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Abstract The Internet Engineering Task Force (IETF) has
defined routing protocols for Low Power and Lossy Net-

works (RPL) for constrained devices. RPL constructs DODAGs

(Destination Oriented Directed Acyclic Graphs), to optimize
routing. RPL ensures acyclic topology with the DODAG
version number. However, the control message’s DODAG
version number is not authenticated. So, RPL is vulnerable
to topological inconsistency attack known as DODAG Ver-
sion Number (DVN) attack. DVN attack creates a packet
delay, packet loss, cyclic topology, etc., in the network. This
paper proposes a method for detecting DODAG version num-
ber attacks. Several existing schemes to defend against the

DVN, such as cryptographic techniques, trust-based, threshold-

based and mitigation are computationally intensive or re-
quire protocol modification. DVN does not change the packet
format or sequence of packets, but can still perform attacks
and hence fall under the category of stealthy attacks, which
are difficult to detect using traditional Intrusion Detection
System’s (IDS). Discrete-Event System (DES) based IDS
have been applied in the literature for stealthy attacks that
achieve low overhead, low false alarm rate, etc. However,
the construction of DES-based IDS for network protocol
may lead to errors, as modelling is manual. The resulting
IDS, therefore, is unable to guarantee its correctness. This
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paper proposes Linear Temporal Logic (LTL) based DES
paradigm to detect DVN. LTL-based paradigm facilitates
formal verification of the DES-based IDS, and hence the
correctness of the scheme is ascertained. The proposed tech-
nique is simulated using the Contiki cooja simulator. When
the percentage of spiteful nodes in the network increases, the
true positive rate, and packet delivery rate drops, while the
false positive rate and control message overhead increase.
The memory requirement for sending the packets and ver-
ifying the nodes is minimal. The LTL-based IDS has been
formally verified using NuSMYV to ensure the correctness of
the framework.

Keywords Routing Protocol for Low Power and Lossy
Networks (RPL) - Internet Engineering Task Force (IETF) -
DODAG Version Number Attack (DVN) - Destination
Oriented Directed Acyclic Graphs (DODAG) -

1 Introduction

The Internet of Things (IoT) has been overgrowing. It con-
nects a vast network of machines or objects over the Internet.
These interconnected machines or objects such as sensors,
actuators may consist of resource-constrained devices [1,2].

Various applications like smart hospitals, smart indus-
trial monitoring, smart agriculture, smart irrigation, smart
fighting, use IoT devices. In the IoT framework, a wide range
of constrained devices with minimal memory, power, and
processing capacities construct a Low Power and Lossy Net-
works (LLNs) [3]. LLNs have lossy links and low through-
put. Therefore, LLN requires a routing protocol that can ful-
fill the need of LLN devices. However, there are already
many existing routing protocols like OSPF (Open Short-
est Path First) Version 2, RIP (Routing Information First)
Version 2, DYMO (Dynamic Mobile ad hoc network On-
demand routing), that are designed for other networks like
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wireless, ad-hoc, MANET. Many researchers have applied
these routing protocols for LLN devices, but such proto-
cols lack the routing criteria (such as routing state, lossy re-
sponse, control cost, link cost, node cost) required for LLN
devices.

Thus, Routing Protocol for LLNs (RPL) [4-6] has been
designed that passes all criteria associated with LLNs. RPL
based network is open to various security attacks because of
their limited potential and open and unguarded distribution.
Major security attacks against RPL include internal attacks,
e.g., Rank attack, DIS (DODAG Information Solicitation)
flooding attack, topological inconsistency attack, and exter-
nal attacks like DoS (Denial-of-Service), hijacking of IoT
device, password-based attacks. A variety of security mech-
anisms have been taken into consideration for RPL [7]. All
these mechanisms can secure or guard the network against
external attacks [8,9,12], but it is also vital to secure the
network from internal attacks [3,10,11,13,14,16].

This paper focuses on a topological inconsistency attack
is referred to as DODAG Version Number attack. This attack
falls into the category of stealthy attacks that are difficult to
be detected by standard IDS. A spiteful node alters the ver-
sion number by illegally incrementing the version number
value in the respective field of the DIO control message for-
mat. Once the new increased version number of the DIO
message format is received, this modification forces the re-
build of the new DODAG tree. The parent node sends DIO
messages to their child nodes. In this way, the DIO mes-
sages are exchanged to build the new DODAG. The new
DODAG formation can cause loss of reserved energy, un-
availability of channels, and even form loops in the rout-
ing topology. There is no technique available that can as-
sure the integrity of the DIO field, i.e., version number. Var-
ious trust-based [15], cryptography-based approaches (such
as key exchange, signature-based approaches, hashing) have
been proposed to ensure the security of version numbers in
RPL networks. However, these approaches deliver the proto-
col as heavy-weight for LLN devices. Only a few strategies
target to detect version number attacks but require proto-
col modification and hardware upgradation. [17,11]. Tradi-
tional signature and anomaly IDS [18,19,9] show high false
alarms as stealthy attacks like DODAG version number at-
tacks do not change the syntax of a network packet or re-
sult in a large statistical change of the network parameters.
Therefore, in this paper, we apply the Discrete Event Sys-
tem (DES) based IDS technique to detect DODAG Version
Number attack, which does not require a change in hardware
or protocol and is low weight, yet able to handle stealthy at-
tacks.

DES is a discrete automata model with event-driven dy-
namics [20-22] that has been used for the development of
the IDS [23, 8], to resolve the issues of change in protocol,
augmentation in hardware, etc. The DES model is built for

both normal and attack (referred to as failure) conditions on
the network. The state estimator, also known as the DES de-
tector, is designed, that is, the IDS. The detector evaluates
whether the system traverses through the normal or failure
condition-based DES model based on events created (trig-
gered) by the system.

The Discrete Event System framework is automata-based
because the specification is modeled for the network proto-
col as an automaton. The DES-based IDS has shown im-
pressive results like low overheads, low false alarm rate,
no protocol change, and also at the same time are effective
against stealthy attacks. In DES-based IDS, the behavior of
the network protocol under normal and failure conditions
are described in terms of ordinary language, i.e., specifica-
tion. The manual translation of common (natural) language
into an automata-based DES for the network protocol is tire-
some, so that it may lead to errors. As a result, proving the
IDS’s correctness becomes a difficult task. Therefore, the
Linear Temporal Logic (LTL) based DES (LDES) is used to
resolve the problems related to the correctness of the model
in automata-based DES.

The LDES framework [24,20] is a user-friendly environ-
ment as it can capture the standard language specifications.
This paper focuses on the LDES to construct an IDS that
detects DODAG Version Number attacks.

The LDES IDS has the following features:

— Transformation of common language specification of DIO
protocol to models. LDES renders modeling less vulner-
able to errors.

— At any stage of IDS development, model checking [25—
27] is performed to verify the correctness, i.e., from mod-
eling to detector design.

The remaining paper is organized as follows. Section 2
presents the operation of the RPL protocol along with the
version number attack. Section 3 consists of related work
for the detection of version number attacks. The proposed
scheme is discussed in Section 4. It gives a detailed working
principle of the proposed IDS. It consists of an LTL-based
DES framework and concerns constructing a DES detector
for a version number attack. Section 5 contains the perfor-
mance evaluation of various simulation scenarios and ver-
ifies the DES-based IDS using the NuSMV tool. The con-
cluding remarks are given in Section 6.

2 Routing Protocol Low Power and Lossy Network
(RPL)

RPL is a routing protocol for Low Power and Lossy Net-
work, developed as a distance-vector routing protocol. The
RPL protocol is primarily for IoT devices with limited capa-
bilities and wireless sensors. The devices (nodes) use RPL to
construct a Destination Oriented Acyclic Graph (DODAG)
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[28] for communication. The DODAG consists of three dif-
ferent kinds of nodes: parent (in-between nodes), child (leaf
nodes), and root (default gateway), as illustrated in Fig. 1.
Each device in a DODAG tree has a rank that helps to re-
duce upward traffic flow while increasing downward traffic
flow. In DODAG, the root node has rank zero, and the par-
ent node’s rank is always lesser than its child to avoid loop
creation. The RPL supports three kinds of traffic schemes.
In P2P, the communication between two LLN devices oc-
curs, whereas, in P2M, the traffic flows from a root node to
LLN devices. In M2P, communication from LLN device(s)
to root occurs.

The RPL consists of multiple DODAG networks, where
the number of distinct wireless sensor nodes are linked to
a DODAG's gateway node, i.e., root [11]. Each DODAG in
the network can be distinguished by some fields - DODAG
version number, rank values, DODAG ID, and instance ID.
To maintain and establish the DODAG routing, RPL uses

ICMPv6 control messages: DODAG information object (DIO),

DODAG Advertisement Object (DAO), DODAG Advertise-
ment Object Acknowledgement (DAO-ACK), and DODAG
Information Solicitation (DIS). DIO advertises the informa-
tion to maintain and build the DODAG. The DODAG root
begins the construction of DODAG towards the upward route
by broadcasting DIO frames. The nodes select the sender
as a parent on receiving the DIO frame, and the receiving
node notifies the updated data to neighboring nodes in the
next DIO. All nodes has an upward route towards the root
on completing the DODAG construction process. A rank
value is assigned to each node in DODAG with respect to
the root node, which denotes the location of a node. A node
selects the preferred parent from the parent list, which acts
as a default gateway. A node selects the preferred parent to
forward a packet towards the root. Upon unsuccessful trans-
mission, the node selects any non-preferred parent to for-
ward the packet, one after the other.

Fig. 1 depicts the DODAG construction using RPL. The
root node (node A) delivers the DIO frame consisting of the
DODAG's data. Node C, B joins DODAG upon receipt of
the DIO frame and responds to node A with the DAO frame.
Then, node B forwards a DIO frame containing the latest
DODAG data. On receipt of the DIO frame from node B,
node D joins the DODAG. After joining DODAG, node D
responds to node B with a DAO packet. Node B receives a
DIS request response from node E, as no node has joined the
DODAG. After node B joined the DODAG, node B sends
the DIO frame to node E to join the DODAG. Now, af-
ter joining DODAG, node E responds with a DAO frame
to node B. After receiving the frames, node B will sum up
all the data and forward the DAO frame to its selected parent
node A. Finally, node A attains all data about the nodes from
their DAO frames to construct a downward route. Similarly,
the remaining nodes will join the DODAG.

Rank Reduces
Rank Rises

X Do @ Root
"\ Dpao
e Leaf node
. Dis
0 Rank @ Parent node

Fig. 1 DODAG Construction using RPL

In RPL, the trickle algorithm transmits the DIO period-
ically. A rank rule is used to avoid loop creation where a
parent node always has a rank lesser than its child node.
DODAG loops may occur when DODAG is cyclic. When
inconsistencies arise in the DODAG (e.g., due to less power
or lossy communication condition, nodes vanish from the
network), RPL activates repair mechanisms. Two different
repair mechanisms are available: (i) Global repair and (ii)
Local repair. Whenever the preferred parent is unavailable,
a local repair is triggered. RPL uses a local repair mech-
anism to find an alternate path to route the packets. This
mechanism fails if multiple inconsistencies occur and acti-
vate the global repair mechanism. A global repair mecha-
nism increments the DODAG version number to rebuild the
whole DODAG tree. The DIO control message consists of
the version number. A node checks its current version num-
ber with the new version number of the received DIO from
its parent nodes. If the latest version number value is large,
a node ignores its current rank value, resets the clock, and
rebuilds a new DODAG. A global repair procedure in a new
DODAG assures an acyclic topology.

The root node in the network uses a version number
to manage the global repair process. The version number
assures that all nodes in the DODAG are present with the
routing state. The RPL routing attacks are categorized into
three types, i.e., traffic, topology, and resources. In this pa-
per, the version number attack has been considered. The Ver-
sion Number Attack falls into the category of topological in-
consistency RPL attack. In this attack, spiteful node illegally
increments the version number field value in the DIO frame
format [29]. A spiteful node forwards the DIO frame to all
of its neighbors. When the neighboring nodes receive the
DIO frame from the spiteful node with an incremented ver-
sion number value, they form the latest DODAG tree. The
latest DODAG tree formation creates a loop in the topology,
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Fig. 2 Impact of DODAG Version Number Attack

resulting in a waste of node energy, increased overhead, and
many more.

Fig. 2(a) shows the impact of DODAG Version Num-
ber Attack. The network consists of 8§ nodes where there
is one DODAG root (node A), one spiteful node (node F),
and the remaining are legitimate nodes. In DODAG, only
node A is allowed to update the Version number parameter
in DIO message format. Node F joins DODAG as a legit-
imate node like other nodes, but it becomes spiteful after
the DODAG becomes stable. Now, node F sends DIO (dot-
ted arrows) messages to its neighboring nodes, i.e., Node
C, E, H, and G (assuming in the transmission range). This
DIO message consists of the modified version number. Node
C rejects the received DIO message, as it is from the child
node. Nodes E, H, and G also receive the DIO message with
the updated version number. Upon receiving DIO, Nodes E,
H and G update their existing version number and propagate
it in the DODAG. It will result in new DODAG tree forma-
tion and breaks the single tree into two DODAG’s as shown
in Fig. 2(b). The new DODAG formation is one of the im-
plications of DODAG version number attack, where Node F
becomes root node (as shown in Fig. 2(b)) from the spiteful
node (as seen in Fig. 2(a))

3 Related Work

Section 3.1 describes the study of the detection strategies for
the DODAG version number attack. As already discussed,
for stealthy attacks, e.g., the DODAG Version Number at-
tack, DES-based techniques are implemented. Section 3.2
comprises the background of DES-based IDS techniques and
their drawbacks.

3.1 DODAG Version Number RPL Attack Detection
Techniques

The technique presented in SVELTE [30] consists of three
modules for detecting routing attacks in a 6LoWPAN net-

work. The first module collects the data of the IPv6 at the
edge router, and the second module determines the invasion
in the traffic. The third module prevents unwanted traffic
from entering the 6LoWPAN network. The main issue of
the scheme is that it shows high false positive rates.
Authors in [31] present a solution for attacks on VeRA-

version number and rank authentication in RPL. This cryptography-

based solution secures rank and version number fields using
a hash chain in the DIO control message. However, the au-
thors have neither evaluated network performance parame-
ters nor discussed the paper’s implementation.

Ahmet Ardsii et al. [17] have proposed mitigation tech-
niques for the Version Number Attack. The technique elim-
inates the Version Number coming from the child nodes and
allows the node to change its Version Number only when
most neighbors with better ranks claim a Version Number
update. However, the multiple Version Number attack con-
dition has not been considered in this work.

Firoz Ahmed et al. [11] have proposed a technique for
the detection of the version number attack using a coop-
erative verification technique. In this scheme, the node ex-
changes verification messages among the two-hop neighbors
and collects the version number information from the two-
hop neighbors to identify the attacker. The issue with this
scheme is that every node should know the address of ev-
ery two-hop neighboring node. Also, this scheme itself can
become the source of the DoS attack by repeatedly sending
the verification request messages to misuse the neighbors’
resources.

The detection, as mentioned above, techniques are either
the cryptographic schemes (involving resource overheads)
or need protocol modification, software updation, etc.

Some attacks will require no change in protocol or header
format and neither lead to any significant statistical devia-
tion in the network parameters but can still exploit the vul-
nerabilities. These attacks are known as stealthy attacks, and
DODAG Version Number attack falls in this category. For
stealthy attacks, the DES-based IDS technique has been pro-
posed in the literature that has shown impressive results in
non-requirement of protocol modification, low resource over-
heads, low false alarm rate, etc.

In the following subsection, we discuss the DES-based
IDS schemes and issues therein.

3.2 DES based IDS techniques

N. Hubballi et al. [32] proposed a LAN attack detection
technique using Discrete Event Systems. ARP spoofing is
a stealthy attack where signature and anomaly-based IDS
have a high false alarm rate. In this work, the IDS detec-
tor is designed to detect ARP request and response spoofing
using the probing scheme. The scheme has salient features
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like no protocol change, low false alarm rate, etc. This tech-
nique only detects ARP attacks based on the IP-MAC pair
conflicts.

In [21], the authors have designed the DES-based IDS
detector for the de-authentication attack. The victim’s ac-
cess point gets disconnected from the network due to the de-
authentication frame in the network. As for the IDS of ARP,
in this case, also the DES-based IDS for de-authentication
requires neither protocol change nor firmware upgradation.

Authors in [33] proposed an event-based detection ap-
proach to recognize impersonated IP packets. This approach
uses proactive authenticity testing of the obtained packets.
The active probing scheme uses discrepancies in the Time-
to-Live values of the received packets to verify whether the
earlier packet was impersonating or not. This method helps
to identify impersonated IP packets with the help of the DES-
based detector.

The critical problem with the DES-based system is that
it begins with designing the model from the English lan-
guage specification of the protocol under normal and attack
conditions [20]. The state-transition model is built manually,
which may lead to an inaccurate design. It is observed that
inaccurate design can have a significant impact on the entire
IDS.

In [24], Jiang and Kumar discussed the failure diagnosis
problem for DES with LTL specifications. In the temporal
logic setting, the diagnosability of DES is established. The
issue of diagnostic testing is reduced to that of verification
of the model.

The LDES framework has the facility of verification that
is missing in the automata-based DES schema. So, the LDES
schema is adopted for the detection of the Version Number
attack in this paper.

The benefits of the LDES framework over automata-based

DES are as follows.

— LTL schema offers a representation of the user-friendly

common language specifications as compared to the automat:

based DES [34].

— The proof for the correctness of the IDS can be done eas-
ily because the automated method, i.e., model checking,
can be used for the verification of the LTL specification
as compared to the detector of the state-based DES.

The main contribution of the proposed technique for ver-
sion number attack detection is described below:

— To detect DODAG Version Number Attack, LTL-based
DES framework IDS is proposed.

— The IDS designed for detecting DODAG Version Num-
ber attack does not require protocol modification can
work with low resource overhead etc.

— The LTL-based DES IDS can be verified to check the
correctness.

4 Proposed Technique LTL based DES IDS for Version
Number Attack

This section provides an outline of the proposed technique to
detect version number attacks as discussed in Section 2. The
network under consideration comprises devices with limited
power, energy, and processing. The network is assumed to
be dense, and the root node is never compromised. After
the formation of the DODAG tree, the spiteful nodes show
unexpected (malicious) behavior.

4.1 Working Principle of the IDS

In the proposed technique, whenever a node accepts the DIO
frame from adjoining nodes, a comparison of the DODAG
version number (VNN) in the DIO message with the existing
version number (VNO) of the accepting node is performed,
as illustrated in Fig. 3. The node also checks whether the
VNN is greater than VNO or not. If the VNN is greater
than VNO, the receiving node(RN) sends the VNN and DIO
Sender Node Address (DIO message sender abbreviates as
DSNA) to the IDS node (located near root node); otherwise,
RN ignores the received DIO message. Now the IDS is in-
voked to detect and verify the identity of neighboring node
DSNA to determine whether the node is spiteful or not. For
verification, the IDS node obtains the current DODAG ver-
sion number with the help of Request (REQ) and Response
(RSP) packets.

After joining the network, even if a spiteful node trans-
mits DIO’s without modifying the version number or other
spiteful activity, the network functions cautiously. All nodes
can observe the transmission behavior of the neighboring
nodes, which ensures the neighboring node’s honesty. Each
node notices the neighboring node’s transmission behavior
by examining the DODAG version number sent by its neigh-
bors in the DIO control message. The honesty of a node de-
pends on whether a node has sent the correct version number

a-

in DIO or not to its neighboring nodes.

After receiving DIO messages from its neighbors, a node
starts examining the DODAG version number field of the
DIO control frame. If DIO has high Version Number (VNN)
value than receiving node’s existing Version Number (VNO),
the receiving node (RN) sends VNN and DSNA to the IDS.
The IDS is located near the root node. Upon receipt of this
information, the identification procedure in IDS will be initi-
ated to identify whether the neighboring node is malicious or
not. For the confirmation of the neighboring node, whether
it is malicious or not, the IDS sends REQ = (destination
node address, IDS address, AskVersionNumber) message to
know the version number. The REQ message is sent to the
root node and DSNA asking for the current version number.
Both nodes send responses to the IDS on receipt of the REQ
message. The RSP = (IDS address, Target address, Node’s
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Send VNN and Parent Node

Address to IDS

IDS sends REQ to root node and
Parent Address asking for Version Number

Malicious node

RSP Packet received
on behalf of REQ Pkt Sent

Malicious node

Fig. 3 Flow Diagram of IDS

latest Version Number) contains version number. Now, the
IDS may receive version number from both the node’s re-
sponse messages, i.e., Root Node’s version number(RVNI)

and DSNA version number (PRVN). The IDS verifies whether

the RSP message is received from DSNA or not. If the RSP
from DSNA is received, IDS checks whether VNN is equiv-
alent to PRVN or not. If the result is false, node (DSNA) is
considered as a Spiteful node; otherwise, it compares VNN
with RVNI. Even if the RSP message is not received at the
IDS, it compares VNN with RVNI. If RVNI is equivalent to
VNN, the node is considered as Normal node, otherwise as a
Spiteful node. The confirmation node is validated by verify-
ing the temporarily stored version number on the IDS with
the version number received from the response messages. If
the IDS receives two or more distinct version number val-
ues, it then considers the version number sent by the root
node. We assumed that the root node is never compromised
and always responds.

Now, we demonstrate the working of the verification pro-
cedure through an example. Considering Fig. 4, node 7 re-
ceives the DIO control message with an increased version
number from node 6. Now, node 7, instead of changing its
existing version number with the new DIO version number
(VNN), compares them to check if the new version is large
than the old version number. Node 7 will send the new ver-
sion number and node’s 6 address to the IDS. After receiving
the information sent by node 7, IDS sends the REQ1 packet
to the root node and REQ?2 to node 6, asking for the version
number. After a while, IDS receives RSP1 and RSP2 from
the root node and node 6, respectively. Finally, IDS com-

EXIT
[l

) Root Node
@ Spiteful Node

@ Legitimate Node

Fig. 4 Verification Procedure

IDS WorkStation

pares the received version number in RSP1 and RSP2 with
the VNN and decides whether node 6 is spiteful or normal.

Even if any spiteful node drops the REQ message or de-
clines to forward the message due to communication break-
down, the scheme will work. It is so because other interme-
diate nodes have received the response messages other than
the spiteful node. If any node does not send any response
message, that node can be called spiteful. The response mes-
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sage may not be transmitted due to link failure; in this con-
dition, the node needs to send an error message to IDS.

4.2 Design of Detector using LTL-based schema

This section presents the steps to construct the detector with
model variables using the LTL-based schema.

The tuples of the system model M, for fault diagnosis
(or attack detection)are defined as:

Mg = (Si, Sio, V, Z, T,R, AP L)
where,

— S, is finite set of states.

— Sjo is set of initial states, S;p C S;

— Vs the set of model variables.

— X is the set of events. Events can be observable or unob-
servable.

— 7 is the set of transitions.

- RCS,; X 7X§S; is the transition relation.

— AP is the finite set of atomic propositions.

- L is a marking function S; — 247 that marks each state
with the set of atomic propositions which are valid at
each state.

4.2.1 Steps for Diagnosability Test and Detector Design

The steps for the design of detector for M, are as follows.

1. The first step consist of construction of FSA known as
Buchi Automta, which shows the normal behaviour of
the system obtained automatically through the LTL spec-
ification. The Buchi Automata accepts the input pattern
if there exists a self-loop to atleast one of the final states.
Buchi Automata consists of 5 tuples are defined as:

Bf = (Cs, Zap, Ry, g}, F)

where,

Cy is the set of states.

Xap is the set of events

Ry is the transition relation, where Ry C Cr X Xyp
X Cy.

qg is the initial state.

— F; C 2%/ is the generalized Buchi automata.

2. This step tests the pre-diagnosability of the system model
M,. The pre-diagnosability test is performed to verify
whether the fault occurrence can be observed within a
finite time after its occurrence. The pre-diagnosability
property will automatically hold if the LTL formula sat-
isfies a safety property; it means either failure events are
never triggered, or failure states are never visited. With
this property, the infinite failure trace can be detected
through the observations of the state traces. As a result,

no detector can be constructed if a system cannot pass
the pre-diagnosability test. The proposition synchroniza-
tion of By and M, constructs the automata 7. T is de-
fined as follows:

Ty =(01, £, 3, R, ), APUF, Ly )

- 01 =Cy X S; is the set of states.

— X is set of events.

— 3 is the set of transitions.

— R; € Qq X 3 X Qq is the transition relation.

= Qb ={(cr.9) € Qi |(g), L(s), ) € Ry, 5 € Sy } is

the set of initial states.

— AP U F; is the new set of proposition.

— L is the marking function.
When every failure state has its own indicator, then the
system model is called pre-diagnosable to a specifica-
tion. So, if the states are visited infinitely often for ev-
ery infinite proposition generated in 7y, then the sys-
tem model is considered pre-diagnosable. The model T
should assure the LTL specification GFf; where f; € F;.

. The diagnosability of M, is tested in this step. The fail-

ure diagnosis approach captures both safety and live-
ness failures. The system model tests the diagnosabil-
ity to the specification formula after completing the pre-
diagnosability test. The fault diagnosis shows the detec-
tion and identification of the faulty states in the model.
The diagnosis means either the fault has already occurred
or predicts it will occur (liveness property). A detec-
tor can be constructed only after the system M is di-
agnosable. The construction of model for 7, consist of
5-tuples as follows:

Ty = (02 A, S, R, OF),
where,
- 2 =Q U {qe Qi |3(d .t.q) € Ry} is the set of
states.
— A is the set of observable events.
— S, denotes the set of observable equivalent transi-
tions of 3.
- Ry € Qy X3, X Qy is the transition relation.
— Q3 is the set of initial states.
Now design,

7J2 =(02 %, 3, R;, Q%), where

M~!(lang(T»)) = M~ M(lang(T))) are equivalent.
Therefore, language generated through T/2 is all unob-
servable events are added with observable events equiv-
alent to the language generated by T}.

Now from T,2’ design T3 as the event synchronization of
T, and M.

T3 = (03 X, 3, R, 03, AP, L) where,

- 03 =Qy X S; is the set of states.
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— X is the set of events.

— 3 is the set of transitions.

— R3 C Q3 X 3 X Qj3 is the transition relation.

- Qg = Q(Z) X Sjp is the set of initial states.

— AP is the set of atomic proposition.

- L3=Q3 — 24" is the marking function.
The language accepted by T3 = lang( 742 ) N lang(My).
The diagnosibility can be checked using LTL model check-
ing.

4. The construction of the detector D = (T, Mg, ) is the last
step. If any transition is not generated in the language of
model T, then the detector gives output as “fault”.

4.3 LTL based DES model for Version Number attack and
its Detector

This section presents the system model for version number
attacks in normal and attack conditions. The LTL specifica-
tion for normal behavior with its Buchi model and NuSMV
model checking for the LTL formula are presented. The steps
as discussed in section 4.2, i.e., the IDS construction, are in-
troduced.
-Model variables
The Model variables used for DES modeling of Version Num-

ber attack are { VNO, VNN, DIOVN, DIOPVN, PRVN, RVNI}.

The description of all model variables are as follows:

— VNN — New Version Number

VNO — Old version Number

DIOVN — Version Number obtained in current DIO frame
DIOPVN — Version Number obtained in previous DIO
frame

— RVNI — Version Number received in RSP1

— PRVN — Version Number received in RSP2

-Event Set
Based on changes in the network, the events are listed as
follows.

— DIO: DODAG information Object Control Frame

— RQP: Request frame from IDS

— RSPI: Response frame from Root node

— RSP2: Response frame from Parent Node

— FIN: The IDS initiates a clock, after a RQP is sent. It
maintains track of the T, interval in which the responses
should arrive. After time finishes, FIN event is triggered.

— u: unobservable event to model the occurence of attack.

-Transition
A transition is a tuple with three values i.e., o, check(v),
assign(v).

For example, ( DIO, VNN > VNO, VNN «+ DIOVN
&& VNO «+ DIOPVN ) is a transition, where, DIO event

is triggered, with the assignment of DIOVN to VNN, and
DIOPVN to VNO. There is a checking condition also that

checks whether VNN is greater than VNO. { RSP1, VNN==RVNI,

- ) is another transition where event RSP1 triggers after check-
ing whether VNN is the same as RVNI or not. No assign-
ment operation is performed in the third field of the transi-
tion.

-Proposition Set
The set of propositions are listed as follows.

— P1 — Source state for the detector.

P2 — DIO frame is received. After any transition of DIO

event occurs, proposition P2 is true.

— P3 — QRP has been sent. After any transition of QRP
event occurs, proposition P3 is true.

— P4 — RSP2 frame is received having VNN == PRVN.
After any transition of RSP2 event occurs, proposition
P4 is true.

— P5 — RSP2 frame is received having VNN != PRVN.
After any transition of RSP2 event occurs, proposition
P5 is true.

— P6 — RSPI1 frame is received having VNN == RVNL
After any transition of RSP1 event occurs, proposition
P6 is true.

— P7 — RSP1 frame is received having VNN != RVNL
After any transition of RSP2 event occurs, proposition
P7 is true.

- P8 — T}, expires. After any transition of FIN event oc-
curs, proposition P8 is true.

-Mask Function
This function considers all the events viz. DIO, RQP, RSP1
and RSP2 are measurable. The event FIN is also measurable
but event u is unmeasurable. All defined model variables
are also observable. Therefore, Mask Function is as follows:
M(DIO) = DIO, M(RQP) = ROP, M(RSP1) = RSP1, M(RSP2)
= RSP2, M(FIN) = FIN, M(u) = €.

The network model for version number attack under nor-
mal and faulty conditions are shown in Fig. 5. The model is
represented as M, and its description as follows:

My = (S;, Sip, T, AP, L, Z,R, V)

where,
- S;i={S1, 52,83, $4, S5, S6, S7, S8, S9, S10 }
- Sio={S1}

T={1tl,12, 3, t4, 15, t6, t7, t8, 19, t10, t11 }
AP={PI,P2,P3,P4,P5 P6,P7,P8 }

L is the marking function given by L(S;) — 247 that can
be seen from Fig. 5.

X~ = { DIO, RQP, RSP1, RSP2, FIN, u}

R shows the transition relation depicted in Fig. 5.

V = {VNO, VNN, DIOVN, DIOPVN, PRVN, RVNI}
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In system’s DES modeling, each transition is divided
into three value tuples as depicted in Fig. 5. The transitions
are represented in the form of t;, instead of three tuples, to
avoid complications in the figures.

For the both ‘normal and failure (attack)’ scenarios, the
DES model is described, as depicted in Fig. 5 is given below.

4.3.1 Normal Scenario:

Initially, the system is normal and is in state S1. When there
is a DIO frame, a transition from S1 to S2 occurs. In this
transition, the model variables VNN and VNO are initialized
by DIOVN and DIOPVN, respectively. Along with the ini-
tialization, it checks whether the VNN is greater than VNO
or not. If the comparison is true, transition (t1) moves to the
S2 state; otherwise, it remains in the initial state. The transi-
tion (t2) moves from S2 to S3 when the request RQP frame
is received, asking for the version number. This QRP frame
is received by the root node and Parent node (node sent the
DIO frame). After receiving RQP, the root node and Parent
node send the RSP1 and RSP2, respectively. The root node
is assumed never to be compromised and reliable. When the
response frame RSP2 is received from the parent node, it
verifies the received version number PRVN with the VNN. In
the checking, if PRVN is equal to VNN, the transition moves
from state S3 to S4. This transition is taken only when the
frame is received within the required frame response time.
Afterward, in this transition, the version number RVNI re-
ceived from the response frame RSP/ is compared with the
VNN. If the comparison is true, then this condition is consid-
ered normal. The change of state from S4 to S5 occurs due
to transition t4. RSP2 cannot be received due to link fail-
ure or any other reason. In that case, the only RVNI version
number is verified with VNN. If RVNI is same as VNN, the
situation is considered as normal. So, transition(t4) moves
from S3 to S6 state. Transition (t7) occurs from S6 to state
S10 after the T}, time has passed and event FIN is fired. In
the normal situation, the VNN should be same as PRVN and
RVNI. The RSP2 may not be received; in that case, if RVNI
is the same as VNN the situation is considered as ‘normal’.

4.3.2 Attack Scenario:

When there is a DIO frame, transition (t1) from the ini-
tial state S1 to S2 occurs. This transition initializes VNN
and VNO model variables, respectively, with DIOVN and
DIOPVN. The transition also checks the equality of VNN
with VNO. If the check is found true, transition moves to S2
state, otherwise remains at initial state S1. When the RQP
event occurs, transition (t2) moves to S3. A RQOP frame is
sent to root node and Parent node asking for version num-
ber. The RSPI and RSP2 events are triggered by root node
and parent node, respectively. The RSPI and RSP2 frames

contain the version number RVNI and PRVN, respectively.
Further, these responses are to arrive within 7T}, time after
RQP is sent. A model moves from S3 to S4 on observation of
the event RSP2 by transition t3. After transition t2, responses
from the attacker arrives (i) transition (t3) having PRVN the
same as VNN (ii) transition (t6) not having PRVN same as
VNN, where system moves to state S8. It may be noted that
RSP2 event for transition (t6) is considered malicious. But
RSP2 event for transition (t3) proceeds with response RSP1.
Enabling of transition (t5) is only dependent on RSP1. The
model variable equality is ensured by checking RVNI with
VNN. In case RSPI arrives from attacker, the RVNI is not
equal to VNN in transition (t5). The transition (t5) fires on
receipt of single response RSP/ within T,. It checks RVNI
with the VNN and t5 moves to state S9. The transitions (t7)
is enabled when event FIN occurs and system moves to state
S10.

4.4 LTL Specification

The LTL specification for the version number attack in the
normal scenario is formulated. In terms of events, the speci-
fication of the system’s non-failure scenario (no version num-
ber attack) is described as:

Either any response with unmatched VNN-PRVN and
VNN-RVNI should not be encountered, or any response (RSP1
and RSP2) frame should not be detected after the QRP re-
quest frame is sent before the system terminates.

Therefore, according to the transition set, the specifica-
tion is considered as: Either t5 and t7 (caused by RSP1 and
RSP2) should not be detected, or t7 (caused by FIN) does not
occur just after transition t2 before the system terminates.

It can be observed from the proposition set that P5 and
P7 are the propositions that are true when transition t6 and
t5 occur; respectively, P3 corresponds to transition t2 and P8
is true when t7 exists, and the system terminates.

The specification is described in the form of LTL for-
mula f; as:

((=P5 A “PT)AN(P3 — X—-P8))U P8

Using LTL, the system’s non-failure scenario is stated
logically and unambiguously. The conversion of the LTL
formula into a Buchi Automata is done automatically. Due
to this, the LTL-based framework provides a proper and suit-
able way to state specifications compared to the state-based
schema.

4.5 DES detector for Version Number Attack

The construction steps for the detector are as follows:

1. Construction of Buchi Automata
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t4: { RSP,
VNN == RVNI,

-3

t1: {DIO, VNN>VNO,

=1

t3: { RSP2,
VNN == PRVN.

t7: {FIN, -, - }

P4 t4: {RSPI, P8

I

{VNN<-DIOVN && 2: {RQP, -, -
@\No«mopvm;@ R

P1 P2

t5: { RSPI,
VNN != RVNI,
-3

P7

Fig. 5 System model for LTL diagnosis

A1

{P1,P2,P6,P8) > A1

{P1,P2,P4,P6,P8} --> A2

{P1,P2,P3,P4,P6,P8} -> A3 {P1,P2,P3,P6,P8} -> Ad

(P8} ->A5 {P1,P2,P3,P6} > AB {P1,P2,P6) > AT {P1,P2,P3,P4,P6} > AB

{P1,P2,P4,PE} > A9

Fig. 6 Buchi Automata B for f;

The Buchi Automata B is obtained from the given LTL
specification as follows.

Bf = (Cs, Zap, Ry, ¢}, Fy) is shown in Fig. 6 where,

- C; = { BO, BI, B2, B3, B4, B5, B6, B7, B8, B9,
B10} is the set of states.

- Z4p = { P1, P2, P3, P4, P6, P8} is the set of propo-
sitions defining the model corresponds to the event.
The set of propositions are represented as A; where,
i>1(e.g., {P1,P2,P3,P4 } is written as Al).

— Ry is the transition relation, where Ry € Cy X Zysp
X Cy.

- qg = B0 is the source state.

- F; = { B5, B10 } are the final states that satisfies the
specification expressed through Fj.

As shown in Fig. 6, By shows five transitions emerging
from the source state BO. All the transitions satisfy (—P5
A —P7). Furthermore, the states that can be reached via
proposition P3,i.e., B3 & B6 and B4 & BS§, do not have
any outgoing paths of P8. This suffices (P3 — X(—P8))
sub-part of fj. After reaching state BS, fj is satisfied, and
as aresult, any subsequent proposition leads to final state
B10. By is a non-deterministic automaton which means,
various transitions for the same set of propositions exist.
It can be verified manually that “B ¢ accepts all proposi-

o)

t6: { RSP2,
QNN != PRVN,

t9: {FIN, -, - }

S5
8: {u,-,-}

t5: { RSPL,
NN 1= RVNI,

tion traces over AP satisfying f;”. As a result, the speci-
fication is represented through an automaton.

2. Test of Pre-diagnosability using Proposition Synchro-
nization of Buchi Automata and the model
The model is considered to be pre-diagnosable, when-
ever every infinite proposition trace encounters final states
of the automaton infinitely often. A Proposition Syn-
chronization of the My and By is used for the testing
of Pre-Diagnosibility. Fig. 7 depicts the synchronization
where Y;_; denotes (B;, s;), B; € Cy, and s; € S;. The
proposition synchronization is represented as model T}
for f;. The T; consists of 7-tuples is shown as:

P1 P2 P3

Fig. 7 Model T, for f;

Ty =(01, £, 3, Ry, 0}, APUF, Ly )

= 01={Y1_1,Y12,Y33,Y6.4,Y7.5.Y7.6,Y5_10,Y10_10}

— X =set of events { DIO, RQP, RSP1, RSP2, FIN, u}

- 3 ={tl,12,t3, 4, t7, t8 } is the set of transitions.

— R; is the transition relation as shown in Fig. 7.

- 0y={Yi1}

— AP U F; represents the set of proposition.

— L; represents marking function, which is shown in

Fig. 7.

The construction of pre-diagnosibility model T is shown
in Fig. 7, 0} = {(cs,» §) €Qil(q)'. L(S). ¢,) € Ry,
S € Siy }. Therefore QY = {(B1S1), (B2S1), (B3S1),
(B4S1)} as L(Sy) =P1, (BO,P1,B1) € Ry, (BO,P1,B2)
€ Ry, (BO,P1,B3) € Ry, (BO,P1,B4) € Ry, and Sy €
Sio- So, the initial states are {Y_1,Y2_1,Y3_1,Y4_1 }. The
initial states i.e., second Y, i,third Y3 ; and fourth Y4 1,
get merged with initial state Y _j.
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The state Y_; is reachable by the transition t1 from the
initial state Y;_j(= {B1, S1}) i.e., (B1,S1), t1,(B1,S2))
€ Ry as L(S2) = P2, (B1,P2,B1) € Ry, and (S1,t1,S2) * . i
€ R. We can also say, (Yi_1, tl, Y12) € Ry. Yy is ) “

. Com— (a2 \¢ o) Y
labeled as P1, i.e., P1 € Li(Y; 1) as P1 € Li(S1). Yy » e g ooy Lo

P8

is marked as P2, i.e., P2 € L;(Y ) as P2 € L;(S2).
According to this, T; is constructed and all equivalent
states are merged.
As mentioned in Section 4.2, the system model is pre-
diagnosable only if T; visits the F; states infinitely for
every proposition trace generated by T. In terms of model
checking, T1 must satisfy the LTL specification GFF;.
This model checking is performed by NuSMV tool for
pre-diagnosibility (is shown in Section 5).

3. Test for Diagnosibility After completing the pre-diagnosability
test, the system model proceeds to test the diagnosability
to specification formula.

Fig. 10 Model T for f;

Unmasking Ty: Now from T, the construction of T/2 is
done. T,2 accepts MY lang(T>)). The T/2 is represented
using 5-tuples shown in Fig. 9 as follows:

fz =(02 %S, Rlz, Qg), where

- 0 ={Y1.1, Y12, Y33, Y64, Y75, Y756, Ys_10}.
- X ={DIO, RSP, RQPI, ROP2, FIN, u}.

- 3={tl,12,t3,t4,t7, 8 }.

- R; is the transition relation, as shown in Fig. 9.

- 05 ={Yi1}.
o In a comparison of T/2 with T, self-cycle transitions are
@ an addon to all states of T,2. For example, (Y1_1,t8, Y1)
s . S R'2 as Yi_; = Y;_; and t8 transition triggers the event
P E E g E E T3 = (03 X, 3, R, O}, AP, L3) where,

Fig. 8 Model T, for f;
- O3 ={Y(1_1)1,Y(12)2:Y (3.3)3: Y(6.4)4- Y (7_5)5- Y (7_6)6 Y (5_10) 10 }

Synthesis of Masked Ty: With the use of mask function
M, T, is constructed as shown in Fig. 8.

T2 = (Q27 A; Sm; RZ» Q(Z))s Where

- 02 ={Y1.1,Y12,Y3.3,Y6.4,.Y7.5,Y7.6, Y5 10}

- A ={DIO, RSP, RQP1, RQP2, FIN}.

- Sm = {Z‘M], M2, T3, tya, tM7}. ty; denotes the ob-

servable event equivalent of transition t; (of My).

— Ry is the transition relation, as shown in Fig. 8.

- Q5 =1{ria}.
The set Q; contains all those states of T where the tran-
sition leading into that state is triggered having an ob-
servable event. Hence, Yo_jo state (in T;) gets elimi-
nated as t8 is the only transition that leads to Y¢_jo state
whose observed event is €.

ey {g
t8
t4
2 P3

P1 P:

Fig. 9 Model T/2 for f;

- X =set of events { DIO, RQP, RSP1, RSP2, FIN, u}

- 3 ={tl, 2,3, t4,t7, t8 } is the set of transitions.

— Rj is the transition relation as shown in Fig. 10.

— AP is the set of proposition, like M .

- L3 = Q3 — 24P is the marking function, which is

shown in Fig. 10.

All the traces of My, which has similarly observed traces
in Ty, are produced through T3. Therefore, all unob-
servable event u has self-loop transitions on states Y1 _i,
Y12, Y33, Yo4, Y75, Y76, Y5 10 are eliminated al-
though any of the state does not associate to R(i.e., not
present in My) and remaining transitions from le are
present. This way, T3 is constructed.
If My is diagnosable then all infinite traces generated
through T3 satisfy the fj. LTL model checking of the
model T3 with specification f; through NuSMV model
checker is presented in Section 5.

. Final Detector The system model My is diagnosable, so

its detector can be designed. It can be seen in Fig. § that
T, accompany M, to construct the final detector where,

Mg, : A* — {failure} is a partial function where V' s €
A*, Mg, (s) = failure if s is not produced by T».

Using mask M, the detector notices the traces of transi-
tions that are generated by M. If same trace is not gener-
ated by T, the detector shows that attack has occurred as
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output. For example, consider t1, t2, t3, t5, t7 as the tran-
sition trace generated through My, then its equivalent
transition trace tysq, ty2, tms, tus, ty7 1S not generated
through T,. The transition trace tas1, ta2, tys, tas, tyr
corresponds to P1, P2, P3, P4, P7 that violates ((—P5 A
=P7)A(P3 — X—P8))U P8. Thus the detector shows the
attack for a trace as a output. On the other side, for tran-
sitions tl, t2, t3, t4, t7 the equivalent transition trace is
tats tra, ts, tya, tay7 that is generated by T,. The trace
tvts taa, tys, taa, ty7 corresponds to P1, P2, P3, P4, P6
which coheres to ((—P5 A =P7)A(P3 — X—P8))U PS.
Thus, the detector shows normal for this case as output.
Any transition that does not satisfy the property i.e., any
transition is not generated in the language of the model
T, then detector shows output as attack.

5 Performance Evaluation

The performance of the Version Number detection technique
has been evaluated through simulation and the NuSMV model
checker.

In this work, we considered the random topology with
the increased percentage of the spiteful node to analyze the
performance changes in the metrics. The simulation topol-
ogy consists of 20 nodes, i.e., root, IDS, and remaining sen-
sor nodes, as shown in Fig. 11. All nodes are placed in a
100x100m area. In random topology, all nodes are placed
randomly except the IDS node. The IDS node lies near the
root node. Here, node 1 and node 2 are considered as the root
node and IDS node, respectively, as shown in Fig. 11(a). In
other scenarios, the simulation setup has nodes 19 and 20 as
spiteful nodes, depicted in yellow. Fig. 11(b) has only node
20 as a spiteful node, and the scenario shown in Fig. 11(c)
has nodes 19 and 20 as spiteful nodes. In such a way, we
have considered there scenarios wherein the number of spite-
ful nodes increases by 5%.

Simulation Environment
The detection technique uses the Contiki 2.7 operating sys-
tem and its Cooja simulator for performance evaluation. Con-
tiki is an open-source and multi-tasking operating system
for wireless sensor networks. The Contiki 2.7 update con-
tains the Contiki RPL protocol [11]. Cooja is a simulator for
the simulation of the networks of sensors running over the
Contiki operating system.

On a plane square, the Tmote Sky motes are introduced.
All motes, i.e., motionless motes, are called static motes.
For all motes, the communication and interference range is
50 and 100 meters, respectively. The simulation is verified
20 times for each scenario, and the average values for all
parameters are determined. In Table 1, the simulation pa-
rameters and their values are given.

By increasing the number of spiteful nodes in random
topology, the performance of the detection scheme has been
assessed. For an attack or normal case, each simulation runs
for 50 minutes. It is assumed that 50 minutes are sufficient
to determine the network’s performance and the network’s
DODAG becomes stable within three minutes.

Table 1 Cooja Simulator Parameters

Parameter Value
Operating System Contiki 2.7
Simulator Cooja
Radio medium UGDM
Simulation area 100m x 100m
Node Type Tmot Sky
MAC layer ContikiMAC/6LoWPAN
Number of nodes 20
Number of malicious nodes Up to 25%
Physical layer IEEE 802.15.4

Performance Parameters:
The following performance parameters are considered:

— Resource Requirements: Average power consumption,
and Memory requirements.
Average power consumption is calculated based on the
average of the total power consumption of nodes ex-
cept root, IDS, and attacker nodes. Memory requirement
shows memory (RAM and ROM) needed to implement
the DVN detection technique, i.e., the IDS.

— Network Parameters: Packet Delivery Rate (PDR) and
Control Message Overhead.
The ratio between the number of packets delivered (D) to
the total number of packets sent (S) from source node to
the destination is known as Packet Delivery Rate (PDR).
PDR is computed according to the Equation 1.

D
Packet Delivery rate (PDR) = 3 (1)

Control Message Overhead refers to the total number
of control packets sent for the path establishment of the
node as well as the verification of the spiteful node.

— Accuracy: True Positives Rate (TPR), False Positives
Rate (FPR).
True Positive Rate (TPR) is calculated as per Equation 2.
In Equation 2, TP is the number of true positives and P
refers to the total number of positive cases. A true posi-
tive TP is a case where our proposed solution detects the
legitimate node correctly as legitimate.

TPR = e )
P

False Positive Rate (FPR) is computed as per Equation 3.

In Equation 3, FP is the number of false positives while

N refers to the total number of negative cases. FP is a



LDES: Detector Design for Version Number Attack Detection using Linear Temporal Logic based on Discrete Event System 13

® o
@ @
o ®% o
@ ..
(€] @
e © G
e 5 o ®
@ @
e © ]

(a) Scenario 1

Fig. 11 Random Topology for the Simulation

case in which our proposed mechanism detects legiti-
mate node incorrectly as spiteful node.

FP
FPR = —

N 3

Table 2 Accuracy Metrics Values

% of Spiteful Node | TPR | FPR
5 99.7 | 0.55
10 98.8 | 1.02
15 97.7 1.9
20 96.5 2.1
25 954 | 2.35

Analysis on Simulation Results:

The performance of the simulation parameters in terms of
accuracy metrics, i.e., True Positive Rate (TPR) and False
Positive Rate (FPR) with the distinct percentage of spite-
ful nodes are shown in Table 2, and resource requirements
like average power consumption and memory utilization are
shown in Fig. 12 and Table 3, respectively.

As seen from Table 2, the true positive rate drops when
the percentage of spiteful nodes rises. It happens because
an increased percentage of spiteful nodes may collide, and
therefore, IDS can not detect all spiteful nodes. It is showed
that the proposed scheme functions well with near about
99.7 and 95.5 true positive rate when the percentage of the
spiteful node is 5 and 25, respectively. Table 2, it is also
shown that false-positive rates rise with the increased per-
centage of the spiteful nodes. It happens when there is no
path to send the version number value to the IDS node to
verify the version number.

The simulation uses the emulated sky motes [35] which
utilizes the MSP430 controller to determine the memory us-
age. The controller consists of 10 KB RAM and 48 KB
ROM. The verification technique requires the extra over-
head of sending the probing packets and verifying the node,

(b) Scenario 2
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(c) Scenario 3

Table 3 Memory Utilization

Scenario RAM (Byte) | ROM (Byte)
Contiki RPL 7530 47363
Contiki RPL + IDS 7857 48106

which requires extra RAM and ROM usage. In this case,
an additional 327 bytes and 743 bytes of RAM and ROM
are required, as shown in Table 3. It may be noted that this
memory requirement is reasonable. The IDS stores the DIO
message VNN and DIO sender’s address to verify the spite-
ful node through the REQ and RSP message.

~ [ IS

Average Power Consumption (mW)

-

oo

ysolo D 2500

%age of Spiteful nodes

[E RPL+Spiteful Node B RPL+IDS+Spiteful Node

Fig. 12 Avg. Power Consumption vs Percentage of Spiteful Nodes

The average power consumption results are shown in
Fig. 12, which correspond to the RPL+Spiteful node and
RPL+IDS+Spiteful node environments. It can be seen that
the power consumption increases with the increase in the
percentage of spiteful nodes. It happens since packets are
dropped due to a global repair mechanism. This causes the
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Fig. 13 Packet Delivery Rate vs Percentage of Spiteful Nodes

nodes to waste energy due to the repeated transmissions of
the packets. Therefore, it leads to high power consumption.
When the efficiency of the IDS is checked, we can see that

power consumption has been reduced compared to the RPL+Spiteful

node environment.

The performance of the network parameters, i.e., Packet
Delivery Rate and Control Message Overhead against the
distinct percentage of spiteful nodes, are shown in Fig. 13
and Fig. 14, respectively. The PDR performs better when
there is no spiteful node in the network, i.e., higher than 99.
Nevertheless, when 5% of the total nodes are spiteful in the
network, the PDR value drops drastically to nearly 40 per-
cent from 99 percent. The PDR value depreciates more with
the increase of spiteful nodes. However, our proposed de-
tection technique works efficiently, as it reduces the effect
of the Version Number Attack. Fig. 13 shows that the PDR
of the proposed technique is better in the RPL+IDS+Spiteful
scenario than the RPL+Spiteful scenario. It happens because
our proposed technique detects the spiteful node more accu-
rately after the verification of the suspect node. The verifi-
cation node does not update the new Version Number sent
from the suspect node until the verification procedure gets
complete and the suspect node gets verified as normal. The
packet is sent to the root node from the path of the suspect
node. If the suspect node is verified as a spiteful node, then
the verification node does not update the new version num-
ber, and the packet is not sent via the suspect node.

The performance of the Control Message Overhead (CMO)

can be seen in Fig. 14. The CMO of the RPL+Spiteful envi-
ronment increases drastically even when 5% spiteful nodes
of total nodes are present. The CMO increases with the in-
crease of the spiteful nodes in the RPL+Spiteful environ-
ment. It happens because of the version number attack be-
havior. However, the proposed solution’s control overhead
is not proportional to the percentage of spiteful nodes, as
the proposed scheme prevents DIO’s from the broadcast-

Control Overhead

S
——— i

0% 5% 10% 15% 20% 25%
%age of Spitefitl Nodes

~§- RPL+Spiteful Node ~ ~A- RPL+IDS+Spiteful Node

Fig. 14 Control Message Overhead vs Percentage of Spiteful Nodes

Table 4 Comparison of Proposed Approach with Related Work

Mechanism PDR | Overhead | Topology
(in %) | (Pkts/sec)
Lightweight 96.24 5045 Random,
Mitigation [17] grid-centre
Distributed 97 1500 Random
and cooperative
Verification [11]
VeRa - - Random
[31]
Proposed Approach 98.7 1100 Random

ing process, which broadcasts for the reconstruction of the

DODAG. As aresult, the CMO is much lower in the RPL+IDS+Spiteful

environment than the RPL+Spiteful environment, as shown
in Fig. 14.

Table 4 represents the comparison of studies in the re-
lated work with the proposed approach. It is shown in the
table that the proposed approach provides better network
performance, i.e., in terms of PDR and CMO. The proposed
solution supports random topology and performs better than
the studies in the related work. The PDR and CMO obtain
the best result, i.e., 98.7% and 1100 pkts/sec, respectively.

Model Checking:

NuSMYV [36] is a platform for describing the models and
validates LTL formula(s) for these models. It accepts the
program (describing a model) in the form of text as input.
It shows the output as ‘true’ over the given LTL specifica-
tion; if the specification holds, it otherwise generates a trace
where the specification is not satisfied. As discussed in sec-
tion 4.3, the LTL specification used for the normal condition
is as follows.

((=P5 A “PT)AN(P3 — X—-P8))U P8

Pre-diagnosibility Model Checking: The pre-diagnosability

testing of the system model My (as depicted in Fig. 5) is
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MODULE main

VAR
ev : {DIO,RQP,RONE,RTHO,EXP,UNOBV};

status : {pone,ptwo,pthree,pfour,psix,peight};
ASSIGN

init (ev) := DIO;
init (status) := pone;
next (status) := case

(ev=DI0) : ptwo;
(ev=RQP) : pthree;
(ev=RTWO) : pfour;
(eV=RONE) : psix;
(ev=EXP) : peight;
TRUE: peight;
esac;

next(ev) := case
(ev=DIO0) : RQP;
(ev=RQP) : {RTWO,RONE};
(ev=RTWO) : RONE;
(ev=RONE) : EXP;

TRUE : UNOBV;

esac;

LTLSPEC

G (F [(status=peight))

(a) NuSMV Code for
Pre-diagnosibility

Fig. 15 Pre-diagnosibility testing of the model

(a) NuSMV Code for
Diagnosibility

(b) Output for Diagnosibility testing

Fig. 16 Diagnosibility testing of the model

done through NuSMV model checking. Fig. 15(a) depicts
the code snap for the pre-diagnosability of M. The variables
status and ev are of enumeration type. Both variables sta-
tus and ev are initialized with proposition value (pone) and
event (DIO) that can be seen in Fig. 15(a). The variable ev is
assigned the value among DIO, QRP, RONE, RTWO, EXP,
UNOBYV of different events. Proposition values like pone,
ptwo, three, pfour, psix, peight are referred through the vari-
able status as depicted in Fig. 15(a). The definition of a tran-
sition in NuSMYV is not supported, so the code snap con-
sists of the triggering events of transitions (for example, DIO
denotes ¢1). Furthermore, the propositions are presented in
words (e.g., P1 is represented through Pone; similarly, other
propositions are represented). The cases are evaluated where
P8 is true for the pre-diagnosability test. The result is true for
the specification G(F'(P8)) that can be seen in Fig. 15(b). So,
it can be said that the system is pre-diagnosable, as model T
satisfies the specification.

Model checking Test for Diagnosability: For testing
the diagnosibility, the event synchronization of the system
model and fz model together constructs the model T3 as de-
picted in Fig. 10. The code snap for diagnosibility testing
and output corresponding to 73 are shown in Fig. 16 with
the help of NuSMV model checker.The system model is said
to be diagnosable with respect to T3, as, model satisfies the
specification ((—P5 A =P7) A (P3 — X—P8)) U P8.

As Tj is formally verified, the diagnoser can be con-
structed (as per Section 4.5), and the resulting IDS can be
considered free of errors.

6 Conclusion

The LLN devices are constrained in terms of low resources,
high packet loss, etc. The RPL protocol uses DODAG ver-
sion number to form DODAG (acyclic) topology. However,
there is no technique to authenticate the DODAG version
number. So, RPL has become vulnerable to DODAG ver-
sion number attacks. DVN requires neither any change in
packet format nor the sequence of packets and hence falls
into the category of stealthy attacks. DES-based IDS has
been applied for stealthy attacks that achieve low false alarm
rates, low overhead, etc. The construction of DES-based IDS
for the network protocol is done manually, which may lead
to errors. So the designed IDS does not guarantee its cor-
rectness. Therefore, the LTL-based DES schema has been
used to design and formally verify the proposed DES-based
DODAG version number detection scheme that deals with
its correctness.

The proposed detection scheme has been simulated in
the Contiki cooja simulator. The simulation results show the
accuracy of 99.7% and 95.4% when the percentage of spite-
ful nodes are 5% and 25%, respectively. The true positive
rate decreases with the increase of spiteful nodes, whereas
the false positive rate increases with spiteful nodes. It hap-
pens since there is no path to send the version number value
to the IDS node for its verification. In sending the packets
and verifying them, the nodes require extra 327 bytes and
743 bytes of RAM and ROM, respectively, which are mini-
mal when compared to the memory available in IoT nodes.

We plan to advance the proposed research work using a
test-bed environment to validate the results in future work.
Future research could be to analyze the version number at-
tack collaborated with other attacks.
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