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Abstract
In this paper, we address the problem of constructing C2 cubic spline functions on
a given arbitrary triangulation T . To this end, we endow every triangle of T with a
Wang–Shi macro-structure. The C2 cubic space on such a refined triangulation has a
stable dimension and optimal approximation power. Moreover, any spline function in
this space can be locally built on each of themacro-triangles independently viaHermite
interpolation.We provide a simplex spline basis for the space ofC2 cubics defined on a
single macro-triangle which behaves like a Bernstein/B-spline basis over the triangle.
The basis functions inherit recurrence relations and differentiation formulas from the
simplex spline construction, they form a nonnegative partition of unity, they admit
simple conditions for C2 joins across the edges of neighboring triangles, and they
enjoy a Marsden-like identity. Also, there is a single control net to facilitate control
and early visualization of a spline function over the macro-triangle. Thanks to these
properties, the complex geometry of the Wang–Shi macro-structure is transparent to
the user. Stable global bases for the full space of C2 cubics on the Wang–Shi refined
triangulation T are deduced from the local simplex spline basis by extending the
concept of minimal determining sets.
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1 Introduction

Piecewise polynomial spaces defined over polygonal partitions, usually triangulations,
have applications in several branches of the sciences including geometric modeling,
signal processing, data analysis, visualization, and numerical simulation; we refer the
reader to [11,12,26] and Sect. 5.2 for some examples. For many of these applications, a
smooth join between the different pieces is beneficial or even required;C2 smoothness
is often preferred. Such spaces are commonly referred to as (bivariate) spline spaces.
According to [26, page 197], in general we would like to work with low degree splines:
They involve fewer coefficients and have less tendency to oscillate.

An indispensable feature for a spline space to be useful in practice is having a
stable dimension that only depends on the degree (d), the order of smoothness (r ),
and combinatorial—or other easy to check—properties of the partition (T ). When T
is a triangulation, the dimension can be expressed in terms of the above quantities
for spline spaces with d ≥ 3r + 2; see [20] and [26, Chapter 9]. On the other hand,
instability in the dimension has been illustrated for d = 2r in [13]. We refer the
reader to [52] for recent results on the dimension of spline spaces on triangulations
with nonuniform degrees. Similar results are known for spline spaces over general
rectilinear partitions; see [7,31] and references therein.

Spline spaces with too low degree compared to the smoothness are also exposed
to several other shortcomings. In particular, they might lack optimal approximation
power, a property strongly related to the possibility of constructing stable bases with
local support for the considered spaces [26]. In this perspective, the bound d ≥ 3r +2
plays again an important role in identifying the spline spaces with optimal approxi-
mation power on a given triangulation [26, Chapter 10]. Furthermore, the possibility
of constructing any function of the spline space locally on each of the elements of
T is often seen as a desirable, if not imperative, property for practical purposes. On
a triangulation, a degree d ≥ 4r + 1 is necessary to admit such a local construction
[8,26,56].

The above lower bounds on the degree can be alleviated by considering the so-
called macro-elements, where the partition T is further refined in a specific manner
(often referred to as splits). In case T is a triangulation, the most famous examples are
the Clough–Tocher (CT) split [8,9,26,40] and the Powell–Sabin (PS) 6 and 12 splits
[1,26,36,40,43]. They subdivide each triangle of T into 3, 6, and 12 subtriangles,
respectively. To achieve global C2 smoothness, polynomial pieces of at least degree
d = 7 are necessary for the CT split, while at least degree d = 5 is required for both
PS splits of T . All these spline spaces have a stable dimension and possess optimal
approximation power [24–26]. Other common macro-elements also require at least
degree d = 5 to realize C2 splines with the above properties on a refined partition
only consisting of triangles [26, Section 7.7].

The Bernstein polynomial basis is the most common tool for the construction and
analysis of splines on a given triangulation T [26], as it helps in localizing imposition
of smoothness conditions across edges of (the refinement of)T . Interesting alternatives
have been developed for CT and PS splits in [10,28–30], where a simplex spline basis
for the local spline space over a triangle of T has been considered. Such a basis behaves
like a Bernstein polynomial basis for imposing smoothness across edges of T and like
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a B-spline basis internal to each triangle of T . Neither the Bernstein polynomial basis
nor the simplex spline basis provides a global basis for the full spline space on (the
refinement of) T . To achieve a global basis, one may apply the general framework of
minimal determining sets via the local Bernstein basis; see [26]. Global B-spline bases
have been constructed for C1 PS spline spaces on triangulations [14,18,19,49], for PS
spline spaces with higher smoothness [17,45,47], and for CT spline spaces [46].

While in the univariate case C2 cubics are probably the best known and most used
splines, the above discussion shows that dealing withC2 cubics in the bivariate setting
is an arduous task. In this paper, we address the problem of building and handling C2

cubic splines on a suitable refinement of any given triangulation T . Our wish list for
the spline space consists of stable dimension, optimal approximation power, and local
construction on any (refined) triangle of T . Moreover, wewant a practical construction
of a stable global basis for the space at our disposal.

Despite the high smoothness and the minimum gap between degree and smooth-
ness, a C2 cubic space can be obtained by splitting any triangle Δ in T according
to a degree-dependent scheme introduced by Wang and Shi [55]. Contrarily to the
well-known splits mentioned above, the family of Wang–Shi (WS) splits generates a
very large number of polygonal pieces in each Δ; for cubics, we get a set of 75 poly-
gons which includes triangles, quadrilaterals, and pentagons. In practice, this complex
geometry hampers a piecewise treatment—in terms of a local polynomial basis—of
spline functions on WS splits and discourages the use of such an interesting space.

To overcome this issue, we propose a simplex spline basis for the local space of C2

cubics on the (cubic) WS split of any Δ in T . The basis functions enjoy the following
properties:

– They form a nonnegative partition of unity.
– They inherit recurrence relations and differentiation formulas from the simplex
spline structure.

– For each of them, the restriction to a boundary edge of Δ reduces to a classical C2

cubic univariate B-spline.
– They admit simple conditions for C2 joins to neighboring triangles in T .
– Cubic polynomials can be represented through a Marsden-like identity.
– They lead to well-conditioned collocation matrices for Lagrange and Hermite
interpolation using certain sites.

– A control net can be formed that mimics the shape of the spline function and
exhibits distance O(h2) to any one of its control points from its surface, where h
is the length of the longest edge.

Thanks to the characteristics of the simplex spline basis, one can avoid to consider sep-
arate polynomial representations on each of the polygonal subelements of Δ. Instead,
there is a single control net to facilitate control and early visualization of a spline
function over each element Δ in T . This makes that the complex geometry of the
WS split is transparent to the user. However, the simplex spline basis is a local basis
and does not provide a global basis for the full space of C2 cubics on the (cubic) WS
refinement of T . To this end, we extend the concept of minimal determining sets and
use the simplex spline basis as a stepping stone to the construction of a stable global
basis for the full space.
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The remainder of this paper is divided into four sections. In Sect. 2, we summarize
the definition and some properties of simplex splines and describe the family of WS
splits. In Sect. 3, we present a local simplex spline basis for the refinement of a
single triangle and discuss some of its properties. To simplify some computations,
an alternative basis is also provided. Smoothness conditions across the edges of the
given triangulation and stable global bases for the C2 cubic space on the (cubic) WS
refinement of any triangulation are considered in Sect. 4. Section 5 collects some
concluding remarks about implementation aspects, possible application areas, and a
higher-order extension of the basis. Finally, the “Appendix” aggregates data related to
the presented simplex spline bases that might be useful for practical computations.

Throughout the paper, we use small boldface letters for vectors and capital boldface
letters for matrices. Calligraphic letters like B indicate sets, and we write #B for the
cardinality of B. Function spaces are denoted by symbols like S. In particular, Pd

stands for the space of bivariate polynomials with real coefficients of total degree
≤ d. The partial derivatives in x and y are denoted by Dx and Dy , respectively. Given
a vector u, the associated directional derivative is denoted by Du. The directional
derivative in the direction of the vector from point p1 to p2 is denoted by D p1 p2 .

2 Preliminaries

This section contains some preliminary material about simplex splines and the splits
of interest in the rest of the paper.

2.1 A Short Summary of Simplex Splines

For e ∈ N, d ∈ N0, let n := d + e and Ξ := {ξ1, . . . , ξn+1} be a sequence of
possibly repeated points inRe called knots. The multiplicity of a knot is the number of
times it occurs in the sequence. Let 〈·〉 denote the convex hull of a sequence of points.
For the sake of simplicity, we assume 〈Ξ 〉 is nondegenerate, i.e., vole(〈Ξ 〉) > 0.
Let σ = 〈ξ1, . . . , ξn+1〉 be any simplex in R

n with voln(σ ) > 0, whose projection
π : Rn → R

e onto the first e coordinates satisfies π(ξ i ) = ξ i for i = 1, . . . , n + 1.
The simplex spline MΞ can be defined geometrically by

MΞ : Re → R, MΞ(x) := voln−e
(
σ ∩ π−1(x)

)

voln(σ )
.

For d = 0, we have

MΞ(x) =
{
1/ voln(〈Ξ 〉), x ∈ interior of 〈Ξ 〉,
0, if x /∈ 〈Ξ 〉,

and the value of MΞ on the boundary of 〈Ξ 〉 has to be dealt with separately. For
properties of MΞ and proofs, we refer the reader to, e.g., [32,37]. Here, we mention:
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– Knot dependence: MΞ only depends on Ξ ; in particular, it is independent of the
choice of σ and the ordering of the knots.

– Support: MΞ has support 〈Ξ 〉.
– Normalization: MΞ has unit integral.
– Nonnegativity: MΞ is a nonnegative piecewise polynomial of total degree d.
– Differentiation formula (A-recurrence): For any u ∈ R

e and any a1, . . . , ad+e+1
such that

∑
i aiξ i = u,

∑
i ai = 0, we have

DuMΞ = (d + e)
d+e+1∑

i=1

ai M[Ξ\ξ i ].

– Recurrence relation (B-recurrence): For any x ∈ R
e and any b1, . . . , bd+e+1 such

that
∑

i biξ i = x,
∑

i bi = 1, we have

MΞ(x) = d + e

d

d+e+1∑

i=1

bi M[Ξ\ξ i ](x).

– Knot insertion formula (C-recurrence): For any y ∈ R
e and any c1, . . . , cd+e+1

such that
∑

i ciξ i = y,
∑

i ci = 1, we have

MΞ =
d+e+1∑

i=1

ci M[Ξ∪ y\ξ i ].

If e = 1, then MΞ is the univariate B-spline of degree d with knots Ξ , normalized to
have its integral equal to one.

In the bivariate case, e = 2, the lines in the complete graph of Ξ are called knot
lines. They provide a partition of 〈Ξ 〉 into polygonal elements. The simplex spline
MΞ is a polynomial of degree d = #Ξ − 3 in each region of this partition, and across
a knot line

MΞ ∈ Cd+1−μ,

where μ is the number of knots on that knot line, including multiplicities.

2.2 TheWang–Shi Splits

Given three noncollinear points p1, p2, p3 inR
2, the triangleΔ := 〈 p1, p2, p3〉with

vertices p1, p2, p3 will serve as our macro-triangle. Given a degree d ∈ N, we divide
each edge ofΔ into d equal segments, respectively, resulting into 3d boundary points.
Then, we refine Δ into a number of subelements delineated by the complete graph
connecting those boundary points. This is called theWSd split ofΔ as it was originally
proposed by Wang and Shi [55]. We denote by ΔWSd the obtained mesh structure and
by Pd the set of polygons in ΔWSd . All the possible intersections of the various lines
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Fig. 1 WSd splits for d = 2, 3, 4

connecting the boundary points are called vertices ofΔWSd . In particular, the boundary
points are vertices of ΔWSd . The cases d = 2, 3, 4 are shown in Fig. 1. For d = 2,
we obtain the well-known PS-12 split [36], while for d = 1 we have P1 = {Δ}. Note
that for d > 2 not all elements of Pd are triangles. We consider the space

S
d−1
d (ΔWSd ) := {s ∈ Cd−1(Δ) : s|τ ∈ Pd , ∀ τ ∈ Pd}. (1)

When the degree increases, the complexity of the mesh grows quickly.

– There are 3d boundary points and 3d(d − 1) interior lines in the complete graph.
– The maximum number of lines intersecting at an interior vertex is 3, 3, 4, 5, 6, 7, 8
for d = 2, 3, . . . , 8.

– The number of vertices of ΔWSd is 10, 58, 178, 558, 1255, 2532, 4786 for d =
2, 3, . . . , 8.

The dimension of Sd−1
d (ΔWSd ) can be computed using the general dimension for-

mula for spline spaces over cross-cut partitions from [7, Theorem 3.1]. A partition Tc
of a domain Ω is called a cross-cut partition if it is obtained by drawing lines across
Ω . Let Srd(Tc) be the space of functions in Cr (Ω) which belong to Pd when restricted
to any polygon of Tc.

Theorem 1 LetΩ be a simply connected domain inR2. Let Tc be a cross-cut partition
ofΩ , with m cross-cuts, n interior vertices v1, . . . , vn, and mk cross-cuts intersecting
at vk , k = 1, . . . , n. Then, the dimension of the spline space Srd(Tc), 0 ≤ r ≤ d −1 is

dim(Srd(Tc)) =
(
d + 2

2

)
+ m

(
d − r + 1

2

)
+

n∑

k=1

ς(mk), (2)

where

ς(l) := 1

2

(
d − r −

⌊
r + 1

l − 1

⌋)

+

(
(l − 1)d − (l + 1)r + (l − 3) + (l − 1)

⌊
r + 1

l − 1

⌋)
.

As usual, �x� denotes the largest integer smaller than or equal to x, and (x)+ :=
max{x, 0}.
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Theorem 2 Assuming at most d + 1 lines intersect at an interior vertex of ΔWSd , we
have

dim(Sd−1
d (ΔWSd )) = dim Pd + m,

where m = 3d(d − 1) is the number of interior lines in the complete graph.

Proof We make use of the dimension formula (2) in Theorem 1. In our case, we have
r = d − 1, and it is easy to check that

ς(l) = 0, l = 1, . . . , d + 1.

Since at most d +1 lines cross at each interior vertex, it immediately follows from (2)
that

dim(Sd−1
d (ΔWSd )) =

(
d + 2

2

)
+ m,

which completes the proof. �

3 Simplex Spline Bases forSSS23(1WS3)

In this section, we focus on the case d = 3, provide two (scaled) simplex spline
bases for the space S23(ΔWS3) in (1), and prove some properties of these bases. With a
slight abuse of notation, we also refer to the corresponding basis functions as simplex
splines.

3.1 A Simplex Spline Basis

For a given triangle Δ = 〈 p1, p2, p3〉, the WS3 split is shown in the middle plot of
Fig. 1. From Theorem 2, we know that the dimension of S23(ΔWS3) is 28. In order to
construct a basis for this space, we first specify nine points along the boundary of the
triangle (see Fig. 2): the three vertices p1, p2, p3 and

p1,2 := 2

3
p2 + 1

3
p3, p1,3 := 1

3
p2 + 2

3
p3,

p2,1 := 2

3
p1 + 1

3
p3, p2,3 := 1

3
p1 + 2

3
p3,

p3,1 := 2

3
p1 + 1

3
p2, p3,2 := 1

3
p1 + 2

3
p2.

(3)

Note that these points are part of the WS3 split. We then consider the cubic simplex
splines M1, . . . , M28 as schematically illustrated in Fig. 3, where each simplex spline
has six (includingmultiplicity) knots chosen among theninepoints above. For instance,
M4 is defined by the sequence {ξ1, . . . , ξ6} = { p1, p1, p1, p3,1, p3,2, p2,1}. Each of
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Fig. 2 Labeling of the knots on
the boundary of the triangle Δ

p1 p2

p3

p3,1 p3,2

p2,3

p2,1 p1,2

p1,3

them can be computed using the B-recurrence relation. We define the following set of
28 (scaled) simplex splines:

B := {Bi := wi Mi , i = 1, . . . , 28}, (4)

where, denoting by |Δ| the area of Δ, the scaling factors are given by

w := |Δ|
15

{
1

6
,
1

6
,
1

6
,
1

3
,
1

3
,
1

3
,
1

3
,
1

3
,
1

3
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
2

3
,
2

3
,
2

3
,
5

6
,
5

6
,
5

6
,
2

3
,
2

3
,
2

3
,
2

3
,
2

3
,
2

3
, 1

}
.

Note that the scaling factors sum up to |Δ|. There are seven different types of simplex
splines in B. For each type, a representative Bi is depicted in Figs. 10, 11, 12, 13,
14, 15, and 16 in the “Appendix.” Explicit expressions of their polynomial pieces are
given in Tables 1 and 2 in the “Appendix”; the remaining ones can be obtained by
symmetry.

On any edge of Δ, there are six basis functions nonzero. Their restrictions to
that edge are nothing but the set of univariate C2 cubic B-splines defined on a uni-
form open-knot sequence with two interior knots. For instance, for the edge p1 p2,
they correspond to the univariate cubic B-splines on the knot sequence specified by
{ p1, p1, p1, p1, p3,1, p3,2, p2, p2, p2, p2}.
Theorem 3 The simplex splines {B1, . . . , B28} in (4) form a nonnegative partition of
unity basis for the space S23(ΔWS3).

Proof Let B be one of the functions Bi . We first prove that B ∈ S
2
3(ΔWS3). Since B

has six knots, it is a piecewise cubic polynomial. Moreover, the knots of B are a subset
of the knots shown in Fig. 2. Thus, the knot lines of B are a subset of the knot lines
in the complete graph; see Fig. 1. Since each interior knot line contains exactly two
knots, B has C2 smoothness according to the smoothness property of simplex splines.
It follows that B ∈ S

2
3(ΔWS3).

We now consider linear independence. Using the recurrence relation and differen-
tiation formula for simplex splines and the scaling factors w, we compute values and
derivatives of B corresponding to the following 28 operators: ρ1, . . . , ρ18 are related
to the vertices of Δ,

123



Foundations of Computational Mathematics (2022) 22:1309–1350 1317

Fig. 3 Sequences of knots for a set of simplex spline basis functions for S23(ΔWS3 ). Each black disc shows
the position of a knot, and the number inside indicates its multiplicity

ρ1( f ) := f ( p1), ρ2( f ) := f ( p2), ρ3( f ) := f ( p3),

ρ4( f ) := D p1 p2 f ( p1), ρ5( f ) := D p1 p3 f ( p1), ρ6( f ) := D p2 p3 f ( p2),

ρ7( f ) := D p2 p1 f ( p2), ρ8( f ) := D p3 p1 f ( p3), ρ9( f ) := D p3 p2 f ( p3),

ρ10( f ) := D2
p1 p2

f ( p1), ρ11( f ) := D2
p1 p3

f ( p1), ρ12( f ) := D2
p2 p3

f ( p2),

ρ13( f ) := D2
p2 p1

f ( p2), ρ14( f ) := D2
p3 p1

f ( p3), ρ15( f ) := D2
p3 p2

f ( p3),

ρ16( f ) :=D p1 p2 D p1 p3 f ( p1), ρ17( f ) :=D p2 p3D p2 p1 f ( p2), ρ18( f ) :=D p3 p1D p3 p2 f ( p3);
(5)

ρ19, . . . , ρ27 are related to the edges of Δ,

ρ19( f ) := Dq3 p3 f (q3), ρ20( f ) := Dq1 p1 f (q1), ρ21( f ) := Dq2 p2 f (q2),

ρ22( f ) := D2
p3,1 p3

f ( p3,1), ρ23( f ) := D2
p2,1 p2

f ( p2,1), ρ24( f ) := D2
p1,2 p1

f ( p1,2),

ρ25( f ) := D2
p3,2 p3

f ( p3,2), ρ26( f ) := D2
p2,3 p2

f ( p2,3), ρ27( f ) := D2
p1,3 p1

f ( p1,3),

(6)

where

q1 := 1

2
p2 + 1

2
p3, q2 := 1

2
p1 + 1

2
p3, q3 := 1

2
p1 + 1

2
p2; (7)
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and the final ρ28 is related to the triangle Δ,

ρ28( f ) := f (q), q := 1

3
p1 + 1

3
p2 + 1

3
p3. (8)

The computed values are shown in Tables 3, 4, and 5 in the “Appendix.” Since the
matrix [ρ j (Bi )] ∈ R

28×28 is block upper triangular with nonsingular 2 × 2 blocks,
linear independence of the set of functions {B1, . . . , B28} follows. From Theorem 2,
we know that the dimension of S23(ΔWS3) is 28, and thus the 28 linearly independent
functions in (4) form a basis of this space. At the same time, we may conclude linear
independence of the set of operators {ρ1, . . . , ρ28} defined on S

2
3(ΔWS3).

Simplex splines are nonnegative, so it only remains to prove that the functions in
(4) sum up to one on Δ. An inspection of Tables 3, 4, and 5 shows that

ρ j

( 28∑

i=1

Bi

)
=

28∑

i=1

ρ j (Bi ) = ρ j (1), j = 1, . . . , 28.

By linear independence of the operators ρ j ,
∑28

i=1 Bi must be equal to the unity
function which belongs to S

2
3(ΔWS3). �

From the proof of Theorem 3, it follows that we can formulate a Hermite interpo-
lation problem to characterize any spline in S

2
3(ΔWS3).

Corollary 1 For given data fk,α,β , gk , gk,l , and h0, there exists a unique spline s ∈
S
2
3(ΔWS3) such that

Dα
x D

β
y s( pk) = fk,α,β , 0 ≤ α + β ≤ 2, k = 1, 2, 3,

Dnk s(qk) = gk, D2
nk s( pk,l) = gk,l , k, l = 1, 2, 3, k �= l,

s(q) = h0,

where nk is the normal direction of the edge opposite to vertex pk , and the points pk,l ,
qk , and q are defined in (3), (7), and (8), respectively.

The Hermite degrees of freedom specified in Corollary 1 are schematically visualized
in Fig. 4 using graphical symbols that are common in the finite element literature; see,
e.g., [8].

3.2 Domain Points and Condition Number

We now associate a special point in Δ with each basis function Bi in (4) that plays an
important role in geometric modeling. We solve the system
ρ j (

∑28
i=1 b

∗
i ( f )Bi ) = ρ j ( f ) for the two functions f1(x, y) := x and f2(x, y) := y.

The points

b∗
i := (b∗

i ( f1), b
∗
i ( f2)), i = 1, . . . , 28, (9)
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Fig. 4 Hermite degrees of
freedom on the WS3 split

are called the domain points of the basis (4). Together with the partition of unity, the
domain points provide an explicit representation of any affine function with respect to
the basis (4). The barycentric coordinates with respect to the triangle Δ of the domain
points (9) are given by

b∗
1 : (1, 0, 0), b∗

2 : (0, 1, 0), b∗
3 : (0, 0, 1), b∗

4 :
(8
9
,
1

9
, 0

)
,

b∗
5 :

(8
9
, 0,

1

9

)
, b∗

6 :
(
0,

8

9
,
1

9

)
, b∗

7 :
(1
9
,
8

9
, 0

)
, b∗

8 :
(1
9
, 0,

8

9

)
,

b∗
9 :

(
0,

1

9
,
8

9

)
, b∗

10 :
(2
3
,
1

3
, 0

)
, b∗

11 :
(2
3
, 0,

1

3

)
, b∗

12 :
(
0,

2

3
,
1

3

)
,

b∗
13 :

(1
3
,
2

3
, 0

)
, b∗

14 :
(1
3
, 0,

2

3

)
, b∗

15 :
(
0,

1

3
,
2

3

)
, b∗

16 :
(7
9
,
1

9
,
1

9

)
,

b∗
17 :

(1
9
,
7

9
,
1

9

)
, b∗

18 :
(1
9
,
1

9
,
7

9

)
, b∗

19 :
( 7

15
,
7

15
,
1

15

)
, b∗

20 :
( 1

15
,
7

15
,
7

15

)
,

b∗
21 :

( 7

15
,
1

15
,
7

15

)
, b∗

22 :
(5
9
,
1

3
,
1

9

)
, b∗

23 :
(5
9
,
1

9
,
1

3

)
, b∗

24 :
(1
9
,
5

9
,
1

3

)
,

b∗
25 :

(1
3
,
5

9
,
1

9

)
, b∗

26 :
(1
3
,
1

9
,
5

9

)
, b∗

27 :
(1
9
,
1

3
,
5

9

)
, b∗

28 :
(1
3
,
1

3
,
1

3

)
.

(10)

These points are visualized in Fig. 5 (top). When representing a spline s ∈ S
2
3(ΔWS3)

in the basis (4),

s =
28∑

i=1

bi Bi , (11)

it is common to organize the coefficients in terms of control points (b∗
i , bi ), i =

1, . . . , 28. There are several possibilities to connect these points into a control net.
Such a control net forms a caricatural approximation for the graph of the function
that is useful for geometric modeling. A viable option for connecting these points
is shown in Fig. 5 (top); the configuration consists of a small number of regions, but
both triangles and quadrilaterals are involved. As shown in Sect. 4.1, this choice allows
for a geometric interpretation of C1 smoothness conditions analogous to the classical
Bernstein representation for polynomial triangular patches. An example spline and its
corresponding control net is illustrated in Fig. 6.
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Fig. 5 A possible net
configuration for S23(ΔWS3 ).
Top: the domain points (10).
Bottom: the domain points (16)
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Fig. 6 A simplex spline surface
and its control net for the
domain points (10)
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In many applications, it is of interest to have a bound on the condition number of
the basis we are dealing with.We consider the infinity norm, and we look for constants
K−∞, K+∞ > 0 such that for all b := (b1, . . . , b28)T ∈ R

28,

K−∞‖b‖∞ ≤
∥∥∥∥

28∑

i=1

bi Bi

∥∥∥∥∞
≤ K+∞‖b‖∞. (12)

The condition number of the basis is then defined by

κ∞(B) := inf{K+∞/K−∞ : K−∞ and K+∞ satisfy (12)}.

Proposition 1 The condition number of the simplex spline basis (4) is bounded by

κ∞(B) < 37.

Proof Since the simplex spline basis (4) forms a nonnegative partition of unity, it is
clear that K+∞ = 1 satisfies (12). Let A be the matrix for any unisolvent Lagrange
interpolation problem with respect to the basis (4). Then,

‖b‖∞ ≤ ‖A−1‖∞
∥∥∥∥

28∑

i=1

bi Bi

∥∥∥∥∞
.

Considering interpolation at the domain points (10), a direct computation gives
‖A−1‖∞ < 37. This implies that K−∞ = 1/37 satisfies (12). �
Note that the bound on the condition number in Proposition 1 is independent of the
shape of the triangle Δ. From the proof, we also deduce that the condition number of
B in (4) can be computed as

κ∞(B) = inf{1/K−∞ : K−∞ satisfies (12)}.

By means of this number, we can easily obtain the following distance result.

Proposition 2 Let s ∈ S
2
3(ΔWS3) be given as in (11). Then,

|bi − s(b∗
i )| ≤ 2κ∞(B) h2 max

α+β=2
‖Dα

x D
β
y s‖∞, i = 1, . . . , 28,

where h is the length of the largest edge of Δ.

Proof Let i ∈ P1 be the linear Taylor approximation to s at the domain point b∗
i .

Note that i (b∗
i ) = s(b∗

i ). Then, using the definition of domain points, we have

s − i =
28∑

j=1

(b j − i (b∗
j ))Bj ,
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so that from (12) we obtain

|bi − s(b∗
i )| = |bi − i (b∗

i )| ≤ max
j=1,...,28

|b j − i (b∗
j )| ≤ κ∞(B)‖s − i‖∞.

Furthermore, since s ∈ C2(Δ), Taylor approximation error analysis tells us that

‖s − i‖∞ ≤ 2h2 max
α+β=2

‖Dα
x D

β
y s‖∞,

which completes the proof. �

Proposition 2 implies that the control points of the spline s in (11) converge like O(h2)
to the graph of s.

3.3 AMarsden-Like Identity

In Sect. 3.2, we have provided the representation of any affine function with respect
to the basis (4). We now extend this result by providing a Marsden-like identity which
allows us to represent any cubic polynomial. In the univariate B-spline case, the Mars-
den identity is given by

(z − x)d =
∑

j

j+d∏

k= j+1

(z − ξk)Bj,d(x),

where Bj,d is a normalized B-spline of degree d defined by the knots ξ j , ξ j+1, . . . ,

ξ j+d+1; see, e.g., [27, Theorem 2]. Dividing both sides by zd and setting y := z−1,
we obtain a form more amenable to multivariate generalization

(1 − xy)d =
∑

j

ψ j,d(y)Bj,d(x), ψ j,d(y) :=
j+d∏

k= j+1

(1 − yξk). (13)

The functions ψ j,d are polynomials of degree d and are called dual polynomials. The
following result is obtained by a direct computation.

Theorem 4 We have

(1 + yT x)3 =
28∑

i=1

ψi ( y)Bi (x), y ∈ R
2, x ∈ Δ,

123



Foundations of Computational Mathematics (2022) 22:1309–1350 1323

where the dual polynomials ψi , i = 1, . . . , 28 are defined as follows. Recalling the
points in (3) and (8),

ψ1( y) := (1 + yT p1)
3, ψ2( y) := (1 + yT p2)

3, ψ3( y) := (1 + yT p3)
3,

ψ4( y) := (1 + yT p1)
2(1 + yT p3,1), ψ5( y) := (1 + yT p1)

2(1 + yT p2,1),

ψ6( y) := (1 + yT p2)
2(1 + yT p1,2), ψ7( y) := (1 + yT p2)

2(1 + yT p3,2),

ψ8( y) := (1 + yT p3)
2(1 + yT p2,3), ψ9( y) := (1 + yT p3)

2(1 + yT p1,3),

and

ψ10( y) := (1 + yT p1)(1 + yT p3,1)(1 + yT p3,2),

ψ11( y) := (1 + yT p1)(1 + yT p2,3)(1 + yT p2,1),

ψ12( y) := (1 + yT p2)(1 + yT p1,2)(1 + yT p1,3),

ψ13( y) := (1 + yT p2)(1 + yT p3,1)(1 + yT p3,2),

ψ14( y) := (1 + yT p3)(1 + yT p2,3)(1 + yT p2,1),

ψ15( y) := (1 + yT p3)(1 + yT p1,2)(1 + yT p1,3),

ψ16( y) := (1 + yT p1)(1 + yT p3,1)(1 + yT p2,1),

ψ17( y) := (1 + yT p2)(1 + yT p3,2)(1 + yT p1,2),

ψ18( y) := (1 + yT p3)(1 + yT p1,3)(1 + yT p2,3),

ψ19( y) := (1 + yT p3,1)(1 + yT p3,2)(1 + yTm1),

ψ20( y) := (1 + yT p1,2)(1 + yT p1,3)(1 + yTm2),

ψ21( y) := (1 + yT p2,3)(1 + yT p2,1)(1 + yTm3),

ψ22( y) := (1 + yT p3,1)(1 + yT p3,2)(1 + yT p2,1),

ψ23( y) := (1 + yT p3,1)(1 + yT p2,3)(1 + yT p2,1),

ψ24( y) := (1 + yT p3,2)(1 + yT p1,2)(1 + yT p1,3),

ψ25( y) := (1 + yT p3,1)(1 + yT p3,2)(1 + yT p1,2),

ψ26( y) := (1 + yT p1,3)(1 + yT p2,3)(1 + yT p2,1),

ψ27( y) := (1 + yT p1,2)(1 + yT p1,3)(1 + yT p2,3),

and

ψ28( y) := (1 + yT q)
[
2(1 + yT q)2 − 1

3
(1 + yT p1,3)(1 + yT p2,3)

− 1

3
(1 + yT p3,2)(1 + yT p1,2) − 1

3
(1 + yT p3,1)(1 + yT p2,1)

]
,
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Fig. 7 Sequences of knots for an alternative set of simplex spline basis functions for S23(ΔWS3 ). Each black
disc shows the position of a knot, and the number inside indicates its multiplicity

where

m1 := 2

5
p1 + 2

5
p2 + 1

5
p3,

m2 := 1

5
p1 + 2

5
p2 + 2

5
p3,

m3 := 2

5
p1 + 1

5
p2 + 2

5
p3.

It is remarkable that the dual polynomialsψi , i = 1, . . . , 27, can bewritten as products
of three linear polynomials and mimic the classical univariate Marsden identity (13).
It is worth noting that these functions are the polar forms (or blossoms) of (1+ yT x)3

evaluated at appropriate points [38]. Similarly, polar forms were used in [33] for the
representation of polynomials in terms of simplex splines whose knots are in generic
position. This is not the case for the knots in Figs. 3 and 7.

3.4 An Alternative Simplex Spline Basis

An alternative basis for the space S23(ΔWS3) is provided by the simplex splines identi-
fied by the knot sequences in Fig. 7 and scaled to form a partition of unity. We denote
this basis by

B̃ = {B̃1, . . . , B̃28}. (14)
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It can be checked that

B̃i = Bi , i = 1, . . . , 21,

B̃22 = 2B22 − B23 + 1

3
B28, B̃23 = 2B23 − B22 + 1

3
B28,

B̃24 = 2B24 − B25 + 1

3
B28, B̃25 = 2B25 − B24 + 1

3
B28,

B̃26 = 2B26 − B27 + 1

3
B28, B̃27 = 2B27 − B26 + 1

3
B28,

B̃28 = −B28.

(15)

From (15), we deduce that the domain points b̃
∗
i associated with the set of functions

in (14) are

b̃
∗
i = b∗

i , i = 1, . . . , 21,

b̃
∗
22 = 2

3
b∗
22 + 1

3
b∗
23 :

(15
27

,
7

27
,
5

27

)
, b̃

∗
23 = 2

3
b∗
23 + 1

3
b∗
22 :

(15
27

,
5

27
,
7

27

)
,

b̃
∗
24 = 2

3
b∗
24 + 1

3
b∗
25 :

( 5

27
,
15

27
,
7

27

)
, b̃

∗
25 = 2

3
b∗
25 + 1

3
b∗
24 :

( 7

27
,
15

27
,
5

27

)
,

b̃
∗
26 = 2

3
b∗
26 + 1

3
b∗
27 :

( 7

27
,
5

27
,
15

27

)
, b̃

∗
27 = 2

3
b∗
27 + 1

3
b∗
26 :

( 5

27
,
7

27
,
15

27

)
,

b̃
∗
28 = 1

3
(b∗

22 + · · · + b∗
27) − b∗

28 :
(1
3
,
1

3
,
1

3

)
.

(16)

These points are depicted in Fig. 5 (bottom). Note that Theorem 3 in combination
with (15) confirms that the functions B̃1, . . . , B̃28 are linearly independent and form a
partition of unity. On the other hand, they are not all nonnegative. For subsequent use,
some Hermite data of these basis functions are collected in the “Appendix” (Tables 5
and 6).

Any spline s ∈ S
2
3(ΔWS3) can be represented in terms of this alternative basis, so

s =
28∑

i=1

bi Bi =
28∑

i=1

b̃i B̃i . (17)

Note that b̃ = Cb, where C is the conversion matrix already used to obtain (16). It
can be easily checked that ‖C‖∞ = ‖C−1‖∞ = 3. Therefore, from (12) and (17) we
immediately deduce

1

111
‖b̃‖∞ ≤

∥
∥∥∥

28∑

i=1

b̃i B̃i

∥
∥∥∥∞

≤ 3‖b̃‖∞, (18)
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and the condition number can be bounded as κ∞(B̃) < 333. We can also formulate
the analogue of Proposition 2 as well as a Marsden-like identity for the basis (14). We
omit the details for the sake of brevity.

The simplex spline basis (4) forms a convex partition of unity, and so it is particularly
useful for geometric modeling. On the other hand, as we will show in Sect. 4.1,
the simplex spline basis (14) is more suited to handle C2 smoothness conditions
between spline functions on adjacent macro-triangles. Of course, there are many more
alternative sets of simplex spline basis functions. One could, for instance, take the 10
cubic Bernstein polynomials defined on Δ (they are special simplex splines; see [37])
and enrich them with 18 more simplex splines that are linearly independent.

4 C2 Cubic Splines on theWS3 Refinement of a Triangulation

In the previous section, we have provided simplex spline bases for the spline space
S
2
3(ΔWS3) of cubic C2 splines on the WS3 split of a given triangle Δ. Let T be a

triangulation of a polygonal domain Ω , and let TWS3 denote its refinement obtained
by taking the WS3 split of each of its triangles. In this section, we consider the spline
space of C2 cubic splines on TWS3, i.e.,

S
2
3(TWS3) := {s ∈ C2(Ω), s|τ ∈ P3, τ is polygon in TWS3}.

The unisolvency of the Hermite interpolation problem stated in Corollary 1 implies
that the dimension of the space only depends on combinatorial properties of the tri-
angulation, and so it is stable. From the corollary, we directly deduce that (see also
[55])

dim(S23(TWS3)) = 6nV + 3nE + nT , (19)

where nV , nE , nT are the number of vertices, edges, and triangles of T , respectively.
Moreover, any spline function of S23(TWS3) can be locally constructed on each (macro)
triangle Δ of T via the Hermite data, and the corresponding spline piece on Δ can be
represented in the form (17). Conversely, any function, which is represented locally
in the form (17) on each Δ of T , is C2 smooth over each Δ of T but not necessary
C2 smooth across the edges of T . First, we derive conditions on the local spline
coefficients to ensure global C2 smoothness, and then we describe a stable global
basis with local support for S23(TWS3).

4.1 Smoothness Conditions

Let T be a triangulation of a polygonal domain Ω ⊂ R
2. We seek conditions on the

local spline coefficients in (17) to guarantee Cr smoothness across a common edge of
two adjacent triangles of T for r = 0, 1, 2.

123



Foundations of Computational Mathematics (2022) 22:1309–1350 1327

Theorem 5 Suppose the trianglesΔL := 〈 p1, p2, p3〉 andΔR := 〈 p1, p2, p4〉 share
the common edge with vertices p1, p2, and let

p4 = η1 p1 + η2 p2 + η3 p3, η1 + η2 + η3 = 1. (20)

Let {BL
i , i = 1, . . . , 28} and {BR

i , i = 1, . . . , 28} be the scaled simplex spline basis
defined by the knot sequences in Fig. 3 on ΔL and ΔR, respectively. We assume the
numbering of the basis functions in agreement with Fig. 3. Let us consider the spline
functions

sL :=
28∑

i=1

bLi B
L
i , sR :=

28∑

i=1

bRi B
R
i .

We have

– sL , sR join C0 across the common edge if and only if

bRi = bLi , i = 1, 2, 4, 7, 10, 13; (21)

– sL , sR join C1 across the common edge if and only if they join C0 and in addition

bR5 = η1b
L
1 + η2b

L
4 + η3b

L
5 ,

bR16 =
(
η1 + η2

2

)
bL4 + η2

2
bL10 + η3b

L
16,

bR19 =
(3
5
η1 + 2

5
η2

)
bL10 +

(2
5
η1 + 3

5
η2

)
bL13 + η3b

L
19,

bR17 =
(η1

2
+ η2

)
bL7 + η1

2
bL13 + η3b

L
17,

bR6 = η1b
L
7 + η2b

L
2 + η3b

L
6 .

(22)

Proof Let us first discuss C0 smoothness. Along the common edge p1 p2 the two
functions sL and sR are univariate cubic C2 splines with (interior) knots at the points
p3,1 and p3,2. Considering the restriction onto the edge of the basis functions {BL

i , i =
1, . . . , 28} and {BR

i , i = 1, . . . , 28}, we obtain that the only nonzero elements are

(BR
i )| p1 p2 = (BL

i )| p1 p2 , i = 1, 2, 4, 7, 10, 13.

Since they are linearly independent, C0 smoothness is equivalent to agreement of the
corresponding coefficients. This proves (21).

We now discuss C1 smoothness across the common edge. It suffices to prove that
along the edge p1 p2 the functions Dq3 p3s

L and Dq3 p3s
R agree. These functions

are univariate C1 quadratic splines with (interior) knots at the points p3,1 and p3,2.
Therefore, each of them is uniquely determined by its value and first derivative at the
two endpoints of the edge and by the value at the midpoint q3. From (20), we obtain
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p3 = 1

η3
( p4 − η1 p1 − η2 p2),

and so

q3 p3 = p1 p3 − 1

2
p1 p2 = 1

η3
p1 p4 − η3 + 2η2

2η3
p1 p2.

Then, by employing the C0 smoothness conditions and the values in Tables 3, 4, and
5 (see the “Appendix”), we get

Dq3 p3s
L( p1) = −9bL1 + 9bL5 − 1

2
(−9bL1 + 9bL4 ),

Dq3 p3s
R( p1) = 1

η3
(−9bL1 + 9bR5 ) − η3 + 2η2

2η3
(−9bL1 + 9bL4 ).

Equating the above expressions results in the first condition of (22). With the same
line of arguments, we deduce the remaining four conditions. �

From the relations in (15), it is clear that the conditions in (21) and (22) also ensure
C0 and C1 smoothness, respectively, for local spline representations in the alternative
basis (14).

Corollary 2 Consider the same assumptions as in Theorem 5. The C0 smoothness
conditions for the control points can be written as

(b∗R
i , bRi ) = (b∗L

i , bLi ), i = 1, 2, 4, 7, 10, 13;

and the C1 smoothness conditions for the control points can be written as

(b∗R
5 , bR5 ) = η1(b∗L

1 , bL1 ) + η2(b∗L
4 , bL4 ) + η3(b∗L

5 , bL5 ),

(b∗R
16 , bR16) =

(
η1 + η2

2

)
(b∗L

4 , bL4 ) + η2

2
(b∗L

10 , bL10) + η3(b∗L
16 , bL16),

(b∗R
19 , bR19) =

(3
5
η1 + 2

5
η2

)
(b∗L

10 , bL10) +
(2
5
η1 + 3

5
η2

)
(b∗L

13 , bL13) + η3(b∗L
19 , bL19),

(b∗R
17 , bR17) =

(η1

2
+ η2

)
(b∗L

7 , bL7 ) + η1

2
(b∗L

13 , bL13) + η3(b∗L
17 , bL17),

(b∗R
6 , bR6 ) = η1(b∗L

7 , bL7 ) + η2(b∗L
2 , bL2 ) + η3(b∗L

6 , bL6 ).

Proof The statements followby direct computation from (22) and from the expressions
of the domain points in (10). �

The C1 smoothness conditions in Corollary 2 have a nice geometric interpretation.
There are five sets of four control points that need to be coplanar. In terms of our
control net configuration in Fig. 5 (top), that means that the five triangles in both
control nets along the common edge must be all pairwise coplanar. This is illustrated
in Fig. 8.
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Fig. 8 A C1 spline surface on two adjacent domain triangles. The five pairs of triangles in the control nets
that must be coplanar according to the smoothness conditions are colored

Theorem 6 Consider the same assumptions as in Theorem 5. Let {B̃L
i , i = 1, . . . , 28}

and {B̃ R
i , i = 1, . . . , 28} be the spline bases defined by (15) on ΔL and ΔR, respec-

tively. Then, the spline functions

sL :=
28∑

i=1

bLi B
L
i =

21∑

i=1

bLi B
L
i +

27∑

i=22

b̃Li B̃
L
i + b̃L28B

L
28

and

sR :=
28∑

i=1

bRi B
R
i =

21∑

i=1

bRi B
R
i +

27∑

i=22

b̃Ri B̃
R
i + b̃R28B

R
28

join C2 across the common edge if and only if they join C1 and in addition

bR11 = η1(η1 − η2 − η3)b
L
1 + η2(3η1 − η3)b

L
4 + η3(3η1 − η2)b

L
5

+ η22b
L
10 + η23b

L
11 + 4η2η3b

L
16,

bR12 = η2(η2 − η1 − η3)b
L
2 + η1(3η2 − η3)b

L
7 + η3(3η2 − η1)b

L
6

+ η21b
L
13 + η23b

L
12 + 4η1η3b

L
17,

b̃R22 = 1

6
(η1 − η3)(2η1 + η2)b

L
4 +

( 5

18
η2 + 7

18
η2

2 + 2

3
η1 + 2

3
η2η1

)
bL10

+ 1

9
(2η1 + 3η2)(η2 − 2η3)b

L
13 + 1

3
η3(3η1 + η2)b

L
16

+ 10

9
η3(2η2 + η1)b

L
19 + η23b̃

L
22,
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b̃R25 = 1

6
(η2 − η3)(2η2 + η1)b

L
7 +

( 5

18
η1 + 7

18
η1

2 + 2

3
η2 + 2

3
η2η1

)
bL13

+ 1

9
(3η1 + 2η2)(η1 − 2η3)b

L
10 + 1

3
η3(3η2 + η1)b

L
17

+ 10

9
η3(2η1 + η2)b

L
19 + η23b̃

L
25. (23)

Proof Assume sL and sR joinC1 across the common edge p1 p2. To proveC
2 smooth-

ness across the same edge, it suffices to prove that along p1 p2 the functions D
2
p1 p3

sL

and D2
p1 p3

sR agree. Along the edge p1 p2, these functions are univariate C0 linear
splines with (interior) knots at the points p3,1 and p3,2. Therefore, each of them is
uniquely determined by its value at the two endpoints of the edge and by the value at
the points p3,1 and p3,2. From (20), we know that

p1 p3 = 1

η3
p1 p4 − η2

η3
p1 p2,

so that

D2
p1 p3

=
( 1

η3
D p1 p4 − η2

η3
D p1 p2

)2
.

Then, by employing the values in Tables 3, 4, and 5 (see the “Appendix”), we get

D2
p1 p3

sL( p1) = 54bL1 − 81bL5 + 27bL11,

D2
p1 p3

sR( p1) = 1

η23
(54bR1 − 81bR5 + 27bR11) − 2η2

η23
(54bR1 − 54bR4 − 54bR5 + 54bR16)

+ η22

η23
(54bR1 − 81bR5 + 27bR10).

By equating the above expressions and taking into account the C1 smoothness condi-
tions, we obtain the first condition of (23). With the same line of arguments, taking
into account (15) and the additional values in Table 6 (see the “Appendix”), we deduce
the remaining three conditions. �
Corollary 3 Consider the same assumptions as in Theorem 6. The C2 smoothness
conditions for the control points can be written as

(b∗R
11 , bR11)

= η1(η1 − η2 − η3)(b∗L
1 , bL1 ) + η2(3η1 − η3)(b∗L

4 , bL4 ) + η3(3η1 − η2)(b∗L
5 , bL5 )

+η22(b
∗L
10 , bL10) + η23(b

∗L
11 , bL11) + 4η2η3(b∗L

16 , bL16),

(b∗R
12 , bR12)

= η2(η2 − η1 − η3)(b∗L
2 , bL2 ) + η3(3η2 − η1)(b∗L

6 , bL6 ) + η1(3η2 − η3)(b∗L
7 , bL7 )

+η21(b
∗L
13 , bL13) + η23(b

∗L
12 , bL12) + 4η1η3(b∗L

17 , bL17),
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(b̃
∗R
22 , b̃R22)

= 1

6
(η1−η3)(2η1+η2)(b∗L

4 , bL4 )+
( 5

18
η2+ 7

18
η2

2 + 2

3
η1 + 2

3
η2η1

)
(b∗L

10 , bL10)

+1

9
(2η1 + 3η2)(η2 − 2η3)(b∗L

13 , bL13) + 1

3
η3(3η1 + η2)(b∗L

16 , bL16)

+10

9
η3(2η2 + η1)(b∗L

19 , bL19) + η23(b̃
∗L
22 , b̃L22),

(b̃
∗R
25 , b̃R25)

= 1

6
(η2 − η3)(2η2+η1)(b∗L

7 , bL7 )+
( 5

18
η1+ 7

18
η1

2 + 2

3
η2 + 2

3
η2η1

)
(b∗L

13 , bL13)

+1

9
(3η1 + 2η2)(η1 − 2η3)(b∗L

10 , bL10) + 1

3
η3(3η2 + η1)(b∗L

17 , bL17)

+10

9
η3(2η1 + η2)(b∗L

19 , bL19) + η23(b̃
∗L
25 , b̃L25).

Proof The statements followby direct computation from (23) and from the expressions
of the domain points in (10) and (16). �

Using the relations between the domain points b∗
i and b̃

∗
i in (16),we can immediately

rewrite the C2 smoothness conditions solely in terms of the control points of the basis
(4). For instance, the third condition in Corollary 3 reads as

2

3
(b∗R

22 , bR22) + 1

3
(b∗R

23 , bR23)

= 1

6
(η1 − η3)(2η1+η2)(b∗L

4 , bL4 )+
( 5

18
η2+ 7

18
η2

2 + 2

3
η1 + 2

3
η2η1

)
(b∗L

10 , bL10)

+ 1

9
(2η1 + 3η2)(η2 − 2η3)(b∗L

13 , bL13) + 1

3
η3(3η1 + η2)(b∗L

16 , bL16)

+ 10

9
η3(2η2 + η1)(b∗L

19 , bL19) + η23

(2
3
(b∗L

22 , bL22) + 1

3
(b∗L

23 , bL23)
)
,

and the fourth condition as

2

3
(b∗R

25 , bR25) + 1

3
(b∗R

24 , bR24)

= 1

6
(η2 − η3)(2η2+η1)(b∗L

7 , bL7 )+
( 5

18
η1+ 7

18
η1

2+ 2

3
η2 + 2

3
η2η1

)
(b∗L

13 , bL13)

+ 1

9
(3η1 + 2η2)(η1 − 2η3)(b∗L

10 , bL10) + 1

3
η3(3η2 + η1)(b∗L

17 , bL17)

+ 10

9
η3(2η1 + η2)(b∗L

19 , bL19) + η23

(2
3
(b∗L

25 , bL25) + 1

3
(b∗L

24 , bL24)
)
.

The smoothness conditions in Corollary 3 show a structural similarity with the C2

join of two adjacent triangular Bernstein–Bézier patches. We refer to [23, Example 2]
for a geometric interpretation.
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4.2 Stable Bases forSSS23(TWS3)

In Sects. 3.1 and 3.4, we have constructed two simplex spline bases for the space of
C2 cubic splines on theWS3 split of a given triangleΔ. We have also shown that these
bases enjoy similar properties to the Bernstein polynomial basis defined on a triangle.
Here, we consider the space S23(TWS3) and we take the similarity between these bases
one step further: We extend the concept of minimal determining sets developed for
the Bernstein polynomial basis [26] to our simplex spline bases, with the aim of
constructing stable bases with local support for the space S23(TWS3). For the sake of
simplicity, we focus on the simplex spline basis (14).

To stress their dependence on a specific triangle Δ, from now on we denote the
simplex spline basis (14) by {B̃i,Δ, i = 1, . . . , 28}. Any spline s ∈ S

2
3(TWS3) can be

identified by its coefficients {b̃i,Δ, i = 1, . . . , 28}with respect to the above basis over
any triangle Δ of T , i.e.,

s|Δ =
28∑

i=1

b̃i,Δ B̃i,Δ, (24)

where the coefficients in (24) must satisfy the smoothness conditions derived in
Sect. 4.1 to ensure the C2 joins across the edges of T . Following [26, Chapter 5],
for any triangle Δ of T we denote by D̃Δ the set of domain points specified in (16).
Then, we define a (minimal) determining set as follows.

Definition 1 Assume a set D̃ ⊆ (∪Δ∈T D̃Δ) is such that if s ∈ S
2
3(TWS3) has all the

coefficients corresponding to elements in D̃ equal to zero, then s ≡ 0. Then, D̃ is a
determining set for S23(TWS3). A determining set is a minimal determining set in case
it has the smallest possible cardinality.

By using the same line of arguments as the proof of [26, Theorem 5.13], we infer that
the cardinality of a minimal determining set for S23(TWS3) equals the dimension of the
space.With the aim of specifying such a minimal determining set, let us first introduce
some terminology regarding the domain points in a triangle Δ = 〈 p1, p2, p3〉 of T :

– The domain points associated with the vertex pi are the six points in (16) with
the i th barycentric coordinate ≥ 2/3, i = 1, 2, 3 (for instance, the domain points
associated with p1 are b̃

∗
1, b̃

∗
4, b̃

∗
5, b̃

∗
10, b̃

∗
11, b̃

∗
16).

– The domain points associated with the edge p1 p2 are the three points b̃
∗
19, b̃

∗
22, b̃

∗
25

in (16).
– The domain points associated with the edge p1 p3 are the three points b̃

∗
21, b̃

∗
23, b̃

∗
26

in (16).
– The domain points associated with the edge p2 p3 are the three points b̃

∗
20, b̃

∗
24, b̃

∗
27

in (16).
– The domain point associated with the triangle Δ is the point b̃

∗
28 in (16).

We can construct a minimal determining set for S23(TWS3) as follows; see also Fig. 9.
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Fig. 9 A minimal determining
set for S23(TWS3 ). Filled circles:
the domain points associated
with a vertex. Filled squares: the
domain points associated with
an edge. Filled triangle: the
domain points associated with a
triangle. Empty circles: the
domain points associated with
coefficients obtained from those
in the minimal determining set
by imposing the smoothness
conditions

Theorem 7 For a given triangulation T , let M̃ be the set consisting of the following
domain points:

– For each vertex p of T , choose a triangle Δ of T such that p is a vertex of Δ and
select the six domain points in Δ associated with p.

– For each edge of T , choose a triangle Δ of T sharing this edge and select the
three domain points in Δ associated with the edge.

– For each triangle Δ of T , select the domain point associated with it.

Then, M̃ is a minimal determining set for S23(TWS3).

Proof Let s ∈ S
2
3(TWS3). Assume that all its coefficients associated with the domain

points in M̃ are set equal to 0. Let p be any vertex of T . All the coefficients of s
corresponding to the domain points associatedwith p (in any triangle ofT surrounding
p) are zero because either they belong to M̃ or they are uniquely determined by the
conditions in (21), the first two conditions in (22) and the first condition in (23) for
C2 smoothness across the edges emanating from p. Let pq be any edge of T . All the
coefficients of s corresponding to the domain points associated with the edge (in any
of the two triangles of T sharing the edge pq) are zero because either they belong to
M̃ or they are uniquely determined by the third condition in (22) and the third and
fourth conditions in (23) forC2 smoothness across the edge. Finally, the domain point
associated with any triangle in T belongs to M̃ and so the corresponding coefficient
is 0. Hence, for any triangle Δ of T all the coefficients in (24) are 0 and so s ≡ 0, i.e.,
M̃ is a determining set. Moreover, the cardinality of M̃ clearly equals the dimension
of the space, see (19), and so M̃ is a minimal determining set. �

Given a minimal determining set M̃ for S23(TWS3), suppose we assign values to all
the coefficients corresponding to the domain points in it. The proof of Theorem7 shows
that these coefficients uniquely identify a spline function of S23(TWS3) because all the
remaining coefficients in the representation (24) can be deduced from the smoothness
conditions. Therefore, any minimal determining set enables us to built a basis for
S
2
3(TWS3). Let us consider the set of functions
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{Bb̃
∗
,T , b̃

∗∈ M̃}, (25)

where Bb̃
∗
,T is the unique function of S23(TWS3) obtained by zeroing all the coefficients

corresponding to the domain points inM̃ except the one related to b̃
∗
which is set equal

to 1. By construction, the functions in (25) are clearly linearly independent (see also
[26, Theorem 5.20]) and their number agrees with the dimension of the space because
M̃ is a minimal determining set. Thus, (25) is a basis for S23(TWS3). The following
proposition ensures that the elements of the above basis are uniformly bounded and
have local support.

Proposition 3 For a given triangulation T , let M̃ be a minimal determining set for
S
2
3(TWS3) as specified in Theorem 7. For all b̃

∗∈ M̃, the support of Bb̃
∗
,T is contained

in

(a) the union of the triangles of T sharing the vertex p, if b̃
∗
is a domain point in M̃

associated with the vertex p;
(b) the union of the two triangles of T sharing the edge pq, if b̃

∗
is a domain point in

M̃ associated with the edge pq;
(c) the triangle Δ of T , if b̃

∗
is the domain point in M̃ associated with the triangle Δ.

Moreover, there exists a constant K̃ only depending on the minimal angle of T such
that

‖Bb̃
∗
,T ‖∞ ≤ K̃ , b̃

∗∈ M̃. (26)

Proof Let b̃
∗
be fixed. A direct inspection of the smoothness conditions in Theorems 5

and 6 immediately gives that the coefficients in (24) for Bb̃
∗
,T are 0 wheneverΔ is not a

triangle listed in the items (a)–(b)–(c) and so Bb̃
∗
,T vanishes outside the union of those

triangles. In order to prove (26), we first note that the number of triangles surrounding
a vertex of T and the (absolute value of the) barycentric coordinates of a point of a
triangle with respect to an adjacent triangle are bounded in terms of the minimum
angle of T (see [26, proof of Lemma 2.29]). Let Δ be a triangle of T belonging to the
support of Bb̃

∗
,T . We have that (Bb̃

∗
,T )|Δ can be represented in the form (24) where

the coefficients b̃i,Δ are obtained from the value 1 corresponding to the domain point
b̃
∗∈ M̃ by applying the smoothness conditions in Theorems 5 and 6; these conditions

consist of linear or quadratic relations involving barycentric coordinates of points in
adjacent triangles. Therefore, denoting by b̃Δ the vector of these 28 coefficients, we
get ‖b̃Δ‖∞ ≤ K ′, where K ′ is a constant only depending on the minimum angle of
T . Hence, from (18) we get

‖(Bb̃
∗
,T )|Δ‖∞ ≤ 3‖b̃Δ‖∞ ≤ 3K ′.

Taking the maximum over all the triangles of T , we arrive at (26) with K̃ = 3K ′. �
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Abasis with properties as in Proposition 3 is called a stable basis with local support.
For such a basis, using the same line of arguments as the proof of [26, Theorem 5.22],
we can show that for all c̃ := (c̃b̃∗ ∈ R : b̃∗∈ M̃)T ,

K−‖c̃‖∞ ≤
∥
∥∥∥

∑

b̃
∗∈M̃

c̃b̃∗Bb̃
∗
,T

∥
∥∥∥∞

≤ K+‖c̃‖∞, (27)

where K− and K+ are positive constants depending only on the smallest angle of T .
The inequalities in (27) extend the local stability result in (18) to the full spline space
S
2
3(TWS3). Similar stability results in any Lq -norm for (a properly scaled version of)

the basis can also be achieved; see again the proof of [26, Theorem 5.22]. Furthermore,
from the partition of unity property of the local basis in (14), we directly deduce that
the global basis in (25) forms a partition of unity as well.

Note that the determining set in Theorem 7 is a stable local determining set in the
sense of [26, Definition 5.16]. This feature is, roughly speaking, the key ingredient in
the proof of Proposition 3. Similar to [26, Section 5.7], it also ensures that the full spline
space S

2
3(TWS3) has optimal approximation power. More precisely, Theorems 5.18

and 5.19 in [26] hold true for S23(TWS3).
The global basis in (25) can be easily expressed over any triangle Δ with respect to

the local basis (4) through the conversion (15). Contrarily to this local basis, the func-
tions in (25) are in general not nonnegative. However, paraphrasing [26, Section 5.8],
we observe that the explicit basis in (25) has mainly a theoretical interest. For compu-
tation with splines belonging to S23(TWS3), it is more convenient to work directly with
the local representations provided by the bases (4) or (14), rather than with the basis
for the full spline space.

5 Concluding Remarks

In [10], a simplex spline basis was described for the C1 quadratic spline space on the
Powell–Sabin 12 split, which is the quadratic member of the Wang–Shi split family.
In this paper, we have addressed theC2 cubic case and constructed two simplex spline
bases for the WS3 split. The characteristics of the C2 cubic simplex spline bases
make it unnecessary to consider separate polynomial representations on each of the
numerous polygonal regions of the partitioned macro-triangle. This paves the path for
a practical construction of globallyC2 cubic splines on any triangulation by extending
the concept of minimal determining sets.

In the following, we outline some implementation aspects and we identify few
problems where the provided simplex spline bases may be prosperous, in order to
complement the theoretical interest of our investigation with an application-oriented
perspective. We end with a discussion on a higher-order extension of the construction.
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5.1 Implementation Aspects

For computation with splines belonging to S23(TWS3), it is convenient to work directly
with the local representations provided by the bases (4) or (14). On the one hand,
evaluation of the simplex spline basis functions can be achieved by applying the
recurrence relation (B-recurrence) of simplex splines; see Sect. 2.1. On the other
hand, it might be more convenient to use the explicit expressions of the simplex spline
basis functions (4) given in Tables 1 and 2 in the “Appendix.” The alternative basis
functions (14) can be immediately deduced from the previous ones by means of the
linear relation (15).

Having at our disposal such tables, evaluation of any spline in S
2
3(ΔWS3) can be

efficiently performed by combining a lookup table process with a search algorithm
based on Boolean vectors. Given (the barycentric coordinates of) any point p in Δ,
the values of the simplex spline basis functions (4) at p can be directly obtained
from Tables 1 and 2 once we have figured out which polygonal region of the macro-
triangle the evaluation point belongs to. Since theWS3 split is a cross-cut partition, any
polygonal region in ΔWS3 is uniquely identified by the sign of the linear expressions
of the 18 interior lines in the split. These signs can be interpreted as binary digits
of an integer belonging to the range [0, 218 − 1]. Therefore, in order to detect which
polygonal region of themacro-triangle a given point p belongs to, it suffices to evaluate
all the 18 interior lines at p, to collect the resulting signs in a Boolean vector, and to
interpret such a vector as binary digits of an integer. A similar search algorithm has
been described in [10, Algorithm 1.1].

It is important to remark that the selection of the different polynomial pieces is just
an implementation aspect. Thanks to the characteristics of the simplex spline repre-
sentation, there is a single control net to facilitate control and early visualization of
a spline function over each element Δ in T . This single control net makes that the
complex geometry of the WS3 split (consisting of 75 polygons including triangles,
quadrilaterals, and pentagons) is transparent to the user. In this perspective, an interest-
ing topic of possible future research is to investigate whether the control net introduced
in the paper can give rise to a de Casteljau/de Boor-type algorithm for evaluation of
splines in S23(ΔWS3).

5.2 Application Areas

Splines on (refined) triangulations are valuable in several application areas. When
dealing with bivariate/multivariate problems, the straightforward approach is to rely
on tensor product structures, and in particular tensor product splines. Tensor product
structures offer several advantages, mainly the simplicity of their use and the inher-
itance of univariate properties. Major drawbacks, however, are the lack of adequate
local refinement and the struggle to represent geometries with complicated shapes.
Although there are several appealing extensions of tensor product splines toward local
refinement (see, e.g., [15,16,44]) and complex geometries (see, e.g., [2,34,39]), splines
on triangulations emerge as the natural tool to efficiently deal with problems where
local features has to be detected, modeled, or simulated.
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As mentioned in the Introduction, low degree splines are preferable due to their
stable behavior and their low computational complexity. In particular, univariate C2

cubic splines are one of the most used tools in modeling, approximation, and sim-
ulation. Constructing C2 splines of low degree on triangulations is a difficult task,
but their interest remains unquestionable in the bivariate setting. We limit ourselves
to mention two important application areas: computer-aided surface modeling and
numerical simulation.

In computer-aided design/manufacturing (CAD/CAM), high-quality free-form sur-
faces are of utmost importance. The quality of the surfaces can be checked by different
techniques, such as thewell-established isophotes [35], to detect irregularities of intrin-
sic measures of surface smoothness like the Gaussian curvature or the distribution of
the surface normals. For milling surfaces by five axis machines, second derivatives
should not jump toomuch across edges andC2 smoothness is desirable. In this context,
ourC2 cubic simplex spline representations on triangulations could be beneficial. The
spline surfaces could be constructed by direct (interactive)modeling via the control net
or by data fitting using quasi-interpolation schemes based on the Marsden-like iden-
tity, similar to [48]. In CAD/CAM systems, it is common to rely on general parametric
surfaces; in our case, such surfaces are specified on each macro-triangle by a control
net consisting of triangles and quadrilaterals. See also [57] for the use of simplex
splines in the context of parametric surface reconstruction. As a possible future work,
it is of interest to investigate the interplay with tensor product (piecewise) bicubic
parametric surfaces in Bernstein–Bézier (or B-spline) form, which are ubiquitous in
industrial applications. In particular, an important question is whether one can blend
standard bicubic Bernstein–Bézier patches with parametric triangular patches whose
components are C2 cubic splines represented in terms of the simplex spline bases
introduced in the paper.

Isogeometric analysis (IgA) is a numerical simulation paradigm that extends finite
element analysis (FEA) by providing a true design-through-analysis methodology
[12]. The isogeometric paradigm has some important advantages over traditional
FEA. The geometry of the physical domain is exactly described, so the interaction
with the CAD system during any further refinement process in the analysis phase is
eliminated. Moreover, the discretization spaces possess an inherent higher smooth-
ness (with respect to the polynomial degree) than classical FEA spaces, leading to a
higher accuracy per degree of freedom [4,41]. The success of IgA roots in the above
two properties, the latter being even more relevant. Besides the use of spline spaces
based on (local) tensor product structures and rather involvedmultipatch constructions
(see, e.g., [3,6,22,42,53]), a powerful IgA formulation has been obtained by consid-
ering spline spaces on triangulations (see, e.g., [5,21,50,51,54]). In particular, spline
representations obtained from local Bernstein representations by means of minimal
determining sets have been profitably applied and efficiently implemented via Bézier
extraction [21]. In this context, the space of C2 cubic splines defined on the WS3
refinement of a given triangulation is appealing because it combines low degree and
high smoothness. Our simplex spline bases are the natural counterpart of Bernstein
polynomials to define stable global bases by means of minimal determining sets (see
Sect. 4) and allow for a straightforward extension of the Bézier extraction procedure
for practical implementation. Of course, in order to efficiently exploit the potential
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of the space S23(TWS3) and its local representations in terms of simplex spline bases
in the context of IgA, several steps are still missing, for instance, there is a need for
tailored quadrature rules.

5.3 Higher-Order Extension of the Basis

Besides the application-oriented investigations mentioned in the previous subsection,
an interesting follow-up work would be the generalization of the simplex spline con-
struction to Cd−1 spline spaces Sd−1

d (ΔWSd ) on the general WSd split of a triangle
Δ := 〈 p1, p2, p3〉 for degree d > 3. Under the assumption of Theorem 2, the dimen-
sion can be written as

dim(Sd−1
d (ΔWSd )) = (d + 2)(d + 1)

2
+ 3d(d − 1)

= 3(d + 1)d

2
+ 3d(d − 1)

2
+ (d − 1)(d − 2)

2
.

Then, similar to Corollary 1, we may formulate the following Hermite interpolation
problem to characterize the space Sd−1

d (ΔWSd ): For given data fk,α,β , gk,α,l , and hα,β ,
there is a unique spline s ∈ S

d−1
d (ΔWSd ) such that

Dα
x D

β
y s( pk) = fk,α,β , 0 ≤ α + β ≤ d − 1, k = 1, 2, 3,

Dα
nk s(qk,α,l) = gk,α,l , α = 1, . . . , d − 1, l = 1, . . . , α, k = 1, 2, 3,

Dα
x D

β
y s(q) = hα,β, 0 ≤ α + β ≤ d − 3,

where

q := p1 + p2 + p3
3

, qk,α,l := l p(k mod 3)+1 + (α − l + 1) p((k+1) mod 3)+1

α + 1
,

and nk is the normal direction of the edge opposite to vertex pk . Given a general
triangulation T , this scheme can be used to construct a globally Cd−1 spline of degree
d on T where every triangle is refined with theWSd split. Such a construction is local,
in the sense that the spline can be built on each macro-triangle Δ of T separately, and
the simplex spline basis would then be useful to represent the corresponding spline
piece onΔ, without considering explicitly the complicated geometry in theWSd split.
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A Appendix

In this appendix, we collect data related to the spline basis functions B1, . . . , B28 in
(4) that might be useful for practical computations. We also provide few data for the
alternative spline basis functions B̃1, . . . , B̃28 in (14).

A.1 Visualization of Basis Functions

Each simplex spline basis function Bi is a piecewise polynomial of degree 3 on the
partition formed by the complete graph of its knots. The different types of basis
functions are depicted in Figs. 10, 11, 12, 13, 14, 15, and 16. For each basis function,
its support is indicated in the figure and all polynomial pieces are marked by different
colors.

1 4

9

Fig. 10 The simplex spline basis function B1 and its support

1 4 5

9

Fig. 11 The simplex spline basis function B4 and its support
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1 24 5

9

Fig. 12 The simplex spline basis function B10 and its support

1 4 5

8

9

53

Fig. 13 The simplex spline basis function B16 and its support
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23
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3555

Fig. 14 The simplex spline basis function B19 and its support
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Fig. 15 The simplex spline basis function B22 and its support
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Fig. 16 The simplex spline basis function B28 and its support

A.2 Explicit Expressions of Basis Functions

Here, we provide the polynomial expressions of the basis functions Bi , i = 1, . . . , 28,
up to symmetries. These polynomials can be expressed in terms of the barycentric
coordinates (β1, β2, β3) with respect to the macro-triangle Δ. To this end, we define
the following polynomials:

l1,2 := β3
3 , l1,3 := β3

2 , l1,6 := (2β3 − β2)
3,

l2,3 := β3
1 , l2,9 := (β1 − 2β3)

3, l4,6 := (3β2 − 3β3 − 1)3,

l4,8 := (3β1 − 3β2 − 1)3, l4,9 := (3β1 − 2)3, l5,6 := (3β2 − 2)3,

l5,7 := (3β2 − 3β1 − 1)3, l5,8 := (3β1 − 1)3, l5,9 := (3β1 − 3β3 − 1)3,

l6,8 := (3β3 − 3β1 − 1)3, l6,9 := (3β3 − 1)3, l7,8 := (3β3 − 2)3,

l7,9 := (3β3 − 3β2 − 1)3.

(28)

Let vk be the vertices of ΔWS3 numbered as shown in Fig. 17. The equation li, j = 0
represents the cubic power of the straight line connecting the points vi and v j . Then,
the polynomial pieces of the basis functions are described in Tables 1 and 2, up to
symmetries. The corresponding regions are specified as the convex hull of the points
vk .
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Table 1 Explicit expressions of the polynomial pieces of the basis functions Bi in terms of the functions
defined in (28)—PART A

Basis Region Expression

B1 1, 4, 9 l4,9

B4 4, 5, 9 1
4 l5,9

1, 4, 9 1
4 l5,9 − 2l4,9

B16 5, 8, 53 1
2 l5,8

4, 5, 53 1
2 l5,8 − 1

2 l5,9

8, 9, 53 1
2 l5,8 − 1

2 l4,8

1, 4, 9 27
2 β2β3(9β1 − 5)

9, 4, 53 27
2 β2β3(9β1 − 5) − 4l4,9

B28 4, 5, 55 81
2 l1,2

6, 7, 57 81
2 l2,3

8, 9, 54 81
2 l1,3

5, 6, 56 − 3
2 l5,6

7, 8, 58 − 3
2 l7,8

4, 53, 9 − 3
2 l4,9

4, 55, 23 81
2 l1,2 + 1

2 l4,6

5, 32, 55 81
2 l1,2 + 1

2 l5,9

5, 56, 32 − 3
2 l5,6 + 1

2 l5,7

6, 57, 40 81
2 l2,3 + 1

2 l6,8

8, 54, 50 81
2 l1,3 + 1

2 l4,8

9, 14, 54 81
2 l1,3 + 1

2 l7,9

4, 23, 53 − 3
2 l4,9 + 1

2 l4,8

6, 40, 56 − 3
2 l5,6 + 1

2 l4,6

7, 58, 45 − 3
2 l7,8 + 1

2 l7,9

8, 50, 58 − 3
2 l7,8 + 1

2 l6,8

7, 45, 57 81
2 l2,3 + 1

2 l5,7

9, 53, 14 − 3
2 l4,9 + 1

2 l5,9

14, 53, 23, 10 − 3
2 l4,9 + 1

2 (l4,8 + l5,9)

23, 55, 32, 10 81
2 l1,2 + 1

2 (l4,6 + l5,9)

32, 56, 40, 10 − 3
2 l5,6 + 1

2 (l5,7 + l4,6)

40, 57, 45, 10 81
2 l2,3 + 1

2 (l6,8 + l5,7)

45, 58, 50, 10 − 3
2 l7,8 + 1

2 (l6,8 + l7,9)

50, 54, 14, 10 81
2 l1,3 + 1

2 (l4,8 + l7,9)

The regions of the polynomial pieces are specified as the convex hull of the points vk numbered in Fig. 17
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Table 2 Explicit expressions of the polynomial pieces of the basis functions Bi in terms of the functions
defined in (28)—PART B

Basis Region Expression

B10 1, 4, 9 9
4β2

2 (6β1 − 5β2 − 12β3)

4, 5, 9 9
2 l2,9 − 3

4 l5,9

5, 2, 9 9
2 l2,9

B19 1, 20, 9 45
4 l1,3

2, 6, 35 45
4 l2,3

6, 9, 24 − 5
2 l6,9

1, 4, 20 45
4 (l1,3 + l1,6)

5, 2, 35 45
4 (l2,3 − l2,9)

6, 24, 32 − 5
2 l6,9 + 45

4 l1,6

9, 23, 24 − 5
2 l6,9 − 45

4 l2,9

9, 20, 23 45
4 l1,3 + 5

4 l4,9

6, 32, 35 45
4 l2,3 + 5

4 l5,6

4, 55, 23, 20 45
4 (l1,3 + l1,6) + 5

4 l4,9

5, 35, 32, 55 45
4 (l2,3 − l2,9) + 5

4 l5,6

4, 5, 55 45
2 β3(β

2
3 + 6β1β2 − 1)

55, 32, 24, 23 − 5
2 l6,9 + 45

4 (l1,6 − l2,9)

B22 5, 6, 32 − 1
2 l5,6

5, 32, 55 − 1
2 l5,6 − l5,8

4, 5, 55 27β2
3 (3β1 − 1)

4, 55, 23, 21 27β2
3 (3β1 − 1) + 2

3 l4,6

1, 4, 20 27β2
3 (3β2 − 2β3)

4, 21, 20 27β2
3 (3β2 − 2β3) + 2l4,9

6, 32, 25 − 1
2 l5,6 + 2

3 l4,6

55, 32, 25, 23 − 1
2 (3β2 − 2)3 + 2

3 l4,6 − l5,8

6, 8, 10 − 1
12 l6,8

8, 14, 10 − 1
12 l6,8 − l5,8

8, 9, 14 27
4 β2

2 (7β1 + β3 − 3)

9, 53, 14 27
4 β2

2 (7β1 + β3 − 3) + 2l6,9

1, 20, 9 27
4 β2

2 (6β3 − β2)

9, 20, 21, 53, 9 27
4 β2

2 (6β3 − β2) + 2l4,9

6, 10, 25 − 1
12 l6,8 + 2l6,9

23, 25, 10, 14, 53 − 1
12 l6,8 + 2l6,9 − l5,8

21, 23, 53 27
4 β2

2 (6β3 − β2) + 2l4,9 − 1
3 l4,8

The regions of the polynomial pieces are specified as the convex hull of the points vk numbered in Fig. 17
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Fig. 17 Numbering of the 58
intersection points vk in the
WS3 split

1 2

3

4 5

6

78

9 10

11
12
13

14

15
16

17
18
19

20 2122
23

24 25
2627

282930
31

32 333435

36
37

38
39

40

41
42

43

44

45

46

47

48

49

50

51

52
53

54

55

56

57

58

A.3 Hermite Data of Basis Functions

With the aim of showing linear independence of the spline functions B1, . . . , B28, we
have set up a Hermite interpolation problem in the proof of Theorem 3. The Hermite
data are computed through the operators ρ1, . . . , ρ28; they are defined in (5), (6), and
(8). The values of these operators applied to the Bi ’s are collected in Tables 3, 4, and 5.
The last table also provides those values for the spline functions B̃22, . . . , B̃28 that are
nonzero. The other values are obtained through the identity B̃i = Bi , i = 1, . . . , 21.
Finally, we collect some additional second derivative values of the B̃i ’s in Table 6,
where

ρ29( f ) := D2
p1 p2

f ( p3,1), ρ30( f ) := D2
p1 p3

f ( p3,1), ρ31( f ) := D p1 p3D p1 p2 f ( p3,1),

ρ32( f ) := D2
p1 p2

f ( p3,2), ρ33( f ) := D2
p1 p3

f ( p3,2), ρ34( f ) := D p1 p3D p1 p2 f ( p3,2).

(29)

These are useful to prove Theorem 6.
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Table 3 Values of ρ j (Bi ) for
i = 1, . . . , 9 and j = 1, . . . , 9,
where ρ j is defined in (5)

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9

B1 1 0 0 −9 −9 0 0 0 0

B2 0 1 0 0 0 −9 −9 0 0

B3 0 0 1 0 0 0 0 −9 −9

B4 0 0 0 9 0 0 0 0 0

B5 0 0 0 0 9 0 0 0 0

B6 0 0 0 0 0 9 0 0 0

B7 0 0 0 0 0 0 9 0 0

B8 0 0 0 0 0 0 0 9 0

B9 0 0 0 0 0 0 0 0 9

Note that ρ j (Bi ) = 0 for i = 10, . . . , 28 and j = 1, . . . , 9

Table 4 Values of ρ j (Bi ) for i = 1, . . . , 18 and j = 10, . . . , 18, where ρ j is defined in (5)

ρ10 ρ11 ρ12 ρ13 ρ14 ρ15 ρ16 ρ17 ρ18

B1 54 54 0 0 0 0 54 0 0

B2 0 0 54 54 0 0 0 54 0

B3 0 0 0 0 54 54 0 0 54

B4 −81 0 0 0 0 0 −54 0 0

B5 0 −81 0 0 0 0 −54 0 0

B6 0 0 −81 0 0 0 0 −54 0

B7 0 0 0 −81 0 0 0 −54 0

B8 0 0 0 0 −81 0 0 0 −54

B9 0 0 0 0 0 −81 0 0 −54

B10 27 0 0 0 0 0 0 0 0

B11 0 27 0 0 0 0 0 0 0

B12 0 0 27 0 0 0 0 0 0

B13 0 0 0 27 0 0 0 0 0

B14 0 0 0 0 27 0 0 0 0

B15 0 0 0 0 0 27 0 0 0

B16 0 0 0 0 0 0 54 0 0

B17 0 0 0 0 0 0 0 54 0

B18 0 0 0 0 0 0 0 0 54

Note that ρ j (Bi ) = 0 for i = 19, . . . , 28 and j = 10, . . . , 18
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Table 5 Values of ρ j (Bi ) and ρ j (B̃i ) for i = 1, . . . , 28 and j = 19, . . . , 28, where ρ j is defined in (6)
and (8)

ρ19 ρ20 ρ21 ρ22 ρ23 ρ24 ρ25 ρ26 ρ27 ρ28

B1 0 0 0 0 0 0 0 0 0 0

B2 0 0 0 0 0 0 0 0 0 0

B3 0 0 0 0 0 0 0 0 0 0

B4 − 27
32 0 0 75

2 0 0 0 0 0 0

B5 0 0 − 27
32 0 75

2 0 0 0 0 0

B6 0 − 27
32 0 0 0 75

2 0 0 0 0

B7 − 27
32 0 0 0 0 0 75

2 0 0 0

B8 0 0 − 27
32 0 0 0 0 0 75

2 0

B9 0 − 27
32 0 0 0 0 0 75

2 0 0

B10 − 189
32 0 0 31

2 0 0 49 0 0 0

B11 0 0 − 189
32 0 31

2 0 0 0 49 0

B12 0 − 189
32 0 0 0 31

2 0 49 0 0

B13 − 189
32 0 0 49 0 0 31

2 0 0 0

B14 0 0 − 189
32 0 49 0 0 0 31

2 0

B15 0 − 189
32 0 0 0 49 0 31

2 0 0

B16
9
8 0 9

8 −63 −63 0 0 0 0 0

B17
9
8

9
8 0 0 0 −63 −63 0 0 0

B18 0 9
8

9
8 0 0 0 0 −63 −63 0

B19
45
4 0 0 −120 0 0 −120 0 0 0

B20 0 45
4 0 0 0 −120 0 −120 0 0

B21 0 0 45
4 0 −120 0 0 0 −120 0

B22 0 0 0 54 27 0 0 0 0 1
12

B23 0 0 0 27 54 0 0 0 0 1
12

B24 0 0 0 0 0 54 27 0 0 1
12

B25 0 0 0 0 0 27 54 0 0 1
12

B26 0 0 0 0 0 0 0 54 27 1
12

B27 0 0 0 0 0 0 0 27 54 1
12

B28 0 0 0 0 0 0 0 0 0 1
2

B̃22 0 0 0 81 0 0 0 0 0 1
4

B̃23 0 0 0 0 81 0 0 0 0 1
4

B̃24 0 0 0 0 0 81 0 0 0 1
4

B̃25 0 0 0 0 0 0 81 0 0 1
4

B̃26 0 0 0 0 0 0 0 81 0 1
4

B̃27 0 0 0 0 0 0 0 0 81 1
4

B̃28 0 0 0 0 0 0 0 0 0 − 1
2

Note that B̃i = Bi for i = 1, . . . , 21
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Table 6 Values of ρ j (B̃i ) for
i = 1, . . . , 28 and
j = 29, . . . , 34, where ρ j is
defined in (29)

ρ29 ρ30 ρ31 ρ32 ρ33 ρ34

B̃1 0 0 0 0 0 0

B̃2 0 0 0 0 0 0

B̃3 0 0 0 0 0 0

B̃4
27
2 54 27 0 0 0

B̃5 0 0 0 0 0 0

B̃6 0 0 0 0 0 0

B̃7 0 0 0 27
2

27
2 − 27

2

B̃8 0 0 0 0 0 0

B̃9 0 0 0 0 0 0

B̃10 − 45
2 0 −27 9 81 27

B̃11 0 0 0 0 0 0

B̃12 0 0 0 0 0 0

B̃13 9 36 −18 − 45
2

63
2

9
2

B̃14 0 0 0 0 0 0

B̃15 0 0 0 0 0 0

B̃16 0 −81 −27 0 0 0

B̃17 0 0 0 0 −27 27

B̃18 0 0 0 0 0 0

B̃19 0 −90 45 0 −180 −45

B̃20 0 0 0 0 0 0

B̃21 0 0 0 0 0 0

B̃22 0 81 0 0 0 0

B̃23 0 0 0 0 0 0

B̃24 0 0 0 0 0 0

B̃25 0 0 0 0 81 0

B̃26 0 0 0 0 0 0

B̃27 0 0 0 0 0 0

B̃28 0 0 0 0 0 0
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