulation. In contrast to these extreme examples, 1088mod-
els exhibit a minimal Cyclomatic Complexity of 1. The
Halstead difficulty values are not as divergent and do not
show prominent outliers. However, in addition to themedian,
the 957 models showing a complexity of 0 signify a large
number of low complexity models. The Henry–Kafura Infor-
mation Flow exhibits one radical outlier with the noted
maximum value. The next lowest value amounts to just
13.000. This outlier originates from a demomodel contained

in a Mathworks tool collection. In contrast to this, there are
1366models in the dataset with a Henry–Kafura Information
Flow of 0. This divergence explains the reported values in the
table. Regarding System Complexity, the shown maximum
value is an exception in the dataset, with the next highest
value amounting to just 178.

Diving deeper into the models’ contents, we can see that
some block types are commonly used in most models. Fig-
ure 5 shows the 25 most commonly occurring block types
with the number of models they are used. The most used
type of block, being the subsystem, highlights the importance
of modularization in Simulink projects. Unsurprisingly, in-,
and outports, which provide the basic functionality to receive
and send signals, are used in most models. The few projects
not incorporating these blocks are not used to process data
but mainly for simulations using generated signals as inputs
and only producing some visualization in scope instead of
outputting a signal.

In addition to the models’ contents, we analyze the file
types of the models within the projects, with the majority of
107 projects (55%) exclusively containing models with the
older file type .mdl, 72 projects (37%) only containing .slx-
files and 15 (8%) containing both. 40% of the models with
the newer .slx format has been created before 2012 when this
file format was first introduced. While appearing counterin-
tuitive, this finding indicates that these models were created
in the previous .mdl format but were later transferred into the
newer .slx format. This hypothesis is further supported by
the fact that of these 40% of .slx model files being created

123

2120 A. Boll et al.

before 2012, 95% were still under active development after
introducing the new file format.
Comparison by origin This comparison analyzes how model
size and organization differ between models from different
origins, which we determined in Sect. 5.1. To that end, we
group our measurements by the categories Academic, Math-
works, Industry, and No Information, comprising 460, 619,
309, and 346 models, respectively. We use boxplots [67] to
illustrate these aggregated values; the orange line within a
box represents the median, the size of the box is determined
by the first and third quartile, and the whiskers represent the
fifth and ninety-fifth percentile. Outliers are displayed as cir-
cles.

Formost industry category projects, the number ofmodels
per project is much lower than in the other categories, as
shown inFig. 6a.Only the projectswith no origin information
are even smaller. The largest projects in terms of the number
of models can be found in the Mathworks category.

When comparing the model metrics based on the project’s
origin, threemetrics stand out and show a difference between
origins. Figure 6b shows the comparison of origins regard-
ing the number of blocks per model. For reasons of clarity,
we cleaned the plot of outliers, i.e., models with more
than 10,500 blocks. Therefore, there are eight models in
the Mathworks category and three models in the industry
and academic categories that are not displayed in the plot.
These outliers consist of libraries and large simulation mod-
els. Models from the Mathworks category show the largest
median, with 123 blocks per model, while the industry mod-
els show the largest distribution.While the academic category
shows the most narrow distribution of the number of blocks
per model, the category also exhibits the most outliers.

Figure 6c shows the subsystems per model for all origin
categories. This plot is cleaned of outliers withmore than 175
subsystems, accounting for one model each in the academic
and industry categories. When considering the modulariza-
tion of models in terms of the contained subsystems, models
from the Mathworks category show the most usage of sub-
systems due to the highmedian, larger third quartile, and high
density of outliers above the 95 percentile. However, there
are more models with a larger number of subsystems in the
industry category, while the majority of industry models use
fewer subsystems than the Mathworks models. Models from
academia are least modularized, with just 11 subsystems per
model on average.

Lastly, Fig. 6d shows the Cyclomatic Complexity of mod-
els for the different categories. There are four industrymodels
and one from academia not shown in the plot, with values
larger than 210. Interestingly, all categories exhibit a median
of 1, as in the overall comparison before. Still, the industry
category contains the most complex models, with an average
Cyclomatic Complexity of 30. The much larger ninety-fifth
percentile also signifies this.

Comparison by application domain: We compare the models
concerning their identified applicationdomain fromSect. 5.1.
The largest domain in terms of the number of models is the
energy domain, with 354 models. The other domains split up
as follows: 339 are domain-independent, 280 from electron-
ics, 257 from avionics, 232 from robotics, 151 from several
’other’ domains, and 121 in the automotive domain.

Figure 7a shows the models’ distribution over the projects
of the domains. Projects from avionics and robotics domains
are the largest in terms of the number of models per project,
with 17.1 and 16.6 models per project on average. The small-
est projects originate from the electronics and energydomain,
with 6.1 and 6.7 models per project on average. The extreme
outlier in the energy domain is an extensive model of a
wind turbine. Apart from the outliers and the ninety-fifth
percentiles, the projects in all domains are rather small, with
each of the third quartiles being under 15 models per project.

As in the preceding section, Fig. 7b shows the blocks per
model for the different domains of the projects. This plot is
again cleaned off the outliers above 10,500 blocks permodel.
Therefore not shown are five domain-independent projects,
three from the robotics and automotive domains, two from
energy, and one from avionics. Figure 7b shows that most
automotive domain models are significantly larger than in
the other domains.

Figure 7c shows the number of subsystems per model for
the identified domains, excluding one outlier each from the
automotive and energy domain. With the automotive domain
models being the largest ones, they also show the highest
amount of subsystems per model. Therefore, the models in
the automotive domain show the highest degree of modu-
larization. The energy domain exhibits the second largest
number of subsystems in the models. Generally, the distribu-
tion of subsystems over the domains follows a similar trend
as the number of blocks.

The number of different block types per model is shown in
Fig. 7d. The automotive domain shows the most diversity in
terms of the block types used in the models, with 29 unique
block types per model on average. However, many highly
diverse models belong to the energy domain, as signified by
the ninety-fifth percentile and the outliers. The remaining
domains are rather similar in their unique block types per
model, exhibiting only minor differences.

Lastly, Fig. 7e shows the Cyclomatic Complexity of mod-
els for the domains. The plot is cleaned of values above
210, which relates to three models from the automotive and
two from the energy domain. The previously identified trend
holds in this respect as well, as the automotive domain is the
most prominent featuring the most complex models. While
all other domains exhibit a median of just 1, the automotive
domain exhibits a value of 10. Further, all third quartiles are
below 5; just the automotive domain exhibits a value of 66
for the third quartile.

123

Characteristics, potentials, and limitations of open-source Simulink projects… 2121

0 50 100 150 200 250
Number of models per project

No information

Industry

Mathworks

Academic

0 2000 4000 6000 8000 10000
Number of blocks per model

No information

Industry

Mathworks

Academic

0 25 50 75 100 125 150 175
Number of subsystems per model

No information

Industry

Mathworks

Academic

0 25 50 75 100 125 150 175 200
Cyclomatic complexity per model

No information

Industry

Mathworks

Academic

(a) (b)

(c) (d)

Fig. 6 Comparison of the different project origins w.r.t a the number of models per project, b the number of blocks per model, c the number of
subsystems per model, and d the Cyclomatic Complexity per model

RQ2: What is the size of the Simulink models and how
are they organized within their defining projects?
The majority of projects and models are rather small.
The largest models stem from the automotive domain,
exposing a high degree ofmodularity through subsystems
and higher Cyclomatic Complexity. Models originating
from industry and Mathworks are the most modularized.

5.3 RQ3: project andmodel evolution

As described in Sect. 4.3.3, we analyze the subset of projects
hosted on GitHub to evaluate evolutionary aspects. In order
to evaluate if this subset represents the characteristics of the
whole corpus, we analyzed all metrics reported in Sect. 5.2
on this subset as well. While the GitHub subset is missing
some of the most extensive projects, identified as outliers
in Sect. 5.2, the overall metrics are comparable to those of
the whole corpus. The lack of some of the largest projects
especially reflects in the metrics for subsystems, Cyclomatic
Complexity and System Complexity, where the GitHub sub-
set shows smaller values on average. However, the most
extensive projects are outliers of the entire corpus and there-
fore deviate from most corpus projects. Arguably, their lack
in the GitHub subset does not harm its representativity.

Evolutionary data from the projects mentioned above can
be seen inTable 2,while themodels’ evolution characteristics
are summarized in Table 3. Similar to the results of the static
properties of RQ2 (see Sect. 5.2), these projects and models

are highly diverse concerning their evolutionary characteris-
tics, as the standard deviation is bigger than themean formost
metrics. For somemetrics, the standarddeviation ismore than
twice the mean value. Further, all metrics’ median values are
lower than the respective mean values, which indicates that
only a few projects are substantially more long-living, more
frequently maintained, and have more authors.
Projects: Most projects show a rather small number of com-
mits, as the median only amounts to 8 commits (see Table 2).
The ratio of merges to all commits in the GitHub projects is
even smaller; the median lies at 0%, with 1.4 merge com-
mits per project on average. Similarly, the number of people
actively working on the projects is small, comprising only
2.7 authors on average. The project lifetimes vary greatly
between zero days (1 commit only) and more than six years.
About half of the projects show an active maintenance span
which is less than 50 days. 44.2% of the commits modify
Simulink models, indicating that the models can indeed be
considered as primary development artifacts of the projects.
The model–author ratio further supports this: In most cases,
all authors of a project also edit themodel files, with themean
value being at 82.2%.
Models: Table 3 shows that on average, a model is updated
about two times after its initial creation. For most of the
models, these modifications are performed by a single devel-
oper since, on average, 1.3 developers contribute to a model
over its entire lifetime. The mean time span in which a
model is under active development is about 204 days. On
the contrary, most models have an active lifetime of only one

123

2122 A. Boll et al.

0 50 100 150 200 250
Number of models per project

Other

Automotive

Robotics

Avionics

Domain independent

Electronics

Energy

0 2000 4000 6000 8000 10000
Number of blocks per model

Unclear

Medicine

Space

Avionics

Automotive

Domain independent

Energy

0 25 50 75 100 125 150 175
Number of subsystems per model

Unclear

Medicine

Space

Avionics

Automotive

Domain independent

Energy

0 10 20 30 40 50 60
Number of block types per model

Unclear

Medicine

Space

Avionics

Automotive

Domain independent

Energy

0 50 100 150 200
Cyclomatic complexity per model

Other

Automotive

Robotics

Avionics

Domain independent

Electronics

Energy

(a) (b)

(c)

(d)

(d)

Fig. 7 Comparison of the different project domains w.r.t. a the number of models per project, b the number of blocks per model, c the number of
subsystems per model, d the number of different block types per model, and e the Cyclomatic Complexity per model

Table 2 Calculated metrics for
the projects’ evolution

Project Metric Min. Max. Mean Median Std. Dev.

Number of commits 1.0 589.0 56.8 8.0 120.1

Merge commits in % 0.0 16.9 2.4 0.0 4.5

Number of authors 1.0 16.0 2.7 1.0 3.4

Lifetime in days 0.0 2,273.0 250.8 50.0 511.3

Commits per day 0.005 14.0 1.9 0.5 3.5

Model commits in % 3.1 100.0 44.2 42.9 29.6

Model authors in % 33.3 100.0 82.2 100.0 24.2

day—indicated by the median. The relative time a model is
actively developed presents a median and mean value of 1%
and 23.9% of the entire project’s lifetime.

Additionally, we evaluated all models’ absolute lifetime
by analyzing the Simulink model files, which expose their
initial creation and last modification dates. The penultimate
line of Table 3 summarizes lifetime characteristics obtained

from Simulink files of 1,686 models in our corpus. For 48
of the models, the format of the dates was corrupted and not
retrievable. In particular, it can be seen that the mean and
median values differ significantly in comparison with the
lifetime calculated for GitHub projects. Further, the most
long-living model was under development for almost 20
years. This information might indicate that some models

123

Characteristics, potentials, and limitations of open-source Simulink projects… 2123

Table 3 Calculated metrics for
the models’ evolution

Model Metric Min. Max. Mean Median Std. Dev.

Number of updates 0.0 42.0 2.3 1.0 3.6

Number of authors 1.0 4.0 1.3 1.0 0.5

Abs. lifetime in days* 0.0 2,153.0 204.2 1.0 383.7

Abs. lifetime in days** 0.0 7,071.0 1,350.1 885.0 1,381.1

Rel. lifetime in %* 0.0 100.0 23.9 1.0 33.9

*Calculated for GitHub models based on commit data
**Calculated for all models of the corpus based on the model files’ internal meta data

have been developed offline and were later committed and
pushed to the central repository for the sake of distribution
and archiving. Furthermore, others represented file hosting
services like Mathworks and SourceForge started hosting
files earlier than GitHub.
Distribution of development workload over project lifetime
Figure 8a shows the distribution of project commits over a
project’s lifetime, averaged over all projects. As the median
project lifetime is about 50 days, each bin represents five or
more days for most projects. Apart from bursts of develop-
ment activity at the beginning and the end of a project, a rather
even distribution of project commits is observed. The burst
in the first tenth of a project’s lifetime is dominating with
36% of all commits falling into this initial period. A similar
pattern can be seen in Fig. 8b, which depicts commits’ distri-
bution, that modify a Simulink model, again, averaged over
all projects.
From comparing Fig. 8a, b, we can conclude that the overall
workload on models and the rest of the project are similarly
distributed. A minor difference can be observed concerning
the bursts at the beginning and the end of a project, where
the first burst of development activity is even more distinct
for model commits than for project commits.

Figure 8c shows a nearly identical graph to Fig. 8b, as it
plots the distribution of committed Simulink model modifi-
cations over a project’s lifetime. The difference is that Fig. 8b
counts a commit with at least one created or updated model,
and Fig. 8b counts each created or updated model, individ-
ually. As the graphs are extremely similar, it follows that
the average commit on one or more models over a project’s
lifetime modifies the same amount of models.

Figure 8d shows the ratio of models under active develop-
ment during a project’s lifetime, averaged over all projects.
A model is counted in each bin that falls between its first
commit and last commit: Suppose a model is created at the
very start of the project and last modified just before the
project’s half time, then it will be counted in the first four
bins separately. It can be seen that 52% of the models of
the GitHub subset are created in the first 10% of the project
lifetime. At least half of these models were never modified
again, as the second bin only holds 23% of models that are
under active development. Some models are created only in

the last 10% of a project’s lifetime. On average, more than
22% of the models are under active development during the
entire duration of a project. Again, this can be interpreted as
an indicator that the models within a Simulink project can be
considered primary development artifacts since there are no
project phases in which the models are not edited.

RQ3: How do Simulink projects and their models evolve
over time?
35 projects from our corpus are hosted on GitHub, most
of which are under active development for less than 50
days. The median project receives a commit every sec-
ond day. Most models are rarely updated and commonly
maintained by only a single developer. Bursts of com-
mit activity can be seen at the beginning and the end
of a project, with workload regarding models follow-
ing a similar trend. More than a fifth of the average
project’s models are under active development through-
out the entire lifetime of a project.

6 Threats to validity

We discuss potential threats to our study results’ validity,
using the scheme established by Wohlin et al. [68].

6.1 Internal validity

Threats to internal validity are related to our methodology’s
potential systematic errors, most notably concerning the col-
lected and analyzed data.

Someof the classifications forRQ1 (origin and application
domain) have been done manually, which may be biased by
the subjective assessment of individual researchers or by sim-
ply overlooking relevant information. To mitigate this bias,
we formed a team of four researchers to rate anymanual clas-
sification task results. Their inter-rater agreement was good,
as reported in Sect. 5.1. If two or more researchers were
unsure how to assess a project, we abstained from making
a final yet potentially misleading decision and classified the
project as unclear.

123

2124 A. Boll et al.

0-10% 40-50% 90-100%
Project life time

0%

5%

10%

15%

20%

25%

30%

35%

C
om

m
it
s

(a)

0-10% 40-50% 90-100%
Project life time

0%

5%

10%

15%

20%

25%

30%

35%

40%

M
od

el
co
m
m
it
s

(b)

0-10% 40-50% 90-100%
Life Time of Project

0%

5%

10%

15%

20%

25%

30%

35%

40%

C
om

m
it
ed

M
od

el
M
od

ifi
ca
ti
on

s

(c)

0-10% 40-50% 90-100%
Project life time

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

M
od

el
s
un

de
r
de
ve
lo
pm

en
t

(d)

Fig. 8 a Distribution of commits over a project’s lifetime. b the dis-
tribution of commits, that modify Simulink models over a project’s
lifetime. c The distribution of committed Simulink modifications over

a project’s lifetime. d The ratios of models under development over a
project’s lifetime. Note that a model will be counted in every bin from
its first commit till its last in (d)

The reported quantitative measures are calculated using
scripts thatwe developed as part of this study.We took several
countermeasures to rule out potential errors in these calcu-
lations. For those metrics already reported in the study of
Chowdhury et al. [15], which are based on a model corpus
that overlaps with ours, we have checked the plausibility and
were able to reproduce their results. Further, we used the
Matlab/API to parse the Simulink models, which prevents
errors introduced by other custom-built Simulink parsers.
We checked the results of our scripts on sample models of
the corpus to assure correctness. Since our automated check
on TargetLink and Embedded Coder usage did not result in
any findings, we used example models for code generation
provided by Matlab Simulink also. Our scripts successfully
detected indications of code generation in these models. For
the evolutionary metrics extracted from GitHub, we used an

established tool, namely PyDriller [56], to extract meta-data
from the commit history.

Additionally, in our analysis, we focused only on the infor-
mation that is provided directly in the Simulink models,
as it is also done in other studies [14,15,19,48]). However,
Simulink models can also reference Matlab code and func-
tions. Arguably, these are a part of the model, and most
repositories do not contain just Simulink models. The anal-
ysis of Matlab code was out of the scope of our study and
scripts. Our resultsmay be affected by this threat if, for exam-
ple, most of the complexity resides in the outsourced Matlab
code instead of the Simulink model.

The information presented in this study is limited to the
data available in the project repositories. To not miss any-
thing, we performed manual inspection of the models in a
open coding fashion [20] (cf. Sect. 4.3.1). However, if rel-

123

Characteristics, potentials, and limitations of open-source Simulink projects… 2125

evant information about the project is not reflected in the
repositories or their meta-information, we may have missed
it.

6.2 Construct validity

The construct validity concerns whether the study answers
the posed research questions.

We investigated the projects and models curated in our
corpus from three perspectives (context, size/organization,
and evolution). However, the project and model character-
istics explored for each of these perspectives are not meant
to be comprehensive. Though we selected these characteris-
tics based on existing guidelines for empirical research and
related work, future empirical studies may aim for different
characteristics that are not yet considered by our analysis.

Moreover, our classification scheme for RQ1 may be
incomplete. However, the main reason that projects could
not be assigned to a dedicated origin or application domain
was missing information. No additional category arose dur-
ing the discussion of the researchers who did the manual
classification.

Regarding the evolution of projects, we rely on the com-
mit history of GitHub. However, as with any repository, we
do not have further information regarding subordinate pro-
cessing of the models between commits or before the first
commit. Thus, we cannot assess whether there is an under-
lying modeling process apart from the explicit repository
commits. In particular, mainstream version control systems
such as GitHub are file-based and work on a textual or binary
representation of the managed artifacts, which is still consid-
ered an obstacle for the versioning of models. Thus, version
control systems are not as integrated into the development
process as it is the case for code-centric development.

6.3 External validity

The external validity pertains to the question to which extent
our results are generalizable. Raw data used in our study
are taken from a limited set of data sources, namely a pub-
licly available corpus of Simulink models and according
to meta-data extracted from the subset of GitHub projects
for answering RQ3. We did not do any systematic mining
of open-source platforms (e.g., GitHub, SourceForge, Bit-
Bucket) beyond the projects included in the corpus. More
specifically, we cannot claim that the analyzed corpus is
statistically representative for the population of all exist-
ing Simulink projects (not even for the publicly available
ones). The reader should have in mind that access to a com-
prehensive population list regarding all publicly available
open-source Simulink projects and models is impossible;
thus, we cannot infer that any accessible population is
“representative”. However, the selected corpus provides the

currently largest [14] and publicly available set of open
source Simulink models from hosts likeMathworks, Source-
Forge, GitHub, and other web pages, and it even includes two
other compiled corpora [9,34]. This makes us confident that
our results generalize to other open-source Simulink projects.

6.4 Conclusion validity

Conclusion validity pertains to the degree to which we can
be sure that our conclusions are reasonable.

Due to the lack of reliable indicators, our study does not
capture the intent behind creating a model, yielding a spec-
trum that heavily influences a model’s characteristics. On the
one hand of this spectrum, there are simple example mod-
els that are deliberately kept as tiny as possible, e.g., for
the sake of teaching. On the other hand of the spectrum,
some models are created to model a real-world system or
phenomenon, thus growing in size and complexity. Not dis-
tinguishing the models by their intent of creation may lead to
the fact that a few outliers dominate many of the aggregated
metrics presented in Table 1 at both ends of this spectrum.
A classification of the intent could help eliminate such out-
liers and get a better picture of the models within each intent
category. However, the aggregated values are not meant to
characterize a specific class of models, but are calculated for
characterizing our entire corpus.

Instead of the intent behind creating a model, we classi-
fied our projects and models according to their origin and
application domain (see Fig. 4.3.1), which we use to get an
overview of the characteristics in each of these categories
(see Fig. 6 and Fig. 7). The results may be biased by intents
not equally distributed over the models’ origins and applica-
tion domains. For example, by chance, it might be the case
that most of the models in one application domain are toy
examples created for the sake of teaching, while the models
in another domain are representing abstractions of real-world
systems. Again, a classification by intent could help to rule
out such undesired effects.

7 Discussion: suitability for empirical
research

In this section,we discuss our findings togetherwith the opin-
ion of a Simulink expert. The expert, a partner in the context
of a research project, has more than six years of experience
in developing a quality assurance and optimization tools for
Simulink models. In his work, he is confronted with many
Simulink models and projects in various stages of devel-
opment and from different application domains, including
the automotive, automation, and lift domains. Please note
that this consultation of an expert is not meant to be part of
our research methodology as the expressiveness of just one

123

2126 A. Boll et al.

expert’s opinion is somewhat limited. However, we included
the expert to help us form our interpretation less subjectively
and become more informed from a practitioner’s point of
view. The talk with the expert started with presenting our
results, followed by an open discussion on the project and
model characteristics. The goal was to get an expert opinion
on the general suitability of our corpus.

7.1 Suitability from the perspective of context

Although our corpus comprises Simulink projects of various
origins, most of them have an academic background (58%),
while only 13% originate from the industry. However,
Fig. 6a–c shows that models from academic and industrial
projects are not that different. Moreover, several differ-
ent application domains are represented within our corpus,
although the distribution is skewed toward the energy and
electronics domains while others are missing (e.g., defense
and automation).

According to the interviewed Simulink expert, the auto-
motive domain seems to be underrepresented within our
corpus. The expert was also surprised that we did not find
any indication of code generation in our models. According
to the practitioner experience, industrial models are usually
used for generating code, which is eventually deployed on
some hardware. The expert expected more models employ-
ing EmbeddedCoder. He assumes that TargetLink is not used
in the corpus’ models because it is too expensive for open-
source Simulink development.

In conclusion, our corpus does show some variation in
terms of the project context. However, the corpus should not
be used to compare characteristics between different domains
since not all domains are covered, and the distribution is
imbalanced. Additionally, the corpus is not suitable for stud-
ies on code generation since we found no evidence of code
generation capabilities in the projects.

7.2 Suitability from the perspective of model size
and organization

The Simulink expert reveals that most models in our corpus
are considerably smaller (median of 70 blocks per model)
than the average models from the industry (his estimation is
a median of about 1,000 blocks per model). Typical industry
models he analyzes consist of 200–2,000 blocks, only a few
exceed 20,000 blocks. Thus, the largest models in our corpus
are comparable to large models in the industry. The expert
also confirmed that the distribution of block types in our
corpus is similar to industrialmodels.Hewas surprised by the
ratio of blocks to the subsystem. In his opinion, this relation
indicates rather mature models in terms of modularization.

As presented in Sect. 5.2, the corpus’s diversity may
be useful for testing and validating tools or automated

approaches. The variety of models can cover a vast spectrum
of test cases. Further, for studies with more specific require-
ments toward certain model characteristics, the corpus can
be leveraged to produce a subset under the application needs
(e.g., only large models, only models with many subsystems,
exclusion of library models).

In terms of model size and organization, the corpus is
well suited for testing and evaluating tools. The enclosed
models exhibit a wide range of characteristics. The largest
ones are comparable to industry models in terms of size,
which is especially suitable for scalability and performance
tests. On the other hand, large models still are a minority.
Therefore, the corpus may not be suitable for applications
with especially high prerequisites concerning the amount of
data, e.g., machine-learning approaches.

7.3 Suitability from the perspective of project and
model evolution

Our corpus provides limitedopportunities to researchprojects
and model evolution. Only 35 of the 194 projects are hosted
on GitHub and offer the full project commit history. The
results presented in Sect. 5.3 show that most projects are
rather short-lived (<50 days) and are maintained by only one
developer. A low number of merge commits also indicates
little collaborative work available for analysis. However, a
few projects in our corpus provide opportunities to study
their evolution (e.g., in a case study research). For exam-
ple, a NASA project12 is active for 2,273 days, a Mathworks
Simulink tools project13 has 589 commits, and a driving chair
simulator14 has 16 developers. Moreover, with, on average,
44% of commits affecting models, the development of most
projects indeed focuses on Simulink models.

Despite the cases mentioned above, we conclude that
most projects are not suitable for empirical studies from an
evolutionary perspective, confirmed by the Simulink expert.
According to him, the evolution characteristics extracted
from GitHub do not mirror the evolution of industrial
Simulink projects. Typically, more developers are involved
in a project, and the number of commits steadily increases
towards the end of the project or a release.

8 Conclusions

In this paper, we collect and investigate a set of 1,734
freely available Simulink models from 194 projects and ana-
lyze their basic characteristics and suitability for empirical
research. Our analyses regarding project context, size and

12 https://github.com/nasa/T-MATS
13 https://github.com/analogdevicesinc/MathWorks_tools
14 https://github.com/Alexanderallenbrown/MotionBase/wiki

123

https://github.com/nasa/T-MATS
https://github.com/analogdevicesinc/MathWorks_tools
https://github.com/Alexanderallenbrown/MotionBase/wiki

Characteristics, potentials, and limitations of open-source Simulink projects… 2127

organization, and evolution have shown that the projects and
models are highly diverse in all aspects.

In principle, the models in our corpus are suitable for
empirical research. Depending on the research goals, the sub-
sets of the corpus might have to be selected. According to
the Simulink expert, many corpus models can be considered
mature enough for quality analysis purposes. Another use
case might be unit testing, as many test cases can be covered
with a diverse set of models. Generally, the usage of a pub-
licly availablemodel corpus or a subset enables researchers to
replicate findings, publish subsequent studies, and use them
for validation purposes.

For other kinds of empirical research, however, our cor-
pusmight be of limited value.Most industrymodels use code
generation at some development stage, which is not repre-
sented in the corpus at all. Domain-wise, the corpus is skewed
toward the energy sector. Run-time analysis with big models
(e.g., 100k blocks or more) is possible with only a few mod-
els. Many projects are no longer under active development
or maintenance, which may be necessary for testing up-to-
date Simulink versions and newer features or consulting the
developers involved in a Simulink project.

In the future, we want to investigate the models’ contents
and their evolution. To understand their basic characteristics,
most of our currentmetrics refer to themodels’ size and basic
organization within projects, which could be complemented
by structural complexity metrics or even qualitative analy-
ses in the future. The evolutionary characterization might
be worth examining content-related characteristics such as
structural differences between versions, complementing our
high-level analyses of the development history. Acquiring
a bigger set of Simulink projects from GitHub akin to the
method used in [52] promises to gain more generalizable
statements about RQ3.

Acknowledgements This work has been supported by the German
Ministry of Research and Education (BMBF) within project Simu-
Comp (Simulink Architecture Comprehension and Analysis) under
grant 01IS18091. Special thanks to Ferry Bachmann for helping us
with his expert knowledge. We also would like to thank the anonymous
reviewers for their critical reading and detailed feedback, which greatly
helped to improve and clarify this manuscript.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-

right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Amorim, T., Vogelsang, A., Pudlitz, F., Gersing, P., Philipps, J.:
Strategies and best practices for model-based systems engineering
adoption in embedded systems industry. In: 41st International Con-
ference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), pp. 203–212 (2019)

2. Badreddin, O., Lethbridge, T.C., Elassar, M.: Modeling practices
in open source software. In: E. Petrinja, G. Succi, N. El Ioini, A.
Sillitti (eds.) Open Source Software: Quality Verification (OSS),
pp. 127–139 (2013)

3. Balasubramaniam, B., Bagheri, H., Elbaum, S., Bradley, J.: Inves-
tigating controller evolution and divergence through mining and
mutation. In: 2020 ACM/IEEE 11th International Conference on
Cyber-Physical Systems (ICCPS), pp. 151–161. IEEE (2020)

4. Baltes, S., Ralph, P.: Sampling in software engineering research:
A critical review and guidelines. arXiv preprint arXiv:2002.07764
(2020)

5. Basili, V.R., Caldiera, G., Rombach, D.H.: TheGoalQuestionMet-
ric Approach, vol. I. John Wiley & Sons, London (1994)

6. Bertram, V., Maoz, S., Ringert, J.O., Rumpe, B., von Wenckstern,
M.: Component and connector views in practice: An experience
report. In: ACM/IEEE 20th International Conference on Model
Driven Engineering Languages and Systems (MODELS), pp. 167–
177 (2017)

7. Boll, A., Kehrer, T.: On the replicability of experimental tool
evaluations in model-based development. In: Babur, Ö., Denil, J.,
Vogel-Heuser, B. (eds.) Systems Modelling and Management, pp.
111–130. Springer International Publishing, Cham (2020)

8. Bourbouh, H., Garoche, P.L., Garion, C., Gurfinkel, A., Kahsai,
T., Thirioux, X.: Automated analysis of stateflow models. In: 21st
International Conference on Logic for Programming, Artificial
Intelligence and Reasoning (LPAR 2017), pp. 144–161 (2017)

9. Bourbouh, H., Garoche, P.L., Loquen, T., Noulard, É., Pagetti,
C.: CoCoSim, a code generation framework for control/command
applications an overview of CoCoSim for multi-periodic discrete
Simulink models. In: 10th European Congress on Embedded Real
Time Software and Systems (ERTS 2020) (2020)

10. Brambilla, M., Cabot, J., Wimmer, M.: Model-driven software
engineering in practice. Morgan & Claypool Publishers (2017)

11. Burden, H., Heldal, R., Whittle, J.: Comparing and contrasting
model-driven engineering at three large companies. In: ACM/IEEE
International Symposium on Empirical Software Engineering and
Measurement (ESEM), pp. 1–10 (2014)

12. Chowdhury, S.A.: Understanding and improving cyber-physical
system models and development tools. In: IEEE/ACM 40th Inter-
national Conference on Software Engineering: Companion (ICSE-
Companion), pp. 452–453 (2018)

13. Chowdhury, S.A., Mohian, S., Mehra, S., Gawsane, S., Johnson,
T.T., Csallner, C.: Automatically finding bugs in a commercial
cyber-physical system development tool chain with slforge. In:
IEEE/ACM 40th International Conference on Software Engineer-
ing (ICSE), pp. 981–992 (2018)

14. Chowdhury, S.A., Shrestha, S.L., Johnson, T.T., Csallner, C.:
SLEMI: Finding Simulink compiler bugs through equivalence
modulo input (EMI). In: Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering: Companion
Proceedings, ICSE ’20, p. 1–4.Association forComputingMachin-
ery, New York, NY, USA (2020)

15. Chowdhury, S.A., Varghese, L.S., Mohian, S., Johnson, T.T.,
Csallner, C.: A curated corpus of Simulink models for model-

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2002.07764

2128 A. Boll et al.

based empirical studies. In: IEEE/ACM 4th International Work-
shop on Software Engineering for Smart Cyber-Physical Systems
(SEsCPS), pp. 45–48 (2018)

16. Chung, E., Jensen, C., Yatani, K., Kuechler, V., Truong, K.N.:
Sketching and drawing in the design of open source software. In:
IEEE Symposium on Visual Languages and Human-Centric Com-
puting (VLHCC), pp. 195–202 (2010)

17. Cosentino, V., Cánovas Izquierdo, J.L., Cabot, J.: A systematic
mapping study of software developmentwithGitHub. IEEEAccess
5, 7173–7192 (2017)

18. Dajsuren, Y.: On the design of an architecture framework and
quality evaluation for automotive software systems. Ph.D. thesis,
Department of Mathematics and Computer Science, Technische
Universiteit Eindhoven (2015)

19. Dajsuren, Y., van den Brand, M.G., Serebrenik, A., Roubtsov, S.:
Simulink models are also software: Modularity assessment. In:
9th International ACM Sigsoft Conference on Quality of Software
Architectures (QoSA), pp. 99–106 (2013)

20. DeCuir-Gunby, J., Marshall, P., Mcculloch, A.: Developing and
using a codebook for the analysis of interview data: An example
from a professional development research project. Field Methods
J. 23, 136–155 (2011)

21. Ding, W., Liang, P., Tang, A., v. Vliet, H., Shahin, M.: How
do open source communities document software architecture: An
exploratory survey. In: 19th International Conference on Engineer-
ing of Complex Computer Systems (ICECCS), pp. 136–145 (2014)

22. Dyer, R., Nguyen,H.A., Rajan, H., Nguyen, T.N.: Boa:Ultra-large-
scale software repository and source-code mining. ACM Trans.
Softw. Eng. Methodol. 25(1), 1–34 (2015)

23. D’Ambros, M., Gall, H., Lanza, M., Pinzger, M.: Analysing soft-
ware repositories to understand software evolution. In: Software
evolution, pp. 37–67. Springer (2008)

24. Ernst, G., Arcaini, P., Donze, A., Fainekos, G., Mathesen, L.,
Pedrielli, G., Yaghoubi, S., Yamagata, Y., Zhang, Z.: Arch-comp
2019 category report: Falsification. In: ARCH@CPSIoTWeek, pp.
129–140 (2019)

25. de F. Farias, M.A., Novais, R., Júnior, M.C., da Silva Carvalho,
L.P., Mendonça, M., Spínola, R.O.: A systematic mapping study
onmining software repositories. In: 31st Annual ACMSymposium
on Applied Computing, pp. 1472–1479 (2016)

26. Getir, S., Grunske, L., van Hoorn, A., Kehrer, T., Noller, Y., Tichy,
M.: Supporting semi-automatic co-evolution of architecture and
fault tree models. J. Syst. Softw. 142, 115–135 (2018)

27. Hassan, A.E.: The road ahead for mining software repositories. In:
Frontiers of Software Maintenance, pp. 48–57. IEEE (2008)

28. Hebig, R., Ho-Quang, T., Chaudron, M.R.V., Robles, G., Fernán-
dez,M.A.:Thequest for open source projects that useUML:mining
GitHub. In: B. Baudry, B. Combemale (eds.) The ACM/IEEE 19th
International Conference onModel Driven Engineering Languages
and Systems (MODELS), pp. 173–183 (2016)

29. Herrmannsdoerfer, M., Ratiu, D., Wachsmuth, G.: Language evo-
lution in practice: The history ofGMF. In: International Conference
on Software Language Engineering (SLE), pp. 3–22. Springer
(2009)

30. Ho-Quang, T., Hebig, R., Robles, G., Chaudron, M.R., Fernan-
dez, M.A.: Practices and perceptions of UML use in open source
projects. In: IEEE/ACM39th InternationalConferenceonSoftware
Engineering: SoftwareEngineering inPracticeTrack (ICSE-SEIP),
pp. 203–212. IEEE (2017)

31. Hussain, A., Sher, H.A., Murtaza, A.F., Al-Haddad, K.: Improved
restricted control set model predictive control (ircs-mpc) based
maximum power point tracking of photovoltaic module. IEEE
Access 7, 149,422–149,432 (2019)

32. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.:
Empirical assessment of MDE in industry. In: 33rd International
Conference on Software Engineering (ICSE), pp. 471–480 (2011)

33. Jiang, Z., Wu, X., Dong, Z., Mu, M.: Optimal test case generation
for Simulink models using slicing. In: IEEE International Con-
ference on Software Quality, Reliability and Security Companion
(QRS-C), pp. 363–369 (2017)

34. Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Bench-
marks for model transformations and conformance checking. In:
1st InternationalWorkshop onApplied Verification for Continuous
and Hybrid Systems (ARCH) (2014)

35. Kagdi, H., Collard, M.L., Maletic, J.I.: A survey and taxonomy
of approaches for mining software repositories in the context of
software evolution. J. Softw. Maint. Evol. Res. Pract. 19(2), 77–
131 (2007)

36. Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German,
D.M., Damian, D.: The promises and perils of mining github.
In: 11th Working Conference on Mining Software Repositories
(MSR), pp. 92–101 (2014)

37. Kehrer, T., Kelter, U., Taentzer, G.: A rule-based approach to
the semantic lifting of model differences in the context of model
versioning. In: 26th IEEE/ACM International Conference onAuto-
mated Software Engineering, pp. 163–172. IEEE (2011)

38. Krippendorff, K.: Computing krippendorff’s alpha-reliability. Uni-
versity of Pennsylvania, Tech. rep (2011)

39. Langer, P., Mayerhofer, T., Wimmer, M., Kappel, G.: On the usage
of UML: Initial results of analyzing open UML models. In: H.G.
Fill, D. Karagiannis, U. Reimer (eds.) Modellierung, pp. 289–304
(2014)

40. Liggesmeyer, P., Trapp, M.: Trends in embedded software engi-
neering. IEEE Softw. 26(3), 19–25 (2009)

41. McCabe, T.J.: A complexity measure. IEEE Transactions on soft-
ware Engineering SE-2(4), 308–320 (1976)

42. Minh, V.T., Moustafa, A., Tamre, M.: Design and simulations of
dual clutch transmission for hybrid electric vehicles. Int. J. Electr.
Hybrid Veh. 9(4), 302–321 (2017)

43. Mohagheghi, P., Gilani, W., Stefanescu, A., Fernandez, M.A.: An
empirical study of the state of the practice and acceptance ofmodel-
driven engineering in four industrial cases. Empir. Softw. Eng.
18(1), 89–116 (2012)

44. Mussbacher, G., Amyot, D., Breu, R., Bruel, J.M., Cheng, B.H.C.,
Collet, P., Combemale, B., France, R.B., Heldal, R., Hill, J., Kien-
zle, J., Schöttle, M., Steimann, F., Stikkolorum, D., Whittle, J.:
The relevance of model-driven engineering thirty years from now.
In: J. Dingel, W. Schulte, I. Ramos, S. Abrahão, E. Insfran (eds.)
Model-Driven Engineering Languages and Systems (MODELS),
pp. 183–200 (2014)

45. Nassar, N., Kosiol, J., Kehrer, T., Taentzer, G.: Generating large
EMF models efficiently - A rule-based, configurable approach. In:
Fundamental Approaches to Software Engineering, Lecture Notes
in Computer Science, vol. 12076, pp. 224–244. Springer (2020)

46. Nguyen, H.L., Nassar, N., Kehrer, T., Grunske, L.: Mofuzz: A
fuzzer suite for testing model-driven software engineering tools.
In: 35th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), pp. 1103–1115. IEEE (2020)

47. Ohrndorf, M., Pietsch, C., Kelter, U., Grunske, L., Kehrer, T.:
History-based model repair recommendations. ACMTrans. Softw.
Eng. Methodol. 30(2) (2021)

48. Olszewska, M., Dajsuren, Y., Altinger, H., Serebrenik, A., Waldén,
M., van den Brand, M.G.: Tailoring complexity metrics for
Simulink models. In: Proccedings of the 10th European Confer-
ence on Software Architecture Workshops, pp. 1–7. Association
for Computing Machinery, New York, NY, United States (2016)

49. Petre, M.: UML in practice. In: International Conference on Soft-
ware Engineering (ICSE), pp. 722–731 (2013)

50. Ralph, P., Baltes, S., Bianculli, D., Dittrich, Y., Felderer, M., et al.:
ACM SIGSOFT empirical standards (2020)

51. Rao, A.C., Raouf, A., Dhadyalla, G., Pasupuleti, V.: Mutation
testing based evaluation of formal verification tools. In: Interna-

123

Characteristics, potentials, and limitations of open-source Simulink projects… 2129

tional Conference on Dependable Systems and Their Applications
(DSA), pp. 1–7 (2017)

52. Sanchez, B., Zolotas, A., Rodriguez, H.H., Kolovos, D., Paige, R.:
On-the-fly translation and execution of ocl-like queries onSimulink
models. In: ACM/IEEE 22nd International Conference on Model
Driven Engineering Languages and Systems (MODELS), pp. 205–
215 (2019)

53. Schultheiß, A., Bittner, P.M., Kehrer, T., Thüm, T.: On the use of
product-line variants as experimental subjects for clone-and-own
research: a case study. In: Proceedings of the 24thACMConference
on Systems and Software Product Line: Volume A, pp. 1–6 (2020)

54. Semeráth, O., Nagy, A.S., Varró, D.: A graph solver for the auto-
mated generation of consistent domain-specific models. In: 40th
International Conference on Software Engineering (ICSE), pp.
969–980 (2018)

55. Sen, S., Baudry, B., Mottu, J.M.: Automatic model generation
strategies for model transformation testing. In: International Con-
ference on Theory and Practice of Model Transformations, pp.
148–164. Springer (2009)

56. Spadini, D., Aniche, M., Bacchelli, A.: Pydriller: Python frame-
work formining software repositories. In: 26thACMJointMeeting
onEuropean Software EngineeringConference and Symposiumon
the Foundations of Software Engineering (ESEC/FSE), pp. 908–
911 (2018)

57. Stephan, M., Alalfi, M.H., Cordy, J.R.: Towards a taxonomy for
simulink model mutations. In: 2014 IEEE Seventh International
Conference on Software Testing, Verification andValidationWork-
shops, pp. 206–215 (2014)

58. Stol, K.J., Ali Babar, M.: Reporting empirical research in open
source software: The state of practice. In: C. Boldyreff, K. Crow-
ston, B. Lundell, A.I. Wasserman (eds.) Open Source Ecosystems:
Diverse Communities Interacting, pp. 156–169 (2009)

59. Stol, K.J., Fitzgerald, B.: The abc of software engineering research.
ACM Trans. Softw. Eng. Methodol. 27(3) (2018)

60. Störrle, H.: On the impact of size to the understanding of UML
diagrams. Software and Systems Modeling (SoSyM 17(1), 115–
134 (2018)

61. Svendsen, A., Haugen, Ø., Møller-Pedersen, B.: Synthesizing soft-
ware models: generating train station models automatically. In:
International SDL Forum, pp. 38–53. Springer (2011)

62. Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe,
M., Melton, H., Noble, J.: The qualitas corpus: A curated
collection of java code for empirical studies. In: 2010 Asia
Pacific Software Engineering Conference, pp. 336–345 (2010).
10.1109/APSEC.2010.46

63. Tomita, T., Ishii, D., Murakami, T., Takeuchi, S., Aoki, T.: A scal-
able monte-carlo test-case generation tool for large and complex
Simulink models. In: IEEE/ACM 11th International Workshop on
Modelling in Software Engineering (MiSE), pp. 39–46 (2019)

64. Vogelsang, A.: Feature dependencies in automotive software sys-
tems: extent, awareness, and refactoring. J. Syst. Softw. 160, 1–15
(2020)

65. Vogelsang, A., Eckhardt, J., Mendez, D., Berger, M.: Views on
quality requirements in academia and practice: commonalities, dif-
ferences, and context-dependent grey areas. Inf. Softw. Technol.
121, 106–253 (2020)

66. Völter,M., Stahl, T., Bettin, J., Haase,A.,Helsen, S.:Model-Driven
Software Development: Technology, Engineering, Management.
John Wiley & Sons, London (2013)

67. Williamson, D.F., Parker, R.A., Kendrick, J.S.: The box plot: a
simple visual method to interpret data. Ann. Intern. Med. 110(11),
916–921 (1989)

68. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B.,
Wesslén, A.: Experimentation in software engineering. Springer
Science & Business Media (2012)

69. Yazdi, H.S., Angelis, L., Kehrer, T., Kelter, U.: A framework for
capturing, statistically modeling and analyzing the evolution of
software models. J. Syst. Softw. 118, 176–207 (2016)

70. Yazdi, H.S., Mirbolouki, M., Pietsch, P., Kehrer, T., Kelter, U.:
Analysis and prediction of design model evolution using time
series. In: International Conference on Advanced Information Sys-
tems Engineering, pp. 1–15. Springer (2014)

71. Yazdi, H.S., Pietsch, P., Kehrer, T., Kelter, U.: Statistical analysis
of changes for synthesizing realistic test models. Software Engi-
neering 2013, (2013)

72. Yazdi,H.S., Pietsch, P.,Kehrer, T.,Kelter,U.: Synthesizing realistic
test models. Comput. Sci. Res. Dev. 30(3–4), 231–253 (2015)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Alexander Boll is a doctoral stu-
dent at Humboldt-Universität zu
Berlin and is part of the Model-
Driven Software Engineering
Group at the Department of Com-
puter Science since 2019. Before
that, he studied computer science
at Humboldt-Universität zu Berlin,
where he received his diploma
degree at the chair for theory of
programming. His research inter-
ests are Version Control Systems
and Open Science. Contact him
at boll@informatik.hu-berlin.de, or
visit https://www.informatik.hu-

berlin.de/de/forschung/gebiete/mse/mitarb/aboll

Florian Brokhausen is a research
associate at the Technische Uni-
versität Berlin at the department
of Fluid System Dynamics. He
received his M.Sc. in Automotive
Systems from the same university
and his B.Eng. from the Baden-
Wuerttemberg Cooperative State
University (DHBW). His research
interests include anomaly detec-
tion in cyber-physical systems,
data-driven water management and
the simulation of critical urban
infrastructure.

123

https://www.informatik.hu-berlin.de/de/forschung/gebiete/mse/mitarb/aboll
https://www.informatik.hu-berlin.de/de/forschung/gebiete/mse/mitarb/aboll

2130 A. Boll et al.

Tiago Amorim is a soon-to-be-
finished Ph.D. candidate at the
University of Cologne in Germany.
Before, he worked as a research
assistant at the Technical Univer-
sity of Berlin and the Fraunhofer
Institute for Experimental Soft-
ware Engineering, both in Ger-
many. He also has a double mas-
ter’s degree in software engineer-
ing from the Technical University
of Kaiserslautern in Germany and
the Blekinge Institute of Tech-
nology in Sweden. In his Ph.D.,
Tiago studies how organizations

can select Model-based Systems Engineering methods best aligned to
business goals and context and how they can adopt those methods
more efficiently. His research interests are process modeling, software
engineering, and empirical research.

Timo Kehrer is professor at
Humboldt-Universität zu Berlin,
heading the Model-Driven Soft-
ware Engineering Group at the
Department of Computer Science.
Before that, Kehrer was working
as research assistant in the Soft-
ware Engineering and Database
Systems Group at University of
Siegen from 2011 to 2015, and
as postdoctoral research fellow in
the Dependable Evolvable Perva-
sive Software Engineering Group
at Politecnico di Milano (Italy)
from 2015 to 2016. He has active

research interests in various fields of model-driven and model-based
software and system engineering, with a particular focus on
various phenomena of model evolution. Contact him at
timo.kehrer@informatik.hu-berlin.de, or visit https://www.informatik.
hu-berlin.de/de/forschung/gebiete/mse/mitarb/kehrerti.htmlpara

Andreas Vogelsang is full pro-
fessor forSoftware and Systems
Engineering at the University of
Cologne. He received a PhD from
the Technical University of
Munich. His research interests
comprise requirements engineer-
ing, model-based systems engi-
neering, and software architectures
for embedded systems. He has
published over 70 papers in inter-
national journals and conferences
such as TSE, SoSyM, IEEE Soft-
ware, and ICSE. In 2018, he was
appointed as Junior-Fellow of the

German Society for Informatics (GI). Further information can be
obtained from https://cs.uni-koeln.de/sse

123

https://www.informatik.hu-berlin.de/de/forschung/gebiete/mse/mitarb/kehrerti.htmlpara
https://www.informatik.hu-berlin.de/de/forschung/gebiete/mse/mitarb/kehrerti.htmlpara
https://cs.uni-koeln.de/sse

	Characteristics, potentials, and limitations of open-source Simulink projects for empirical research
	Abstract
	1 Introduction
	2 Model-based development with Simulink
	3 Related work
	3.1 Empirical studies on model characteristics
	3.2 Relevance of open source models for empirical research

	4 Study design
	4.1 Research objective
	4.2 Study subjects
	4.3 Data analysis
	4.3.1 RQ1: Project context
	4.3.2 RQ2: size and organization of Simulink models
	4.3.3 RQ3: project and model evolution

	5 Study results
	5.1 RQ1: Project context
	5.2 RQ2: model sizes and project organization
	5.3 RQ3: project and model evolution

	6 Threats to validity
	6.1 Internal validity
	6.2 Construct validity
	6.3 External validity
	6.4 Conclusion validity

	7 Discussion: suitability for empirical research
	7.1 Suitability from the perspective of context
	7.2 Suitability from the perspective of model size and organization
	7.3 Suitability from the perspective of project and model evolution

	8 Conclusions
	Acknowledgements
	References

