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Abstract The classic susceptible-infectious-recovered (SIR) model, has been used
extensively to study the dynamical evolution of an infectious disease in a large popu-
lation. The SIR-susceptible (SIRS) model is an extension of the SIR model to allow
modeling imperfect immunity (those who have recovered might become susceptible
again). SIR(S) models assume observed counts are “mass balanced.” Here, mass bal-
ance means that total count equals the sum of counts of the individual components
of the model. However, since the observed counts have errors, we propose a model
that assigns the mass balance to the hidden process of a (Bayesian) hierarchical SIRS
(HSIRS) model. Another challenge is to capture the stochastic or random nature of an
epidemic process in a SIRS. The HSIRS model accomplishes this through modeling
the dynamical evolution on a transformed scale. Through simulation, we compare the
HSIRS model to the classic SIRS model, a model where it is assumed that the observed
counts are mass balanced and the dynamical evolution is deterministic.

Keywords Mass balance · Disease dynamics · Epidemic model · Influenza · HSIRS

1 Introduction

A pandemic (e.g., caused by influenza viruses such as H1N1, H5N1) is an epidemic
of an infectious disease spreading through human populations across a large region
(e.g., Potter 2001). Recently, the risk of pandemic influenza has been a significant
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public-health concern, and much attention has been paid to achieve more precise and
timely estimates and predictions of influenza activity.

Compartment epidemic models, such as the susceptible-infectious-recovered (SIR)
model, have been widely used to study the dynamical evolution of an infectious disease
in a large population. The SIR model was first proposed by Kermack and McKendrick
(1927) to explain plague and cholera epidemics, and it was extended to the SIR-
susceptible (SIRS) model to allow imperfect immunity (Kermack and McKendrick
1932, 1933; Dushoff et al. 2004). Assume that at any given time t , a fixed population
can be split into three compartments: S(t) denotes the number of susceptibles; I (t)
denotes the number of infectious; and R(t) denotes the number of “recovereds” (which
includes deaths). Then in an SIRS model, the dynamical process is captured through
the following set of deterministic (i.e., non-stochastic) nonlinear ordinary differential
equations (ODEs):

dS

dt
= −βSI + φR, (1)

dI

dt
= βSI − γ I, (2)

dR

dt
= γ I − φR, (3)

In (1)–(3),β denotes the transmission rate (also referred as the contact or infection rate)
per unit time, which can be expressed as the fraction of contacts between susceptible
individuals and infectious individuals that result in an infection. Further, γ denotes
the rate of “recovery” per unit time, which is the rate at which infectious individuals
are removed from being infectious due to recovery (or death); then 1

γ
is the average

duration of the infectious period. Finally, φ denotes the rate of loss of immunity of
recovered individuals per unit time, which is the rate at which recovered individuals
become susceptible again (Anderson and May 1991; Hethcote 2000); then 1

φ
is the

average duration of the immunity period.
Notice that by adding Eqs. (1)–(3), we can obtain

dS

dt
+ dI

dt
+ dR

dt
= 0. (4)

Thus, the model postulates a fixed total population, N , without entry and exits of
demographic type (i.e, there are no births or deaths from causes other than the disease
itself). Clearly, it represents a short-term phenomenon where the total number of
people in all three compartments together is constant. Thus, (4) implies that for t in
an interval of R+,

S(t)+ I (t)+ R(t) = N . (5)

This assumption (5) is commonly referred to as mass balance (Reluga 2004). As
discussed above, the SIRS model in (1)–(3) assumes a fraction φ of members of the
recovered class can rejoin the susceptible class; the traditional SIR model is obtained
when φ = 0.
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A discretized version of (1)–(3) can be written as a set of deterministic difference
equations. That is, when time t is discrete (in units of Δ days),

S(t + 1) = S(t)− βS(t)I (t)Δ+ φR(t)Δ, (6)

I (t + 1) = I (t)+ βS(t)I (t)Δ− γ I (t)Δ, (7)

R(t + 1) = R(t)+ γ I (t)Δ− φR(t)Δ; (8)

and the discrete-time mass-balance constraint is,

S(t)+ I (t)+ R(t) = N , (9)

where here t = 1, 2, . . . , T .
In past decades, the deterministic SIR model and its various extensions (e.g., SIRS,

SIR including birth and death rates, migration, etc.), have been used extensively
for infectious-disease estimation and prediction in large and well mixed populations
(e.g., Schenzle 1984; Anderson and May 1991; Keeling and Rohani 2007). The classic
SIRS (CSIRS) model given by (1)–(3) or (6)–(8) is appealing because of its straight-
forward modeling strategy and its easily interpretable parameters. However, there are
various sources of uncertainty in the model: First, there is uncertainty in the counts
{S(t), I (t), R(t)} themselves; that is, the counts in the compartments are observed
with error. Second, the rather simple model (1)–(3) [or (6)–(8) in the discrete-time
setting] may not capture the uncertainties in the hidden dynamical epidemic process,
such as the uncertainties caused by the presence of heterogeneous populations; and
third, the values of the parameters β, γ , and φ are uncertain.

A variety of stochastic models have been developed recently, through a probabilistic
mechanism that involves a Markov chain of SIR states (e.g., Bailey 1975; Andersson
and Britton 2000; Allen 2003; Xu et al. 2007). Some more recent stochastic models
involve complex networks (e.g., Halloran et al. 2002; Zhou et al. 2006; Volz 2008)
or drug resistance (e.g., Chao et al. 2012) to avoid the assumption of homogenous
mixing. However, these stochastic models ignore the noisy nature of data, and they
apply mass balance to the observed counts rather than the true counts. Furthermore,
these models typically rely on many carefully chosen parameters, such as transmission
rates, recovery rates, and so forth in heterogeneous populations; uncertainty in where
the model’s parameter vector is located in the parameter space is not accounted for.
Our strategy is to deal with each source of uncertainty using a Bayesian hierarchical
statistical model, where the counts are observed with error and the dynamical evolution
embodied in (6)–(8) is stochastic.

Bayesian percolation models have proven popular for modeling spatio-temporal
dynamical processes (e.g., Catterall et al. 2012; Gibson et al. 2006) and have been
applied to epidemics (e.g., Cook et al. 2007), but they ignore the true process hidden
behind the noisy data. More recent Bayesian hierarchical models, which are widely
used for mapping non-infectious diseases, aim to capture the true spatial process
(e.g., Besag et al. 1991; Carlin and Banerjee 2002), but their process models and
parameter models are not appropriate for epidemics. Those that do have a dynamical
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spatial statistical component have not generally been parameterized in terms of the
interpretable components of the epidemic (e.g., Mugglin et al. 2002; Wood 2010).

Recently, partially observed nonlinear stochastic dynamical systems (also know as
partially observed Markov processes, or state-space models) have been used exten-
sively for infectious-disease estimation and prediction. A wide range of inference
techniques have been proposed and implemented in the R statistical language as part
of the package pomp (http://cran.at.r-project.org/web/packages/pomp/), such as non-
linear forecasting (e.g., Kendall et al. 1999, 2005), iterated filtering (Ionides et al.
2006; King et al. 2008; He et al. 2010), and approximate Bayesian particle filtering
(e.g., Liu and West 2001; Arulampalam et al. 2001; Dukić et al. 2012; Rasmussen
et al. 2011). Some more recent state-space models involve spatial components in the
dynamical process model (e.g., Patterson et al. 2008). Some of these models are not
appropriate for modeling epidemic flows (e.g., Kendall et al. 1999, 2005; Patterson
et al. 2008). Those that are extensions of classic compartment epidemic models (e.g.,
the SIR model and the SEIR model) and that do pay attention to the underlying true
process hidden behind the noisy data, either ignore the source of variation that captures
randomness in the (hidden) epidemic process (e.g., Rasmussen et al. 2011), or they do
not preserve the mass-balance property (e.g., Liu and West 2001; Dukić et al. 2012),
which may introduce biased results. Recent extensions to stochastic models with a
master equation have similar problems with mass balance (e.g., Alonso et al. 2007).

Notice that imposing the mass balance appropriately to improve accuracy of esti-
mating counts in all compartments is important. If one only pays attention to estimating
the infectious population (I) and ignores modeling the susceptible population (S) and
the recovered population (R) (for example, simply using a value of R from the literature
and letting S = N − I − R, as if it were observed), it may result in biased estimates
of important model parameters (e.g., the recovery rate γ ) and finally lead to bias in
the estimation of I. Further, bias in γ may lead to bias in the reproduction number,
R0 (defined in Sect. 4.1), which in turn may affect the estimate of the proportion of
susceptibles that need to be vaccinated to achieve “herd immunity” (Fine et al. 2011).
Accurate estimates to support public-health decisions are critical for disease control
and prevention.

In this article, we return to the classic SIRS (CSIRS) model (6)–(8) for motiva-
tion, and we propose a discrete-time, mass-balanced (Bayesian) hierarchical SIRS, or
HSIRS, model, which is based directly on counts and imposes mass balance appro-
priately on the underlying true counts, rather than on the observed counts. Our model
captures the randomness in the epidemic process by assuming that the dynamical
process occurs on a log-odds-ratio scale, transformed from the scale where the true
counts are mass-balanced. This new dynamical approach to infectious-disease model-
ing also shows how infectious diseases in heterogeneous populations could be modeled
hierarchically.

In Sect. 2, we propose the HSIRS model for infectious-disease data. The actual
computations associated with the posterior analysis involve local linearization of dif-
ference equations; see Sect. 3. In Sect. 4, we simulate in discrete time, a dataset from
the HSIRS model and from a CSIRS model that is modified to incorporate observa-
tion error, and then we infer all unknowns of the models through Markov chain Monte
Carlo (MCMC) analysis. Comparisons are given to CSIRS-model-based inference. In
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Sect. 5, we extend the example to a carefully designed simulation experiment with
sufficient replication to make definitive comparisons between the HSIRS model and
the CSIRS model. Discussion and conclusions are given in Sect. 6. Some technical
derivations are given in the “Appendices”.

2 Bayesian hierarchical statistical SIRS (HSIRS) model

We assume that there is a true (unobserved) process underlying the observed epidemic
counts, which we incorporate into the framework of a Bayesian hierarchical statistical
model. This typically consists of three components: the data model (i.e., the conditional
distribution of the data given hidden processes and parameters); the process model
(i.e., the conditional distribution of the hidden processes given parameters); and the
parameter model (i.e., the prior distribution of the parameters).

2.1 Data model

We model the raw counts directly rather than modeling the rates derived from the counts
(e.g., Dukić et al. 2012, use Gaussian distributions to model the rates) and assume that
the data model consists of (conditionally) independent Poisson distributions evolving
at discrete time points. That is, for time points t = 1, 2, . . . , T , in units ofΔ days, the
data model is

ZS(t)|PS(t) ∼ ind. Poisson(λN PS(t)), (10)

independent from
Z I (t)|PI (t) ∼ ind. Poisson(λN PI (t)), (11)

where ZS(t) and Z I (t) are the observed number of susceptible and infectious indi-
viduals at time t , respectively; “ind.” is shorthand for “independent”; λN denotes the
true total population count, and PS(t) and PI (t) are the underlying true rates of sus-
ceptible and infectious individuals at time t , respectively. Since λN is known from
demography and λN = ZS(t) + Z I (t) + Z R(t), then Z R(t) follows. Thus, the data
are {(ZS(t), Z I (t)) : t = 1, 2, . . . , T }.

2.2 Process model

Recall the discrete-time CSIRS model defined by (6)–(8), which assumes that mass
balance happens on the observed population. However, the appropriate place to model
mass balance is on the true (hidden) process. That is, for t = 1, 2, . . . T , we have

λS(t)+ λI (t)+ λR(t) = λN , (12)

where λS(t), λI (t), and λR(t) are the underlying true (but hidden) counts of suscep-
tible, infectious, and recovered individuals at time t , respectively. Now define the true
(hidden) rates, PS(t), PI (t), and PR(t), via
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λS(t) ≡ λN PS(t), (13)

λI (t) ≡ λN PI (t), (14)

λR(t) ≡ λN PR(t), (15)

where PR(t) denotes the underlying true rate of recovered individuals at time t . Then
by substituting (13)–(15) into (12), it is straightforward to see that the mass balance
in (12) can be rewritten as,

PS(t)+ PI (t)+ PR(t) = 1, (16)

and hence for t = 1, 2, . . . T ,

PR(t) = 1 − PS(t)− PI (t). (17)

Recall that the difference equations defined in (6)–(8) give easily interpretable dynam-
ics, in which individuals move from the susceptible state, to the infectious state, then to
the recovered state (and some individuals may become susceptible again). We wish to
model this “SIRS flow” on the hidden process where t is discrete (in units ofΔ days).
We do this by deriving a set of deterministic difference equations on λS(t), λI (t), and
λR(t). That is, for t = 1, 2, . . ., our process model is,

λS(t + 1) = λS(t)− βΔλS(t)λI (t)+ φΔλR(t), (18)

λI (t + 1) = λI (t)+ βΔλS(t)λI (t)− γΔλI (t), (19)

λR(t + 1) = λR(t)+ γΔλI (t)− φΔλR(t). (20)

In (18)–(20), the SIRS flow has been preserved, and the rate parameters β, φ, and γ
are in units of per day (d−1).

According to the definition of λS(t), λI (t), and λR(t) in (13)–(15), Eqs. (18)–(20)
can be rewritten in terms of the true proportions, PS(t), PI (t), and PR(t):

PS(t + 1) = PS(t)− βλN PS(t)PI (t)Δ+ φPR(t)Δ, (21)

PI (t + 1) = PI (t)+ βλN PS(t)PI (t)Δ− γ PI (t)Δ, (22)

PR(t + 1) = PR(t)+ γ PI (t)Δ− φPR(t)Δ. (23)

Deterministic equations, such as those in (21)–(23), are unable to capture the uncer-
tainties in the hidden epidemic model. Possible sources of uncertainty are the presence
of heterogeneous populations and the existence of other categories such as exposed
individuals. To handle the complexity while still preserving the mass balance, we
apply the logit transformation to the true rates, which changes the scale of variability
from [0, 1] to (−∞,∞). That is, for t = 1, 2, . . . , define

WS(t) ≡ log

(
PS(t)

PR(t)

)
, (24)

WI (t) ≡ log

(
PI (t)

PR(t)

)
, (25)
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where WS(t) and WI (t) are the log odds ratios of susceptible-over-recovered pop-
ulations, and infectious-over-recovered populations, respectively, at time t . On the
odds-ratio scale (W-scale), we construct the process model in terms of W(t) ≡
(WS(t),WI (t))′:

W(t + 1) = μW (t)+ ξ(t + 1), (26)

for discrete time t = 1, 2, . . . , in units of Δ days. We now discuss each of the
components of (26), in turn. The vector μW (t) ≡ (μW

S (t), μ
W
I (t))

′ is the dynamical
process that captures the temporal dependence. In “Appendix A.1”, we derive the
nonlinear dynamical structure of μW (t) using (21)–(25). This derivation retains the
SIRS flow on the hidden process; that is, for discrete time t = 1, 2, . . . , in units of
Δ days,

μW
S (t) = WS(t)

+ log

[
1 + φΔ

exp (WS(t))
− βλN exp (WI (t))Δ

1 + exp (WS(t))+ exp (WI (t))

]

+ log

[
1

1 + γ exp (WI (t))Δ− φΔ

]
,

(27)

μW
I (t) = WI (t)

+ log

[
1 − γΔ+ βλN exp (WS(t))Δ

1 + exp (WS(t))+ exp (WI (t))

]

+ log

[
1

1 + γ exp (WI (t))Δ− φΔ

]
,

(28)

where recall that β, γ , and φ, are the transmission rate, recovery rate, and loss-of-
immunity rate per day, respectively.

We denote the vector ξ(t) ≡ (ξS(t), ξI (t))′, to be the small-scale variation that
captures the uncertainties in the hidden epidemic process. For t = 1, 2, . . ., we define

ξ(t) ∼ MVN(0,Σξ (t)), (29)

a multivariate normal (MVN) distribution with mean 0 and diagonal covariance matrix
Σξ (t) ≡ diag(σ 2

ξS
(t), σ 2

ξI
(t)), with nonnegative variance components, σ 2

ξS
(t) and

σ 2
ξI
(t). For the sake of simplicity, in this article we assume that σ 2

ξS
(t) = σ 2

ξS
and

σ 2
ξI
(t) = σ 2

ξI
, for all t = 1, 2, . . .. Notice that the (negative) covariation of WS(t) and

WI (t) [defined in (24) and (25)] due to the mass-balance constraint in (16) has been
structured through the covariance of the nonlinear dynamical process μW (t). There-
fore, it is reasonable to assume that Σξ (t), which is the covariance of the conditional
distribution, [W(t + 1)|μW (t)], has a diagonal structure. Also notice that we can still
preserve mass balance while adding the small-scale variation, ξ(t), on the W-scale,
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because the mass balance is preserved when

PS(t) = exp(WS(t))

1 + exp(WS(t))+ exp(WI (t))
,

PI (t) = exp(WI (t))

1 + exp(WS(t))+ exp(WI (t))
,

PR(t) = 1

1 + exp(WS(t))+ exp(WI (t))
.

Finally, notice that these equations do not put a constraint on the range of the values
WS(t) and WI (t), so adding the error vector ξ(·) in (26) will not destroy the balance.
However, if an error vector is added directly on the P-scale, the mass balance constraint
(16) is difficult to retain.

The strategy of transforming from the hidden proportion scale (P-scale) to the
hidden log-odds-ratio scale (W-scale) and adding the small-scale variation on the W-
scale rather than on the P-scale, is key to retaining the mass-balance constraint while
allowing flexible SIRS flow to be handled. To our knowledge, this is a new approach
to infectious-disease modeling; other Bayesian approaches (e.g., Dukić et al. 2012)
do not preserve mass balance after building uncertainties into the process model.

2.3 Parameter model

To complete the model, we now specify the joint prior distribution for the parameters,
which includes the transmission rate per unit time, β; the rate of recovery per unit
time, γ ; the loss-of-immunity rate per unit time, φ; and variance components, {σ 2

ξS
}

and {σ 2
ξI

}. Notice that the difference equations in (6)–(8) impose a natural constraint
on β; that is, for any time t = 1, 2, . . .,

βS(t)I (t) ≤ N − (1 − φ)R(t), (30)

because the number of individuals that become infectious at a certain time t should
be less than or equal to the total number that could be infected at that time. Hence,

0 ≤ β ≤ N − (1 − φ)R(t)

S(t)I (t)
. (31)

In the context of the HSIRS model, this amounts to ensuring that β is bounded above
by a hyperparameter, βmax. Furthermore, it is straightforward to see that γ ∈ [0, 1]
and φ ∈ [0, 1], due to their definition. Typically, information about the recovery rate
γ is easier to obtain than the other rate parameters; we apply a logit transformation
to γ ,

θγ ≡ log

(
γ

1 − γ

)
, (32)

and assign a Gaussian prior to θγ .
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Assuming statistical independence of parameters and using [Y ] as generic notation
for the probability distribution of Y , we assume that the parameter model can be
written as [

β, θγ , φ, σ
2
ξS
, σ 2
ξI

]
= [β][θγ ][φ][σ 2

ξS
][σ 2

ξI
], (33)

where we specify the prior distributions of individual parameters as follows:

β ∼ Uniform[0, βmax ],
θγ ∼ Normal(μθγ , σ

2
θγ
),

φ ∼ Uniform[0, 1],
σ 2
ξS

∼ Inverse Gamma
(
aξS , bξS

)
,

σ 2
ξI

∼ Inverse Gamma
(
aξI , bξI

)
.

Notice that the uniform distributions on β and φ could easily be replaced by the very
flexible Generalized Beta distributions on their supports.

In practice, the hyperparameter βmax could be data-driven using (31):

βmax ≡ min
t

(
λN − Z R(t)

ZS(t)Z I (t)

)
, (34)

where
Z R(t) = max {1, λN − ZS(t)− Z I (t)} . (35)

The hyperparameterμθγ could be data-driven through the inverse relationship between
recovery rate and the mean duration of the infectious period for individuals (e.g.,
Lloyd 2001), which is about 3 days for common influenzas (Centers for Disease
Control; http://www.cdc.h1n1flu/recommendations.htm). In our case, we use μθγ =
log(0.33/(1−0.33)) = −0.708, withσ 2

θγ
= 0.01. The other hyperparameters, namely,

aξS , bξS , aξI , and bξI , need to be specified; for example, the choice, aξS = aξI = 0.25
and bξS = bξI = 0.4, results in a fairly vague prior for the variance components.

3 W-scale approximations for the HSIRS model

Here, we derive a calibrated approximation to the nonlinear W-scale process in the
HSIRS model. From “Appendix A.2”, for t = 1, 2, . . ., Eq. (26) in the HSIRS model
can be approximated by

W(t + 1) = μLW (t)+ ζ (t + 1), (36)

where recall that W(t) ≡ (WS(t),WI (t))′ is the true log-odds-ratio vector.
The vector ζ (t) ≡ (ζS(t), ζI (t))′ in (36) is the small-scale-variation vector that

captures the uncertainties in the epidemic process as well as the higher-order terms
in the Taylor-series expansions. For t = 1, 2, . . ., we assume a Multivariate Normal
(MVN) distribution,

ζ (t) ∼ MVN
(
0,Σζ (t)

)
, (37)
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where Σζ (t) ≡ diag
(
σ 2
ζS
(t), σ 2

ζI
(t)
)

is the covariance matrix of ζ (t), and σ 2
ζS
(t) and

σ 2
ζI
(t) are nonnegative variance-component parameters. Typically, the components of

Σζ (t) are larger than the respective components of Σξ (t), because {ζ (t)} also captures
the higher-order terms left after matching the linear approximation.

In (36), the vector μLW (t) ≡ (μLW
S (t), μLW

I (t))′ is a linear dynamical process
derived through Taylor-series expansions that approximates the nonlinear stochastic
process μW (t) defined in (27)–(28). From “Appendix A.2”, for t = 1, 2, . . .,

μLW
S (t) = J0(t)+ J1(t)WS(t)+ J2(t)WI (t), (38)

μLW
I (t) = J3(t)+ J4(t)WS(t)+ J5(t)WI (t), (39)

where

J0(t) ≡ log Â1(t)+ 1

Â1(t)
+ φ

[
exp( Â5(t))(1 − Â5(t))

Â1(t)
+ 1

Â2(t)

]
Δ

− βλN

Â1(t)

(
1 − 1

1 − Â7(t)
+ B0(t)+ Â7(t)

(1 − Â7(t))2

)
Δ

− log Â2(t)− 1

Â2(t)
− γ

Â2(t)
eÂ6(t)(1 − Â6(t))Δ, (40)

J1(t) ≡ 1 −
φexp

(
Â5(t)

)
Δ

Â1(t)
− βλN B1(t)Δ

Â1(t)(1 − Â7(t))2
, (41)

J2(t) ≡ − βλN B2(t)Δ

Â1(t)(1 − Â7(t))2
− γ eÂ6(t)Δ

Â2(t)
, (42)

J3(t) ≡ log Â3(t)+ 1 − γΔ

Â3(t)
+ βλNΔ

Â3(t)(1 − Â10(t))
− βλN (B3(t)+ Â10(t))Δ

Â3(t)(1 − Â10(t))2

− log Â2(t)− 1

Â2(t)
− γ eÂ6(t)(1 − Â6(t))Δ

Â2(t)
+ φΔ

Â2(t)
, (43)

J4(t) ≡ −βλN B4(t)Δ

Â3(t)(1 − Â10(t))2
, (44)

J5(t) ≡ 1 − βλN B5(t)Δ

Â3(t)(1 − Â10(t))2
− γ eÂ6(t)Δ

Â2(t)
. (45)
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Also,

B0(t) ≡ eÂ4(t)(1 − Â4(t))B
∗(t), (46)

B1(t) ≡ eÂ5(t)+ Â4(t)(1 − Â4(t))

(1 − Â9(t))2
− eÂ4(t)B∗(t), (47)

B2(t) ≡ eÂ4(t)B∗(t), (48)

B3(t) ≡ eÂ4(t)(1 − Â4(t))+ eÂ5(t)(1 − Â5(t)), (49)

B4(t) ≡ −eÂ4(t) − eÂ5(t), (50)

B5(t) ≡ eÂ4(t), (51)

where

B∗(t) = 1

1 − Â9(t)
+

eÂ5(t)
(

Â5(t)− 1
)

− Â9(t)

(1 − Â9(t))2
, (52)

and { Â j (t) : j = 1, . . . , 10} are discussed below.
Notice that by combining Eqs. (36)–(52), we are able to write W(t + 1) given by

(36) in a multivariate autoregressive form:

W(t + 1) = C(t)+ H(t)W(t)+ ζ (t + 1), (53)

where C(t) ≡ (J0(t), J3(t))′ and the 2 × 2 matrix H(t) is

H(t) ≡
(

J1(t) J2(t)
J4(t) J5(t)

)
.

The general idea behind (38)–(39) is to use Âi (t), i = 1, . . . , 10, as an initialization
of the Taylor-series expansion of the nonlinear process μW (t) in (26). Formulas for
Âi (t) and the quantity Ai (t) that it approximates are given in Table 1. In practice, we
use empirical values obtained from data {ZS(t)} and {Z I (t)} to obtain Âi (t) close to
Ai (t), where from Table 1 {Ai (t) : i = 1, . . . , 10} are nonlinear components in the
HSIRS model. From the transformation in (24) and (25), we can obtain

λN PS(t) = λN exp(WS(t))

1 + exp(WS(t))+ exp(WI (t))
,

λN PI (t) = λN exp(WI (t))

1 + exp(WS(t))+ exp(WI (t))
,

λN PR(t) = λN

1 + exp(WS(t))+ exp(WI (t))
.

Now λN PS(t), λN PI (t), and λN PR(t) are the means of {ZS(t)}, {Z I (t)}, and
{Z R(t)}, and hence the values in the column “Initializations ( Â(t))” in Table 1 are
reasonable choices for { Âi (t)}. If data are not available at some time point, we obtain
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Table 1 Table of the initializations { Âi (t) : i = 1, . . . , 10} and the quantities {Ai (t) : i = 1, . . . , 10} that
they approximate

Value Initializations ( Â(t)) Nonlinear components in HSIRS

A1(t) 1 + Δφ0 Z R (t)
ZS (t)

−Δβ0 Z I (t) 1 + Δφ

eWS (t)
− ΔβλN eWI (t)

1+eWS (t)+eWI (t)

A2(t) 1 +Δγ0
Z I (t)
Z R (t)

−Δφ0 1 +Δγ eWI (t) −Δφ

A3(t) (1 −Δγ0)+Δβ0 ZS(t) (1 −Δγ )+ ΔβλN eWS (t)

1+eWS (t)+eWI (t)

A4(t) log Z I (t)
ZS (t)

(WI (t)− WS(t))

A5(t) −log ZS (t)
Z R (t)

−WS(t)

A6(t) log Z I (t)
Z R (t)

WI (t)

A7(t) − Z I (t)
(Z N −Z I (t))

− e(WI (t))

(1+e(WS (t)))

A8(t) − ZS (t)
Z R (t)

−e(WS (t))

A9(t) − Z R (t)
ZS (t)

−e(−WS (t))

A10(t) − Z N −ZS (t)
ZS (t)

−(1+e(WI (t)))

e(WS (t))

{ Âi (t)} in Table 1 by replacing the observed data {ZS(t)} and {Z I (t)} with the pre-
dicted counts provided by a simple model, such as the CSIRS model. The goal is to
obtain { Âi (t)} as close as possible to {Ai (t)}.

In Table 1, β0, γ0, and φ0 are initial values of β, γ , and φ, respectively, which
are used to enhance the Taylor-series expansions. We use values obtained from the
CSIRS model (e.g., Anderson and May 1991; Wearing et al. 2005; Burr and Chowell
2006) for β0, γ0, and φ0. Further details of implementation can be found in Sect. 4.3.
We performed sensitivity studies and noticed that the Markov chain Monte Carlo
(MCMC) based on this linear approximation is not sensitive to the initializations (even
in forecasting), because the small-scale-variation vector in (36) can absorb the higher-
order terms in the Taylor-series expansion (e.g., Cressie and Wikle 2011, Section
7.3.3). Like the data model, the parameter model is unchanged, except that subscript
ξ is replaced with subscript ζ ; see Sect. 2.3 for details.

Finally, the approximate HSIRS model, which we call the ASIRS model, consists
of the data model defined in (10)–(11), the linear dynamical process model for {W(t)}
defined in (36), and the parameter model defined in (33) with ξ replaced by ζ . Because
of its computational efficiency, the ASIRS model is used in the MCMC algorithm that
produces our posterior analysis.

4 Posterior analysis of a simulated epidemic

4.1 Simulated data

In this section, an epidemic is simulated from each of two processes meant to mimic an
H1N1 outbreak in Franklin County, Ohio. The two datasets are from an HSIRS model
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(defined in Sect. 2) and a modified-CSIRS model (defined below), which we refer to
as the HSIRS dataset and the modified-CSIRS dataset, respectively. Henceforth, the
time step of the difference equations is Δ = 1 day. Notice that for epidemics with a
different developing time step, the value of Δ could be easily adjusted according to
the infectious nature of the underlying virus.

4.1.1 The HSIRS dataset

For simulating the HSIRS dataset from the HSIRS model, we select γ ∗ = 0.33 per
day as the true value of γ , since there is an inverse relationship between γ and mean
duration of the infectious period (the inverse relation between rate and average dura-
tion is due to the assumption that recovery is a process with constant intensity, that
is, a constant rate per unit of time, which implies a negative exponential density);
this is about 3 days for common influenza (Centers for Disease Control; http://www.
cdc.h1n1flu/recommendations.htm). Furthermore, in epidemiology, the basic repro-
duction number, R0, is defined as the number of secondary infections caused by a
single infective, introduced into a population made up entirely of susceptible indi-
viduals, over this individual’s course of the infection. Therefore, R0 can be obtained
by

R0 = βλN

γ
. (54)

Typically, R0 has a value between 1 and 2 for new strains of Influenza A in human
communities (e.g., Anderson 2006). Therefore, since λN = 1,068,978 in the 2000
Census in Franklin County, Ohio, and γ ∗ = 0.33, if we select β∗ = 5.1 ∗ 10−7 as
the true value of β, then we obtain R0 ≈ 1.65 to mimic a pandemic flu. Further-
more, for illustration, we simply assume φ∗ = 0.05, which is a typical value of loss
of immunity for pandemic strains used in the long-term period (e.g., Bansal et al.
2010).

We now turn to the components of variance. Recall that the signal-to-noise ratio
(SNR) can be defined as

SNR ≡ μ

σ
, (55)

where μ is the signal mean and σ is the standard deviation of the noise. We denote
SNRWS (t) and SNRWI (t) to be the SNR for the log odds ratios WS(t) and WI (t),
respectively, at time t . Then, for t = 1, 2, . . . , T + F , we have

SNRWS (t) ≡ μW
S (t)

σξS (t)
, (56)

SNRWI (t) ≡ μW
I (t)

σξI (t)
, (57)

where the right-hand sides of (56) and (57) are given by (27)–(29), and the time points
T + 1, . . . , T + F represent a forecast period of F days.
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As a baseline at time t = 1, we assume the rates of susceptible and infectious
individuals, namely, P∗

S (1) and P∗
I (1) to be 0.94 and 0.01, respectively. Hence,

μW∗
S (1) = log

(
0.94

1 − 0.94 − 0.01

)
= 2.934, (58)

μW∗
I (1) = log

(
0.01

1 − 0.94 − 0.01

)
= −1.609, (59)

which results in

μW∗(1) =
(
μW∗

S (1), μW∗
I (1)

)′ = (2.934,−1.609)′,

the initial mean of the hidden log-odds-ratio vector, W(1).
For the simulated epidemic, we assume that the true values of SNR at time t = 1

are

SNR∗
WS
(1) = SNR∗

WI
(1) = 15.

More choices of SNR are discussed in Sect. 5. Then from (56)–(57), we have

σ 2
ξS
(1) = (2.934/15)2 = 0.038, (60)

σ 2
ξI
(1) = (−1.609/15)2 = 0.012. (61)

Recall that we assume σ 2
ξS
(t) = σ 2

ξS
and σ 2

ξI
(t) = σ 2

ξI
, for t = 1, 2, . . .. Therefore,

from (60) to (61) we select σ 2∗
ξS

= 0.038, σ 2∗
ξI

= 0.012, as the true values of σ 2
ξS

and

σ 2
ξI

, respectively, and we write Σ∗
ξ ≡ diag(σ 2∗

ξS
, σ 2∗
ξI
).

We simulate daily data for T + F = 45 days, where T = 35 and F = 10. Specifi-
cally, for t = 1, we simulate

W(1) ∼ MVN
(
μW∗(1),Σ∗

ξ

)
; (62)

then for t = 2, . . . , 45, we simulate {W(t)} using (26) and obtain {P(t)} using trans-
formations defined by (78)–(79) in “Appendix A.1”. Finally, we generate observed
counts of susceptible and infectious individuals, {ZS(t)} and {Z I (t)}, from the Pois-
son distribution defined in (10)–(11), conditional on {P(t)}. These counts, {ZS(t)} and
{Z I (t)}, represent the HSIRS dataset.

4.1.2 The modified-CSIRS dataset

Before we illustrate the procedure for generating the modified-CSIRS dataset, we first
define the modified-CSIRS model. Recall that the CSIRS model is deterministic, which
we now modify to incorporate uncertainty in the observations and in the parameters.
Specifically, the modified-CSIRS model is a hierarchical statistical model that consists
of a data model defined by (10)–(11), a deterministic process model defined by the
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CSIRS model in (21)–(23), and a parameter model. That is, for t = 1, 2, . . . , in units
of Δ days, the modified-CSIRS model can be written as:

Data model:

ZS(t)|λS(t) ∼ ind. Poisson(λN PS(t)),

Z I (t)|λI (t) ∼ ind. Poisson(λN PI (t)).

Process model:

PS(t + 1) = PS(t)− βλN PS(t)PI (t)Δ+ φPR(t)Δ,

PI (t + 1) = PI (t)+ βλN PS(t)PI (t)Δ− γ PI (t)Δ,

PR(t + 1) = PR(t)+ γ PI (t)Δ− φPR(t)Δ.

Parameter model:
[β, γ, φ] = [β][γ ][φ].

In this hierarchical statistical model, recall that ZS(t) and Z I (t) are the observed
susceptible and infectious counts, respectively; PS(t), PI (t), and PR(t) are the hid-
den true proportions; β, γ , and φ are transmission rate, recovery rate, and loss-of-
immunity rate, respectively, per day; andΔ is the time step. As specified at the begin-
ning of this section, Δ = 1. Notice that in the modified-CSIRS model, the process
model is deterministic and does not capture any uncertainty in the hidden epidemic
process.

For simulating the modified-CSIRS dataset from the modified-CSIRS model, we
likewise simulate daily data for T + F = 45 days, where T = 35 and F = 10. For
the unknown parameters, β, γ , and φ, we select the same values in Sect. 4.1.1, and
we select the same starting proportions, P∗

S (1) = 0.94 and P∗
I (1) = 0.01. Then for

t = 2, . . . , 45, we simulate {P(t)} from the deterministic process defined in (21)–(23);
and finally we generate {ZS(t)} and {Z I (t)} using the Poisson distribution defined in
(10)–(11), conditional on {P(t)}. These counts, {ZS(t)} and {Z I (t)}, represent the
modified-CSIRS dataset.

Notice that the HSIRS dataset mimics noisy observations from an epidemic with
uncertainties in the underlying epidemic process, whereas the modified-CSIRS dataset
mimics noisy observations from a deterministic epidemic process. Although for each
dataset, we simulated data for T + F = 45 days, when we fit models, we assume that
data are only available on the first T = 35 days and are missing in the last F = 10 days.
Thus, we can assess the performance of these models on forecasting, by comparing
their forecasts of λS(t) and λI (t) to the true values known from simulation.

Figure 1a–d show the daily observed susceptible counts {ZS(t)} and infectious
counts {Z I (t)}, for each of the two datasets, as a function of time (for all 45 days). We
use the vertical line on each plot to emphasize that we assume data are only available
for the first T = 35 days. Comparing these plots, we can clearly see that the epidemic
patterns in the modified-CSIRS dataset (Fig. 1c, d) are much smoother than those in
HSIRS dataset. In general, the two datasets suggest similar epidemic patterns in the
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Fig. 1 Plots of counts {Z(t)} for the HSIRS and the modified-CSIRS datasets as a function of time. The
left-hand plots a and c show {Zs (t)}, and the right-hand plots b and d show {Z I (t)}. The vertical line in
each plot emphasizes that for the analysis the data are only available on days 1–35, and they are missing
on day 36–45. a HSIRS dataset, b HSIRS dataset, c modified-CSIRS dataset, d modified-CSIRS dataset

45 days. That is, both of them indicate clearly an epidemic between day 15 and day 40,
and the infectious population reaches its peak in the period between day 20 and day 30.

4.2 Fitting the HSIRS model

As mentioned in Sect. 3, we derive a well calibrated Gaussian linear process (the
ASIRS model) to approximate the nonlinear W-scale process in the HSIRS model,
which improves computational efficiency in posterior analysis and forecasting. Recall
that within the 45-day study period, data are only available on the first T = 35 days
and are missing for the last F = 10 days.

Based on the ASIRS model specified in Sect. 3, the joint posterior distribution of
all “unknowns” is proportional to a product of the data model, the process model, and
the parameter model. Notice that {WS(t)} and {WI (t)} are transformations of {PS(t)}
and {PI (t)}, and hence the conditioning in the data model can be equivalently written
in terms of W(t). Therefore, combining Eqs. (78)–(79) in “Appendix A.1”, the data
model given by (10) and (11) can be written as follows: For t = 1, . . . , T ,

ZS(t)|W(t) ∼ ind. Poisson

(
λN exp(WS(t))

1 + exp(WI (t))+ exp(WS(t))

)
,

Z I (t)|W(t) ∼ ind. Poisson

(
λN exp(WI (t))

1 + exp(WI (t))+ exp(WS(t))

)
.
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Therefore, the joint posterior distribution of all unknowns is

[
β, θγ , φ, σ

2
ζS
, σ 2
ζI
, {WS(t)}, {WI (t)}|ZS(1), . . . , ZS(T ), Z I (1), . . . , Z I (T )

]

× ∝
T∏

t=1

[ZS(t)|WS(t),WI (t)] ·
T∏

t=1

[Z I (t)|WS(t),WI (t)] · [WS(1),WI (1)|σ 2
ζS
, σ 2
ζI

]

×
(

T +F∏
t=2

[WS(t),WI (t)|β, θγ , φ,WS(t−1),WI (t−1), σ 2
ζS
, σ 2
ζI

]
)

· [β][θγ ][φ][σ 2
ζS

][σ 2
ζI

],
(63)

where at t = 1, W(1) ≡ (WS(1),WI (1))′ has distribution,

W(1)|σ 2
ζS
, σ 2
ζI

∼ MVN
(
μW (1),Σζ

)
,

and recall that Σζ = diag(σ 2
ζS
, σ 2
ζI
).There is strong prior information on what happens

at t = 1, which allows the hyperparameter μW (1) to be specified. For example, in
Sect. 4.1, we specify it as,

μW (1) = μW∗(1) ≡ (2.934,−1.609)′.

(Recall from Sect. 4.1 that μW∗(1) is the initial mean of the log-odds-ratio vector
used for simulating the data.) The parameter model defined in Sect. 2.3 consists of
independent prior distributions on each parameter. Regarding the parameter-model
specification for Σζ , we specify fairly vague priors for σ 2

ζS
and σ 2

ζI
by choosing inde-

pendent Inverse Gamma distributions with hyperparameters, aζS = aζI = 0.25, bζS =
bζI = 0.4. Recall from Sect. 2.3 that we also specify β ∼ Uniform(0, βmax ), where
βmax is given by (34); θγ ∼ Normal(0.33, 0.01); φ ∼ Uniform[0, 1].

Even based on the ASIRS model, the posterior distribution is not available ana-
lytically, owing to a normalizing constant that cannot be obtained in closed form.
However, we can sample from the posterior distribution using a Markov chain Monte
Carlo (MCMC) algorithm with a Gibbs sampler that incorporates Metropolis–Hastings
steps where necessary (e.g., Waller et al. 1997). These are based on full conditional
distributions that are given in “Appendix A.3”.

The MCMC algorithm draws samples, cyclically from each full conditional distrib-
ution, conditioning on the most recent samples drawn from the other full conditionals.
This iterative procedure defines a Markov chain whose stationary distribution is the
joint distribution of all the unknowns given the data (i.e., the posterior distribution).
Hence, after a “burn-in” number of iterations, we obtain samples from the posterior dis-
tribution. Notice that in our case, except for [σ 2

ζS
|rest] and [σ 2

ζI
|rest], which follow the

Inverse Gamma distributions, and [WS(t),WI (t)|rest] for t > T , which follow a Mul-
tivariate Normal (MVN) distribution (in “Appendix A.3”, we define “rest” to represent
all other unknowns as well as the data {ZS(1), . . . , ZS(T )} and {Z I (1), . . . , Z I (T )}),
the full conditional distributions of all the other unknowns cannot be simulated directly,
and so Metropolis–Hastings updates are applied (e.g., Robert and Casella 2004).
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Fig. 2 Trace plots for the case AH: a trace plot for β; b trace plot for γ ; c trace plot for σ 2
ζS

; d trace plot for

σ 2
ζI

; e trace plot for φ. Red lines in plots a–e indicate the true values of the parameters used for simulating

the HSIRS dataset, namely, β∗, γ ∗, σ 2∗
ξS
, σ 2∗

ξI
, and φ∗, respectively. (Color figure online)

4.3 Posterior analysis and forecasting

4.3.1 Posterior analysis based on the HSIRS model

For the purpose of comparison, we fit the approximate HSIRS (i.e., ASIRS) model to
each of the two datasets, and we refer to them as:

– case AH: fit the ASIRS model to the HSIRS dataset
– case AM: fit the ASIRS model to the modified-CSIRS dataset

For each of these two cases, we ran an MCMC chain of 30,000 iterations. After a
burn-in of 3,000 iterations, we obtained a total of 27,000 samples from the poste-
rior distribution for each case listed above. Notice that this is not a particle-filtering
approach in which new data are used to update current and past posteriors, so avoiding
the need to re-run the MCMC.

Figure 2 shows the posterior behavior of β, γ, σ 2
ζS
, σ 2

ζI
, and φ, for the case AH.

Similar figures are obtained for the case AM (not shown). The posterior median, mean,
variance, and 95 % Bayes credible interval (95 % CI) for parameters in each of the two
cases are shown in Tables 2 and 3. For both cases, we can see that, except for γ (recall
that θγ in the tables is the logit transformation of γ ), the posteriors for the parameters
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Fig. 3 Prior (red line) and Posterior (histogram) distributions of β for a case AH; b case AM. In each plot,
blue dashed lines indicate 95 % posterior credible intervals; the green solid line indicates the true value.
(Color figure online)

are much tighter than the priors. See also Fig. 3, which shows the prior and posterior
distributions of β (chosen as a representative parameter) for both cases. Hence, there
is substantial learning about these parameters, but there is almost no learning for γ
because it already has a tight prior.

Because the data are simulated, we have the opportunity to compare the posterior
samples with the true values. As mentioned in Sect. 4.1, for both datasets, we use
β∗ = 5.1 ∗ 10−7, γ ∗ = 0.33, and φ∗ = 0.05, as the true values of the transmission
rate, the recovery rate, and the loss-of-immunity rate, respectively (in units of per day).
Tables 2 and 3 show that ASIRS, the (approximate) hierarchical model, performs well
to recover these parameters, and the posterior 95 % CIs ofβ andφ are much tighter than
those of their priors. (The parameter for γ already has a tight prior, and its posterior
hardly changes.) Figure 2a, b, e show the true values of the three parameters as red
lines for the case AH. We find the agreements are excellent, especially for β and γ .
The same conclusions hold for the case AM (not shown).

Recall that the HSIRS dataset has uncertainties associated with the hidden epidemic
process, and we selected σ 2∗

ξS
= 0.038, σ 2∗

ξI
= 0.012 as the true values of the small-

scale variance components. Tables 2 and 3 indicate that when fitting the ASIRS model
to the HSIRS dataset (case AH), the posterior samples of the small-scale variances in
the ASIRS model (i.e., σ 2

ζS
and σ 2

ζI
) tend to be quite a bit larger than these values. These

results are expected since, as explained in Sect. 3, the small-scale variation terms in
the ASIRS model have the flexibility to capture higher-order terms not included in the
linear approximations.

To assess the general performance of the ASIRS model to approximate the HSIRS
model, we use a discrepancy measure, as described in Cressie and Wikle (2011),
Section 2.2.2, due to Gelman et al. (1996). Based on a given discrepancy measure, we
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obtain a posterior predictive p value and perform a diagnostic procedure to determine
whether the model fits the data.

Specifically, for the kth sample from the MCMC, k = 1, . . . ,m = 27,000, we
define a discrepancy measure, ψ

(
Z;λ(k)

)
, as follows:

ψ
(

Z;λ(k)
)
≡

T∑
t=1

[
Z(t)−E

(
Z(t)|λ(k)(t)

)]′ (
Σ
(k)
Z (t)

)−1 [
Z(t)−E

(
Z(t)|λ(k)(t)

)]
,

(64)

where λ(k)(t) ≡
(
λ
(k)
S (t), λ(k)I (t)

)′
denotes the vector of true counts at time t for the

kth MCMC sample, and

λ
(k)
S (t) ≡ λN P(k)S (t), (65)

λ
(k)
I (t) ≡ λN P(k)I (t). (66)

Recall that we assume data are only available on the first T = 35 days for each of
the two datasets. Based on the Poisson data model defined in (10)–(11) and on the
definitions of λ(k)(t) in (65) and (66),

(
Σ
(k)
Z (t)

)
≡ diag

(
λ
(k)
S (t), λ(k)I (t)

)
,

represents the data model’s covariance matrix, and hence (64) take the form of a Wald
statistic. Furthermore, for t = 1, . . . , T , if we use Zrep(t) to denote an independent
replicate of the data, then the posterior-predictive distribution of Zrep(t) can be defined
as (Gelman et al. 1996),

[
Zrep(t)|Z(t)

] =
∫ ∫ [

Zrep(t)|{W(t)},Θ] [{W(t)},Θ|Z(t)] d{W(t)}dΘ(t),

(67)
where

Θ ≡ {β, γ, φ, σ 2
ζS
, σ 2
ζI

}.

Thus, for the kth sample, Z(k)rep(t) is drawn from the posterior distribution[
Zrep(t)|Z(t)

]
, t = 1, . . . , T , and we obtain the discrepancy measureψ

(
Z(k)rep;λ(k)

)
by replacing Z in (64) with Z(k)rep(t) defined in (67). Therefore, the replicates,

{Z(1)rep(t),Z(2)rep(t), . . . ,Z(m)rep},

should “look like” the data Z(t) if the model is appropriate. Based on this idea, we
can apply posterior-predictive diagnostics in the case AH and the case AM. Since the
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Fig. 4 Scatter plot of ψ
(

Z;λ(k)
)

versus ψ
(

Z(k)rep;λ(k)
)

for the case AH

HSIRS dataset is simulated from the HSIRS model, we can also assess the perfor-
mances of the ASIRS model to approximate the HSIRS model.

The posterior predictive p value can be obtained as below (Gelman et al. 1996):

Pr
(
ψ(Zrep;λ) ≥ ψ(Z;λ)

) = 1

m

m∑
k=1

I
[
ψ
(

Z(k)rep;λ(k)
)

≥ ψ
(

Z;λ(k)
)]
, (68)

where I(·) denotes an indicator function.
Based on (68), we obtain the posterior predictive p values for the case AH, to be

0.458; hence, there is no striking evidence for a lack of model fit when fitting the
ASIRS model to the HSIRS dataset. This conclusion is further supported by Fig. 4,

which plots ψ
(

Z(k)rep;λ(k)
)

against ψ
(
Z;λ(k)

)
for the case AH; there is no striking

departure from the 45-degree line. Indeed, the same is true for the case AM, and
we conclude that there is no evidence for lack of fit for the ASIRS model when
fitted to either dataset. That is, the ASIRS model appears to have considerable
flexibility.

4.3.2 Comparisons of the fitted ASIRS model and the fitted CSIRS model

We now fit the (discrete-time) CSIRS model to each of the two simulated datasets
described in Sect. 4.1. In practice, estimates of β, γ , and φ, denoted as β̂, γ̂ , and φ̂,
are needed in order to solve for {S(t)} and {I (t)} in Eqs. (6)–(8). Here, we minimize
the sum of squares between the estimated and observed infectious counts over time
(e.g., Anderson and May 1991; Wearing et al. 2005; Burr and Chowell 2006). That is,
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(β̂, γ̂ , φ̂) = arg min
(β,γ,φ)

[
T∑

t=1

(
Î (t;β, γ, φ)− Z I (t)

)2
]
, (69)

where Î (t;β, γ, φ) is the deterministic estimate of infectious counts at time t , obtained
after substitutingβ, γ , andφ into Eqs. (6)–(8). Recall that here T = 35, and also notice
that these least squares estimates, β̂, γ̂ , and φ̂, are the values selected in Sect. 3 for
the initial MCMC values (denoted β0, γ0, and φ0, there.) Finally, the CSIRS forecasts
are given by (6)–(8) for t = T + 1, . . . , T + F; using obvious notation, they are
{Ŝ(t; β̂, γ̂ , φ̂) : t = T + 1, . . . , T + F}, { Î (t; β̂, γ̂ , φ̂) : t = T + 1, . . . , T + F}, and
{R̂(t; β̂, γ̂ , φ̂) : t = T +1, . . . , T +F}, where T = 35 and F = 10. For t = 1, . . . , T ,
the observed counts are considered to be the CSIRS-predicted counts.

Now, for the HSIRS model (approximated by ASIRS), the appropriate predictions
are obtained from posterior inference on λS(t), and λI (t), for the entire study period
t = 1, . . . , T, T + 1, . . . , T + F , but based only on data from t = 1, . . . , T . The
Bayesian predictions are actually given for PS(t) and PI (t); then to obtain ASIRS-
predicted counts, Eqs. (13)–(15) along with mass balance given by (17) are used.

In the infectious-disease setting, the number of infectious individuals is one of the
most important quantities of interest. The estimated trajectories given in Fig. 5 show
infectious counts for the entire 45-day study period, obtained by fitting the ASIRS
model and the CSIRS model to each of the two datasets. These are compared to the
true (hidden) values of infectious counts. Consider the modified-CSIRS dataset: upon
inspection of Fig. 5b, we see that both models can capture the overall epidemic pattern
very well, not only during the first 35 days when data are available, but also in the last
10 days when there are no data. Now consider the HSIRS dataset: when the underlying
epidemic process has stochastic components, the disadvantage of the CSIRS model
becomes apparent; upon inspection of Fig. 5a, estimates from fitting the CSIRS model
are oversmoothed, even on the days when data are available. In contrast, the agreement
between the true value and the posterior median of {λI (t)}, obtained from fitting the
ASIRS model, is excellent when data are available. On the last 10 days when there
are no data, the hierarchical model is able to predict the general downward trend at
the end of the epidemic process; however, the CSIRS model is unable to deal with
the uncertainties, mistakenly forecasting that the epidemic is maintained in the last
10 days.

Another disadvantage of the CSIRS model is that it is unable to provide any uncer-
tainty measures to accompany its deterministic-modeling strategy. In contrast, when
fitting the hierarchical model, we can obtain uncertainty measures for any quantity
of interest, based on its posterior distribution. For example, Fig. 6 shows 0.025, 0.25,
0.5, 0.75, 0.975 quantiles of posterior distributions of the hidden infectious counts,
λI (t), during the forecasting period {T + 1, . . . , T + F}. We can see that in all cases,
the posterior 50 % CI of λI (t) obtained from fitting the ASIRS model, cover the true
values at all times.

Now consider the susceptible counts. Figures 7 and 8 clearly indicate that the ASIRS
model performs better than the CSIRS model, when fitting to the HSIRS dataset.

The analyses given in this section illustrate the advantages and the practicalities
associated with a hierarchical statistical approach to inferring the dynamical evolution
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Fig. 5 Estimated infectious counts obtained from fitting the ASIRS model and the CSIRS model to the
HSIRS and modified-CSIRS datasets, as a function of time. The vertical line in each plot emphasizes that
data are only available on days 1–35, and that they are missing on days 36–45. The blue solid line is the
posterior median of {λI (t)} obtained from the ASIRS model. The black thin line is the estimate of the
infectious counts from the CSIRS model. The pink stars give the true infectious counts. a Results based on
HSIRS dataset (infectious), b results based on modified-CSIRS dataset (infectious). (Color figure online)

of an infectious disease. In the next section, we confirm those inferential advantages
through a simulation experiment.

5 A simulation experiment

In this section, a simulation experiment is presented to compare the performances of the
HSIRS model (actually, the approximative ASIRS model) and the CSIRS model using
design-based criteria under various factor combinations (i.e., a factorial experimental
design), assuming that data are from an HSIRS model (defined in Sect. 2). That is, the
processes {W(t)} and {P(t)} are simulated according to (26) and (78)–(79), from which
the data processes {ZS(t)} and {Z I (t)} are simulated from the Poisson distributions
defined in (10)–(11), conditional on {P(t)}. As in Sect. 4.1.1, we set the true values
of the parameters in (26) as (γ ∗ = 0.33, φ∗ = 0.05), and we simulate the baseline
W(1) from (62) with μW∗(1) = (2.934,−1.609). The baseline small-scale variation
Σ∗
ξ in (62), the values of T and F , and the parameter β in (26) are chosen in ways

that relate to factors in the experiment and will be described in Sect. 5.1. For each of
the factor combinations, we simulate L = 100 replications.
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Fig. 6 Posterior quantiles of
{λI (t)} for the infectious
population, obtained from the
ASIRS model during the
forecasting period from days 36
to 45 (based on data from day 1
to day 35, from the respective
datasets). Lines (from bottom to
top) indicate the 0.025, 0.25, 0.5,
0.75 and 0.975 quantiles, and
pink stars give the true values of
{λI (t)}. a Case AH forecasting
(infectious), b case AM
forecasting (infectious). (Color
figure online)

Fig. 7 Estimated susceptible counts obtained from fitting the ASIRS model and the CSIRS model to the
HSIRS and modified-CSIRS datasets, as a function of time. The vertical line in each plot emphasizes that
data are only available on days 1–35, and that they are missing on days 36–45. The blue solid line is the
posterior median of {λS(t)} obtained from the ASIRS model. The black thin line is the estimate of the
infectious counts from the CSIRS model. The pink stars give the true susceptible counts. a Results based on
HSIRS dataset (susceptible), b results based on modified-CSIRS dataset (susceptible). (Color figure online)
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Fig. 8 Posterior quantiles of
{λS(t)} for the susceptible
population, obtained from the
ASIRS model during the
forecasting period from day 36
to day 45 (based on data from
day 1 to day 35, from the
respective datasets). Lines (from
bottom to top) indicate the
0.025, 0.25, 0.5, 0.75 and 0.975
quantiles, and pink stars give the
true values of {λS(t)}. a Case
AH forecasting (susceptible),
b case AM forecasting
(susceptible). (Color figure
online)

5.1 Factors of the simulation experiment

Four factors are considered in this simulation experiment: fitted model (FM) is a
factor that compares the HSIRS model and the CSIRS model; in the terminology of
experimental design, this is considered the “treatment.” Three other factors related to
the data-generating schemes are also included; these are data information (DI), small-
scale variation (SV), and transmission rate (TR). The details of these four factors are
now presented.

Fitted Model (FM)

The factor FM h as two levels, where FM=0 represents the CSIRS model and FM=1
represents the HSIRS model. The HSIRS model is specified by (10), (11), and (26) in
Sect. 2, and by (78), (79), and (80) in “Appendix A.1”. The CSIRS model is specified
by (6)–(8) in Sect. 1.

Data Information (DI)

Two different levels of DI are considered. One is where there are data for 15 days
(DI=0), and the other for 35 days (DI=1). In each situation, we perform forecasting
for up to 10 days beyond the last day where there were data. The choice of 15 days
(DI=0) was based on CDC’s response to the 2009 H1N1 pandemic. According to
“The 2009 H1N1 Pandemic: Summary Highlights, April 2009–April 2010” (CDC:
http://www.cdc.gov/h1n1flu/cdcresponse.html), an H1N1 infection was first detected
in the US in a 10-year-old patient in California on April 15, 2009; 15 days later, that
is, on April 29, 2009, WHO raised the influenza pandemic alert from phases 4 to 5,
signaling that a pandemic was imminent. We selected 35 days (DI=1) because, in
retrospect, the 2009 H1N1 pandemic took 35 days to develop from the time the first
case occurred in Mexico (Fig. 9, from “Outbreak of Swine-Origin Influenza A (H1N1)
Virus Infection—Mexico, March–April 2009”;
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Fig. 9 A figure from “Outbreak of Swine-Origin Influenza A (H1N1) Virus Infection—Mexico, March–
April 2009,” Centers for Disease Control and Prevention (CDC)

CDC: http://www.cdc.gov/mmwR/preview/mmwrhtml/mm58d0430a2.html).

Small-scale Variation (SV)

Two different levels of SV are considered. Recall the definitions of signal-to-noise
ratios, SNRWS (t) and SNRWI (t), in Eqs. (56) and (57) in Sect. 4.1.1. These are put
equal to each other, and the two levels are SNR=15 (SV=0) and SNR=5 (SV=1).
Consider the initial time t = 1. Then for SV=0,

SNRWS (1) = SNRWI (1) = 15;

hence (60)–(61) gives σ 2
ξS
(1) = 0.038, σ 2

ξI
(1) = 0.012. For SV = 1,

SNRWS (1) = SNRWI (1) = 5;

then from (56) to (57), we have

123

http://www.cdc.gov/mmwR/preview/mmwrhtml/mm58d0430a2.html


Bayesian hierarchical statistical SIRS models 629

σ 2
ξS
(1) = (2.934/5)2 = 0.344,

σ 2
ξI
(1) = (−1.609/5)2 = 0.104.

To control this factor in the simulation, we assume henceforth that σ 2
ξS
(t) ≡ σ 2

ξS
(1)

and σ 2
ξI
(t) ≡ σ 2

ξI
(1), for t = 1, 2, . . .. Therefore, SV=0 represents {σ 2

ξS
(t) =

0.038, σ 2
ξI
(t) = 0.012, SNR=15}, and SV=1 represents {σ 2

ξS
(t) = 0.344, σ 2

ξI
(t) =

0.104, SNR=5}.

Transmission Rate (TR)

Two levels of the transmission rate (TR) per unit time are considered: β = 3.3958 ×
10−7 (TR =0) and β = 5.8654 × 10−7 (TR =1). These two levels of β result in
the basic reproduction number R0 = 1.1 and 1.9, respectively, given by Eq. (54).
According to Anderson (2006), R0 usually has a value between 1 and 2 for new
strains of influenza in the human community. Therefore, by selecting these two levels
of TR, we are aiming to mimic scenarios with small and large transmission rates,
respectively, but still within the usual range.

5.2 Results of the simulation experiment

In order to compare the approximate HSIRS model and the CSIRS model, we define
a response variable based on the empirical mean squared prediction error (MSPE) in
each simulation run: Let T O denote the times at which data are observed, and let T M

denote the times at which data are missing; note that in our case, T M is a 10-day fore-
cast period that follows T O . Let PX (t, l) denote the l-th simulated realization of the
underlying true rate of the population in subgroup X [see Eqs. (13)–(15) for the defin-
ition of “true rate”]; in our case, X denotes either the susceptible (S) or the infectious
(I) population. Let P̂X (t, l) denote a generic predictor of PX (t, l). Note that PX (t, l)
contains the same information as λX (t, l), which denotes the l-th realization of the
simulated true counts for the population in subgroup X , since λX (t, l) = λN PX (t, l)
and λN is a known constant total population. Then we define

MSPE X (T
∗, l) ≡ 1

|T ∗|
∑
t∈T ∗

(
P̂X (t, l)− PX (t, l)

)2 ; l =1, . . . , L , (70)

where T ∗ = T O or T M , |T ∗| is the number of days in the time period T ∗, and L is
the total number of simulation runs for each of the factor combinations in this study.
The bias of the predictor can be studied through,

B I ASX (T
∗, l) ≡ 1

|T ∗|
∑
t∈T ∗

(
P̂X (t, l)− PX (t, l)

)
; l = 1, . . . , L . (71)

We performed an analysis of variance (ANOVA) to investigate which factors are
important and under which scenarios the approximate HSIRS model provides sub-
stantial improvement over the CSIRS model. First, we consider MSPE. Because of
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Fig. 10 Boxplots of differences,
{

MSPEC
S (T

∗, l)1/4 − MSPE H
S (T

∗, l)1/4 : l = 1, . . . , L
}

, for the sus-

ceptible population, at given levels of DI (Data Information), TR (Transmission Rate), and SV (Small-scale
Variation). Left panels T ∗ = T O ; right panels T ∗ = T M . Upper panels DI=0; lower panels DI=1. The x
axis labels are ‘ab’, where ‘a’ (=0 and 1) represents the level for the factor TR, and ‘b’ (=0 and 1) represents
the level for the factor SV. The triangles show the mean of the differences

the skewness and mean-variance dependence in {MSPE X (T ∗, l)}, we use a fourth-
root transformation to transform the response (Cressie et al. 2010). The boxplots in
Figs. 10 and 11 show that the distributions of the differences between the fourth-root
transformations (superscripts “C” and “H” denote, respectively, analysis under the
CSIRS model and under the approximate HSIRS model):

{
MSPEC

X (T
∗, l)1/4−MSPE H

X (T
∗, l)1/4 : l =1, . . . , L; X = S, I ; T ∗ =T O , T M

}
,

is suitable for a classical ANOVA. We then define

AY
X (T

∗) ≡ avel

{
MSPE X (T

∗, l)1/4
}

; X = S, I ; Y = C, H ; T ∗ = T O , T M , (72)

where the average is taken over L = 100 replications for each of the factor combina-
tions. We construct the “response” variable of the ANOVA study as AC

X (T
∗)−AH

X (T
∗),

for X = S and I . These paired comparisons will tell us for which factor combina-
tions the approximate HSIRS model shows improvement over the CSIRS model.
Four ANOVAs showing up to two-way interactions are reported in Tables 4, 5, 6
and 7; they are based on the response variables, AC

S (T
O) − AH

S (T
O), AC

S (T
M ) −

AH
S (T

M ), AC
I (T

O)− AH
I (T

O), and AC
I (T

M )− AH
I (T

M ), respectively.
Table 4 gives the paired-comparison ANOVA for the infectious population, for

T ∗ = T O . It indicates that the main effect of the small-scale variation factor, SV,
explains over 65 % of the variability in the response. We also find that the difference,
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Fig. 11 Boxplots of differences,
{

MSPEC
I (T

∗, l)1/4 − MSPE H
I (T

∗, l)1/4 : l = 1, . . . , L
}

, for the infec-

tious population, at given levels of DI (Data Information), TR (Transmission Rate), and SV (Small-scale
Variation). Left panels T ∗ = T O ; right panels T ∗ = T M . Upper panels given DI=0; lower panels given
DI=1. The x axis label ‘ab’, where ‘a’ (=0 and 1) represents the level for the factor TR; and ‘b’ (=0 and
1) represents the level for the factor SV. The triangles show the mean of the differences

Table 4 Analysis of variance (ANOVA) on AC
S (T

O )− AH
S (T

O ) up to two-way interactions

Source DF SS MS F value

DI 1 0.014403 0.014403 9,040.97

SV 1 0.04542 0.04542 28,511.79

TR 1 0.005874 0.005874 3,686.90

DI × SV 1 0.001107 0.001107 694.92

DI × TR 1 0.001098 0.001098 689.03

SV × TR 1 0.000171 0.000171 107.24

Residuals 1 0.000002 0.000002

Total 7 0.06808

Relatively large F values are highlighted in italics
DF degrees of freedom, SS sums of squares, MS mean squares, F value F statistic

AC
S (T

O)−AH
S (T

O), increases by 83 % when SV=1, relative to its value when SV=0.
The remaining variability is mostly explained by the main effects of DI and TR.
Figure 12 supports the results shown in Table 4, where the red and blue lines show that
the SV–TR, SV–DE, and TR–DI interactions for AC

S (T
O)−AH

S (T
O) are not obvious.

Moreover, from Fig. 12, we see that for all factor combinations, the approximate HSIRS
model always outperforms the CSIRS model, for T ∗ = T O , since the responses are
always greater than zero. Notice that they increase as data information becomes longer
(DI=1), as SNR becomes smaller (SV=1), and as the transmission rate becomes
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Table 5 Analysis of variance (ANOVA) on AC
I (T

O )− AH
I (T

O ) up to two-way interactions

Source DF SS MS F value

DI 1 0.0013685 0.0013685 45.2129

SV 1 0.0076848 0.0076848 253.8924

TR 1 0.0071008 0.0071008 234.5970

DI × SV 1 0.0000914 0.0000914 3.0193

DI × TR 1 0.0001487 0.0001487 4.9117

SV × TR 1 0.0001683 0.0001683 5.5596

Residuals 1 0.0000303 0.0000303

Total 7 0.01659275

Relatively large F values are highlighted in italics
DF degrees of freedom, SS sums of squares, MS mean squares, F value F statistic

Table 6 Analysis of variance (ANOVA) on AC
S (T

M )− AH
S (T

M ) up to two-way interactions

Source DF SS MS F value

DI 1 0.0040394 0.0040394 7.18

SV 1 0.0008263 0.0008263 1.47

TR 1 0.0001459 0.0001459 0.26

DI × SV 1 0.0000168 0.0000168 0.03

DI × TR 1 0.0001824 0.0001824 0.32

SV × TR 1 0.0008041 0.0008041 1.43

Residuals 1 0.0005623 0.0005623

Total 7 0.006577339

Relatively large F values are highlighted in italics
DF degrees of freedom, SS sums of squares, MS denotes mean squares, F value F statistic

Table 7 Analysis of variance (ANOVA) on AC
I (T

M )− AH
I (T

M ) up to two-way interactions

Source DF SS MS F value

DI 1 0.00001648 0.00001648 0.10

SV 1 0.00011556 0.00011556 0.71

TR 1 0.00021602 0.00021602 1.33

DI × SV 1 0.00016583 0.00016583 1.02

DI × TR 1 0.00005301 0.00005301 0.33

SV×TR 1 0.00067383 0.00067383 4.15

Residuals 1 0.00016244 0.00016244

Total 7 0.001403168

Relatively large F values are highlighted in italics
DF degrees of freedom, SS sums of squares, MS denotes mean squares, F value F statistic
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Fig. 12 Plots showing interaction for the susceptible population, between SV (Small-scale Variation) and
TR (Transmission Rate), between SV and DI (Data Information), and between TR and DI in the ANOVA
of AC

S (T
∗) − AH

S (T
∗) (red and blue lines T ∗ = T O ; green and black lines T ∗ = T M ). (Color figure

online)

larger (TR =1), which are all reasonable results that match our intuition. Clearly, as
more variability is introduced into the pandemic and its observed counts, the relative
inability of the CSIRS model to handle it becomes more obvious.

Table 5 gives the paired-comparison ANOVA for the infectious population, again for
T ∗ = T O . It indicates that SV and TR are the two most important factors; their main
effects together explain over 89 % of the variability in the response. By investigating
the main effects of SV and TR, we find that the difference, AC

I (T
O) − AH

I (T
O),

increases by 85 % when SV=1, relative to its value at SV=0; and it increases by
81 % when TR =1, relative to its value at TR=0. The pattern is broadly consistent with
that for the susceptible population, and the responses increase when data information
become longer (DI=1), as we expect. These results are supported further by Fig. 13,
where the red and blue lines show the SV–TR, SV–DI, and TR–DI interactions for
AC

I (T
O) − AH

I (T
O); it again indicates no evident interactions. Importantly, Fig. 13

shows that for T ∗ = T O and all factor combinations, the approximate HSIRS model
outperforms the CSIRS model.

Forecasting in the period T M is of more interest, so we turn our attention to the
susceptible populations, Table 6, and the ANOVA of AC

S (T
M )− AH

S (T
M ). It indicates

that DI is the most dominant, which explains over 60 % of the variability in the
response. We also find that the difference, AC

S (T
M )− AH

S (T
M ), increases by 145 %

when DI=1, relative to its value when DI=0. The remaining variability is mostly
explained by the main effect of SV and its interaction with TR. The green and black
lines in Fig. 12 show the SV–TR, SV–DE, and TR–DI interactions for AC

S (T
M ) −

AH
S (T

M ). It supports the results shown in Table 6, namely that the SV–TR interaction
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Fig. 13 Plots showing interaction for the infectious population between SV (Small-scale Variation) and
TR (Transmission rate), between SV and DI (Data Information), and between TR and DI in the ANOVA
of AC

I (T
∗) − AH

I (T
∗) (red and blue lines: T ∗ = T O ; green and black lines: T ∗ = T M ). (Color figure

online)

is more evident than the other two interactions. We see that when TR =0, the value of
AC

S (T
M )− AH

S (T
M ) increases substantially when the SNR becomes smaller (SV=1),

in contrast to very little change between the two levels of SV when TR =1. From
Fig. 12, the values of AC

S (T
M ) − AH

S (T
M ) are always greater than zero, and they

increase as SNR becomes smaller (SV=1) or as data information becomes longer
(DI=1), which matches our intuition. This again indicates that for the susceptible
population, the approximate HSIRS model always outperforms the CSIRS model
holding all other factors the same, even though the difference is not as pronounced as
during the period T O . Since forecasting is inherently difficult, this is not surprising.

Table 7 gives the paired-comparison ANOVA for the infectious population in the
period T M : the SV–TR interaction has the largest impact on the response and explains
about 50 % of the variability. The main effects of TR, SV, and the SV–DI interaction
explain most of the remaining variation. These results are supported further by Fig. 13,
where the green and black lines show the SV–TR, SV–DI, and TR–DI interactions
for AC

I (T
M ) − AH

I (T
M ). We see that the SV–TR interaction is similar to that for

the susceptible population, but it is more evident, because when TR =1, the value of
AC

I (T
M )− AH

I (T
M ) decreases as SNR becomes smaller (SV=1). A similar pattern

is seen for the DI–SV interaction; however, the DI–TR interaction is not as evident as
the other two interactions. Notice that at both levels of DI, the values of AC

I (T
M )−

AH
I (T

M ) are larger when TR is smaller (TR =0). Importantly, Fig. 13 shows that
for T ∗ = T M and all factor combinations, the values of AC

I (T
M ) − AH

I (T
M ) are

always greater than zero; that is, the approximate HSIRS model always outperforms
the CSIRS model.
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To investigate further the performances of the approximate HSIRS model and the
CSIRS model, we turn our attention to bias [as specified in (71)] and define the fraction
of MSPE that can be explained by the squared bias as

κY
X (T

∗, l)≡ B I ASY
X (T

∗, l)2

MSPEY
X (T

∗, l)
; X = S, I ; T ∗ =T O , T M ; Y = H,C; l =1, . . . , L .

(73)
Notice that 0 ≤ κY

X (T
∗, l) ≤ 1. The boxplots in Figs. 14 and 15 show the distributions

of {κH
S (T

∗, l)} and {κH
I (T

∗, l)}, respectively, for all factor combinations. For both
the susceptible and infectious populations, Figs. 14 and 15 show that the fractions
of MSPE explained by the squared bias are much smaller (around 0.1 or less) in the
period T O than those in the period T M (around 0.5), for all factor combinations.
Again because forecasting is inherently difficult, this is not surprising. By comparing
Figs. 14 and 15 with Figs. 10 and 11, we see that those factor combinations where
squared bias is relatively small are the same combinations where the approximate
HSIRS model yields much better MSPE than that for the CSIRS model. In particular,
Figs. 14 and 15 clearly show that in the period of T O , the responses decrease (or do
not increase) as data information becomes longer (DI=1), as SNR becomes smaller
(SV=1), and as the transmission rate becomes larger (TR =1), which supports our
conclusion that the approximate HSIRS model has better predictive capability even
when more variability is introduced into the pandemic through its observed counts.
Figures 14 and 15 indicate the strong interactions among DI, SV, and TR in the period
of T M , which agrees with the conclusions drawn from Figs. 12 and 13.

6 Discussion and conclusions

In this article, we develop a Bayesian hierarchical SIRS (HSIRS) model that captures
the various sources of uncertainties in modeling infectious diseases such as seasonal or
pandemic influenza. Important features of our HSIRS model are that it preserves mass
balance on the (hidden) true counts rather than on the observed counts, and that the
dynamical process is modeled on a log-odds-ratio scale. Furthermore, our approach
captures the stochastic and discrete nature of the epidemic process, as well as keeping
the SIRS flow that underlies the CSIRS model.

In Sect. 4, we simulated two datasets, an HSIRS dataset and a modified-CSIRS
dataset, where we assumed that data were available on the first 35 days and missing
on the following 10 days. Then we used an MCMC algorithm to fit the HSIRS model
to each of the two datasets; for computational efficiency, a well calibrated linear
approximation was used. We saw that the approximate HSIRS (ASIRS) model was
a very good approximation, and that accounting for all known uncertainties led to a
superior performance over the deterministic classic SIRS (CSIRS) model.

In Sect. 5, a carefully designed simulation experiment at various levels of vari-
ous factors with sufficient replication is presented. It allows us to conclude that the
approximate HSIRS model offers an accurate and computationally efficient approach
to analyzing infectious-disease data. The comparisons given there clearly show that
the HSIRS model is better, according to both the MSPE and bias criteria, than the
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Fig. 14 Boxplots of fractions of MSPE explained by squared bias,
{
κH

S (T
∗, l) : l = 1, . . . , L

}
, for the

susceptible population, at given levels of DI (Data Information), TR (Transmission Rate), and SV (Small-
scale Variation). Left panels T ∗ = T O ; right panels T ∗ = T M . Upper panels DI=0; lower panels DI=1.
The x axis labels are ‘ab’, where ‘a’ (=0 and 1) represents the level for the factor TR, and ‘b’ (=0 and 1)
represents the level for the factor SV. The triangles show the mean of the fraction

Fig. 15 Boxplots of fractions of MSPE explained by squared bias,
{
κH

I (T
∗, l) : l = 1, . . . , L

}
, for the

infectious population, at given levels of DI (Data Information), TR (Transmission Rate), and SV (Small-
scale Variation). Left panels T ∗ = T O ; right panels T ∗ = T M . Upper panels given DI=0; lower panels
given DI=1. The x axis label ‘ab’, where ‘a’ (=0 and 1) represents the level for the factor TR; and ‘b’ (=0
and 1) represents the level for the factor SV. The triangles show the mean of the fractions
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CSIRS model, during either the observation period or the forecast period for all the
conditions tested.

In this research, the HSIRS model is based on assuming a constant population for
a short period of time; however, the model is not restricted to this assumption and can
be extended to include population turnover that handles long-term influenza dynam-
ics. For example, Eqs. (21)–(23) in Sect. 2.2 could instead be derived from an SIRS
flow with birth and death rates (see the SIR flow incorporating birth and death rates
given in Anderson and May 1991). This extension is useful because recovery from
seasonal influenza may give immunity to that specific pathogen, but this immunity can
be lost over the years due to the evolution of the virus (e.g., Dushoff et al. 2004). In
ongoing research, we are investigating more complicated epidemic dynamics that not
only incorporate birth, death, but also emigration/immigration processes for appro-
priate time periods. Also, spatial (e.g., Hooten and Wikle 2010; Oleson and Wikle
2013) and multivariate (e.g., Zhuang et al. 2013) aspects could be incorporated into
these hierarchical dynamical models through vector-valued processes, although the
form of such models would require careful integration of the aforementioned emigra-
tion/immigration processes.
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Appendices

Appendix A.1: Derivation of the nonlinear dynamical structure of μW (t)

Here we derive the nonlinear dynamical structure of μW (t) given in (27) and (28) in
Sect. 2.2.

Assume PR(t) > 0, for t = 1, 2, . . .. From the difference Eqs. (21)–(23), we can
obtain

PS(t + 1)

PR(t + 1)
= PS(t)− βΔλN PS(t)PI (t)+ φΔPR(t)

PR(t)+ γΔPI (t)− φΔPR(t)
, (74)

PI (t + 1)

PR(t + 1)
= PI (t)+ βΔλN PS(t)PI (t)− γΔPI (t)

PR(t)+ γΔPI (t)− φΔPR(t)
. (75)

Notice that Eqs. (74)–(75) can be rewritten as

PS(t + 1)

PR(t + 1)
=

PS(t)
PR(t)

1
PR(t)

− βΔλN
PS(t)
PR(t)

PI (t)
PR(t)

+ φΔ
PR(t)

1
PR(t)

+ γΔ
PI (t)
PR(t)

1
PR(t)

− φΔ
PR(t)

, (76)

PI (t + 1)

PR(t + 1)
= βΔ

PS(t)
PR(t)

PI (t)
PR(t)

+ (1 − γΔ)
PI (t)
PR(t)

1
PR(t)

1
PR(t)

+ γΔ
PI (t)
PR(t)

1
PR(t)

− φΔ
PR(t)

. (77)
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From (24)–(25),

PS(t) = exp(WS(t))

1 + exp(WS(t))+ exp(WI (t))
, (78)

PI (t) = exp(WI (t))

1 + exp(WS(t))+ exp(WI (t))
. (79)

Then substituting (78)–(79) into (17), we obtain

PR(t) = 1

1 + exp(WS(t))+ exp(WI (t))
. (80)

Hence,

PS(t)

PR(t)
= exp(WS(t)), (81)

PI (t)

PR(t)
= exp(WI (t)) (82)

1

PR(t)
= exp(WS(t))+ exp(WI (t))+ 1

1
. (83)

For t = 1, 2, . . ., substitute (81)–(83) into Eqs. (76)–(77) to obtain

exp(WS(t + 1)) = exp (WS(t))

×
[

1 + φΔ

exp (WS(t))
− (βΔλN )exp (WI (t))

1 + exp (WS(t))+ exp (WI (t))

]

× 1[
1 + γΔexp (WI (t))− φΔ

] , (84)

exp (WI (t + 1)) = exp (WI (t))

×
[

1 − γΔ+ (βΔλN )exp (WS(t))

1 + exp (WS(t))+ exp (WI (t))

]

× 1[
1 + γΔexp (WI (t))− φΔ

] . (85)

Taking logarithms on both sides of (84)–(85), for t = 1, 2, . . ., we obtain,

WS(t + 1) = WS(t)

+ log

[
1 + φΔ

exp (WS(t))
− βΔλN exp (WI (t))

1 + exp (WS(t))+ exp (WI (t))

]

+ log

[
1

1 + γΔexp (WI (t))− φΔ

]
,

(86)

WI (t + 1) = WI (t)

+ log

[
1 − γΔ+ βΔλN exp (WS(t))

1 + exp (WS(t))+ exp (WI (t))

]
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+ log

[
1

1 + γΔexp (WI (t))− φΔ

]
.

(87)

Then (86)–(87) are used to define μW (t) in the nonlinear autoregressive structure
given by (26), which captures the uncertainties in the hidden epidemic process.

Appendix A.2: Derivation of the linear process {μLW (t)} to approximate μW (t)

Here, we derive a well calibrated linear process {μLW (t)}, as defined by (38)–(39), to
approximate {μW (t)} given by (27)–(28). Specifically, for t = 1, 2, . . . , { Âi (t) : i =
1, . . . , 10} are initializations of the nonlinear components in Eqs. (27)–(28), as shown
in Table 1.

Consider μW
S (t) given by (27), and use a Taylor-series expansion up to second

order. The second term on the right-hand side is:

log

(
1 + φΔ

eWS(t)
− βΔλN eWI (t)

1 + eWS(t) + eWI (t)

)

= log(A1(t))+ log

⎡
⎢⎣1 +

⎛
⎜⎝

1 + φΔ

eWS (t)
− βΔλN eWI (t)(

1+eWS (t)+eWI (t)
)

A1(t)
− 1

⎞
⎟⎠
⎤
⎥⎦

≈ log( Â1(t))+
⎛
⎜⎝

1 + φΔ

eWS (t)
− βΔλN eWI (t)(

1+eWS (t)+eWI (t)
)

Â1(t)
− 1

⎞
⎟⎠

− 1

2

⎛
⎜⎝

1 + φΔ

eWS (t)
− βΔλN eWI (t)(

1+eWS (t)+eWI (t)
)

Â1(t)
− 1

⎞
⎟⎠

2

. (88)

Now, eWI (t)(
1+eWS (t)+eWI (t)

) can be further expanded using a Taylor series to second order:

eWI (t)(
1 + eWS(t) + eWI (t)

) = 1 − 1

1 −
(
− eWI (t)

1+eWS (t)

)

≈ 1 −
⎡
⎢⎣ 1

1 − Â7(t)
+

− eWI (t)

1+eWS (t)
− Â7(t)

(1 − Â7(t))2
+
(
− eWI (t)

1+eWS (t)
− Â7(t)

)2

(1 − Â7(t))3

⎤
⎥⎦.

(89)
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Then we expand the remaining nonlinear component in (89), eWI (t)

1+eWS (t)
, using a Taylor

series to second order:

eWI (t)

1 + eWS(t)
=
[
e(WI (t)−WS(t))

]
×
[

1

1 − (−e−WS(t))

]

≈
[

eÂ4(t) + eÂ4(t)(WI (t)− WS(t)− Â4(t))+ eÂ4(t)

2
(WI (t)− WS(t)− Â4(t))

2

]

×
⎡
⎢⎣ 1

1 − Â9(t)
+
(
−e−WS (t) − Â9(t)

)
(

1 − Â9(t)
)2 + −eWS(t) − Â9(t)(

1 − Â9(t)
)3

⎤
⎥⎦ , (90)

and

e−WS(t) ≈ eÂ5(t) + eÂ5(t)
(
−WS(t)− Â5(t)

)
+

eÂ5(t)
(
−WS(t)− Â5(t)

)2

2
.

(91)

Upon substituting (91) into (90), we obtain:

eWI (t)

1 + eWS(t)
= B0(t)+ B1(t)WS(t)+ B2(t)WI (t)

+ o(WS(t)
2)+ o(WI (t)

2)+ o (WS(t)WI (t)) , (92)

where {Bi (t) : i = 0, 1, 2} are defined in Eqs. (46)–(48) and (52).
Hence, combining (88), (89), and (92), we can finally approximate

log

[
1 + φΔ

exp (WS(t))
− βΔλN eWI (t)

1 + eWS(t) + eWI (t)

]

in Eq. (27) with,

log Â1(t)+ 1

Â1(t)
+ φΔ

[
e( Â5(t))(1 − Â5(t))

Â1(t)

]

− βΔλN

Â1(t)

(
1 − 1

1 − Â7(t)
+ B0(t)+ Â7(t)

(1 − Â7(t))2

)
− 1

+
[

1 − φΔeÂ5(t)

Â1(t)
− βΔλN B1(t)

Â1(t)(1 − Â7(t))2

]
WS(t)−

[
βΔλN B2(t)

Â1(t)(1 − Â7(t))2

]
WI (t).

(93)

123



Bayesian hierarchical statistical SIRS models 641

Also, the third term, log
(
1 +Δγ eWI (t) −Δφ

)
, on the right-hand side of (27), can be

expanded using a Taylor series to second order:

log
(

1 +Δγ eWI (t) −Δφ
)

= log(A2(t))+ log

[
1 +

(
1 + γΔeWI (t) − φΔ

A2(t)
− 1

)]

≈ log( Â2(t))+
(

1 + γΔeWI (t) − φΔ

Â2(t)
− 1

)

− 1

2

(
1 + γΔeWI (t) − φΔ

Â2(t)
− 1

)2

. (94)

Then we expand eWI (t) using a Taylor series to second order:

eWI (t) ≈ eÂ6(t) + eÂ6(t)(WI (t)− Â6(t))+ eÂ6(t)

2
(WI (t)− Â6(t))

2. (95)

Upon substituting (95) into (94), we obtain:

log
(

1+γΔeWI (t) − φΔ
)

≈ log Â2(t)+ 1

Â2(t)
+ γΔ

Â2(t)
eÂ6(t)(1− Â6(t))− φΔ

Â2(t)
−1

+ γΔeÂ6(t)

Â2(t)
WI (t). (96)

Consider μW
I (t) given by (28). Using a Taylor-series expansion to second order, the

second term on the right-hand side is:

log

(
1 − γΔ+ βΔλN eWS(t)

1 + eWS(t) + eWI (t)

)

= log(A3(t))+ log

⎡
⎣1 +

⎛
⎝1 − γΔ+ βΔλN eWS (t)

1+eWS (t)+eWI (t)

A3(t)
− 1

⎞
⎠
⎤
⎦

≈ log( Â3(t))+
⎛
⎝1 − γΔ+ βΔλN eWS (t)

1+eWS (t)+eWI (t)

Â3(t)
− 1

⎞
⎠

− 1

2

⎛
⎝1 − γΔ+ βΔλN eWS (t)

1+eWS (t)+eWI (t)

Â3(t)
− 1

⎞
⎠

2

, (97)
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Now, eWS (t)

1+eWS (t)+eWI (t)
can be further expanded using a Taylor series to second order:

eWS(t)

1 + eWS(t) + eWI (t)
= 1

1 −
(
− 1+eWI (t)

eWS (t)

)

≈ 1

1− Â10(t)
+
(
−1+eWI (t)

eWS (t)
− Â10(t)

)

(1 − Â10(t))2
+
(
− 1+eWI (t)

eWS (t)
− Â10(t)

)2

(1 − Â10(t))3
.

(98)

Then we expand the remaining nonlinear component in (98), 1+eWI (t)

eWS (t)
, using a Taylor

series to second order:

1 + eWI (t)

eWS(t)
= eWI (t)−WS(t) + e−WS (t)

≈
[

eÂ4(t) + eÂ4(t)(WI (t)− WS(t)− Â4(t))+ eÂ4(t)

2
(WI (t)− WS(t)− Â4(t))

2

]

+
[

eÂ5(t) + eÂ5(t)(−WS(t)− Â5(t))+ eÂ5(t)

2
(−WS(t)− Â5(t))

2

]
. (99)

Then we rewrite (99) as

1 + eWI (t)

eWS(t)
= B3(t)+ B4(t)WS(t)+ B5(t)WI (t)

+ o
(

WS(t)
2
)

+ o
(

WI (t)
2
)

+ o (WS(t)WI (t)) , (100)

where {Bi (t) : i = 3, 4, 5} are defined in (49)–(51).
Hence, combining (97), (98), and (100), we can finally approximate

log

[
(1 − γΔ)+ βΔλN eWS(t)

1 + eWS(t) + eWI (t)

]

in Eq. (28) with

log Â3(t)+ 1 − γΔ

Â3(t)
+ βΔλN

Â3(t)(1 − Â10(t))
− βΔλN (B3(t)+ Â10(t))

Â3(t)(1 − Â10(t))2
− 1

+
[ −βΔλN B4(t)

Â3(t)(1 − Â10(t))2

]
WS(t)+

[
1 − βΔλN B5(t)

Â3(t)(1 − Â10(t))2

]
WI (t).

(101)

The third component on the right-hand side of (28) is identical to that of (27), and
hence we use the linear approximation given by (96).
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Therefore, (93), (96), and (101) yields the linear dynamical process μLW (t) as
defined in (38)–(39) in Sect. 3. That is, μLW (t) approximates the nonlinear dynamical
process, μW (t), in the HSIRS model defined by Eqs. (27)–(28).

Appendix A.3: Full conditional distributions

Here we give the full conditional distributions that define our Markov chain Monte
Carlo (MCMC) algorithm. We use “rest” to represent all other unknowns as well as the
data {ZS(1), . . . , ZS(T )} and {Z I (1), . . . , Z I (T )}. Notice that this is not a particle-
filtering approach in which new data are used to update current and past posteriors with-
out re-running the
MCMC.

– β

[β|rest] ∝
T +F∏
t=2

[WS(t),WI (t)|WS(t − 1),WI (t − 1), β, θγ , φ, σ
2
ζS
, σ 2
ζI

][β].

– θγ

[θγ |rest] ∝
T +F∏
t=2

[WS(t),WI (t)|WS(t − 1),WI (t − 1), β, θγ , φ, σ
2
ζS
, σ 2
ζI

][θγ ].

– φ

[φ|rest] ∝
T +F∏
t=2

[WS(t),WI (t)|WS(t − 1),WI (t − 1), β, θγ , φ, σ
2
ζS
, σ 2
ζI

][φ].

– σ 2
ζS

[σ 2
ζS

|rest] ∝ [WS(1),WI (1)|σ 2
ζS
, σ 2
ζI

]

·
T +F∏
t=2

[WS(t),WI (t)|WS(t − 1),WI (t − 1), β, θγ , φ, σ
2
ζS
, σ 2
ζI

][σ 2
ζS

].

– σ 2
ζI

[σ 2
ζI

|rest] ∝ [WS(1),WI (1)|σ 2
ζS
, σ 2
ζI

]

·
T +F∏
t=2

[WS(t),WI (t)|WS(t − 1),WI (t − 1), β, θγ , φ, σ
2
ζS
, σ 2
ζI

][σ 2
ζI

].
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– {WS(t),WI (t)}: for t = 1, . . . , T, T + 1, . . . , T + F ,

[WS(t),WI (t)|rest] ∝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ZS(t)|WS(t),WI (t)] [Z I (t)|WS(t),WI (t)]
·[WS(t+1),WI (t+1)|WS(t),WI (t), β, θγ , φ, σ 2

ζS
, σ 2
ζI

]
·[WS(t),WI (t)|σ 2

ζS
, σ 2
ζI

],
if t = 1;
[ZS(t)|WS(t),WI (t)] [Z I (t)|WS(t),WI (t)]
·[WS(t+1),WI (t+1)|WS(t),WI (t), β, θγ , φ, σ 2

ζS
, σ 2
ζI

]
·[WS(t),WI (t)|WS(t−1),WI (t−1), β, θγ , φ, σ 2

ζS
, σ 2
ζI

],
if 2 ≤ t ≤ T ;[
WS(t+1),WI (t+1)|WS(t),WI (t), β, θγ , φ, σ 2

ζS
, σ 2
ζI

]
·
[
WS(t),WI (t)|WS(t−1),WI (t−1), β, θγ , φ, σ 2

ζS
, σ 2
ζI

]
,

if T < t < T + F;
·[WS(t),WI (t)|WS(t−1),WI (t−1), β, θγ , φ, σ 2

ζS
, σ 2
ζI

],
if t = T + F.
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